qemu/target/arm/hvf/hvf.c
Zenghui Yu 19ed42e8ad hvf: arm: Fix encodings for ID_AA64PFR1_EL1 and debug System registers
We wrongly encoded ID_AA64PFR1_EL1 using {3,0,0,4,2} in hvf_sreg_match[] so
we fail to get the expected ARMCPRegInfo from cp_regs hash table with the
wrong key.

Fix it with the correct encoding {3,0,0,4,1}. With that fixed, the Linux
guest can properly detect FEAT_SSBS2 on my M1 HW.

All DBG{B,W}{V,C}R_EL1 registers are also wrongly encoded with op0 == 14.
It happens to work because HVF_SYSREG(CRn, CRm, 14, op1, op2) equals to
HVF_SYSREG(CRn, CRm, 2, op1, op2), by definition. But we shouldn't rely on
it.

Cc: qemu-stable@nongnu.org
Fixes: a1477da3dd ("hvf: Add Apple Silicon support")
Signed-off-by: Zenghui Yu <zenghui.yu@linux.dev>
Reviewed-by: Alexander Graf <agraf@csgraf.de>
Message-id: 20240503153453.54389-1-zenghui.yu@linux.dev
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
2024-05-28 14:20:48 +01:00

2254 lines
74 KiB
C

/*
* QEMU Hypervisor.framework support for Apple Silicon
* Copyright 2020 Alexander Graf <agraf@csgraf.de>
* Copyright 2020 Google LLC
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*
*/
#include "qemu/osdep.h"
#include "qemu/error-report.h"
#include "sysemu/runstate.h"
#include "sysemu/hvf.h"
#include "sysemu/hvf_int.h"
#include "sysemu/hw_accel.h"
#include "hvf_arm.h"
#include "cpregs.h"
#include <mach/mach_time.h>
#include "exec/address-spaces.h"
#include "hw/irq.h"
#include "qemu/main-loop.h"
#include "sysemu/cpus.h"
#include "arm-powerctl.h"
#include "target/arm/cpu.h"
#include "target/arm/internals.h"
#include "target/arm/multiprocessing.h"
#include "target/arm/gtimer.h"
#include "trace/trace-target_arm_hvf.h"
#include "migration/vmstate.h"
#include "exec/gdbstub.h"
#define MDSCR_EL1_SS_SHIFT 0
#define MDSCR_EL1_MDE_SHIFT 15
static const uint16_t dbgbcr_regs[] = {
HV_SYS_REG_DBGBCR0_EL1,
HV_SYS_REG_DBGBCR1_EL1,
HV_SYS_REG_DBGBCR2_EL1,
HV_SYS_REG_DBGBCR3_EL1,
HV_SYS_REG_DBGBCR4_EL1,
HV_SYS_REG_DBGBCR5_EL1,
HV_SYS_REG_DBGBCR6_EL1,
HV_SYS_REG_DBGBCR7_EL1,
HV_SYS_REG_DBGBCR8_EL1,
HV_SYS_REG_DBGBCR9_EL1,
HV_SYS_REG_DBGBCR10_EL1,
HV_SYS_REG_DBGBCR11_EL1,
HV_SYS_REG_DBGBCR12_EL1,
HV_SYS_REG_DBGBCR13_EL1,
HV_SYS_REG_DBGBCR14_EL1,
HV_SYS_REG_DBGBCR15_EL1,
};
static const uint16_t dbgbvr_regs[] = {
HV_SYS_REG_DBGBVR0_EL1,
HV_SYS_REG_DBGBVR1_EL1,
HV_SYS_REG_DBGBVR2_EL1,
HV_SYS_REG_DBGBVR3_EL1,
HV_SYS_REG_DBGBVR4_EL1,
HV_SYS_REG_DBGBVR5_EL1,
HV_SYS_REG_DBGBVR6_EL1,
HV_SYS_REG_DBGBVR7_EL1,
HV_SYS_REG_DBGBVR8_EL1,
HV_SYS_REG_DBGBVR9_EL1,
HV_SYS_REG_DBGBVR10_EL1,
HV_SYS_REG_DBGBVR11_EL1,
HV_SYS_REG_DBGBVR12_EL1,
HV_SYS_REG_DBGBVR13_EL1,
HV_SYS_REG_DBGBVR14_EL1,
HV_SYS_REG_DBGBVR15_EL1,
};
static const uint16_t dbgwcr_regs[] = {
HV_SYS_REG_DBGWCR0_EL1,
HV_SYS_REG_DBGWCR1_EL1,
HV_SYS_REG_DBGWCR2_EL1,
HV_SYS_REG_DBGWCR3_EL1,
HV_SYS_REG_DBGWCR4_EL1,
HV_SYS_REG_DBGWCR5_EL1,
HV_SYS_REG_DBGWCR6_EL1,
HV_SYS_REG_DBGWCR7_EL1,
HV_SYS_REG_DBGWCR8_EL1,
HV_SYS_REG_DBGWCR9_EL1,
HV_SYS_REG_DBGWCR10_EL1,
HV_SYS_REG_DBGWCR11_EL1,
HV_SYS_REG_DBGWCR12_EL1,
HV_SYS_REG_DBGWCR13_EL1,
HV_SYS_REG_DBGWCR14_EL1,
HV_SYS_REG_DBGWCR15_EL1,
};
static const uint16_t dbgwvr_regs[] = {
HV_SYS_REG_DBGWVR0_EL1,
HV_SYS_REG_DBGWVR1_EL1,
HV_SYS_REG_DBGWVR2_EL1,
HV_SYS_REG_DBGWVR3_EL1,
HV_SYS_REG_DBGWVR4_EL1,
HV_SYS_REG_DBGWVR5_EL1,
HV_SYS_REG_DBGWVR6_EL1,
HV_SYS_REG_DBGWVR7_EL1,
HV_SYS_REG_DBGWVR8_EL1,
HV_SYS_REG_DBGWVR9_EL1,
HV_SYS_REG_DBGWVR10_EL1,
HV_SYS_REG_DBGWVR11_EL1,
HV_SYS_REG_DBGWVR12_EL1,
HV_SYS_REG_DBGWVR13_EL1,
HV_SYS_REG_DBGWVR14_EL1,
HV_SYS_REG_DBGWVR15_EL1,
};
static inline int hvf_arm_num_brps(hv_vcpu_config_t config)
{
uint64_t val;
hv_return_t ret;
ret = hv_vcpu_config_get_feature_reg(config, HV_FEATURE_REG_ID_AA64DFR0_EL1,
&val);
assert_hvf_ok(ret);
return FIELD_EX64(val, ID_AA64DFR0, BRPS) + 1;
}
static inline int hvf_arm_num_wrps(hv_vcpu_config_t config)
{
uint64_t val;
hv_return_t ret;
ret = hv_vcpu_config_get_feature_reg(config, HV_FEATURE_REG_ID_AA64DFR0_EL1,
&val);
assert_hvf_ok(ret);
return FIELD_EX64(val, ID_AA64DFR0, WRPS) + 1;
}
void hvf_arm_init_debug(void)
{
hv_vcpu_config_t config;
config = hv_vcpu_config_create();
max_hw_bps = hvf_arm_num_brps(config);
hw_breakpoints =
g_array_sized_new(true, true, sizeof(HWBreakpoint), max_hw_bps);
max_hw_wps = hvf_arm_num_wrps(config);
hw_watchpoints =
g_array_sized_new(true, true, sizeof(HWWatchpoint), max_hw_wps);
}
#define HVF_SYSREG(crn, crm, op0, op1, op2) \
ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
#define SYSREG_OP0_SHIFT 20
#define SYSREG_OP0_MASK 0x3
#define SYSREG_OP0(sysreg) ((sysreg >> SYSREG_OP0_SHIFT) & SYSREG_OP0_MASK)
#define SYSREG_OP1_SHIFT 14
#define SYSREG_OP1_MASK 0x7
#define SYSREG_OP1(sysreg) ((sysreg >> SYSREG_OP1_SHIFT) & SYSREG_OP1_MASK)
#define SYSREG_CRN_SHIFT 10
#define SYSREG_CRN_MASK 0xf
#define SYSREG_CRN(sysreg) ((sysreg >> SYSREG_CRN_SHIFT) & SYSREG_CRN_MASK)
#define SYSREG_CRM_SHIFT 1
#define SYSREG_CRM_MASK 0xf
#define SYSREG_CRM(sysreg) ((sysreg >> SYSREG_CRM_SHIFT) & SYSREG_CRM_MASK)
#define SYSREG_OP2_SHIFT 17
#define SYSREG_OP2_MASK 0x7
#define SYSREG_OP2(sysreg) ((sysreg >> SYSREG_OP2_SHIFT) & SYSREG_OP2_MASK)
#define SYSREG(op0, op1, crn, crm, op2) \
((op0 << SYSREG_OP0_SHIFT) | \
(op1 << SYSREG_OP1_SHIFT) | \
(crn << SYSREG_CRN_SHIFT) | \
(crm << SYSREG_CRM_SHIFT) | \
(op2 << SYSREG_OP2_SHIFT))
#define SYSREG_MASK \
SYSREG(SYSREG_OP0_MASK, \
SYSREG_OP1_MASK, \
SYSREG_CRN_MASK, \
SYSREG_CRM_MASK, \
SYSREG_OP2_MASK)
#define SYSREG_OSLAR_EL1 SYSREG(2, 0, 1, 0, 4)
#define SYSREG_OSLSR_EL1 SYSREG(2, 0, 1, 1, 4)
#define SYSREG_OSDLR_EL1 SYSREG(2, 0, 1, 3, 4)
#define SYSREG_CNTPCT_EL0 SYSREG(3, 3, 14, 0, 1)
#define SYSREG_PMCR_EL0 SYSREG(3, 3, 9, 12, 0)
#define SYSREG_PMUSERENR_EL0 SYSREG(3, 3, 9, 14, 0)
#define SYSREG_PMCNTENSET_EL0 SYSREG(3, 3, 9, 12, 1)
#define SYSREG_PMCNTENCLR_EL0 SYSREG(3, 3, 9, 12, 2)
#define SYSREG_PMINTENCLR_EL1 SYSREG(3, 0, 9, 14, 2)
#define SYSREG_PMOVSCLR_EL0 SYSREG(3, 3, 9, 12, 3)
#define SYSREG_PMSWINC_EL0 SYSREG(3, 3, 9, 12, 4)
#define SYSREG_PMSELR_EL0 SYSREG(3, 3, 9, 12, 5)
#define SYSREG_PMCEID0_EL0 SYSREG(3, 3, 9, 12, 6)
#define SYSREG_PMCEID1_EL0 SYSREG(3, 3, 9, 12, 7)
#define SYSREG_PMCCNTR_EL0 SYSREG(3, 3, 9, 13, 0)
#define SYSREG_PMCCFILTR_EL0 SYSREG(3, 3, 14, 15, 7)
#define SYSREG_ICC_AP0R0_EL1 SYSREG(3, 0, 12, 8, 4)
#define SYSREG_ICC_AP0R1_EL1 SYSREG(3, 0, 12, 8, 5)
#define SYSREG_ICC_AP0R2_EL1 SYSREG(3, 0, 12, 8, 6)
#define SYSREG_ICC_AP0R3_EL1 SYSREG(3, 0, 12, 8, 7)
#define SYSREG_ICC_AP1R0_EL1 SYSREG(3, 0, 12, 9, 0)
#define SYSREG_ICC_AP1R1_EL1 SYSREG(3, 0, 12, 9, 1)
#define SYSREG_ICC_AP1R2_EL1 SYSREG(3, 0, 12, 9, 2)
#define SYSREG_ICC_AP1R3_EL1 SYSREG(3, 0, 12, 9, 3)
#define SYSREG_ICC_ASGI1R_EL1 SYSREG(3, 0, 12, 11, 6)
#define SYSREG_ICC_BPR0_EL1 SYSREG(3, 0, 12, 8, 3)
#define SYSREG_ICC_BPR1_EL1 SYSREG(3, 0, 12, 12, 3)
#define SYSREG_ICC_CTLR_EL1 SYSREG(3, 0, 12, 12, 4)
#define SYSREG_ICC_DIR_EL1 SYSREG(3, 0, 12, 11, 1)
#define SYSREG_ICC_EOIR0_EL1 SYSREG(3, 0, 12, 8, 1)
#define SYSREG_ICC_EOIR1_EL1 SYSREG(3, 0, 12, 12, 1)
#define SYSREG_ICC_HPPIR0_EL1 SYSREG(3, 0, 12, 8, 2)
#define SYSREG_ICC_HPPIR1_EL1 SYSREG(3, 0, 12, 12, 2)
#define SYSREG_ICC_IAR0_EL1 SYSREG(3, 0, 12, 8, 0)
