qemu/tests/bench/qht-bench.c
Peter Maydell 5df022cf2e osdep: Move memalign-related functions to their own header
Move the various memalign-related functions out of osdep.h and into
their own header, which we include only where they are used.
While we're doing this, add some brief documentation comments.

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Message-id: 20220226180723.1706285-10-peter.maydell@linaro.org
2022-03-07 13:16:49 +00:00

525 lines
14 KiB
C

/*
* Copyright (C) 2016, Emilio G. Cota <cota@braap.org>
*
* License: GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*/
#include "qemu/osdep.h"
#include "qemu/processor.h"
#include "qemu/atomic.h"
#include "qemu/qht.h"
#include "qemu/rcu.h"
#include "qemu/xxhash.h"
#include "qemu/memalign.h"
struct thread_stats {
size_t rd;
size_t not_rd;
size_t in;
size_t not_in;
size_t rm;
size_t not_rm;
size_t rz;
size_t not_rz;
};
struct thread_info {
void (*func)(struct thread_info *);
struct thread_stats stats;
/*
* Seed is in the range [1..UINT64_MAX], because the RNG requires
* a non-zero seed. To use, subtract 1 and compare against the
* threshold with </>=. This lets threshold = 0 never match (0% hit),
* and threshold = UINT64_MAX always match (100% hit).
*/
uint64_t seed;
bool write_op; /* writes alternate between insertions and removals */
bool resize_down;
} QEMU_ALIGNED(64); /* avoid false sharing among threads */
static struct qht ht;
static QemuThread *rw_threads;
#define DEFAULT_RANGE (4096)
#define DEFAULT_QHT_N_ELEMS DEFAULT_RANGE
static unsigned int duration = 1;
static unsigned int n_rw_threads = 1;
static unsigned long lookup_range = DEFAULT_RANGE;
static unsigned long update_range = DEFAULT_RANGE;
static size_t init_range = DEFAULT_RANGE;
static size_t init_size = DEFAULT_RANGE;
static size_t n_ready_threads;
static long populate_offset;
static long *keys;
static size_t resize_min;
static size_t resize_max;
static struct thread_info *rz_info;
static unsigned long resize_delay = 1000;
static double resize_rate; /* 0.0 to 1.0 */
static unsigned int n_rz_threads = 1;
static QemuThread *rz_threads;
static bool precompute_hash;
static double update_rate; /* 0.0 to 1.0 */
static uint64_t update_threshold;
static uint64_t resize_threshold;
static size_t qht_n_elems = DEFAULT_QHT_N_ELEMS;
static int qht_mode;
static bool test_start;
static bool test_stop;
static struct thread_info *rw_info;
static const char commands_string[] =
" -d = duration, in seconds\n"
" -n = number of threads\n"
"\n"
" -o = offset at which keys start\n"
" -p = precompute hashes\n"
"\n"
" -g = set -s,-k,-K,-l,-r to the same value\n"
" -s = initial size hint\n"
" -k = initial number of keys\n"
" -K = initial range of keys (will be rounded up to pow2)\n"
" -l = lookup range of keys (will be rounded up to pow2)\n"
" -r = update range of keys (will be rounded up to pow2)\n"
"\n"
" -u = update rate (0.0 to 100.0), 50/50 split of insertions/removals\n"
"\n"
" -R = enable auto-resize\n"
" -S = resize rate (0.0 to 100.0)\n"
" -D = delay (in us) between potential resizes\n"
" -N = number of resize threads";
static void usage_complete(int argc, char *argv[])
{
fprintf(stderr, "Usage: %s [options]\n", argv[0]);
fprintf(stderr, "options:\n%s\n", commands_string);
exit(-1);
}
static bool is_equal(const void *ap, const void *bp)
{
const long *a = ap;
const long *b = bp;
return *a == *b;
}
static uint32_t h(unsigned long v)
{
return qemu_xxhash2(v);
}
static uint32_t hval(unsigned long v)
{
return v;
}
static uint32_t (*hfunc)(unsigned long v) = h;
/*
* From: https://en.wikipedia.org/wiki/Xorshift
* This is faster than rand_r(), and gives us a wider range (RAND_MAX is only
* guaranteed to be >= INT_MAX).
