qemu/target/i386/hvf/x86_emu.c
Paolo Bonzini 746827825d i386: hvf: remove more dead emulator code
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-12-22 15:02:07 +01:00

1529 lines
44 KiB
C

/*
* Copyright (C) 2016 Veertu Inc,
* Copyright (C) 2017 Google Inc,
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2001-2012 The Bochs Project
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA
/////////////////////////////////////////////////////////////////////////
#include "qemu/osdep.h"
#include "qemu-common.h"
#include "x86_decode.h"
#include "x86.h"
#include "x86_emu.h"
#include "x86_mmu.h"
#include "x86_flags.h"
#include "vmcs.h"
#include "vmx.h"
void hvf_handle_io(struct CPUState *cpu, uint16_t port, void *data,
int direction, int size, uint32_t count);
#define EXEC_2OP_LOGIC_CMD(env, decode, cmd, FLAGS_FUNC, save_res) \
{ \
fetch_operands(env, decode, 2, true, true, false); \
switch (decode->operand_size) { \
case 1: \
{ \
uint8_t v1 = (uint8_t)decode->op[0].val; \
uint8_t v2 = (uint8_t)decode->op[1].val; \
uint8_t diff = v1 cmd v2; \
if (save_res) { \
write_val_ext(env, decode->op[0].ptr, diff, 1); \
} \
FLAGS_FUNC##_8(diff); \
break; \
} \
case 2: \
{ \
uint16_t v1 = (uint16_t)decode->op[0].val; \
uint16_t v2 = (uint16_t)decode->op[1].val; \
uint16_t diff = v1 cmd v2; \
if (save_res) { \
write_val_ext(env, decode->op[0].ptr, diff, 2); \
} \
FLAGS_FUNC##_16(diff); \
break; \
} \
case 4: \
{ \
uint32_t v1 = (uint32_t)decode->op[0].val; \
uint32_t v2 = (uint32_t)decode->op[1].val; \
uint32_t diff = v1 cmd v2; \
if (save_res) { \
write_val_ext(env, decode->op[0].ptr, diff, 4); \
} \
FLAGS_FUNC##_32(diff); \
break; \
} \
default: \
VM_PANIC("bad size\n"); \
} \
} \
#define EXEC_2OP_ARITH_CMD(env, decode, cmd, FLAGS_FUNC, save_res) \
{ \
fetch_operands(env, decode, 2, true, true, false); \
switch (decode->operand_size) { \
case 1: \
{ \
uint8_t v1 = (uint8_t)decode->op[0].val; \
uint8_t v2 = (uint8_t)decode->op[1].val; \
uint8_t diff = v1 cmd v2; \
if (save_res) { \
write_val_ext(env, decode->op[0].ptr, diff, 1); \
} \
FLAGS_FUNC##_8(v1, v2, diff); \
break; \
} \
case 2: \
{ \
uint16_t v1 = (uint16_t)decode->op[0].val; \
uint16_t v2 = (uint16_t)decode->op[1].val; \
uint16_t diff = v1 cmd v2; \
if (save_res) { \
write_val_ext(env, decode->op[0].ptr, diff, 2); \
} \
FLAGS_FUNC##_16(v1, v2, diff); \
break; \
} \
case 4: \
{ \
uint32_t v1 = (uint32_t)decode->op[0].val; \
uint32_t v2 = (uint32_t)decode->op[1].val; \
uint32_t diff = v1 cmd v2; \
if (save_res) { \
write_val_ext(env, decode->op[0].ptr, diff, 4); \
} \
FLAGS_FUNC##_32(v1, v2, diff); \
break; \
} \
default: \
VM_PANIC("bad size\n"); \
} \
}
addr_t read_reg(CPUX86State *env, int reg, int size)
{
switch (size) {
case 1:
return env->hvf_emul->regs[reg].lx;
case 2:
return env->hvf_emul->regs[reg].rx;
case 4:
return env->hvf_emul->regs[reg].erx;
case 8:
return env->hvf_emul->regs[reg].rrx;
default:
VM_PANIC_ON("read_reg size");
}
return 0;
}
void write_reg(CPUX86State *env, int reg, addr_t val, int size)
{
switch (size) {
case 1:
env->hvf_emul->regs[reg].lx = val;
break;
case 2:
env->hvf_emul->regs[reg].rx = val;
break;
case 4:
env->hvf_emul->regs[reg].rrx = (uint32_t)val;
break;
case 8:
env->hvf_emul->regs[reg].rrx = val;
break;
default:
VM_PANIC_ON("write_reg size");
}
}
addr_t read_val_from_reg(addr_t reg_ptr, int size)
{
addr_t val;
switch (size) {
case 1:
val = *(uint8_t *)reg_ptr;
break;
case 2:
val = *(uint16_t *)reg_ptr;
break;
case 4:
val = *(uint32_t *)reg_ptr;
break;
case 8:
val = *(uint64_t *)reg_ptr;
break;
default:
VM_PANIC_ON_EX(1, "read_val: Unknown size %d\n", size);
break;
}
return val;
}
void write_val_to_reg(addr_t reg_ptr, addr_t val, int size)
{
switch (size) {
case 1:
*(uint8_t *)reg_ptr = val;
break;
case 2:
*(uint16_t *)reg_ptr = val;
break;
case 4:
*(uint64_t *)reg_ptr = (uint32_t)val;
break;
case 8:
*(uint64_t *)reg_ptr = val;
break;
default:
VM_PANIC("write_val: Unknown size\n");
break;
}
}
static bool is_host_reg(struct CPUX86State *env, addr_t ptr)
{