#define SYSREG_ICC_IAR1_EL1 SYSREG(3, 0, 12, 12, 0)
#define SYSREG_ICC_IGRPEN0_EL1 SYSREG(3, 0, 12, 12, 6)
#define SYSREG_ICC_IGRPEN1_EL1 SYSREG(3, 0, 12, 12, 7)
#define SYSREG_ICC_PMR_EL1 SYSREG(3, 0, 4, 6, 0)
#define SYSREG_ICC_RPR_EL1 SYSREG(3, 0, 12, 11, 3)
#define SYSREG_ICC_SGI0R_EL1 SYSREG(3, 0, 12, 11, 7)
#define SYSREG_ICC_SGI1R_EL1 SYSREG(3, 0, 12, 11, 5)
#define SYSREG_ICC_SRE_EL1 SYSREG(3, 0, 12, 12, 5)
#define SYSREG_MDSCR_EL1 SYSREG(2, 0, 0, 2, 2)
#define SYSREG_DBGBVR0_EL1 SYSREG(2, 0, 0, 0, 4)
#define SYSREG_DBGBCR0_EL1 SYSREG(2, 0, 0, 0, 5)
#define SYSREG_DBGWVR0_EL1 SYSREG(2, 0, 0, 0, 6)
#define SYSREG_DBGWCR0_EL1 SYSREG(2, 0, 0, 0, 7)
#define SYSREG_DBGBVR1_EL1 SYSREG(2, 0, 0, 1, 4)
#define SYSREG_DBGBCR1_EL1 SYSREG(2, 0, 0, 1, 5)
#define SYSREG_DBGWVR1_EL1 SYSREG(2, 0, 0, 1, 6)
#define SYSREG_DBGWCR1_EL1 SYSREG(2, 0, 0, 1, 7)
#define SYSREG_DBGBVR2_EL1 SYSREG(2, 0, 0, 2, 4)
#define SYSREG_DBGBCR2_EL1 SYSREG(2, 0, 0, 2, 5)
#define SYSREG_DBGWVR2_EL1 SYSREG(2, 0, 0, 2, 6)
#define SYSREG_DBGWCR2_EL1 SYSREG(2, 0, 0, 2, 7)
#define SYSREG_DBGBVR3_EL1 SYSREG(2, 0, 0, 3, 4)
#define SYSREG_DBGBCR3_EL1 SYSREG(2, 0, 0, 3, 5)
#define SYSREG_DBGWVR3_EL1 SYSREG(2, 0, 0, 3, 6)
#define SYSREG_DBGWCR3_EL1 SYSREG(2, 0, 0, 3, 7)
#define SYSREG_DBGBVR4_EL1 SYSREG(2, 0, 0, 4, 4)
#define SYSREG_DBGBCR4_EL1 SYSREG(2, 0, 0, 4, 5)
#define SYSREG_DBGWVR4_EL1 SYSREG(2, 0, 0, 4, 6)
#define SYSREG_DBGWCR4_EL1 SYSREG(2, 0, 0, 4, 7)
#define SYSREG_DBGBVR5_EL1 SYSREG(2, 0, 0, 5, 4)
#define SYSREG_DBGBCR5_EL1 SYSREG(2, 0, 0, 5, 5)
#define SYSREG_DBGWVR5_EL1 SYSREG(2, 0, 0, 5, 6)
#define SYSREG_DBGWCR5_EL1 SYSREG(2, 0, 0, 5, 7)
#define SYSREG_DBGBVR6_EL1 SYSREG(2, 0, 0, 6, 4)
#define SYSREG_DBGBCR6_EL1 SYSREG(2, 0, 0, 6, 5)
#define SYSREG_DBGWVR6_EL1 SYSREG(2, 0, 0, 6, 6)
#define SYSREG_DBGWCR6_EL1 SYSREG(2, 0, 0, 6, 7)
#define SYSREG_DBGBVR7_EL1 SYSREG(2, 0, 0, 7, 4)
#define SYSREG_DBGBCR7_EL1 SYSREG(2, 0, 0, 7, 5)
#define SYSREG_DBGWVR7_EL1 SYSREG(2, 0, 0, 7, 6)
#define SYSREG_DBGWCR7_EL1 SYSREG(2, 0, 0, 7, 7)
#define SYSREG_DBGBVR8_EL1 SYSREG(2, 0, 0, 8, 4)
#define SYSREG_DBGBCR8_EL1 SYSREG(2, 0, 0, 8, 5)
#define SYSREG_DBGWVR8_EL1 SYSREG(2, 0, 0, 8, 6)
#define SYSREG_DBGWCR8_EL1 SYSREG(2, 0, 0, 8, 7)
#define SYSREG_DBGBVR9_EL1 SYSREG(2, 0, 0, 9, 4)
#define SYSREG_DBGBCR9_EL1 SYSREG(2, 0, 0, 9, 5)
#define SYSREG_DBGWVR9_EL1 SYSREG(2, 0, 0, 9, 6)
#define SYSREG_DBGWCR9_EL1 SYSREG(2, 0, 0, 9, 7)
#define SYSREG_DBGBVR10_EL1 SYSREG(2, 0, 0, 10, 4)
#define SYSREG_DBGBCR10_EL1 SYSREG(2, 0, 0, 10, 5)
#define SYSREG_DBGWVR10_EL1 SYSREG(2, 0, 0, 10, 6)
#define SYSREG_DBGWCR10_EL1 SYSREG(2, 0, 0, 10, 7)
#define SYSREG_DBGBVR11_EL1 SYSREG(2, 0, 0, 11, 4)
#define SYSREG_DBGBCR11_EL1 SYSREG(2, 0, 0, 11, 5)
#define SYSREG_DBGWVR11_EL1 SYSREG(2, 0, 0, 11, 6)
#define SYSREG_DBGWCR11_EL1 SYSREG(2, 0, 0, 11, 7)
#define SYSREG_DBGBVR12_EL1 SYSREG(2, 0, 0, 12, 4)
#define SYSREG_DBGBCR12_EL1 SYSREG(2, 0, 0, 12, 5)
#define SYSREG_DBGWVR12_EL1 SYSREG(2, 0, 0, 12, 6)
#define SYSREG_DBGWCR12_EL1 SYSREG(2, 0, 0, 12, 7)
#define SYSREG_DBGBVR13_EL1 SYSREG(2, 0, 0, 13, 4)
#define SYSREG_DBGBCR13_EL1 SYSREG(2, 0, 0, 13, 5)
#define SYSREG_DBGWVR13_EL1 SYSREG(2, 0, 0, 13, 6)
#define SYSREG_DBGWCR13_EL1 SYSREG(2, 0, 0, 13, 7)
#define SYSREG_DBGBVR14_EL1 SYSREG(2, 0, 0, 14, 4)
#define SYSREG_DBGBCR14_EL1 SYSREG(2, 0, 0, 14, 5)
#define SYSREG_DBGWVR14_EL1 SYSREG(2, 0, 0, 14, 6)
#define SYSREG_DBGWCR14_EL1 SYSREG(2, 0, 0, 14, 7)
#define SYSREG_DBGBVR15_EL1 SYSREG(2, 0, 0, 15, 4)
#define SYSREG_DBGBCR15_EL1 SYSREG(2, 0, 0, 15, 5)
#define SYSREG_DBGWVR15_EL1 SYSREG(2, 0, 0, 15, 6)
#define SYSREG_DBGWCR15_EL1 SYSREG(2, 0, 0, 15, 7)
#define WFX_IS_WFE (1 << 0)
#define TMR_CTL_ENABLE (1 << 0)
#define TMR_CTL_IMASK (1 << 1)
#define TMR_CTL_ISTATUS (1 << 2)
static void hvf_wfi(CPUState *cpu);
typedef struct HVFVTimer {
/* Vtimer value during migration and paused state */
uint64_t vtimer_val;
} HVFVTimer;
static HVFVTimer vtimer;
typedef struct ARMHostCPUFeatures {
ARMISARegisters isar;
uint64_t features;
uint64_t midr;
uint32_t reset_sctlr;
const char *dtb_compatible;
} ARMHostCPUFeatures;
static ARMHostCPUFeatures arm_host_cpu_features;
struct hvf_reg_match {
int reg;
uint64_t offset;
};
static const struct hvf_reg_match hvf_reg_match[] = {
{ HV_REG_X0, offsetof(CPUARMState, xregs[0]) },
{ HV_REG_X1, offsetof(CPUARMState, xregs[1]) },
{ HV_REG_X2, offsetof(CPUARMState, xregs[2]) },
{ HV_REG_X3, offsetof(CPUARMState, xregs[3]) },
{ HV_REG_X4, offsetof(CPUARMState, xregs[4]) },
{ HV_REG_X5, offsetof(CPUARMState, xregs[5]) },
{ HV_REG_X6, offsetof(CPUARMState, xregs[6]) },
{ HV_REG_X7, offsetof(CPUARMState, xregs[7]) },
{ HV_REG_X8, offsetof(CPUARMState, xregs[8]) },
{ HV_REG_X9, offsetof(CPUARMState, xregs[9]) },
{ HV_REG_X10, offsetof(CPUARMState, xregs[10]) },
{ HV_REG_X11, offsetof(CPUARMState, xregs[11]) },
{ HV_REG_X12, offsetof(CPUARMState, xregs[12]) },
{ HV_REG_X13, offsetof(CPUARMState, xregs[13]) },
{ HV_REG_X14, offsetof(CPUARMState, xregs[14]) },
{ HV_REG_X15, offsetof(CPUARMState, xregs[15]) },
{ HV_REG_X16, offsetof(CPUARMState, xregs[16]) },
{ HV_REG_X17, offsetof(CPUARMState, xregs[17]) },
{ HV_REG_X18, offsetof(CPUARMState, xregs[18]) },
{ HV_REG_X19, offsetof(CPUARMState, xregs[19]) },
{ HV_REG_X20, offsetof(CPUARMState, xregs[20]) },
{ HV_REG_X21, offsetof(CPUARMState, xregs[21]) },
{ HV_REG_X22, offsetof(CPUARMState, xregs[22]) },
{ HV_REG_X23, offsetof(CPUARMState, xregs[23]) },
{ HV_REG_X24, offsetof(CPUARMState, xregs[24]) },
{ HV_REG_X25, offsetof(CPUARMState, xregs[25]) },
{ HV_REG_X26, offsetof(CPUARMState, xregs[26]) },
{ HV_REG_X27, offsetof(CPUARMState, xregs[27]) },
{ HV_REG_X28, offsetof(CPUARMState, xregs[28]) },
{ HV_REG_X29, offsetof(CPUARMState, xregs[29]) },
{ HV_REG_X30, offsetof(CPUARMState, xregs[30]) },
{ HV_REG_PC, offsetof(CPUARMState, pc) },
};
static const struct hvf_reg_match hvf_fpreg_match[] = {
{ HV_SIMD_FP_REG_Q0, offsetof(CPUARMState, vfp.zregs[0]) },
{ HV_SIMD_FP_REG_Q1, offsetof(CPUARMState, vfp.zregs[1]) },
{ HV_SIMD_FP_REG_Q2, offsetof(CPUARMState, vfp.zregs[2]) },
{ HV_SIMD_FP_REG_Q3, offsetof(CPUARMState, vfp.zregs[3]) },
{ HV_SIMD_FP_REG_Q4, offsetof(CPUARMState, vfp.zregs[4]) },
{ HV_SIMD_FP_REG_Q5, offsetof(CPUARMState, vfp.zregs[5]) },
{ HV_SIMD_FP_REG_Q6, offsetof(CPUARMState, vfp.zregs[6]) },
{ HV_SIMD_FP_REG_Q7, offsetof(CPUARMState, vfp.zregs[7]) },
{ HV_SIMD_FP_REG_Q8, offsetof(CPUARMState, vfp.zregs[8]) },
{ HV_SIMD_FP_REG_Q9, offsetof(CPUARMState, vfp.zregs[9]) },
{ HV_SIMD_FP_REG_Q10, offsetof(CPUARMState, vfp.zregs[10]) },
{ HV_SIMD_FP_REG_Q11, offsetof(CPUARMState, vfp.zregs[11]) },
{ HV_SIMD_FP_REG_Q12, offsetof(CPUARMState, vfp.zregs[12]) },
{ HV_SIMD_FP_REG_Q13, offsetof(CPUARMState, vfp.zregs[13]) },
{ HV_SIMD_FP_REG_Q14, offsetof(CPUARMState, vfp.zregs[14]) },
{ HV_SIMD_FP_REG_Q15, offsetof(CPUARMState, vfp.zregs[15]) },
{ HV_SIMD_FP_REG_Q16, offsetof(CPUARMState, vfp.zregs[16]) },
{ HV_SIMD_FP_REG_Q17, offsetof(CPUARMState, vfp.zregs[17]) },
{ HV_SIMD_FP_REG_Q18, offsetof(CPUARMState, vfp.zregs[18]) },
{ HV_SIMD_FP_REG_Q19, offsetof(CPUARMState, vfp.zregs[19]) },
{ HV_SIMD_FP_REG_Q20, offsetof(CPUARMState, vfp.zregs[20]) },