*/
static uint64_t xorshift64star(uint64_t x)
{
x ^= x >> 12; /* a */
x ^= x << 25; /* b */
x ^= x >> 27; /* c */
return x * UINT64_C(2685821657736338717);
}
static void do_rz(struct thread_info *info)
{
struct thread_stats *stats = &info->stats;
uint64_t r = info->seed - 1;
if (r < resize_threshold) {
size_t size = info->resize_down ? resize_min : resize_max;
bool resized;
resized = qht_resize(&ht, size);
info->resize_down = !info->resize_down;
if (resized) {
stats->rz++;
} else {
stats->not_rz++;
}
}
g_usleep(resize_delay);
}
static void do_rw(struct thread_info *info)
{
struct thread_stats *stats = &info->stats;
uint64_t r = info->seed - 1;
uint32_t hash;
long *p;
if (r >= update_threshold) {
bool read;
p = &keys[r & (lookup_range - 1)];
hash = hfunc(*p);
read = qht_lookup(&ht, p, hash);
if (read) {
stats->rd++;
} else {
stats->not_rd++;
}
} else {
p = &keys[r & (update_range - 1)];
hash = hfunc(*p);
if (info->write_op) {
bool written = false;
if (qht_lookup(&ht, p, hash) == NULL) {
written = qht_insert(&ht, p, hash, NULL);
}
if (written) {
stats->in++;
} else {
stats->not_in++;
}
} else {
bool removed = false;
if (qht_lookup(&ht, p, hash)) {
removed = qht_remove(&ht, p, hash);
}
if (removed) {
stats->rm++;
} else {
stats->not_rm++;
}
}
info->write_op = !info->write_op;
}
}
static void *thread_func(void *p)
{
struct thread_info *info = p;
rcu_register_thread();
qatomic_inc(&n_ready_threads);
while (!qatomic_read(&test_start)) {
cpu_relax();
}
rcu_read_lock();
while (!qatomic_read(&test_stop)) {
info->seed = xorshift64star(info->seed);
info->func(info);
}
rcu_read_unlock();
rcu_unregister_thread();
return NULL;
}
/* sets everything except info->func */
static void prepare_thread_info(struct thread_info *info, int i)
{
/* seed for the RNG; each thread should have a different one */
info->seed = (i + 1) ^ time(NULL);
/* the first update will be a write */
info->write_op = true;
/* the first resize will be down */
info->resize_down = true;
memset(&info->stats, 0, sizeof(info->stats));
}
static void
th_create_n(QemuThread **threads, struct thread_info **infos, const char *name,
void (*func)(struct thread_info *), int offset, int n)
{
struct thread_info *info;
QemuThread *th;
int i;
th = g_malloc(sizeof(*th) * n);
*threads = th;
info = qemu_memalign(64, sizeof(*info) * n);
*infos = info;
for (i = 0; i < n; i++) {
prepare_thread_info(&info[i], offset + i);
info[i].func = func;
qemu_thread_create(&th[i], name, thread_func, &info[i],
QEMU_THREAD_JOINABLE);
}
}
static void create_threads(void)
{
th_create_n(&rw_threads, &rw_info, "rw", do_rw, 0, n_rw_threads);
th_create_n(&rz_threads, &rz_info, "rz", do_rz, n_rw_threads, n_rz_threads);
}
static void pr_params(void)
{
printf("Parameters:\n");
printf(" duration: %d s\n", duration);
printf(" # of threads: %u\n", n_rw_threads);
printf(" initial # of keys: %zu\n", init_size);
printf(" initial size hint: %zu\n", qht_n_elems);
printf(" auto-resize: %s\n",
qht_mode & QHT_MODE_AUTO_RESIZE ? "on" : "off");
if (resize_rate) {
printf(" resize_rate: %f%%\n", resize_rate * 100.0);
printf(" resize range: %zu-%zu\n", resize_min, resize_max);
printf(" # resize threads %u\n", n_rz_threads);
}
printf(" update rate: %f%%\n", update_rate * 100.0);
printf(" offset: %ld\n", populate_offset);
printf(" initial key range: %zu\n", init_range);
printf(" lookup range: %lu\n", lookup_range);
printf(" update range: %lu\n", update_range);
}
static void do_threshold(double rate, uint64_t *threshold)
{
/*
* For 0 <= rate <= 1, scale to fit in a uint64_t.
*
* Scale by 2**64, with a special case for 1.0.
* The remainder of the possible values are scattered between 0
* and 0xfffffffffffff800 (nextafter(0x1p64, 0)).
*
* Note that we cannot simply scale by UINT64_MAX, because that
* value is not representable as an IEEE double value.
*
* If we scale by the next largest value, nextafter(0x1p64, 0),
* then the remainder of the possible values are scattered between
* 0 and 0xfffffffffffff000. Which leaves us with a gap between
* the final two inputs that is twice as large as any other.