return (ptr - (addr_t)&env->hvf_emul->regs[0]) < sizeof(env->hvf_emul->regs);
}
void write_val_ext(struct CPUX86State *env, addr_t ptr, addr_t val, int size)
{
if (is_host_reg(env, ptr)) {
write_val_to_reg(ptr, val, size);
return;
}
vmx_write_mem(ENV_GET_CPU(env), ptr, &val, size);
}
uint8_t *read_mmio(struct CPUX86State *env, addr_t ptr, int bytes)
{
vmx_read_mem(ENV_GET_CPU(env), env->hvf_emul->mmio_buf, ptr, bytes);
return env->hvf_emul->mmio_buf;
}
addr_t read_val_ext(struct CPUX86State *env, addr_t ptr, int size)
{
addr_t val;
uint8_t *mmio_ptr;
if (is_host_reg(env, ptr)) {
return read_val_from_reg(ptr, size);
}
mmio_ptr = read_mmio(env, ptr, size);
switch (size) {
case 1:
val = *(uint8_t *)mmio_ptr;
break;
case 2:
val = *(uint16_t *)mmio_ptr;
break;
case 4:
val = *(uint32_t *)mmio_ptr;
break;
case 8:
val = *(uint64_t *)mmio_ptr;
break;
default:
VM_PANIC("bad size\n");
break;
}
return val;
}
static void fetch_operands(struct CPUX86State *env, struct x86_decode *decode,
int n, bool val_op0, bool val_op1, bool val_op2)
{
int i;
bool calc_val[3] = {val_op0, val_op1, val_op2};
for (i = 0; i < n; i++) {
switch (decode->op[i].type) {
case X86_VAR_IMMEDIATE:
break;
case X86_VAR_REG:
VM_PANIC_ON(!decode->op[i].ptr);
if (calc_val[i]) {
decode->op[i].val = read_val_from_reg(decode->op[i].ptr,
decode->operand_size);
}
break;
case X86_VAR_RM:
calc_modrm_operand(env, decode, &decode->op[i]);
if (calc_val[i]) {
decode->op[i].val = read_val_ext(env, decode->op[i].ptr,
decode->operand_size);
}
break;
case X86_VAR_OFFSET:
decode->op[i].ptr = decode_linear_addr(env, decode,
decode->op[i].ptr,
R_DS);
if (calc_val[i]) {
decode->op[i].val = read_val_ext(env, decode->op[i].ptr,
decode->operand_size);
}
break;
default:
break;
}
}
}
static void exec_mov(struct CPUX86State *env, struct x86_decode *decode)
{
fetch_operands(env, decode, 2, false, true, false);
write_val_ext(env, decode->op[0].ptr, decode->op[1].val,
decode->operand_size);
RIP(env) += decode->len;
}
static void exec_add(struct CPUX86State *env, struct x86_decode *decode)
{
EXEC_2OP_ARITH_CMD(env, decode, +, SET_FLAGS_OSZAPC_ADD, true);
RIP(env) += decode->len;
}
static void exec_or(struct CPUX86State *env, struct x86_decode *decode)
{
EXEC_2OP_LOGIC_CMD(env, decode, |, SET_FLAGS_OSZAPC_LOGIC, true);
RIP(env) += decode->len;
}
static void exec_adc(struct CPUX86State *env, struct x86_decode *decode)
{
EXEC_2OP_ARITH_CMD(env, decode, +get_CF(env)+, SET_FLAGS_OSZAPC_ADD, true);
RIP(env) += decode->len;
}
static void exec_sbb(struct CPUX86State *env, struct x86_decode *decode)
{
EXEC_2OP_ARITH_CMD(env, decode, -get_CF(env)-, SET_FLAGS_OSZAPC_SUB, true);
RIP(env) += decode->len;
}
static void exec_and(struct CPUX86State *env, struct x86_decode *decode)
{
EXEC_2OP_LOGIC_CMD(env, decode, &, SET_FLAGS_OSZAPC_LOGIC, true);
RIP(env) += decode->len;
}
static void exec_sub(struct CPUX86State *env, struct x86_decode *decode)
{
EXEC_2OP_ARITH_CMD(env, decode, -, SET_FLAGS_OSZAPC_SUB, true);
RIP(env) += decode->len;
}
static void exec_xor(struct CPUX86State *env, struct x86_decode *decode)
{
EXEC_2OP_LOGIC_CMD(env, decode, ^, SET_FLAGS_OSZAPC_LOGIC, true);
RIP(env) += decode->len;
}
static void exec_neg(struct CPUX86State *env, struct x86_decode *decode)
{
/*EXEC_2OP_ARITH_CMD(env, decode, -, SET_FLAGS_OSZAPC_SUB, false);*/
int32_t val;
fetch_operands(env, decode, 2, true, true, false);
val = 0 - sign(decode->op[1].val, decode->operand_size);
write_val_ext(env, decode->op[1].ptr, val, decode->operand_size);
if (4 == decode->operand_size) {
SET_FLAGS_OSZAPC_SUB_32(0, 0 - val, val);
} else if (2 == decode->operand_size) {
SET_FLAGS_OSZAPC_SUB_16(0, 0 - val, val);
} else if (1 == decode->operand_size) {
SET_FLAGS_OSZAPC_SUB_8(0, 0 - val, val);
} else {
VM_PANIC("bad op size\n");
}
/*lflags_to_rflags(env);*/
RIP(env) += decode->len;
}
static void exec_cmp(struct CPUX86State *env, struct x86_decode *decode)
{
EXEC_2OP_ARITH_CMD(env, decode, -, SET_FLAGS_OSZAPC_SUB, false);
RIP(env) += decode->len;
}