{ HV_SIMD_FP_REG_Q21, offsetof(CPUARMState, vfp.zregs[21]) },
{ HV_SIMD_FP_REG_Q22, offsetof(CPUARMState, vfp.zregs[22]) },
{ HV_SIMD_FP_REG_Q23, offsetof(CPUARMState, vfp.zregs[23]) },
{ HV_SIMD_FP_REG_Q24, offsetof(CPUARMState, vfp.zregs[24]) },
{ HV_SIMD_FP_REG_Q25, offsetof(CPUARMState, vfp.zregs[25]) },
{ HV_SIMD_FP_REG_Q26, offsetof(CPUARMState, vfp.zregs[26]) },
{ HV_SIMD_FP_REG_Q27, offsetof(CPUARMState, vfp.zregs[27]) },
{ HV_SIMD_FP_REG_Q28, offsetof(CPUARMState, vfp.zregs[28]) },
{ HV_SIMD_FP_REG_Q29, offsetof(CPUARMState, vfp.zregs[29]) },
{ HV_SIMD_FP_REG_Q30, offsetof(CPUARMState, vfp.zregs[30]) },
{ HV_SIMD_FP_REG_Q31, offsetof(CPUARMState, vfp.zregs[31]) },
};
struct hvf_sreg_match {
int reg;
uint32_t key;
uint32_t cp_idx;
};
static struct hvf_sreg_match hvf_sreg_match[] = {
{ HV_SYS_REG_DBGBVR0_EL1, HVF_SYSREG(0, 0, 2, 0, 4) },
{ HV_SYS_REG_DBGBCR0_EL1, HVF_SYSREG(0, 0, 2, 0, 5) },
{ HV_SYS_REG_DBGWVR0_EL1, HVF_SYSREG(0, 0, 2, 0, 6) },
{ HV_SYS_REG_DBGWCR0_EL1, HVF_SYSREG(0, 0, 2, 0, 7) },
{ HV_SYS_REG_DBGBVR1_EL1, HVF_SYSREG(0, 1, 2, 0, 4) },
{ HV_SYS_REG_DBGBCR1_EL1, HVF_SYSREG(0, 1, 2, 0, 5) },
{ HV_SYS_REG_DBGWVR1_EL1, HVF_SYSREG(0, 1, 2, 0, 6) },
{ HV_SYS_REG_DBGWCR1_EL1, HVF_SYSREG(0, 1, 2, 0, 7) },
{ HV_SYS_REG_DBGBVR2_EL1, HVF_SYSREG(0, 2, 2, 0, 4) },
{ HV_SYS_REG_DBGBCR2_EL1, HVF_SYSREG(0, 2, 2, 0, 5) },
{ HV_SYS_REG_DBGWVR2_EL1, HVF_SYSREG(0, 2, 2, 0, 6) },
{ HV_SYS_REG_DBGWCR2_EL1, HVF_SYSREG(0, 2, 2, 0, 7) },
{ HV_SYS_REG_DBGBVR3_EL1, HVF_SYSREG(0, 3, 2, 0, 4) },
{ HV_SYS_REG_DBGBCR3_EL1, HVF_SYSREG(0, 3, 2, 0, 5) },
{ HV_SYS_REG_DBGWVR3_EL1, HVF_SYSREG(0, 3, 2, 0, 6) },
{ HV_SYS_REG_DBGWCR3_EL1, HVF_SYSREG(0, 3, 2, 0, 7) },
{ HV_SYS_REG_DBGBVR4_EL1, HVF_SYSREG(0, 4, 2, 0, 4) },
{ HV_SYS_REG_DBGBCR4_EL1, HVF_SYSREG(0, 4, 2, 0, 5) },
{ HV_SYS_REG_DBGWVR4_EL1, HVF_SYSREG(0, 4, 2, 0, 6) },
{ HV_SYS_REG_DBGWCR4_EL1, HVF_SYSREG(0, 4, 2, 0, 7) },
{ HV_SYS_REG_DBGBVR5_EL1, HVF_SYSREG(0, 5, 2, 0, 4) },
{ HV_SYS_REG_DBGBCR5_EL1, HVF_SYSREG(0, 5, 2, 0, 5) },
{ HV_SYS_REG_DBGWVR5_EL1, HVF_SYSREG(0, 5, 2, 0, 6) },
{ HV_SYS_REG_DBGWCR5_EL1, HVF_SYSREG(0, 5, 2, 0, 7) },
{ HV_SYS_REG_DBGBVR6_EL1, HVF_SYSREG(0, 6, 2, 0, 4) },
{ HV_SYS_REG_DBGBCR6_EL1, HVF_SYSREG(0, 6, 2, 0, 5) },
{ HV_SYS_REG_DBGWVR6_EL1, HVF_SYSREG(0, 6, 2, 0, 6) },
{ HV_SYS_REG_DBGWCR6_EL1, HVF_SYSREG(0, 6, 2, 0, 7) },
{ HV_SYS_REG_DBGBVR7_EL1, HVF_SYSREG(0, 7, 2, 0, 4) },
{ HV_SYS_REG_DBGBCR7_EL1, HVF_SYSREG(0, 7, 2, 0, 5) },
{ HV_SYS_REG_DBGWVR7_EL1, HVF_SYSREG(0, 7, 2, 0, 6) },
{ HV_SYS_REG_DBGWCR7_EL1, HVF_SYSREG(0, 7, 2, 0, 7) },
{ HV_SYS_REG_DBGBVR8_EL1, HVF_SYSREG(0, 8, 2, 0, 4) },
{ HV_SYS_REG_DBGBCR8_EL1, HVF_SYSREG(0, 8, 2, 0, 5) },
{ HV_SYS_REG_DBGWVR8_EL1, HVF_SYSREG(0, 8, 2, 0, 6) },
{ HV_SYS_REG_DBGWCR8_EL1, HVF_SYSREG(0, 8, 2, 0, 7) },
{ HV_SYS_REG_DBGBVR9_EL1, HVF_SYSREG(0, 9, 2, 0, 4) },
{ HV_SYS_REG_DBGBCR9_EL1, HVF_SYSREG(0, 9, 2, 0, 5) },
{ HV_SYS_REG_DBGWVR9_EL1, HVF_SYSREG(0, 9, 2, 0, 6) },
{ HV_SYS_REG_DBGWCR9_EL1, HVF_SYSREG(0, 9, 2, 0, 7) },
{ HV_SYS_REG_DBGBVR10_EL1, HVF_SYSREG(0, 10, 2, 0, 4) },
{ HV_SYS_REG_DBGBCR10_EL1, HVF_SYSREG(0, 10, 2, 0, 5) },
{ HV_SYS_REG_DBGWVR10_EL1, HVF_SYSREG(0, 10, 2, 0, 6) },
{ HV_SYS_REG_DBGWCR10_EL1, HVF_SYSREG(0, 10, 2, 0, 7) },
{ HV_SYS_REG_DBGBVR11_EL1, HVF_SYSREG(0, 11, 2, 0, 4) },
{ HV_SYS_REG_DBGBCR11_EL1, HVF_SYSREG(0, 11, 2, 0, 5) },
{ HV_SYS_REG_DBGWVR11_EL1, HVF_SYSREG(0, 11, 2, 0, 6) },
{ HV_SYS_REG_DBGWCR11_EL1, HVF_SYSREG(0, 11, 2, 0, 7) },
{ HV_SYS_REG_DBGBVR12_EL1, HVF_SYSREG(0, 12, 2, 0, 4) },
{ HV_SYS_REG_DBGBCR12_EL1, HVF_SYSREG(0, 12, 2, 0, 5) },
{ HV_SYS_REG_DBGWVR12_EL1, HVF_SYSREG(0, 12, 2, 0, 6) },
{ HV_SYS_REG_DBGWCR12_EL1, HVF_SYSREG(0, 12, 2, 0, 7) },
{ HV_SYS_REG_DBGBVR13_EL1, HVF_SYSREG(0, 13, 2, 0, 4) },
{ HV_SYS_REG_DBGBCR13_EL1, HVF_SYSREG(0, 13, 2, 0, 5) },
{ HV_SYS_REG_DBGWVR13_EL1, HVF_SYSREG(0, 13, 2, 0, 6) },
{ HV_SYS_REG_DBGWCR13_EL1, HVF_SYSREG(0, 13, 2, 0, 7) },
{ HV_SYS_REG_DBGBVR14_EL1, HVF_SYSREG(0, 14, 2, 0, 4) },
{ HV_SYS_REG_DBGBCR14_EL1, HVF_SYSREG(0, 14, 2, 0, 5) },
{ HV_SYS_REG_DBGWVR14_EL1, HVF_SYSREG(0, 14, 2, 0, 6) },
{ HV_SYS_REG_DBGWCR14_EL1, HVF_SYSREG(0, 14, 2, 0, 7) },
{ HV_SYS_REG_DBGBVR15_EL1, HVF_SYSREG(0, 15, 2, 0, 4) },
{ HV_SYS_REG_DBGBCR15_EL1, HVF_SYSREG(0, 15, 2, 0, 5) },
{ HV_SYS_REG_DBGWVR15_EL1, HVF_SYSREG(0, 15, 2, 0, 6) },
{ HV_SYS_REG_DBGWCR15_EL1, HVF_SYSREG(0, 15, 2, 0, 7) },
#ifdef SYNC_NO_RAW_REGS
/*
* The registers below are manually synced on init because they are
* marked as NO_RAW. We still list them to make number space sync easier.
*/
{ HV_SYS_REG_MDCCINT_EL1, HVF_SYSREG(0, 2, 2, 0, 0) },
{ HV_SYS_REG_MIDR_EL1, HVF_SYSREG(0, 0, 3, 0, 0) },
{ HV_SYS_REG_MPIDR_EL1, HVF_SYSREG(0, 0, 3, 0, 5) },
{ HV_SYS_REG_ID_AA64PFR0_EL1, HVF_SYSREG(0, 4, 3, 0, 0) },
#endif
{ HV_SYS_REG_ID_AA64PFR1_EL1, HVF_SYSREG(0, 4, 3, 0, 1) },
{ HV_SYS_REG_ID_AA64DFR0_EL1, HVF_SYSREG(0, 5, 3, 0, 0) },
{ HV_SYS_REG_ID_AA64DFR1_EL1, HVF_SYSREG(0, 5, 3, 0, 1) },
{ HV_SYS_REG_ID_AA64ISAR0_EL1, HVF_SYSREG(0, 6, 3, 0, 0) },
{ HV_SYS_REG_ID_AA64ISAR1_EL1, HVF_SYSREG(0, 6, 3, 0, 1) },
#ifdef SYNC_NO_MMFR0
/* We keep the hardware MMFR0 around. HW limits are there anyway */
{ HV_SYS_REG_ID_AA64MMFR0_EL1, HVF_SYSREG(0, 7, 3, 0, 0) },
#endif
{ HV_SYS_REG_ID_AA64MMFR1_EL1, HVF_SYSREG(0, 7, 3, 0, 1) },
{ HV_SYS_REG_ID_AA64MMFR2_EL1, HVF_SYSREG(0, 7, 3, 0, 2) },
/* Add ID_AA64MMFR3_EL1 here when HVF supports it */
{ HV_SYS_REG_MDSCR_EL1, HVF_SYSREG(0, 2, 2, 0, 2) },
{ HV_SYS_REG_SCTLR_EL1, HVF_SYSREG(1, 0, 3, 0, 0) },
{ HV_SYS_REG_CPACR_EL1, HVF_SYSREG(1, 0, 3, 0, 2) },
{ HV_SYS_REG_TTBR0_EL1, HVF_SYSREG(2, 0, 3, 0, 0) },
{ HV_SYS_REG_TTBR1_EL1, HVF_SYSREG(2, 0, 3, 0, 1) },
{ HV_SYS_REG_TCR_EL1, HVF_SYSREG(2, 0, 3, 0, 2) },
{ HV_SYS_REG_APIAKEYLO_EL1, HVF_SYSREG(2, 1, 3, 0, 0) },
{ HV_SYS_REG_APIAKEYHI_EL1, HVF_SYSREG(2, 1, 3, 0, 1) },
{ HV_SYS_REG_APIBKEYLO_EL1, HVF_SYSREG(2, 1, 3, 0, 2) },
{ HV_SYS_REG_APIBKEYHI_EL1, HVF_SYSREG(2, 1, 3, 0, 3) },
{ HV_SYS_REG_APDAKEYLO_EL1, HVF_SYSREG(2, 2, 3, 0, 0) },
{ HV_SYS_REG_APDAKEYHI_EL1, HVF_SYSREG(2, 2, 3, 0, 1) },
{ HV_SYS_REG_APDBKEYLO_EL1, HVF_SYSREG(2, 2, 3, 0, 2) },
{ HV_SYS_REG_APDBKEYHI_EL1, HVF_SYSREG(2, 2, 3, 0, 3) },
{ HV_SYS_REG_APGAKEYLO_EL1, HVF_SYSREG(2, 3, 3, 0, 0) },
{ HV_SYS_REG_APGAKEYHI_EL1, HVF_SYSREG(2, 3, 3, 0, 1) },
{ HV_SYS_REG_SPSR_EL1, HVF_SYSREG(4, 0, 3, 0, 0) },
{ HV_SYS_REG_ELR_EL1, HVF_SYSREG(4, 0, 3, 0, 1) },
{ HV_SYS_REG_SP_EL0, HVF_SYSREG(4, 1, 3, 0, 0) },
{ HV_SYS_REG_AFSR0_EL1, HVF_SYSREG(5, 1, 3, 0, 0) },
{ HV_SYS_REG_AFSR1_EL1, HVF_SYSREG(5, 1, 3, 0, 1) },
{ HV_SYS_REG_ESR_EL1, HVF_SYSREG(5, 2, 3, 0, 0) },
{ HV_SYS_REG_FAR_EL1, HVF_SYSREG(6, 0, 3, 0, 0) },
{ HV_SYS_REG_PAR_EL1, HVF_SYSREG(7, 4, 3, 0, 0) },
{ HV_SYS_REG_MAIR_EL1, HVF_SYSREG(10, 2, 3, 0, 0) },
{ HV_SYS_REG_AMAIR_EL1, HVF_SYSREG(10, 3, 3, 0, 0) },
{ HV_SYS_REG_VBAR_EL1, HVF_SYSREG(12, 0, 3, 0, 0) },
{ HV_SYS_REG_CONTEXTIDR_EL1, HVF_SYSREG(13, 0, 3, 0, 1) },
{ HV_SYS_REG_TPIDR_EL1, HVF_SYSREG(13, 0, 3, 0, 4) },
{ HV_SYS_REG_CNTKCTL_EL1, HVF_SYSREG(14, 1, 3, 0, 0) },
{ HV_SYS_REG_CSSELR_EL1, HVF_SYSREG(0, 0, 3, 2, 0) },
{ HV_SYS_REG_TPIDR_EL0, HVF_SYSREG(13, 0, 3, 3, 2) },
{ HV_SYS_REG_TPIDRRO_EL0, HVF_SYSREG(13, 0, 3, 3, 3) },