*/
if (rate == 1.0) {
*threshold = UINT64_MAX;
} else {
*threshold = rate * 0x1p64;
}
}
static void htable_init(void)
{
unsigned long n = MAX(init_range, update_range);
uint64_t r = time(NULL);
size_t retries = 0;
size_t i;
/* avoid allocating memory later by allocating all the keys now */
keys = g_malloc(sizeof(*keys) * n);
for (i = 0; i < n; i++) {
long val = populate_offset + i;
keys[i] = precompute_hash ? h(val) : hval(val);
}
/* some sanity checks */
g_assert_cmpuint(lookup_range, <=, n);
/* compute thresholds */
do_threshold(update_rate, &update_threshold);
do_threshold(resize_rate, &resize_threshold);
if (resize_rate) {
resize_min = n / 2;
resize_max = n;
assert(resize_min < resize_max);
} else {
n_rz_threads = 0;
}
/* initialize the hash table */
qht_init(&ht, is_equal, qht_n_elems, qht_mode);
assert(init_size <= init_range);
pr_params();
fprintf(stderr, "Initialization: populating %zu items...", init_size);
for (i = 0; i < init_size; i++) {
for (;;) {
uint32_t hash;
long *p;
r = xorshift64star(r);
p = &keys[r & (init_range - 1)];
hash = hfunc(*p);
if (qht_insert(&ht, p, hash, NULL)) {
break;
}
retries++;
}
}
fprintf(stderr, " populated after %zu retries\n", retries);
}
static void add_stats(struct thread_stats *s, struct thread_info *info, int n)
{
int i;
for (i = 0; i < n; i++) {
struct thread_stats *stats = &info[i].stats;
s->rd += stats->rd;
s->not_rd += stats->not_rd;
s->in += stats->in;
s->not_in += stats->not_in;
s->rm += stats->rm;
s->not_rm += stats->not_rm;
s->rz += stats->rz;
s->not_rz += stats->not_rz;
}
}
static void pr_stats(void)
{
struct thread_stats s = {};
double tx;
add_stats(&s, rw_info, n_rw_threads);
add_stats(&s, rz_info, n_rz_threads);
printf("Results:\n");
if (resize_rate) {
printf(" Resizes: %zu (%.2f%% of %zu)\n",
s.rz, (double)s.rz / (s.rz + s.not_rz) * 100, s.rz + s.not_rz);
}
printf(" Read: %.2f M (%.2f%% of %.2fM)\n",
(double)s.rd / 1e6,
(double)s.rd / (s.rd + s.not_rd) * 100,
(double)(s.rd + s.not_rd) / 1e6);
printf(" Inserted: %.2f M (%.2f%% of %.2fM)\n",
(double)s.in / 1e6,
(double)s.in / (s.in + s.not_in) * 100,
(double)(s.in + s.not_in) / 1e6);
printf(" Removed: %.2f M (%.2f%% of %.2fM)\n",
(double)s.rm / 1e6,
(double)s.rm / (s.rm + s.not_rm) * 100,
(double)(s.rm + s.not_rm) / 1e6);
tx = (s.rd + s.not_rd + s.in + s.not_in + s.rm + s.not_rm) / 1e6 / duration;
printf(" Throughput: %.2f MT/s\n", tx);
printf(" Throughput/thread: %.2f MT/s/thread\n", tx / n_rw_threads);
}
static void run_test(void)
{
int i;
while (qatomic_read(&n_ready_threads) != n_rw_threads + n_rz_threads) {
cpu_relax();
}
qatomic_set(&test_start, true);
g_usleep(duration * G_USEC_PER_SEC);
qatomic_set(&test_stop, true);
for (i = 0; i < n_rw_threads; i++) {
qemu_thread_join(&rw_threads[i]);
}
for (i = 0; i < n_rz_threads; i++) {
qemu_thread_join(&rz_threads[i]);
}
}
static void parse_args(int argc, char *argv[])
{
int c;
for (;;) {
c = getopt(argc, argv, "d:D:g:k:K:l:hn:N:o:pr:Rs:S:u:");
if (c < 0) {
break;
}
switch (c) {
case 'd':
duration = atoi(optarg);
break;
case 'D':
resize_delay = atol(optarg);
break;
case 'g':
init_range = pow2ceil(atol(optarg));
lookup_range = pow2ceil(atol(optarg));
update_range = pow2ceil(atol(optarg));
qht_n_elems = atol(optarg);
init_size = atol(optarg);
break;
case 'h':
usage_complete(argc, argv);
exit(0);
case 'k':
init_size = atol(optarg);
break;
case 'K':
init_range = pow2ceil(atol(optarg));
break;
case 'l':
lookup_range = pow2ceil(atol(optarg));
break;
case 'n':
n_rw_threads = atoi(optarg);
break;
case 'N':
n_rz_threads = atoi(optarg);
break;
case 'o':
populate_offset = atol(optarg);
break;
case 'p':
precompute_hash = true;
hfunc = hval;
break;
case 'r':
update_range = pow2ceil(atol(optarg));
break;
case 'R':
qht_mode |= QHT_MODE_AUTO_RESIZE;
break;
case 's':
qht_n_elems = atol(optarg);
break;
case 'S':
resize_rate = atof(optarg) / 100.0;
if (resize_rate > 1.0) {
resize_rate = 1.0;
}
break;
case 'u':
update_rate = atof(optarg) / 100.0;
if (update_rate > 1.0) {
update_rate = 1.0;
}
break;
}
}
}
int main(int argc, char *argv[])
{
parse_args(argc, argv);
htable_init();
create_threads();
run_test();
pr_stats();
return 0;
}