static void exec_inc(struct CPUX86State *env, struct x86_decode *decode)
{
decode->op[1].type = X86_VAR_IMMEDIATE;
decode->op[1].val = 0;
EXEC_2OP_ARITH_CMD(env, decode, +1+, SET_FLAGS_OSZAP_ADD, true);
RIP(env) += decode->len;
}
static void exec_dec(struct CPUX86State *env, struct x86_decode *decode)
{
decode->op[1].type = X86_VAR_IMMEDIATE;
decode->op[1].val = 0;
EXEC_2OP_ARITH_CMD(env, decode, -1-, SET_FLAGS_OSZAP_SUB, true);
RIP(env) += decode->len;
}
static void exec_tst(struct CPUX86State *env, struct x86_decode *decode)
{
EXEC_2OP_LOGIC_CMD(env, decode, &, SET_FLAGS_OSZAPC_LOGIC, false);
RIP(env) += decode->len;
}
static void exec_not(struct CPUX86State *env, struct x86_decode *decode)
{
fetch_operands(env, decode, 1, true, false, false);
write_val_ext(env, decode->op[0].ptr, ~decode->op[0].val,
decode->operand_size);
RIP(env) += decode->len;
}
void exec_movzx(struct CPUX86State *env, struct x86_decode *decode)
{
int src_op_size;
int op_size = decode->operand_size;
fetch_operands(env, decode, 1, false, false, false);
if (0xb6 == decode->opcode[1]) {
src_op_size = 1;
} else {
src_op_size = 2;
}
decode->operand_size = src_op_size;
calc_modrm_operand(env, decode, &decode->op[1]);
decode->op[1].val = read_val_ext(env, decode->op[1].ptr, src_op_size);
write_val_ext(env, decode->op[0].ptr, decode->op[1].val, op_size);
RIP(env) += decode->len;
}
static void exec_out(struct CPUX86State *env, struct x86_decode *decode)
{
switch (decode->opcode[0]) {
case 0xe6:
hvf_handle_io(ENV_GET_CPU(env), decode->op[0].val, &AL(env), 1, 1, 1);
break;
case 0xe7:
hvf_handle_io(ENV_GET_CPU(env), decode->op[0].val, &RAX(env), 1,
decode->operand_size, 1);
break;
case 0xee:
hvf_handle_io(ENV_GET_CPU(env), DX(env), &AL(env), 1, 1, 1);
break;
case 0xef:
hvf_handle_io(ENV_GET_CPU(env), DX(env), &RAX(env), 1, decode->operand_size, 1);
break;
default:
VM_PANIC("Bad out opcode\n");
break;
}
RIP(env) += decode->len;
}
static void exec_in(struct CPUX86State *env, struct x86_decode *decode)
{
addr_t val = 0;
switch (decode->opcode[0]) {
case 0xe4:
hvf_handle_io(ENV_GET_CPU(env), decode->op[0].val, &AL(env), 0, 1, 1);
break;
case 0xe5:
hvf_handle_io(ENV_GET_CPU(env), decode->op[0].val, &val, 0, decode->operand_size, 1);
if (decode->operand_size == 2) {
AX(env) = val;
} else {
RAX(env) = (uint32_t)val;
}
break;
case 0xec:
hvf_handle_io(ENV_GET_CPU(env), DX(env), &AL(env), 0, 1, 1);
break;
case 0xed:
hvf_handle_io(ENV_GET_CPU(env), DX(env), &val, 0, decode->operand_size, 1);
if (decode->operand_size == 2) {
AX(env) = val;
} else {
RAX(env) = (uint32_t)val;
}
break;
default:
VM_PANIC("Bad in opcode\n");
break;
}
RIP(env) += decode->len;
}
static inline void string_increment_reg(struct CPUX86State *env, int reg,
struct x86_decode *decode)
{
addr_t val = read_reg(env, reg, decode->addressing_size);
if (env->hvf_emul->rflags.df) {
val -= decode->operand_size;
} else {
val += decode->operand_size;
}
write_reg(env, reg, val, decode->addressing_size);
}
static inline void string_rep(struct CPUX86State *env, struct x86_decode *decode,
void (*func)(struct CPUX86State *env,
struct x86_decode *ins), int rep)
{
addr_t rcx = read_reg(env, R_ECX, decode->addressing_size);
while (rcx--) {
func(env, decode);
write_reg(env, R_ECX, rcx, decode->addressing_size);
if ((PREFIX_REP == rep) && !get_ZF(env)) {
break;
}
if ((PREFIX_REPN == rep) && get_ZF(env)) {
break;
}
}
}
static void exec_ins_single(struct CPUX86State *env, struct x86_decode *decode)
{
addr_t addr = linear_addr_size(ENV_GET_CPU(env), RDI(env), decode->addressing_size,
R_ES);
hvf_handle_io(ENV_GET_CPU(env), DX(env), env->hvf_emul->mmio_buf, 0,
decode->operand_size, 1);
vmx_write_mem(ENV_GET_CPU(env), addr, env->hvf_emul->mmio_buf, decode->operand_size);
string_increment_reg(env, R_EDI, decode);
}
static void exec_ins(struct CPUX86State *env, struct x86_decode *decode)
{
if (decode->rep) {
string_rep(env, decode, exec_ins_single, 0);
} else {
exec_ins_single(env, decode);
}
RIP(env) += decode->len;
}
static void exec_outs_single(struct CPUX86State *env, struct x86_decode *decode)