{ HV_SYS_REG_CNTV_CTL_EL0, HVF_SYSREG(14, 3, 3, 3, 1) },
{ HV_SYS_REG_CNTV_CVAL_EL0, HVF_SYSREG(14, 3, 3, 3, 2) },
{ HV_SYS_REG_SP_EL1, HVF_SYSREG(4, 1, 3, 4, 0) },
};
int hvf_get_registers(CPUState *cpu)
{
ARMCPU *arm_cpu = ARM_CPU(cpu);
CPUARMState *env = &arm_cpu->env;
hv_return_t ret;
uint64_t val;
hv_simd_fp_uchar16_t fpval;
int i;
for (i = 0; i < ARRAY_SIZE(hvf_reg_match); i++) {
ret = hv_vcpu_get_reg(cpu->accel->fd, hvf_reg_match[i].reg, &val);
*(uint64_t *)((void *)env + hvf_reg_match[i].offset) = val;
assert_hvf_ok(ret);
}
for (i = 0; i < ARRAY_SIZE(hvf_fpreg_match); i++) {
ret = hv_vcpu_get_simd_fp_reg(cpu->accel->fd, hvf_fpreg_match[i].reg,
&fpval);
memcpy((void *)env + hvf_fpreg_match[i].offset, &fpval, sizeof(fpval));
assert_hvf_ok(ret);
}
val = 0;
ret = hv_vcpu_get_reg(cpu->accel->fd, HV_REG_FPCR, &val);
assert_hvf_ok(ret);
vfp_set_fpcr(env, val);
val = 0;
ret = hv_vcpu_get_reg(cpu->accel->fd, HV_REG_FPSR, &val);
assert_hvf_ok(ret);
vfp_set_fpsr(env, val);
ret = hv_vcpu_get_reg(cpu->accel->fd, HV_REG_CPSR, &val);
assert_hvf_ok(ret);
pstate_write(env, val);
for (i = 0; i < ARRAY_SIZE(hvf_sreg_match); i++) {
if (hvf_sreg_match[i].cp_idx == -1) {
continue;
}
if (cpu->accel->guest_debug_enabled) {
/* Handle debug registers */
switch (hvf_sreg_match[i].reg) {
case HV_SYS_REG_DBGBVR0_EL1:
case HV_SYS_REG_DBGBCR0_EL1:
case HV_SYS_REG_DBGWVR0_EL1:
case HV_SYS_REG_DBGWCR0_EL1:
case HV_SYS_REG_DBGBVR1_EL1:
case HV_SYS_REG_DBGBCR1_EL1:
case HV_SYS_REG_DBGWVR1_EL1:
case HV_SYS_REG_DBGWCR1_EL1:
case HV_SYS_REG_DBGBVR2_EL1:
case HV_SYS_REG_DBGBCR2_EL1:
case HV_SYS_REG_DBGWVR2_EL1:
case HV_SYS_REG_DBGWCR2_EL1:
case HV_SYS_REG_DBGBVR3_EL1:
case HV_SYS_REG_DBGBCR3_EL1:
case HV_SYS_REG_DBGWVR3_EL1:
case HV_SYS_REG_DBGWCR3_EL1:
case HV_SYS_REG_DBGBVR4_EL1:
case HV_SYS_REG_DBGBCR4_EL1:
case HV_SYS_REG_DBGWVR4_EL1:
case HV_SYS_REG_DBGWCR4_EL1:
case HV_SYS_REG_DBGBVR5_EL1:
case HV_SYS_REG_DBGBCR5_EL1:
case HV_SYS_REG_DBGWVR5_EL1:
case HV_SYS_REG_DBGWCR5_EL1:
case HV_SYS_REG_DBGBVR6_EL1:
case HV_SYS_REG_DBGBCR6_EL1:
case HV_SYS_REG_DBGWVR6_EL1:
case HV_SYS_REG_DBGWCR6_EL1:
case HV_SYS_REG_DBGBVR7_EL1:
case HV_SYS_REG_DBGBCR7_EL1:
case HV_SYS_REG_DBGWVR7_EL1:
case HV_SYS_REG_DBGWCR7_EL1:
case HV_SYS_REG_DBGBVR8_EL1:
case HV_SYS_REG_DBGBCR8_EL1:
case HV_SYS_REG_DBGWVR8_EL1:
case HV_SYS_REG_DBGWCR8_EL1:
case HV_SYS_REG_DBGBVR9_EL1:
case HV_SYS_REG_DBGBCR9_EL1:
case HV_SYS_REG_DBGWVR9_EL1:
case HV_SYS_REG_DBGWCR9_EL1:
case HV_SYS_REG_DBGBVR10_EL1:
case HV_SYS_REG_DBGBCR10_EL1:
case HV_SYS_REG_DBGWVR10_EL1:
case HV_SYS_REG_DBGWCR10_EL1:
case HV_SYS_REG_DBGBVR11_EL1:
case HV_SYS_REG_DBGBCR11_EL1:
case HV_SYS_REG_DBGWVR11_EL1:
case HV_SYS_REG_DBGWCR11_EL1:
case HV_SYS_REG_DBGBVR12_EL1:
case HV_SYS_REG_DBGBCR12_EL1:
case HV_SYS_REG_DBGWVR12_EL1:
case HV_SYS_REG_DBGWCR12_EL1:
case HV_SYS_REG_DBGBVR13_EL1:
case HV_SYS_REG_DBGBCR13_EL1:
case HV_SYS_REG_DBGWVR13_EL1:
case HV_SYS_REG_DBGWCR13_EL1:
case HV_SYS_REG_DBGBVR14_EL1:
case HV_SYS_REG_DBGBCR14_EL1:
case HV_SYS_REG_DBGWVR14_EL1:
case HV_SYS_REG_DBGWCR14_EL1:
case HV_SYS_REG_DBGBVR15_EL1:
case HV_SYS_REG_DBGBCR15_EL1:
case HV_SYS_REG_DBGWVR15_EL1:
case HV_SYS_REG_DBGWCR15_EL1: {
/*
* If the guest is being debugged, the vCPU's debug registers
* are holding the gdbstub's view of the registers (set in
* hvf_arch_update_guest_debug()).
* Since the environment is used to store only the guest's view
* of the registers, don't update it with the values from the
* vCPU but simply keep the values from the previous
* environment.
*/
const ARMCPRegInfo *ri;
ri = get_arm_cp_reginfo(arm_cpu->cp_regs, hvf_sreg_match[i].key);
val = read_raw_cp_reg(env, ri);
arm_cpu->cpreg_values[hvf_sreg_match[i].cp_idx] = val;
continue;
}
}
}
ret = hv_vcpu_get_sys_reg(cpu->accel->fd, hvf_sreg_match[i].reg, &val);
assert_hvf_ok(ret);
arm_cpu->cpreg_values[hvf_sreg_match[i].cp_idx] = val;
}
assert(write_list_to_cpustate(arm_cpu));
aarch64_restore_sp(env, arm_current_el(env));
return 0;
}
int hvf_put_registers(CPUState *cpu)
{
ARMCPU *arm_cpu = ARM_CPU(cpu);
CPUARMState *env = &arm_cpu->env;
hv_return_t ret;
uint64_t val;
hv_simd_fp_uchar16_t fpval;
int i;
for (i = 0; i < ARRAY_SIZE(hvf_reg_match); i++) {
val = *(uint64_t *)((void *)env + hvf_reg_match[i].offset);
ret = hv_vcpu_set_reg(cpu->accel->fd, hvf_reg_match[i].reg, val);
assert_hvf_ok(ret);
}
for (i = 0; i < ARRAY_SIZE(hvf_fpreg_match); i++) {
memcpy(&fpval, (void *)env + hvf_fpreg_match[i].offset, sizeof(fpval));
ret = hv_vcpu_set_simd_fp_reg(cpu->accel->fd, hvf_fpreg_match[i].reg,
fpval);
assert_hvf_ok(ret);
}
ret = hv_vcpu_set_reg(cpu->accel->fd, HV_REG_FPCR, vfp_get_fpcr(env));
assert_hvf_ok(ret);
ret = hv_vcpu_set_reg(cpu->accel->fd, HV_REG_FPSR, vfp_get_fpsr(env));
assert_hvf_ok(ret);
ret = hv_vcpu_set_reg(cpu->accel->fd, HV_REG_CPSR, pstate_read(env));
assert_hvf_ok(ret);
aarch64_save_sp(env, arm_current_el(env));
assert(write_cpustate_to_list(arm_cpu, false));
for (i = 0; i < ARRAY_SIZE(hvf_sreg_match); i++) {
if (hvf_sreg_match[i].cp_idx == -1) {
continue;
}
if (cpu->accel->guest_debug_enabled) {
/* Handle debug registers */
switch (hvf_sreg_match[i].reg) {
case HV_SYS_REG_DBGBVR0_EL1:
case HV_SYS_REG_DBGBCR0_EL1:
case HV_SYS_REG_DBGWVR0_EL1:
case HV_SYS_REG_DBGWCR0_EL1:
case HV_SYS_REG_DBGBVR1_EL1:
case HV_SYS_REG_DBGBCR1_EL1:
case HV_SYS_REG_DBGWVR1_EL1:
case HV_SYS_REG_DBGWCR1_EL1:
case HV_SYS_REG_DBGBVR2_EL1:
case HV_SYS_REG_DBGBCR2_EL1:
case HV_SYS_REG_DBGWVR2_EL1:
case HV_SYS_REG_DBGWCR2_EL1:
case HV_SYS_REG_DBGBVR3_EL1:
case HV_SYS_REG_DBGBCR3_EL1:
case HV_SYS_REG_DBGWVR3_EL1:
case HV_SYS_REG_DBGWCR3_EL1:
case HV_SYS_REG_DBGBVR4_EL1:
case HV_SYS_REG_DBGBCR4_EL1:
case HV_SYS_REG_DBGWVR4_EL1:
case HV_SYS_REG_DBGWCR4_EL1:
case HV_SYS_REG_DBGBVR5_EL1:
case HV_SYS_REG_DBGBCR5_EL1:
case HV_SYS_REG_DBGWVR5_EL1:
case HV_SYS_REG_DBGWCR5_EL1:
case HV_SYS_REG_DBGBVR6_EL1:
case HV_SYS_REG_DBGBCR6_EL1:
case HV_SYS_REG_DBGWVR6_EL1:
case HV_SYS_REG_DBGWCR6_EL1:
case HV_SYS_REG_DBGBVR7_EL1:
case HV_SYS_REG_DBGBCR7_EL1:
case HV_SYS_REG_DBGWVR7_EL1:
case HV_SYS_REG_DBGWCR7_EL1:
case HV_SYS_REG_DBGBVR8_EL1:
case HV_SYS_REG_DBGBCR8_EL1:
case HV_SYS_REG_DBGWVR8_EL1:
case HV_SYS_REG_DBGWCR8_EL1:
case HV_SYS_REG_DBGBVR9_EL1:
case HV_SYS_REG_DBGBCR9_EL1:
case HV_SYS_REG_DBGWVR9_EL1:
case HV_SYS_REG_DBGWCR9_EL1:
case HV_SYS_REG_DBGBVR10_EL1:
case HV_SYS_REG_DBGBCR10_EL1:
case HV_SYS_REG_DBGWVR10_EL1:
case HV_SYS_REG_DBGWCR10_EL1:
case HV_SYS_REG_DBGBVR11_EL1:
case HV_SYS_REG_DBGBCR11_EL1:
case HV_SYS_REG_DBGWVR11_EL1:
case HV_SYS_REG_DBGWCR11_EL1:
case HV_SYS_REG_DBGBVR12_EL1:
case HV_SYS_REG_DBGBCR12_EL1:
case HV_SYS_REG_DBGWVR12_EL1:
case HV_SYS_REG_DBGWCR12_EL1:
case HV_SYS_REG_DBGBVR13_EL1:
case HV_SYS_REG_DBGBCR13_EL1:
case HV_SYS_REG_DBGWVR13_EL1:
case HV_SYS_REG_DBGWCR13_EL1:
case HV_SYS_REG_DBGBVR14_EL1:
case HV_SYS_REG_DBGBCR14_EL1:
case HV_SYS_REG_DBGWVR14_EL1:
case HV_SYS_REG_DBGWCR14_EL1:
case HV_SYS_REG_DBGBVR15_EL1:
case HV_SYS_REG_DBGBCR15_EL1:
case HV_SYS_REG_DBGWVR15_EL1:
case HV_SYS_REG_DBGWCR15_EL1:
/*
* If the guest is being debugged, the vCPU's debug registers
* are already holding the gdbstub's view of the registers (set
* in hvf_arch_update_guest_debug()).