{
addr_t addr = decode_linear_addr(env, decode, RSI(env), R_DS);
vmx_read_mem(ENV_GET_CPU(env), env->hvf_emul->mmio_buf, addr, decode->operand_size);
hvf_handle_io(ENV_GET_CPU(env), DX(env), env->hvf_emul->mmio_buf, 1,
decode->operand_size, 1);
string_increment_reg(env, R_ESI, decode);
}
static void exec_outs(struct CPUX86State *env, struct x86_decode *decode)
{
if (decode->rep) {
string_rep(env, decode, exec_outs_single, 0);
} else {
exec_outs_single(env, decode);
}
RIP(env) += decode->len;
}
static void exec_movs_single(struct CPUX86State *env, struct x86_decode *decode)
{
addr_t src_addr;
addr_t dst_addr;
addr_t val;
src_addr = decode_linear_addr(env, decode, RSI(env), R_DS);
dst_addr = linear_addr_size(ENV_GET_CPU(env), RDI(env), decode->addressing_size,
R_ES);
val = read_val_ext(env, src_addr, decode->operand_size);
write_val_ext(env, dst_addr, val, decode->operand_size);
string_increment_reg(env, R_ESI, decode);
string_increment_reg(env, R_EDI, decode);
}
static void exec_movs(struct CPUX86State *env, struct x86_decode *decode)
{
if (decode->rep) {
string_rep(env, decode, exec_movs_single, 0);
} else {
exec_movs_single(env, decode);
}
RIP(env) += decode->len;
}
static void exec_cmps_single(struct CPUX86State *env, struct x86_decode *decode)
{
addr_t src_addr;
addr_t dst_addr;
src_addr = decode_linear_addr(env, decode, RSI(env), R_DS);
dst_addr = linear_addr_size(ENV_GET_CPU(env), RDI(env), decode->addressing_size,
R_ES);
decode->op[0].type = X86_VAR_IMMEDIATE;
decode->op[0].val = read_val_ext(env, src_addr, decode->operand_size);
decode->op[1].type = X86_VAR_IMMEDIATE;
decode->op[1].val = read_val_ext(env, dst_addr, decode->operand_size);
EXEC_2OP_ARITH_CMD(env, decode, -, SET_FLAGS_OSZAPC_SUB, false);
string_increment_reg(env, R_ESI, decode);
string_increment_reg(env, R_EDI, decode);
}
static void exec_cmps(struct CPUX86State *env, struct x86_decode *decode)
{
if (decode->rep) {
string_rep(env, decode, exec_cmps_single, decode->rep);
} else {
exec_cmps_single(env, decode);
}
RIP(env) += decode->len;
}
static void exec_stos_single(struct CPUX86State *env, struct x86_decode *decode)
{
addr_t addr;
addr_t val;
addr = linear_addr_size(ENV_GET_CPU(env), RDI(env), decode->addressing_size, R_ES);
val = read_reg(env, R_EAX, decode->operand_size);
vmx_write_mem(ENV_GET_CPU(env), addr, &val, decode->operand_size);
string_increment_reg(env, R_EDI, decode);
}
static void exec_stos(struct CPUX86State *env, struct x86_decode *decode)
{
if (decode->rep) {
string_rep(env, decode, exec_stos_single, 0);
} else {
exec_stos_single(env, decode);
}
RIP(env) += decode->len;
}
static void exec_scas_single(struct CPUX86State *env, struct x86_decode *decode)
{
addr_t addr;
addr = linear_addr_size(ENV_GET_CPU(env), RDI(env), decode->addressing_size, R_ES);
decode->op[1].type = X86_VAR_IMMEDIATE;
vmx_read_mem(ENV_GET_CPU(env), &decode->op[1].val, addr, decode->operand_size);
EXEC_2OP_ARITH_CMD(env, decode, -, SET_FLAGS_OSZAPC_SUB, false);
string_increment_reg(env, R_EDI, decode);
}
static void exec_scas(struct CPUX86State *env, struct x86_decode *decode)
{
decode->op[0].type = X86_VAR_REG;
decode->op[0].reg = R_EAX;
if (decode->rep) {
string_rep(env, decode, exec_scas_single, decode->rep);
} else {
exec_scas_single(env, decode);
}
RIP(env) += decode->len;
}
static void exec_lods_single(struct CPUX86State *env, struct x86_decode *decode)
{
addr_t addr;
addr_t val = 0;
addr = decode_linear_addr(env, decode, RSI(env), R_DS);
vmx_read_mem(ENV_GET_CPU(env), &val, addr, decode->operand_size);
write_reg(env, R_EAX, val, decode->operand_size);
string_increment_reg(env, R_ESI, decode);
}
static void exec_lods(struct CPUX86State *env, struct x86_decode *decode)
{
if (decode->rep) {
string_rep(env, decode, exec_lods_single, 0);
} else {
exec_lods_single(env, decode);
}
RIP(env) += decode->len;
}
#define MSR_IA32_UCODE_REV 0x00000017
void simulate_rdmsr(struct CPUState *cpu)
{
X86CPU *x86_cpu = X86_CPU(cpu);
CPUX86State *env = &x86_cpu->env;
uint32_t msr = ECX(env);
uint64_t val = 0;
switch (msr) {
case MSR_IA32_TSC:
val = rdtscp() + rvmcs(cpu->hvf_fd, VMCS_TSC_OFFSET);
break;
case MSR_IA32_APICBASE:
val = cpu_get_apic_base(X86_CPU(cpu)->apic_state);
break;
case MSR_IA32_UCODE_REV:
val = (0x100000000ULL << 32) | 0x100000000ULL;
break;
case MSR_EFER:
val = rvmcs(cpu->hvf_fd, VMCS_GUEST_IA32_EFER);
break;
case MSR_FSBASE:
val = rvmcs(cpu->hvf_fd, VMCS_GUEST_FS_BASE);
break;
case MSR_GSBASE:
val = rvmcs(cpu->hvf_fd, VMCS_GUEST_GS_BASE);
break;
case MSR_KERNELGSBASE:
val = rvmcs(cpu->hvf_fd, VMCS_HOST_FS_BASE);
break;
case MSR_STAR:
abort();
break;
case MSR_LSTAR:
abort();
break;
case MSR_CSTAR:
abort();
break;
case MSR_IA32_MISC_ENABLE:
val = env->msr_ia32_misc_enable;
break;
case MSR_MTRRphysBase(0):
case MSR_MTRRphysBase(1):
case MSR_MTRRphysBase(2):
case MSR_MTRRphysBase(3):
case MSR_MTRRphysBase(4):
case MSR_MTRRphysBase(5):
case MSR_MTRRphysBase(6):
case MSR_MTRRphysBase(7):
val = env->mtrr_var[(ECX(env) - MSR_MTRRphysBase(0)) / 2].base;
break;
case MSR_MTRRphysMask(0):
case MSR_MTRRphysMask(1):
case MSR_MTRRphysMask(2):
case MSR_MTRRphysMask(3):
case MSR_MTRRphysMask(4):
case MSR_MTRRphysMask(5):
case MSR_MTRRphysMask(6):
case MSR_MTRRphysMask(7):
val = env->mtrr_var[(ECX(env) - MSR_MTRRphysMask(0)) / 2].mask;
break;
case MSR_MTRRfix64K_00000:
val = env->mtrr_fixed[0];
break;
case MSR_MTRRfix16K_80000:
case MSR_MTRRfix16K_A0000:
val = env->mtrr_fixed[ECX(env) - MSR_MTRRfix16K_80000 + 1];
break;
case MSR_MTRRfix4K_C0000:
case MSR_MTRRfix4K_C8000:
case MSR_MTRRfix4K_D0000:
case MSR_MTRRfix4K_D8000:
case MSR_MTRRfix4K_E0000:
case MSR_MTRRfix4K_E8000:
case MSR_MTRRfix4K_F0000:
case MSR_MTRRfix4K_F8000:
val = env->mtrr_fixed[ECX(env) - MSR_MTRRfix4K_C0000 + 3];
break;
case MSR_MTRRdefType:
val = env->mtrr_deftype;
break;
default:
/* fprintf(stderr, "%s: unknown msr 0x%x\n", __func__, msr); */
val = 0;
break;
}
RAX(env) = (uint32_t)val;
RDX(env) = (uint32_t)(val >> 32);
}
static void exec_rdmsr(struct CPUX86State *env, struct x86_decode *decode)
{
simulate_rdmsr(ENV_GET_CPU(env));
RIP(env) += decode->len;
}
void simulate_wrmsr(struct CPUState *cpu)
{
X86CPU *x86_cpu = X86_CPU(cpu);
CPUX86State *env = &x86_cpu->env;
uint32_t msr = ECX(env);
uint64_t data = ((uint64_t)EDX(env) << 32) | EAX(env);
switch (msr) {
case MSR_IA32_TSC:
/* if (!osx_is_sierra())
wvmcs(cpu->hvf_fd, VMCS_TSC_OFFSET, data - rdtscp());
hv_vm_sync_tsc(data);*/
break;
case MSR_IA32_APICBASE:
cpu_set_apic_base(X86_CPU(cpu)->apic_state, data);
break;
case MSR_FSBASE:
wvmcs(cpu->hvf_fd, VMCS_GUEST_FS_BASE, data);
break;
case MSR_GSBASE:
wvmcs(cpu->hvf_fd, VMCS_GUEST_GS_BASE, data);
break;
case MSR_KERNELGSBASE:
wvmcs(cpu->hvf_fd, VMCS_HOST_FS_BASE, data);
break;
case MSR_STAR:
abort();
break;
case MSR_LSTAR:
abort();
break;
case MSR_CSTAR:
abort();
break;
case MSR_EFER:
/*printf("new efer %llx\n", EFER(cpu));*/
wvmcs(cpu->hvf_fd, VMCS_GUEST_IA32_EFER, data);
if (data & MSR_EFER_NXE) {
hv_vcpu_invalidate_tlb(cpu->hvf_fd);
}
break;
case MSR_MTRRphysBase(0):
case MSR_MTRRphysBase(1):
case MSR_MTRRphysBase(2):
case MSR_MTRRphysBase(3):
case MSR_MTRRphysBase(4):
case MSR_MTRRphysBase(5):
case MSR_MTRRphysBase(6):
case MSR_MTRRphysBase(7):
env->mtrr_var[(ECX(env) - MSR_MTRRphysBase(0)) / 2].base = data;
break;
case MSR_MTRRphysMask(0):
case MSR_MTRRphysMask(1):
case MSR_MTRRphysMask(2):
case MSR_MTRRphysMask(3):
case MSR_MTRRphysMask(4):
case MSR_MTRRphysMask(5):
case MSR_MTRRphysMask(6):
case MSR_MTRRphysMask(7):
env->mtrr_var[(ECX(env) - MSR_MTRRphysMask(0)) / 2].mask = data;
break;
case MSR_MTRRfix64K_00000:
env->mtrr_fixed[ECX(env) - MSR_MTRRfix64K_00000] = data;
break;
case MSR_MTRRfix16K_80000:
case MSR_MTRRfix16K_A0000:
env->mtrr_fixed[ECX(env) - MSR_MTRRfix16K_80000 + 1] = data;
break;
case MSR_MTRRfix4K_C0000:
case MSR_MTRRfix4K_C8000:
case MSR_MTRRfix4K_D0000:
case MSR_MTRRfix4K_D8000:
case MSR_MTRRfix4K_E0000:
case MSR_MTRRfix4K_E8000:
case MSR_MTRRfix4K_F0000:
case MSR_MTRRfix4K_F8000:
env->mtrr_fixed[ECX(env) - MSR_MTRRfix4K_C0000 + 3] = data;
break;