*/
continue;
}
}
val = arm_cpu->cpreg_values[hvf_sreg_match[i].cp_idx];
ret = hv_vcpu_set_sys_reg(cpu->accel->fd, hvf_sreg_match[i].reg, val);
assert_hvf_ok(ret);
}
ret = hv_vcpu_set_vtimer_offset(cpu->accel->fd, hvf_state->vtimer_offset);
assert_hvf_ok(ret);
return 0;
}
static void flush_cpu_state(CPUState *cpu)
{
if (cpu->accel->dirty) {
hvf_put_registers(cpu);
cpu->accel->dirty = false;
}
}
static void hvf_set_reg(CPUState *cpu, int rt, uint64_t val)
{
hv_return_t r;
flush_cpu_state(cpu);
if (rt < 31) {
r = hv_vcpu_set_reg(cpu->accel->fd, HV_REG_X0 + rt, val);
assert_hvf_ok(r);
}
}
static uint64_t hvf_get_reg(CPUState *cpu, int rt)
{
uint64_t val = 0;
hv_return_t r;
flush_cpu_state(cpu);
if (rt < 31) {
r = hv_vcpu_get_reg(cpu->accel->fd, HV_REG_X0 + rt, &val);
assert_hvf_ok(r);
}
return val;
}
static bool hvf_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf)
{
ARMISARegisters host_isar = {};
const struct isar_regs {
int reg;
uint64_t *val;
} regs[] = {
{ HV_SYS_REG_ID_AA64PFR0_EL1, &host_isar.id_aa64pfr0 },
{ HV_SYS_REG_ID_AA64PFR1_EL1, &host_isar.id_aa64pfr1 },
{ HV_SYS_REG_ID_AA64DFR0_EL1, &host_isar.id_aa64dfr0 },
{ HV_SYS_REG_ID_AA64DFR1_EL1, &host_isar.id_aa64dfr1 },
{ HV_SYS_REG_ID_AA64ISAR0_EL1, &host_isar.id_aa64isar0 },
{ HV_SYS_REG_ID_AA64ISAR1_EL1, &host_isar.id_aa64isar1 },
/* Add ID_AA64ISAR2_EL1 here when HVF supports it */
{ HV_SYS_REG_ID_AA64MMFR0_EL1, &host_isar.id_aa64mmfr0 },
{ HV_SYS_REG_ID_AA64MMFR1_EL1, &host_isar.id_aa64mmfr1 },
{ HV_SYS_REG_ID_AA64MMFR2_EL1, &host_isar.id_aa64mmfr2 },
/* Add ID_AA64MMFR3_EL1 here when HVF supports it */
};
hv_vcpu_t fd;
hv_return_t r = HV_SUCCESS;
hv_vcpu_exit_t *exit;
int i;
ahcf->dtb_compatible = "arm,arm-v8";
ahcf->features = (1ULL << ARM_FEATURE_V8) |
(1ULL << ARM_FEATURE_NEON) |
(1ULL << ARM_FEATURE_AARCH64) |
(1ULL << ARM_FEATURE_PMU) |
(1ULL << ARM_FEATURE_GENERIC_TIMER);
/* We set up a small vcpu to extract host registers */
if (hv_vcpu_create(&fd, &exit, NULL) != HV_SUCCESS) {
return false;
}
for (i = 0; i < ARRAY_SIZE(regs); i++) {
r |= hv_vcpu_get_sys_reg(fd, regs[i].reg, regs[i].val);
}
r |= hv_vcpu_get_sys_reg(fd, HV_SYS_REG_MIDR_EL1, &ahcf->midr);
r |= hv_vcpu_destroy(fd);
ahcf->isar = host_isar;
/*
* A scratch vCPU returns SCTLR 0, so let's fill our default with the M1
* boot SCTLR from https://github.com/AsahiLinux/m1n1/issues/97
*/
ahcf->reset_sctlr = 0x30100180;
/*
* SPAN is disabled by default when SCTLR.SPAN=1. To improve compatibility,
* let's disable it on boot and then allow guest software to turn it on by
* setting it to 0.
*/
ahcf->reset_sctlr |= 0x00800000;
/* Make sure we don't advertise AArch32 support for EL0/EL1 */
if ((host_isar.id_aa64pfr0 & 0xff) != 0x11) {
return false;
}
return r == HV_SUCCESS;
}
void hvf_arm_set_cpu_features_from_host(ARMCPU *cpu)
{
if (!arm_host_cpu_features.dtb_compatible) {
if (!hvf_enabled() ||
!hvf_arm_get_host_cpu_features(&arm_host_cpu_features)) {
/*
* We can't report this error yet, so flag that we need to
* in arm_cpu_realizefn().
*/
cpu->host_cpu_probe_failed = true;
return;
}
}
cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible;
cpu->isar = arm_host_cpu_features.isar;
cpu->env.features = arm_host_cpu_features.features;
cpu->midr = arm_host_cpu_features.midr;
cpu->reset_sctlr = arm_host_cpu_features.reset_sctlr;
}
void hvf_arch_vcpu_destroy(CPUState *cpu)
{
}
int hvf_arch_init_vcpu(CPUState *cpu)
{
ARMCPU *arm_cpu = ARM_CPU(cpu);
CPUARMState *env = &arm_cpu->env;
uint32_t sregs_match_len = ARRAY_SIZE(hvf_sreg_match);
uint32_t sregs_cnt = 0;
uint64_t pfr;
hv_return_t ret;
int i;
env->aarch64 = true;
asm volatile("mrs %0, cntfrq_el0" : "=r"(arm_cpu->gt_cntfrq_hz));
/* Allocate enough space for our sysreg sync */
arm_cpu->cpreg_indexes = g_renew(uint64_t, arm_cpu->cpreg_indexes,
sregs_match_len);
arm_cpu->cpreg_values = g_renew(uint64_t, arm_cpu->cpreg_values,
sregs_match_len);
arm_cpu->cpreg_vmstate_indexes = g_renew(uint64_t,
arm_cpu->cpreg_vmstate_indexes,
sregs_match_len);
arm_cpu->cpreg_vmstate_values = g_renew(uint64_t,
arm_cpu->cpreg_vmstate_values,
sregs_match_len);
memset(arm_cpu->cpreg_values, 0, sregs_match_len * sizeof(uint64_t));
/* Populate cp list for all known sysregs */
for (i = 0; i < sregs_match_len; i++) {
const ARMCPRegInfo *ri;
uint32_t key = hvf_sreg_match[i].key;
ri = get_arm_cp_reginfo(arm_cpu->cp_regs, key);
if (ri) {
assert(!(ri->type & ARM_CP_NO_RAW));
hvf_sreg_match[i].cp_idx = sregs_cnt;
arm_cpu->cpreg_indexes[sregs_cnt++] = cpreg_to_kvm_id(key);
} else {
hvf_sreg_match[i].cp_idx = -1;
}
}
arm_cpu->cpreg_array_len = sregs_cnt;
arm_cpu->cpreg_vmstate_array_len = sregs_cnt;
assert(write_cpustate_to_list(arm_cpu, false));
/* Set CP_NO_RAW system registers on init */
ret = hv_vcpu_set_sys_reg(cpu->accel->fd, HV_SYS_REG_MIDR_EL1,
arm_cpu->midr);
assert_hvf_ok(ret);
ret = hv_vcpu_set_sys_reg(cpu->accel->fd, HV_SYS_REG_MPIDR_EL1,
arm_cpu->mp_affinity);
assert_hvf_ok(ret);
ret = hv_vcpu_get_sys_reg(cpu->accel->fd, HV_SYS_REG_ID_AA64PFR0_EL1, &pfr);
assert_hvf_ok(ret);
pfr |= env->gicv3state ? (1 << 24) : 0;
ret = hv_vcpu_set_sys_reg(cpu->accel->fd, HV_SYS_REG_ID_AA64PFR0_EL1, pfr);
assert_hvf_ok(ret);
/* We're limited to underlying hardware caps, override internal versions */
ret = hv_vcpu_get_sys_reg(cpu->accel->fd, HV_SYS_REG_ID_AA64MMFR0_EL1,
&arm_cpu->isar.id_aa64mmfr0);
assert_hvf_ok(ret);
return 0;
}
void hvf_kick_vcpu_thread(CPUState *cpu)
{
cpus_kick_thread(cpu);
hv_vcpus_exit(&cpu->accel->fd, 1);
}
static void hvf_raise_exception(CPUState *cpu, uint32_t excp,
uint32_t syndrome)
{
ARMCPU *arm_cpu = ARM_CPU(cpu);
CPUARMState *env = &arm_cpu->env;
cpu->exception_index = excp;
env->exception.target_el = 1;
env->exception.syndrome = syndrome;
arm_cpu_do_interrupt(cpu);
}
static void hvf_psci_cpu_off(ARMCPU *arm_cpu)
{
int32_t ret = arm_set_cpu_off(arm_cpu_mp_affinity(arm_cpu));
assert(ret == QEMU_ARM_POWERCTL_RET_SUCCESS);
}
/*
* Handle a PSCI call.
*
* Returns 0 on success
* -1 when the PSCI call is unknown,
*/
static bool hvf_handle_psci_call(CPUState *cpu)
{
ARMCPU *arm_cpu = ARM_CPU(cpu);
CPUARMState *env = &arm_cpu->env;
uint64_t param[4] = {
env->xregs[0],
env->xregs[1],
env->xregs[2],
env->xregs[3]
};
uint64_t context_id, mpidr;
bool target_aarch64 = true;
CPUState *target_cpu_state;
ARMCPU *target_cpu;
target_ulong entry;
int target_el = 1;
int32_t ret = 0;
trace_hvf_psci_call(param[0], param[1], param[2], param[3],
arm_cpu_mp_affinity(arm_cpu));
switch (param[0]) {
case QEMU_PSCI_0_2_FN_PSCI_VERSION:
ret = QEMU_PSCI_VERSION_1_1;
break;
case QEMU_PSCI_0_2_FN_MIGRATE_INFO_TYPE:
ret = QEMU_PSCI_0_2_RET_TOS_MIGRATION_NOT_REQUIRED; /* No trusted OS */
break;
case QEMU_PSCI_0_2_FN_AFFINITY_INFO:
case QEMU_PSCI_0_2_FN64_AFFINITY_INFO:
mpidr = param[1];
switch (param[2]) {
case 0:
target_cpu_state = arm_get_cpu_by_id(mpidr);
if (!target_cpu_state) {
ret = QEMU_PSCI_RET_INVALID_PARAMS;
break;
}
target_cpu = ARM_CPU(target_cpu_state);
ret = target_cpu->power_state;
break;
default:
/* Everything above affinity level 0 is always on. */
ret = 0;
}
break;
case QEMU_PSCI_0_2_FN_SYSTEM_RESET:
qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
/*
* QEMU reset and shutdown are async requests, but PSCI
* mandates that we never return from the reset/shutdown
* call, so power the CPU off now so it doesn't execute
* anything further.