case MSR_MTRRdefType:
env->mtrr_deftype = data;
break;
default:
break;
}
/* Related to support known hypervisor interface */
/* if (g_hypervisor_iface)
g_hypervisor_iface->wrmsr_handler(cpu, msr, data);
printf("write msr %llx\n", RCX(cpu));*/
}
static void exec_wrmsr(struct CPUX86State *env, struct x86_decode *decode)
{
simulate_wrmsr(ENV_GET_CPU(env));
RIP(env) += decode->len;
}
/*
* flag:
* 0 - bt, 1 - btc, 2 - bts, 3 - btr
*/
static void do_bt(struct CPUX86State *env, struct x86_decode *decode, int flag)
{
int32_t displacement;
uint8_t index;
bool cf;
int mask = (4 == decode->operand_size) ? 0x1f : 0xf;
VM_PANIC_ON(decode->rex.rex);
fetch_operands(env, decode, 2, false, true, false);
index = decode->op[1].val & mask;
if (decode->op[0].type != X86_VAR_REG) {
if (4 == decode->operand_size) {
displacement = ((int32_t) (decode->op[1].val & 0xffffffe0)) / 32;
decode->op[0].ptr += 4 * displacement;
} else if (2 == decode->operand_size) {
displacement = ((int16_t) (decode->op[1].val & 0xfff0)) / 16;
decode->op[0].ptr += 2 * displacement;
} else {
VM_PANIC("bt 64bit\n");
}
}
decode->op[0].val = read_val_ext(env, decode->op[0].ptr,
decode->operand_size);
cf = (decode->op[0].val >> index) & 0x01;
switch (flag) {
case 0:
set_CF(env, cf);
return;
case 1:
decode->op[0].val ^= (1u << index);
break;
case 2:
decode->op[0].val |= (1u << index);
break;
case 3:
decode->op[0].val &= ~(1u << index);
break;
}
write_val_ext(env, decode->op[0].ptr, decode->op[0].val,
decode->operand_size);
set_CF(env, cf);
}
static void exec_bt(struct CPUX86State *env, struct x86_decode *decode)
{
do_bt(env, decode, 0);
RIP(env) += decode->len;
}
static void exec_btc(struct CPUX86State *env, struct x86_decode *decode)
{
do_bt(env, decode, 1);
RIP(env) += decode->len;
}
static void exec_btr(struct CPUX86State *env, struct x86_decode *decode)
{
do_bt(env, decode, 3);
RIP(env) += decode->len;
}
static void exec_bts(struct CPUX86State *env, struct x86_decode *decode)
{
do_bt(env, decode, 2);
RIP(env) += decode->len;
}
void exec_shl(struct CPUX86State *env, struct x86_decode *decode)
{
uint8_t count;
int of = 0, cf = 0;
fetch_operands(env, decode, 2, true, true, false);
count = decode->op[1].val;
count &= 0x1f; /* count is masked to 5 bits*/
if (!count) {
goto exit;
}
switch (decode->operand_size) {
case 1:
{
uint8_t res = 0;
if (count <= 8) {
res = (decode->op[0].val << count);
cf = (decode->op[0].val >> (8 - count)) & 0x1;
of = cf ^ (res >> 7);
}
write_val_ext(env, decode->op[0].ptr, res, 1);
SET_FLAGS_OSZAPC_LOGIC_8(res);
SET_FLAGS_OxxxxC(env, of, cf);
break;
}
case 2:
{
uint16_t res = 0;
/* from bochs */
if (count <= 16) {
res = (decode->op[0].val << count);
cf = (decode->op[0].val >> (16 - count)) & 0x1;
of = cf ^ (res >> 15); /* of = cf ^ result15 */
}
write_val_ext(env, decode->op[0].ptr, res, 2);
SET_FLAGS_OSZAPC_LOGIC_16(res);
SET_FLAGS_OxxxxC(env, of, cf);
break;
}
case 4:
{
uint32_t res = decode->op[0].val << count;
write_val_ext(env, decode->op[0].ptr, res, 4);
SET_FLAGS_OSZAPC_LOGIC_32(res);
cf = (decode->op[0].val >> (32 - count)) & 0x1;
of = cf ^ (res >> 31); /* of = cf ^ result31 */
SET_FLAGS_OxxxxC(env, of, cf);
break;
}
default:
abort();
}
exit:
/* lflags_to_rflags(env); */
RIP(env) += decode->len;
}
void exec_movsx(CPUX86State *env, struct x86_decode *decode)
{
int src_op_size;
int op_size = decode->operand_size;
fetch_operands(env, decode, 2, false, false, false);
if (0xbe == decode->opcode[1]) {
src_op_size = 1;
} else {
src_op_size = 2;
}
decode->operand_size = src_op_size;
calc_modrm_operand(env, decode, &decode->op[1]);
decode->op[1].val = sign(read_val_ext(env, decode->op[1].ptr, src_op_size),
src_op_size);
write_val_ext(env, decode->op[0].ptr, decode->op[1].val, op_size);
RIP(env) += decode->len;
}
void exec_ror(struct CPUX86State *env, struct x86_decode *decode)
{
uint8_t count;
fetch_operands(env, decode, 2, true, true, false);
count = decode->op[1].val;
switch (decode->operand_size) {
case 1:
{
uint32_t bit6, bit7;
uint8_t res;
if ((count & 0x07) == 0) {
if (count & 0x18) {
bit6 = ((uint8_t)decode->op[0].val >> 6) & 1;
bit7 = ((uint8_t)decode->op[0].val >> 7) & 1;
SET_FLAGS_OxxxxC(env, bit6 ^ bit7, bit7);
}
} else {
count &= 0x7; /* use only bottom 3 bits */
res = ((uint8_t)decode->op[0].val >> count) |
((uint8_t)decode->op[0].val << (8 - count));
write_val_ext(env, decode->op[0].ptr, res, 1);
bit6 = (res >> 6) & 1;
bit7 = (res >> 7) & 1;
/* set eflags: ROR count affects the following flags: C, O */
SET_FLAGS_OxxxxC(env, bit6 ^ bit7, bit7);
}
break;
}
case 2:
{
uint32_t bit14, bit15;
uint16_t res;
if ((count & 0x0f) == 0) {
if (count & 0x10) {
bit14 = ((uint16_t)decode->op[0].val >> 14) & 1;
bit15 = ((uint16_t)decode->op[0].val >> 15) & 1;
/* of = result14 ^ result15 */
SET_FLAGS_OxxxxC(env, bit14 ^ bit15, bit15);
}
} else {
count &= 0x0f; /* use only 4 LSB's */
res = ((uint16_t)decode->op[0].val >> count) |
((uint16_t)decode->op[0].val << (16 - count));
write_val_ext(env, decode->op[0].ptr, res, 2);
bit14 = (res >> 14) & 1;
bit15 = (res >> 15) & 1;
/* of = result14 ^ result15 */
SET_FLAGS_OxxxxC(env, bit14 ^ bit15, bit15);
}
break;
}
case 4:
{
uint32_t bit31, bit30;
uint32_t res;
count &= 0x1f;
if (count) {
res = ((uint32_t)decode->op[0].val >> count) |
((uint32_t)decode->op[0].val << (32 - count));
write_val_ext(env, decode->op[0].ptr, res, 4);
bit31 = (res >> 31) & 1;
bit30 = (res >> 30) & 1;
/* of = result30 ^ result31 */
SET_FLAGS_OxxxxC(env, bit30 ^ bit31, bit31);
}
break;
}
}
RIP(env) += decode->len;
}
void exec_rol(struct CPUX86State *env, struct x86_decode *decode)
{
uint8_t count;
fetch_operands(env, decode, 2, true, true, false);
count = decode->op[1].val;
switch (decode->operand_size) {
case 1:
{
uint32_t bit0, bit7;
uint8_t res;
if ((count & 0x07) == 0) {
if (count & 0x18) {
bit0 = ((uint8_t)decode->op[0].val & 1);
bit7 = ((uint8_t)decode->op[0].val >> 7);
SET_FLAGS_OxxxxC(env, bit0 ^ bit7, bit0);
}
} else {
count &= 0x7; /* use only lowest 3 bits */
res = ((uint8_t)decode->op[0].val << count) |
((uint8_t)decode->op[0].val >> (8 - count));
write_val_ext(env, decode->op[0].ptr, res, 1);
/* set eflags:
* ROL count affects the following flags: C, O
*/
bit0 = (res & 1);
bit7 = (res >> 7);
SET_FLAGS_OxxxxC(env, bit0 ^ bit7, bit0);
}
break;
}
case 2:
{
uint32_t bit0, bit15;
uint16_t res;
if ((count & 0x0f) == 0) {
if (count & 0x10) {
bit0 = ((uint16_t)decode->op[0].val & 0x1);
bit15 = ((uint16_t)decode->op[0].val >> 15);
/* of = cf ^ result15 */
SET_FLAGS_OxxxxC(env, bit0 ^ bit15, bit0);
}
} else {
count &= 0x0f; /* only use bottom 4 bits */
res = ((uint16_t)decode->op[0].val << count) |
((uint16_t)decode->op[0].val >> (16 - count));
write_val_ext(env, decode->op[0].ptr, res, 2);
bit0 = (res & 0x1);
bit15 = (res >> 15);
/* of = cf ^ result15 */
SET_FLAGS_OxxxxC(env, bit0 ^ bit15, bit0);
}
break;
}
case 4:
{
uint32_t bit0, bit31;
uint32_t res;
count &= 0x1f;
if (count) {
res = ((uint32_t)decode->op[0].val << count) |
((uint32_t)decode->op[0].val >> (32 - count));
write_val_ext(env, decode->op[0].ptr, res, 4);
bit0 = (res & 0x1);
bit31 = (res >> 31);
/* of = cf ^ result31 */
SET_FLAGS_OxxxxC(env, bit0 ^ bit31, bit0);
}
break;
}
}
RIP(env) += decode->len;
}
void exec_rcl(struct CPUX86State *env, struct x86_decode *decode)
{
uint8_t count;
int of = 0, cf = 0;
fetch_operands(env, decode, 2, true, true, false);
count = decode->op[1].val & 0x1f;
switch (decode->operand_size) {
case 1:
{
uint8_t op1_8 = decode->op[0].val;
uint8_t res;
count %= 9;
if (!count) {
break;
}
if (1 == count) {
res = (op1_8 << 1) | get_CF(env);
} else {
res = (op1_8 << count) | (get_CF(env) << (count - 1)) |
(op1_8 >> (9 - count));
}
write_val_ext(env, decode->op[0].ptr, res, 1);
cf = (op1_8 >> (8 - count)) & 0x01;
of = cf ^ (res >> 7); /* of = cf ^ result7 */
SET_FLAGS_OxxxxC(env, of, cf);
break;
}
case 2:
{
uint16_t res;
uint16_t op1_16 = decode->op[0].val;
count %= 17;
if (!count) {
break;
}
if (1 == count) {
res = (op1_16 << 1) | get_CF(env);
} else if (count == 16) {
res = (get_CF(env) << 15) | (op1_16 >> 1);
} else { /* 2..15 */