*/
hvf_psci_cpu_off(arm_cpu);
break;
case QEMU_PSCI_0_2_FN_SYSTEM_OFF:
qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
hvf_psci_cpu_off(arm_cpu);
break;
case QEMU_PSCI_0_1_FN_CPU_ON:
case QEMU_PSCI_0_2_FN_CPU_ON:
case QEMU_PSCI_0_2_FN64_CPU_ON:
mpidr = param[1];
entry = param[2];
context_id = param[3];
ret = arm_set_cpu_on(mpidr, entry, context_id,
target_el, target_aarch64);
break;
case QEMU_PSCI_0_1_FN_CPU_OFF:
case QEMU_PSCI_0_2_FN_CPU_OFF:
hvf_psci_cpu_off(arm_cpu);
break;
case QEMU_PSCI_0_1_FN_CPU_SUSPEND:
case QEMU_PSCI_0_2_FN_CPU_SUSPEND:
case QEMU_PSCI_0_2_FN64_CPU_SUSPEND:
/* Affinity levels are not supported in QEMU */
if (param[1] & 0xfffe0000) {
ret = QEMU_PSCI_RET_INVALID_PARAMS;
break;
}
/* Powerdown is not supported, we always go into WFI */
env->xregs[0] = 0;
hvf_wfi(cpu);
break;
case QEMU_PSCI_0_1_FN_MIGRATE:
case QEMU_PSCI_0_2_FN_MIGRATE:
ret = QEMU_PSCI_RET_NOT_SUPPORTED;
break;
case QEMU_PSCI_1_0_FN_PSCI_FEATURES:
switch (param[1]) {
case QEMU_PSCI_0_2_FN_PSCI_VERSION:
case QEMU_PSCI_0_2_FN_MIGRATE_INFO_TYPE:
case QEMU_PSCI_0_2_FN_AFFINITY_INFO:
case QEMU_PSCI_0_2_FN64_AFFINITY_INFO:
case QEMU_PSCI_0_2_FN_SYSTEM_RESET:
case QEMU_PSCI_0_2_FN_SYSTEM_OFF:
case QEMU_PSCI_0_1_FN_CPU_ON:
case QEMU_PSCI_0_2_FN_CPU_ON:
case QEMU_PSCI_0_2_FN64_CPU_ON:
case QEMU_PSCI_0_1_FN_CPU_OFF:
case QEMU_PSCI_0_2_FN_CPU_OFF:
case QEMU_PSCI_0_1_FN_CPU_SUSPEND:
case QEMU_PSCI_0_2_FN_CPU_SUSPEND:
case QEMU_PSCI_0_2_FN64_CPU_SUSPEND:
case QEMU_PSCI_1_0_FN_PSCI_FEATURES:
ret = 0;
break;
case QEMU_PSCI_0_1_FN_MIGRATE:
case QEMU_PSCI_0_2_FN_MIGRATE:
default:
ret = QEMU_PSCI_RET_NOT_SUPPORTED;
}
break;
default:
return false;
}
env->xregs[0] = ret;
return true;
}
static bool is_id_sysreg(uint32_t reg)
{
return SYSREG_OP0(reg) == 3 &&
SYSREG_OP1(reg) == 0 &&
SYSREG_CRN(reg) == 0 &&
SYSREG_CRM(reg) >= 1 &&
SYSREG_CRM(reg) < 8;
}
static uint32_t hvf_reg2cp_reg(uint32_t reg)
{
return ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
(reg >> SYSREG_CRN_SHIFT) & SYSREG_CRN_MASK,
(reg >> SYSREG_CRM_SHIFT) & SYSREG_CRM_MASK,
(reg >> SYSREG_OP0_SHIFT) & SYSREG_OP0_MASK,
(reg >> SYSREG_OP1_SHIFT) & SYSREG_OP1_MASK,
(reg >> SYSREG_OP2_SHIFT) & SYSREG_OP2_MASK);
}
static bool hvf_sysreg_read_cp(CPUState *cpu, uint32_t reg, uint64_t *val)
{
ARMCPU *arm_cpu = ARM_CPU(cpu);
CPUARMState *env = &arm_cpu->env;
const ARMCPRegInfo *ri;
ri = get_arm_cp_reginfo(arm_cpu->cp_regs, hvf_reg2cp_reg(reg));
if (ri) {
if (ri->accessfn) {
if (ri->accessfn(env, ri, true) != CP_ACCESS_OK) {
return false;
}
}
if (ri->type & ARM_CP_CONST) {
*val = ri->resetvalue;
} else if (ri->readfn) {
*val = ri->readfn(env, ri);
} else {
*val = CPREG_FIELD64(env, ri);
}
trace_hvf_vgic_read(ri->name, *val);
return true;
}
return false;
}
static int hvf_sysreg_read(CPUState *cpu, uint32_t reg, uint32_t rt)
{
ARMCPU *arm_cpu = ARM_CPU(cpu);
CPUARMState *env = &arm_cpu->env;
uint64_t val = 0;
switch (reg) {
case SYSREG_CNTPCT_EL0:
val = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) /
gt_cntfrq_period_ns(arm_cpu);
break;
case SYSREG_PMCR_EL0:
val = env->cp15.c9_pmcr;
break;
case SYSREG_PMCCNTR_EL0:
pmu_op_start(env);
val = env->cp15.c15_ccnt;
pmu_op_finish(env);
break;
case SYSREG_PMCNTENCLR_EL0:
val = env->cp15.c9_pmcnten;
break;
case SYSREG_PMOVSCLR_EL0:
val = env->cp15.c9_pmovsr;
break;
case SYSREG_PMSELR_EL0:
val = env->cp15.c9_pmselr;
break;
case SYSREG_PMINTENCLR_EL1:
val = env->cp15.c9_pminten;
break;
case SYSREG_PMCCFILTR_EL0:
val = env->cp15.pmccfiltr_el0;
break;
case SYSREG_PMCNTENSET_EL0:
val = env->cp15.c9_pmcnten;
break;
case SYSREG_PMUSERENR_EL0:
val = env->cp15.c9_pmuserenr;
break;
case SYSREG_PMCEID0_EL0:
case SYSREG_PMCEID1_EL0:
/* We can't really count anything yet, declare all events invalid */
val = 0;
break;
case SYSREG_OSLSR_EL1:
val = env->cp15.oslsr_el1;
break;
case SYSREG_OSDLR_EL1:
/* Dummy register */
break;
case SYSREG_ICC_AP0R0_EL1:
case SYSREG_ICC_AP0R1_EL1:
case SYSREG_ICC_AP0R2_EL1:
case SYSREG_ICC_AP0R3_EL1:
case SYSREG_ICC_AP1R0_EL1:
case SYSREG_ICC_AP1R1_EL1:
case SYSREG_ICC_AP1R2_EL1:
case SYSREG_ICC_AP1R3_EL1:
case SYSREG_ICC_ASGI1R_EL1:
case SYSREG_ICC_BPR0_EL1:
case SYSREG_ICC_BPR1_EL1:
case SYSREG_ICC_DIR_EL1:
case SYSREG_ICC_EOIR0_EL1:
case SYSREG_ICC_EOIR1_EL1:
case SYSREG_ICC_HPPIR0_EL1:
case SYSREG_ICC_HPPIR1_EL1:
case SYSREG_ICC_IAR0_EL1:
case SYSREG_ICC_IAR1_EL1:
case SYSREG_ICC_IGRPEN0_EL1:
case SYSREG_ICC_IGRPEN1_EL1:
case SYSREG_ICC_PMR_EL1:
case SYSREG_ICC_SGI0R_EL1:
case SYSREG_ICC_SGI1R_EL1:
case SYSREG_ICC_SRE_EL1:
case SYSREG_ICC_CTLR_EL1:
/* Call the TCG sysreg handler. This is only safe for GICv3 regs. */
if (!hvf_sysreg_read_cp(cpu, reg, &val)) {
hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
}
break;
case SYSREG_DBGBVR0_EL1:
case SYSREG_DBGBVR1_EL1:
case SYSREG_DBGBVR2_EL1:
case SYSREG_DBGBVR3_EL1:
case SYSREG_DBGBVR4_EL1:
case SYSREG_DBGBVR5_EL1:
case SYSREG_DBGBVR6_EL1:
case SYSREG_DBGBVR7_EL1:
case SYSREG_DBGBVR8_EL1:
case SYSREG_DBGBVR9_EL1:
case SYSREG_DBGBVR10_EL1:
case SYSREG_DBGBVR11_EL1:
case SYSREG_DBGBVR12_EL1:
case SYSREG_DBGBVR13_EL1:
case SYSREG_DBGBVR14_EL1:
case SYSREG_DBGBVR15_EL1:
val = env->cp15.dbgbvr[SYSREG_CRM(reg)];
break;
case SYSREG_DBGBCR0_EL1:
case SYSREG_DBGBCR1_EL1:
case SYSREG_DBGBCR2_EL1:
case SYSREG_DBGBCR3_EL1:
case SYSREG_DBGBCR4_EL1:
case SYSREG_DBGBCR5_EL1:
case SYSREG_DBGBCR6_EL1:
case SYSREG_DBGBCR7_EL1:
case SYSREG_DBGBCR8_EL1:
case SYSREG_DBGBCR9_EL1:
case SYSREG_DBGBCR10_EL1:
case SYSREG_DBGBCR11_EL1:
case SYSREG_DBGBCR12_EL1:
case SYSREG_DBGBCR13_EL1:
case SYSREG_DBGBCR14_EL1:
case SYSREG_DBGBCR15_EL1:
val = env->cp15.dbgbcr[SYSREG_CRM(reg)];
break;
case SYSREG_DBGWVR0_EL1:
case SYSREG_DBGWVR1_EL1:
case SYSREG_DBGWVR2_EL1:
case SYSREG_DBGWVR3_EL1:
case SYSREG_DBGWVR4_EL1:
case SYSREG_DBGWVR5_EL1:
case SYSREG_DBGWVR6_EL1:
case SYSREG_DBGWVR7_EL1:
case SYSREG_DBGWVR8_EL1:
case SYSREG_DBGWVR9_EL1:
case SYSREG_DBGWVR10_EL1:
case SYSREG_DBGWVR11_EL1:
case SYSREG_DBGWVR12_EL1:
case SYSREG_DBGWVR13_EL1:
case SYSREG_DBGWVR14_EL1:
case SYSREG_DBGWVR15_EL1:
val = env->cp15.dbgwvr[SYSREG_CRM(reg)];
break;
case SYSREG_DBGWCR0_EL1:
case SYSREG_DBGWCR1_EL1:
case SYSREG_DBGWCR2_EL1:
case SYSREG_DBGWCR3_EL1:
case SYSREG_DBGWCR4_EL1:
case SYSREG_DBGWCR5_EL1:
case SYSREG_DBGWCR6_EL1:
case SYSREG_DBGWCR7_EL1:
case SYSREG_DBGWCR8_EL1:
case SYSREG_DBGWCR9_EL1:
case SYSREG_DBGWCR10_EL1:
case SYSREG_DBGWCR11_EL1:
case SYSREG_DBGWCR12_EL1:
case SYSREG_DBGWCR13_EL1:
case SYSREG_DBGWCR14_EL1:
case SYSREG_DBGWCR15_EL1:
val = env->cp15.dbgwcr[SYSREG_CRM(reg)];
break;
default:
if (is_id_sysreg(reg)) {
/* ID system registers read as RES0 */
val = 0;
break;
}
cpu_synchronize_state(cpu);
trace_hvf_unhandled_sysreg_read(env->pc, reg,
SYSREG_OP0(reg),
SYSREG_OP1(reg),
SYSREG_CRN(reg),
SYSREG_CRM(reg),
SYSREG_OP2(reg));
hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
return 1;
}
trace_hvf_sysreg_read(reg,
SYSREG_OP0(reg),
SYSREG_OP1(reg),
SYSREG_CRN(reg),
SYSREG_CRM(reg),
SYSREG_OP2(reg),
val);
hvf_set_reg(cpu, rt, val);
return 0;
}
static void pmu_update_irq(CPUARMState *env)
{
ARMCPU *cpu = env_archcpu(env);
qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
(env->cp15.c9_pminten & env->cp15.c9_pmovsr));
}
static bool pmu_event_supported(uint16_t number)
{
return false;
}
/* Returns true if the counter (pass 31 for PMCCNTR) should count events using
* the current EL, security state, and register configuration.
*/
static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
{
uint64_t filter;
bool enabled, filtered = true;
int el = arm_current_el(env);
enabled = (env->cp15.c9_pmcr & PMCRE) &&
(env->cp15.c9_pmcnten & (1 << counter));
if (counter == 31) {
filter = env->cp15.pmccfiltr_el0;
} else {
filter = env->cp15.c14_pmevtyper[counter];
}
if (el == 0) {
filtered = filter & PMXEVTYPER_U;
} else if (el == 1) {
filtered = filter & PMXEVTYPER_P;
}
if (counter != 31) {
/*
* If not checking PMCCNTR, ensure the counter is setup to an event we
* support
*/
uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
if (!pmu_event_supported(event)) {
return false;
}
}
return enabled && !filtered;
}
static void pmswinc_write(CPUARMState *env, uint64_t value)
{
unsigned int i;
for (i = 0; i < pmu_num_counters(env); i++) {
/* Increment a counter's count iff: */
if ((value & (1 << i)) && /* counter's bit is set */
/* counter is enabled and not filtered */
pmu_counter_enabled(env, i) &&
/* counter is SW_INCR */
(env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
/*
* Detect if this write causes an overflow since we can't predict
* PMSWINC overflows like we can for other events
*/
uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) {
env->cp15.c9_pmovsr |= (1 << i);
pmu_update_irq(env);
}
env->cp15.c14_pmevcntr[i] = new_pmswinc;
}
}
}
static bool hvf_sysreg_write_cp(CPUState *cpu, uint32_t reg, uint64_t val)
{
ARMCPU *arm_cpu = ARM_CPU(cpu);
CPUARMState *env = &arm_cpu->env;
const ARMCPRegInfo *ri;
ri = get_arm_cp_reginfo(arm_cpu->cp_regs, hvf_reg2cp_reg(reg));
if (ri) {
if (ri->accessfn) {
if (ri->accessfn(env, ri, false) != CP_ACCESS_OK) {
return false;
}
}
if (ri->writefn) {
ri->writefn(env, ri, val);
} else {
CPREG_FIELD64(env, ri) = val;
}
trace_hvf_vgic_write(ri->name, val);
return true;
}
return false;
}
static int hvf_sysreg_write(CPUState *cpu, uint32_t reg, uint64_t val)
{
ARMCPU *arm_cpu = ARM_CPU(cpu);
CPUARMState *env = &arm_cpu->env;
trace_hvf_sysreg_write(reg,
SYSREG_OP0(reg),
SYSREG_OP1(reg),
SYSREG_CRN(reg),
SYSREG_CRM(reg),
SYSREG_OP2(reg),
val);
switch (reg) {
case SYSREG_PMCCNTR_EL0:
pmu_op_start(env);
env->cp15.c15_ccnt = val;
pmu_op_finish(env);
break;
case SYSREG_PMCR_EL0:
pmu_op_start(env);
if (val & PMCRC) {
/* The counter has been reset */
env->cp15.c15_ccnt = 0;
}
if (val & PMCRP) {
unsigned int i;
for (i = 0; i < pmu_num_counters(env); i++) {
env->cp15.c14_pmevcntr[i] = 0;
}
}
env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK;
env->cp15.c9_pmcr |= (val & PMCR_WRITABLE_MASK);
pmu_op_finish(env);
break;
case SYSREG_PMUSERENR_EL0:
env->cp15.c9_pmuserenr = val & 0xf;
break;
case SYSREG_PMCNTENSET_EL0:
env->cp15.c9_pmcnten |= (val & pmu_counter_mask(env));
break;
case SYSREG_PMCNTENCLR_EL0:
env->cp15.c9_pmcnten &= ~(val & pmu_counter_mask(env));
break;
case SYSREG_PMINTENCLR_EL1:
pmu_op_start(env);
env->cp15.c9_pminten |= val;
pmu_op_finish(env);
break;
case SYSREG_PMOVSCLR_EL0:
pmu_op_start(env);
env->cp15.c9_pmovsr &= ~val;
pmu_op_finish(env);
break;
case SYSREG_PMSWINC_EL0:
pmu_op_start(env);
pmswinc_write(env, val);
pmu_op_finish(env);
break;
case SYSREG_PMSELR_EL0:
env->cp15.c9_pmselr = val & 0x1f;
break;
case SYSREG_PMCCFILTR_EL0:
pmu_op_start(env);
env->cp15.pmccfiltr_el0 = val & PMCCFILTR_EL0;
pmu_op_finish(env);
break;
case SYSREG_OSLAR_EL1:
env->cp15.oslsr_el1 = val & 1;
break;
case SYSREG_OSDLR_EL1:
/* Dummy register */
break;
case SYSREG_ICC_AP0R0_EL1:
case SYSREG_ICC_AP0R1_EL1:
case SYSREG_ICC_AP0R2_EL1:
case SYSREG_ICC_AP0R3_EL1:
case SYSREG_ICC_AP1R0_EL1:
case SYSREG_ICC_AP1R1_EL1:
case SYSREG_ICC_AP1R2_EL1:
case SYSREG_ICC_AP1R3_EL1:
case SYSREG_ICC_ASGI1R_EL1:
case SYSREG_ICC_BPR0_EL1:
case SYSREG_ICC_BPR1_EL1:
case SYSREG_ICC_CTLR_EL1:
case SYSREG_ICC_DIR_EL1:
case SYSREG_ICC_EOIR0_EL1:
case SYSREG_ICC_EOIR1_EL1:
case SYSREG_ICC_HPPIR0_EL1:
case SYSREG_ICC_HPPIR1_EL1:
case SYSREG_ICC_IAR0_EL1:
case SYSREG_ICC_IAR1_EL1:
case SYSREG_ICC_IGRPEN0_EL1:
case SYSREG_ICC_IGRPEN1_EL1:
case SYSREG_ICC_PMR_EL1:
case SYSREG_ICC_SGI0R_EL1:
case SYSREG_ICC_SGI1R_EL1:
case SYSREG_ICC_SRE_EL1:
/* Call the TCG sysreg handler. This is only safe for GICv3 regs. */
if (!hvf_sysreg_write_cp(cpu, reg, val)) {
hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
}
break;
case SYSREG_MDSCR_EL1:
env->cp15.mdscr_el1 = val;
break;
case SYSREG_DBGBVR0_EL1:
case SYSREG_DBGBVR1_EL1:
case SYSREG_DBGBVR2_EL1:
case SYSREG_DBGBVR3_EL1:
case SYSREG_DBGBVR4_EL1:
case SYSREG_DBGBVR5_EL1:
case SYSREG_DBGBVR6_EL1:
case SYSREG_DBGBVR7_EL1:
case SYSREG_DBGBVR8_EL1:
case SYSREG_DBGBVR9_EL1:
case SYSREG_DBGBVR10_EL1:
case SYSREG_DBGBVR11_EL1:
case SYSREG_DBGBVR12_EL1:
case SYSREG_DBGBVR13_EL1:
case SYSREG_DBGBVR14_EL1:
case SYSREG_DBGBVR15_EL1:
env->cp15.dbgbvr[SYSREG_CRM(reg)] = val;
break;
case SYSREG_DBGBCR0_EL1:
case SYSREG_DBGBCR1_EL1:
case SYSREG_DBGBCR2_EL1:
case SYSREG_DBGBCR3_EL1:
case SYSREG_DBGBCR4_EL1:
case SYSREG_DBGBCR5_EL1:
case SYSREG_DBGBCR6_EL1:
case SYSREG_DBGBCR7_EL1:
case SYSREG_DBGBCR8_EL1:
case SYSREG_DBGBCR9_EL1:
case SYSREG_DBGBCR10_EL1:
case SYSREG_DBGBCR11_EL1:
case SYSREG_DBGBCR12_EL1:
case SYSREG_DBGBCR13_EL1:
case SYSREG_DBGBCR14_EL1:
case SYSREG_DBGBCR15_EL1:
env->cp15.dbgbcr[SYSREG_CRM(reg)] = val;
break;
case SYSREG_DBGWVR0_EL1:
case SYSREG_DBGWVR1_EL1:
case SYSREG_DBGWVR2_EL1:
case SYSREG_DBGWVR3_EL1:
case SYSREG_DBGWVR4_EL1:
case SYSREG_DBGWVR5_EL1:
case SYSREG_DBGWVR6_EL1:
case SYSREG_DBGWVR7_EL1:
case SYSREG_DBGWVR8_EL1:
case SYSREG_DBGWVR9_EL1:
case SYSREG_DBGWVR10_EL1:
case SYSREG_DBGWVR11_EL1:
case SYSREG_DBGWVR12_EL1:
case SYSREG_DBGWVR13_EL1:
case SYSREG_DBGWVR14_EL1:
case SYSREG_DBGWVR15_EL1:
env->cp15.dbgwvr[SYSREG_CRM(reg)] = val;
break;
case SYSREG_DBGWCR0_EL1:
case SYSREG_DBGWCR1_EL1:
case SYSREG_DBGWCR2_EL1:
case SYSREG_DBGWCR3_EL1:
case SYSREG_DBGWCR4_EL1:
case SYSREG_DBGWCR5_EL1:
case SYSREG_DBGWCR6_EL1:
case SYSREG_DBGWCR7_EL1:
case SYSREG_DBGWCR8_EL1:
case SYSREG_DBGWCR9_EL1:
case SYSREG_DBGWCR10_EL1:
case SYSREG_DBGWCR11_EL1:
case SYSREG_DBGWCR12_EL1:
case SYSREG_DBGWCR13_EL1:
case SYSREG_DBGWCR14_EL1:
case SYSREG_DBGWCR15_EL1:
env->cp15.dbgwcr[SYSREG_CRM(reg)] = val;
break;
default:
cpu_synchronize_state(cpu);
trace_hvf_unhandled_sysreg_write(env->pc, reg,
SYSREG_OP0(reg),
SYSREG_OP1(reg),
SYSREG_CRN(reg),
SYSREG_CRM(reg),
SYSREG_OP2(reg));
hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
return 1;
}
return 0;
}
static int hvf_inject_interrupts(CPUState *cpu)
{
if (cpu->interrupt_request & CPU_INTERRUPT_FIQ) {
trace_hvf_inject_fiq();
hv_vcpu_set_pending_interrupt(cpu->accel->fd, HV_INTERRUPT_TYPE_FIQ,
true);
}
if (cpu->interrupt_request & CPU_INTERRUPT_HARD) {
trace_hvf_inject_irq();
hv_vcpu_set_pending_interrupt(cpu->accel->fd, HV_INTERRUPT_TYPE_IRQ,
true);
}
return 0;
}
static uint64_t hvf_vtimer_val_raw(void)
{
/*
* mach_absolute_time() returns the vtimer value without the VM
* offset that we define. Add our own offset on top.
*/
return mach_absolute_time() - hvf_state->vtimer_offset;
}
static uint64_t hvf_vtimer_val(void)
{
if (!runstate_is_running()) {
/* VM is paused, the vtimer value is in vtimer.vtimer_val */
return vtimer.vtimer_val;
}
return hvf_vtimer_val_raw();
}
static void hvf_wait_for_ipi(CPUState *cpu, struct timespec *ts)
{
/*
* Use pselect to sleep so that other threads can IPI us while we're
* sleeping.
*/
qatomic_set_mb(&cpu->thread_kicked, false);
bql_unlock();
pselect(0, 0, 0, 0, ts, &cpu->accel->unblock_ipi_mask);
bql_lock();
}
static void hvf_wfi(CPUState *cpu)
{
ARMCPU *arm_cpu = ARM_CPU(cpu);
struct timespec ts;
hv_return_t r;
uint64_t ctl;
uint64_t cval;
int64_t ticks_to_sleep;
uint64_t seconds;
uint64_t nanos;
uint32_t cntfrq;
if (cpu->interrupt_request & (CPU_INTERRUPT_HARD | CPU_INTERRUPT_FIQ)) {
/* Interrupt pending, no need to wait */
return;
}
r = hv_vcpu_get_sys_reg(cpu->accel->fd, HV_SYS_REG_CNTV_CTL_EL0, &ctl);
assert_hvf_ok(r);
if (!(ctl & 1) || (ctl & 2)) {
/* Timer disabled or masked, just wait for an IPI. */
hvf_wait_for_ipi(cpu, NULL);
return;
}
r = hv_vcpu_get_sys_reg(cpu->accel->fd, HV_SYS_REG_CNTV_CVAL_EL0, &cval);
assert_hvf_ok(r);
ticks_to_sleep = cval - hvf_vtimer_val();
if (ticks_to_sleep < 0) {
return;
}
cntfrq = gt_cntfrq_period_ns(arm_cpu);
seconds = muldiv64(ticks_to_sleep, cntfrq, NANOSECONDS_PER_SECOND);
ticks_to_sleep -= muldiv64(seconds, NANOSECONDS_PER_SECOND, cntfrq);
nanos = ticks_to_sleep * cntfrq;
/*
* Don't sleep for less than the time a context switch would take,
* so that we can satisfy fast timer requests on the same CPU.
* Measurements on M1 show the sweet spot to be ~2ms.
*/
if (!seconds && nanos < (2 * SCALE_MS)) {
return;
}
ts = (struct timespec) { seconds, nanos };
hvf_wait_for_ipi(cpu, &ts);
}
static void hvf_sync_vtimer(CPUState *cpu)
{
ARMCPU *arm_cpu = ARM_CPU(cpu);
hv_return_t r;
uint64_t ctl;
bool irq_state;
if (!cpu->accel->vtimer_masked) {
/* We will get notified on vtimer changes by hvf, nothing to do */
return;
}
r = hv_vcpu_get_sys_reg(cpu->accel->fd, HV_SYS_REG_CNTV_CTL_EL0, &ctl);
assert_hvf_ok(r);
irq_state = (ctl & (TMR_CTL_ENABLE | TMR_CTL_IMASK | TMR_CTL_ISTATUS)) ==
(TMR_CTL_ENABLE | TMR_CTL_ISTATUS);
qemu_set_irq(arm_cpu->gt_timer_outputs[GTIMER_VIRT], irq_state);
if (!irq_state) {
/* Timer no longer asserting, we can unmask it */
hv_vcpu_set_vtimer_mask(cpu->accel->fd, false);
cpu->accel->vtimer_masked = false;
}
}
int hvf_vcpu_exec(CPUState *cpu)
{
ARMCPU *arm_cpu = ARM_CPU(cpu);
CPUARMState *env = &arm_cpu->env;
int ret;
hv_vcpu_exit_t *hvf_exit = cpu->accel->exit;
hv_return_t r;
bool advance_pc = false;
if (!(cpu->singlestep_enabled & SSTEP_NOIRQ) &&
hvf_inject_interrupts(cpu)) {
return EXCP_INTERRUPT;
}
if (cpu->halted) {
return EXCP_HLT;
}
flush_cpu_state(cpu);
bql_unlock();
assert_hvf_ok(hv_vcpu_run(cpu->accel->fd));
/* handle VMEXIT */
uint64_t exit_reason = hvf_exit->reason;
uint64_t syndrome = hvf_exit->exception.syndrome;
uint32_t ec = syn_get_ec(syndrome);
ret = 0;
bql_lock();
switch (exit_reason) {
case HV_EXIT_REASON_EXCEPTION:
/* This is the main one, handle below. */
break;
case HV_EXIT_REASON_VTIMER_ACTIVATED:
qemu_set_irq(arm_cpu->gt_timer_outputs[GTIMER_VIRT], 1);
cpu->accel->vtimer_masked = true;
return 0;
case HV_EXIT_REASON_CANCELED:
/* we got kicked, no exit to process */
return 0;
default:
g_assert_not_reached();
}
hvf_sync_vtimer(cpu);
switch (ec) {
case EC_SOFTWARESTEP: {
ret = EXCP_DEBUG;
if (!cpu->singlestep_enabled) {
error_report("EC_SOFTWARESTEP but single-stepping not enabled");
}
break;
}
case EC_AA64_BKPT: {
ret = EXCP_DEBUG;
cpu_synchronize_state(cpu);
if (!hvf_find_sw_breakpoint(cpu, env->pc)) {
/* Re-inject into the guest */
ret = 0;
hvf_raise_exception(cpu, EXCP_BKPT, syn_aa64_bkpt(0));
}
break;
}
case EC_BREAKPOINT: {
ret = EXCP_DEBUG;
cpu_synchronize_state(cpu);
if (!find_hw_breakpoint(cpu, env->pc)) {
error_report("EC_BREAKPOINT but unknown hw breakpoint");
}
break;
}
case EC_WATCHPOINT: {
ret = EXCP_DEBUG;
cpu_synchronize_state(cpu);
CPUWatchpoint *wp =
find_hw_watchpoint(cpu, hvf_exit->exception.virtual_address);
if (!wp) {
error_report("EXCP_DEBUG but unknown hw watchpoint");
}
cpu->watchpoint_hit = wp;
break;
}
case EC_DATAABORT: {
bool isv = syndrome & ARM_EL_ISV;
bool iswrite = (syndrome >> 6) & 1;
bool s1ptw = (syndrome >> 7) & 1;
uint32_t sas = (syndrome >> 22) & 3;
uint32_t len = 1 << sas;
uint32_t srt = (syndrome >> 16) & 0x1f;
uint32_t cm = (syndrome >> 8) & 0x1;
uint64_t val = 0;
trace_hvf_data_abort(env->pc, hvf_exit->exception.virtual_address,
hvf_exit->exception.physical_address, isv,
iswrite, s1ptw, len, srt);
if (cm) {
/* We don't cache MMIO regions */
advance_pc = true;
break;
}
assert(isv);
if (iswrite) {
val = hvf_get_reg(cpu, srt);
address_space_write(&address_space_memory,
hvf_exit->exception.physical_address,
MEMTXATTRS_UNSPECIFIED, &val, len);
} else {
address_space_read(&address_space_memory,
hvf_exit->exception.physical_address,
MEMTXATTRS_UNSPECIFIED, &val, len);
hvf_set_reg(cpu, srt, val);
}
advance_pc = true;
break;
}
case EC_SYSTEMREGISTERTRAP: {
bool isread = (syndrome >> 0) & 1;
uint32_t rt = (syndrome >> 5) & 0x1f;
uint32_t reg = syndrome & SYSREG_MASK;
uint64_t val;
int sysreg_ret = 0;
if (isread) {
sysreg_ret = hvf_sysreg_read(cpu, reg, rt);
} else {
val = hvf_get_reg(cpu, rt);
sysreg_ret = hvf_sysreg_write(cpu, reg, val);
}
advance_pc = !sysreg_ret;
break;
}
case EC_WFX_TRAP:
advance_pc = true;
if (!(syndrome & WFX_IS_WFE)) {
hvf_wfi(cpu);
}
break;
case EC_AA64_HVC:
cpu_synchronize_state(cpu);
if (arm_cpu->psci_conduit == QEMU_PSCI_CONDUIT_HVC) {
if (!hvf_handle_psci_call(cpu)) {
trace_hvf_unknown_hvc(env->xregs[0]);
/* SMCCC 1.3 section 5.2 says every unknown SMCCC call returns -1 */
env->xregs[0] = -1;
}
} else {
trace_hvf_unknown_hvc(env->xregs[0]);
hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
}
break;
case EC_AA64_SMC:
cpu_synchronize_state(cpu);
if (arm_cpu->psci_conduit == QEMU_PSCI_CONDUIT_SMC) {
advance_pc = true;
if (!hvf_handle_psci_call(cpu)) {
trace_hvf_unknown_smc(env->xregs[0]);
/* SMCCC 1.3 section 5.2 says every unknown SMCCC call returns -1 */
env->xregs[0] = -1;
}
} else {
trace_hvf_unknown_smc(env->xregs[0]);
hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
}
break;
default:
cpu_synchronize_state(cpu);
trace_hvf_exit(syndrome, ec, env->pc);
error_report("0x%llx: unhandled exception ec=0x%x", env->pc, ec);
}
if (advance_pc) {
uint64_t pc;
flush_cpu_state(cpu);
r = hv_vcpu_get_reg(cpu->accel->fd, HV_REG_PC, &pc);
assert_hvf_ok(r);
pc += 4;
r = hv_vcpu_set_reg(cpu->accel->fd, HV_REG_PC, pc);
assert_hvf_ok(r);
/* Handle single-stepping over instructions which trigger a VM exit */
if (cpu->singlestep_enabled) {
ret = EXCP_DEBUG;
}
}
return ret;
}
static const VMStateDescription vmstate_hvf_vtimer = {
.name = "hvf-vtimer",
.version_id = 1,
.minimum_version_id = 1,
.fields = (const VMStateField[]) {
VMSTATE_UINT64(vtimer_val, HVFVTimer),
VMSTATE_END_OF_LIST()
},
};
static void hvf_vm_state_change(void *opaque, bool running, RunState state)
{
HVFVTimer *s = opaque;
if (running) {
/* Update vtimer offset on all CPUs */
hvf_state->vtimer_offset = mach_absolute_time() - s->vtimer_val;
cpu_synchronize_all_states();
} else {
/* Remember vtimer value on every pause */
s->vtimer_val = hvf_vtimer_val_raw();
}
}
int hvf_arch_init(void)
{
hvf_state->vtimer_offset = mach_absolute_time();
vmstate_register(NULL, 0, &vmstate_hvf_vtimer, &vtimer);
qemu_add_vm_change_state_handler(hvf_vm_state_change, &vtimer);
hvf_arm_init_debug();
return 0;
}
static const uint32_t brk_insn = 0xd4200000;
int hvf_arch_insert_sw_breakpoint(CPUState *cpu, struct hvf_sw_breakpoint *bp)
{
if (cpu_memory_rw_debug(cpu, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) ||
cpu_memory_rw_debug(cpu, bp->pc, (uint8_t *)&brk_insn, 4, 1)) {
return -EINVAL;
}
return 0;
}
int hvf_arch_remove_sw_breakpoint(CPUState *cpu, struct hvf_sw_breakpoint *bp)
{
static uint32_t brk;
if (cpu_memory_rw_debug(cpu, bp->pc, (uint8_t *)&brk, 4, 0) ||
brk != brk_insn ||
cpu_memory_rw_debug(cpu, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) {
return -EINVAL;
}
return 0;
}
int hvf_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type)
{
switch (type) {
case GDB_BREAKPOINT_HW:
return insert_hw_breakpoint(addr);
case GDB_WATCHPOINT_READ:
case GDB_WATCHPOINT_WRITE:
case GDB_WATCHPOINT_ACCESS:
return insert_hw_watchpoint(addr, len, type);
default:
return -ENOSYS;
}
}
int hvf_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type)
{
switch (type) {
case GDB_BREAKPOINT_HW:
return delete_hw_breakpoint(addr);
case GDB_WATCHPOINT_READ:
case GDB_WATCHPOINT_WRITE:
case GDB_WATCHPOINT_ACCESS:
return delete_hw_watchpoint(addr, len, type);
default:
return -ENOSYS;
}
}
void hvf_arch_remove_all_hw_breakpoints(void)
{
if (cur_hw_wps > 0) {
g_array_remove_range(hw_watchpoints, 0, cur_hw_wps);
}
if (cur_hw_bps > 0) {
g_array_remove_range(hw_breakpoints, 0, cur_hw_bps);
}
}
/*
* Update the vCPU with the gdbstub's view of debug registers. This view
* consists of all hardware breakpoints and watchpoints inserted so far while
* debugging the guest.
*/
static void hvf_put_gdbstub_debug_registers(CPUState *cpu)
{
hv_return_t r = HV_SUCCESS;
int i;
for (i = 0; i < cur_hw_bps; i++) {
HWBreakpoint *bp = get_hw_bp(i);
r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbcr_regs[i], bp->bcr);
assert_hvf_ok(r);
r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbvr_regs[i], bp->bvr);
assert_hvf_ok(r);
}
for (i = cur_hw_bps; i < max_hw_bps; i++) {
r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbcr_regs[i], 0);
assert_hvf_ok(r);
r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbvr_regs[i], 0);
assert_hvf_ok(r);
}
for (i = 0; i < cur_hw_wps; i++) {
HWWatchpoint *wp = get_hw_wp(i);
r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwcr_regs[i], wp->wcr);
assert_hvf_ok(r);
r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwvr_regs[i], wp->wvr);
assert_hvf_ok(r);
}
for (i = cur_hw_wps; i < max_hw_wps; i++) {
r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwcr_regs[i], 0);
assert_hvf_ok(r);
r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwvr_regs[i], 0);
assert_hvf_ok(r);
}
}
/*
* Update the vCPU with the guest's view of debug registers. This view is kept
* in the environment at all times.
*/
static void hvf_put_guest_debug_registers(CPUState *cpu)
{
ARMCPU *arm_cpu = ARM_CPU(cpu);
CPUARMState *env = &arm_cpu->env;
hv_return_t r = HV_SUCCESS;
int i;
for (i = 0; i < max_hw_bps; i++) {
r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbcr_regs[i],
env->cp15.dbgbcr[i]);
assert_hvf_ok(r);
r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbvr_regs[i],
env->cp15.dbgbvr[i]);
assert_hvf_ok(r);
}
for (i = 0; i < max_hw_wps; i++) {
r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwcr_regs[i],
env->cp15.dbgwcr[i]);
assert_hvf_ok(r);
r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwvr_regs[i],
env->cp15.dbgwvr[i]);
assert_hvf_ok(r);
}
}
static inline bool hvf_arm_hw_debug_active(CPUState *cpu)
{
return ((cur_hw_wps > 0) || (cur_hw_bps > 0));
}
static void hvf_arch_set_traps(void)
{
CPUState *cpu;
bool should_enable_traps = false;
hv_return_t r = HV_SUCCESS;
/* Check whether guest debugging is enabled for at least one vCPU; if it
* is, enable exiting the guest on all vCPUs */
CPU_FOREACH(cpu) {
should_enable_traps |= cpu->accel->guest_debug_enabled;
}
CPU_FOREACH(cpu) {
/* Set whether debug exceptions exit the guest */
r = hv_vcpu_set_trap_debug_exceptions(cpu->accel->fd,
should_enable_traps);
assert_hvf_ok(r);
/* Set whether accesses to debug registers exit the guest */
r = hv_vcpu_set_trap_debug_reg_accesses(cpu->accel->fd,
should_enable_traps);
assert_hvf_ok(r);
}
}
void hvf_arch_update_guest_debug(CPUState *cpu)
{
ARMCPU *arm_cpu = ARM_CPU(cpu);
CPUARMState *env = &arm_cpu->env;
/* Check whether guest debugging is enabled */
cpu->accel->guest_debug_enabled = cpu->singlestep_enabled ||
hvf_sw_breakpoints_active(cpu) ||
hvf_arm_hw_debug_active(cpu);
/* Update debug registers */
if (cpu->accel->guest_debug_enabled) {
hvf_put_gdbstub_debug_registers(cpu);
} else {
hvf_put_guest_debug_registers(cpu);
}
cpu_synchronize_state(cpu);
/* Enable/disable single-stepping */
if (cpu->singlestep_enabled) {
env->cp15.mdscr_el1 =
deposit64(env->cp15.mdscr_el1, MDSCR_EL1_SS_SHIFT, 1, 1);
pstate_write(env, pstate_read(env) | PSTATE_SS);
} else {
env->cp15.mdscr_el1 =
deposit64(env->cp15.mdscr_el1, MDSCR_EL1_SS_SHIFT, 1, 0);
}
/* Enable/disable Breakpoint exceptions */
if (hvf_arm_hw_debug_active(cpu)) {
env->cp15.mdscr_el1 =
deposit64(env->cp15.mdscr_el1, MDSCR_EL1_MDE_SHIFT, 1, 1);
} else {
env->cp15.mdscr_el1 =
deposit64(env->cp15.mdscr_el1, MDSCR_EL1_MDE_SHIFT, 1, 0);
}
hvf_arch_set_traps();
}
bool hvf_arch_supports_guest_debug(void)
{
return true;
}