res = (op1_16 << count) | (get_CF(env) << (count - 1)) |
(op1_16 >> (17 - count));
}
write_val_ext(env, decode->op[0].ptr, res, 2);
cf = (op1_16 >> (16 - count)) & 0x1;
of = cf ^ (res >> 15); /* of = cf ^ result15 */
SET_FLAGS_OxxxxC(env, of, cf);
break;
}
case 4:
{
uint32_t res;
uint32_t op1_32 = decode->op[0].val;
if (!count) {
break;
}
if (1 == count) {
res = (op1_32 << 1) | get_CF(env);
} else {
res = (op1_32 << count) | (get_CF(env) << (count - 1)) |
(op1_32 >> (33 - count));
}
write_val_ext(env, decode->op[0].ptr, res, 4);
cf = (op1_32 >> (32 - count)) & 0x1;
of = cf ^ (res >> 31); /* of = cf ^ result31 */
SET_FLAGS_OxxxxC(env, of, cf);
break;
}
}
RIP(env) += decode->len;
}
void exec_rcr(struct CPUX86State *env, struct x86_decode *decode)
{
uint8_t count;
int of = 0, cf = 0;
fetch_operands(env, decode, 2, true, true, false);
count = decode->op[1].val & 0x1f;
switch (decode->operand_size) {
case 1:
{
uint8_t op1_8 = decode->op[0].val;
uint8_t res;
count %= 9;
if (!count) {
break;
}
res = (op1_8 >> count) | (get_CF(env) << (8 - count)) |
(op1_8 << (9 - count));
write_val_ext(env, decode->op[0].ptr, res, 1);
cf = (op1_8 >> (count - 1)) & 0x1;
of = (((res << 1) ^ res) >> 7) & 0x1; /* of = result6 ^ result7 */
SET_FLAGS_OxxxxC(env, of, cf);
break;
}
case 2:
{
uint16_t op1_16 = decode->op[0].val;
uint16_t res;
count %= 17;
if (!count) {
break;
}
res = (op1_16 >> count) | (get_CF(env) << (16 - count)) |
(op1_16 << (17 - count));
write_val_ext(env, decode->op[0].ptr, res, 2);
cf = (op1_16 >> (count - 1)) & 0x1;
of = ((uint16_t)((res << 1) ^ res) >> 15) & 0x1; /* of = result15 ^
result14 */
SET_FLAGS_OxxxxC(env, of, cf);
break;
}
case 4:
{
uint32_t res;
uint32_t op1_32 = decode->op[0].val;
if (!count) {
break;
}
if (1 == count) {
res = (op1_32 >> 1) | (get_CF(env) << 31);
} else {
res = (op1_32 >> count) | (get_CF(env) << (32 - count)) |
(op1_32 << (33 - count));
}
write_val_ext(env, decode->op[0].ptr, res, 4);
cf = (op1_32 >> (count - 1)) & 0x1;
of = ((res << 1) ^ res) >> 31; /* of = result30 ^ result31 */
SET_FLAGS_OxxxxC(env, of, cf);
break;
}
}
RIP(env) += decode->len;
}
static void exec_xchg(struct CPUX86State *env, struct x86_decode *decode)
{
fetch_operands(env, decode, 2, true, true, false);
write_val_ext(env, decode->op[0].ptr, decode->op[1].val,
decode->operand_size);
write_val_ext(env, decode->op[1].ptr, decode->op[0].val,
decode->operand_size);
RIP(env) += decode->len;
}
static void exec_xadd(struct CPUX86State *env, struct x86_decode *decode)
{
EXEC_2OP_ARITH_CMD(env, decode, +, SET_FLAGS_OSZAPC_ADD, true);
write_val_ext(env, decode->op[1].ptr, decode->op[0].val,
decode->operand_size);
RIP(env) += decode->len;
}
static struct cmd_handler {
enum x86_decode_cmd cmd;
void (*handler)(struct CPUX86State *env, struct x86_decode *ins);
} handlers[] = {
{X86_DECODE_CMD_INVL, NULL,},
{X86_DECODE_CMD_MOV, exec_mov},
{X86_DECODE_CMD_ADD, exec_add},
{X86_DECODE_CMD_OR, exec_or},
{X86_DECODE_CMD_ADC, exec_adc},
{X86_DECODE_CMD_SBB, exec_sbb},
{X86_DECODE_CMD_AND, exec_and},
{X86_DECODE_CMD_SUB, exec_sub},
{X86_DECODE_CMD_NEG, exec_neg},
{X86_DECODE_CMD_XOR, exec_xor},
{X86_DECODE_CMD_CMP, exec_cmp},
{X86_DECODE_CMD_INC, exec_inc},
{X86_DECODE_CMD_DEC, exec_dec},
{X86_DECODE_CMD_TST, exec_tst},
{X86_DECODE_CMD_NOT, exec_not},
{X86_DECODE_CMD_MOVZX, exec_movzx},
{X86_DECODE_CMD_OUT, exec_out},
{X86_DECODE_CMD_IN, exec_in},
{X86_DECODE_CMD_INS, exec_ins},
{X86_DECODE_CMD_OUTS, exec_outs},
{X86_DECODE_CMD_RDMSR, exec_rdmsr},
{X86_DECODE_CMD_WRMSR, exec_wrmsr},
{X86_DECODE_CMD_BT, exec_bt},
{X86_DECODE_CMD_BTR, exec_btr},
{X86_DECODE_CMD_BTC, exec_btc},
{X86_DECODE_CMD_BTS, exec_bts},
{X86_DECODE_CMD_SHL, exec_shl},
{X86_DECODE_CMD_ROL, exec_rol},
{X86_DECODE_CMD_ROR, exec_ror},
{X86_DECODE_CMD_RCR, exec_rcr},
{X86_DECODE_CMD_RCL, exec_rcl},
/*{X86_DECODE_CMD_CPUID, exec_cpuid},*/
{X86_DECODE_CMD_MOVS, exec_movs},
{X86_DECODE_CMD_CMPS, exec_cmps},
{X86_DECODE_CMD_STOS, exec_stos},
{X86_DECODE_CMD_SCAS, exec_scas},
{X86_DECODE_CMD_LODS, exec_lods},
{X86_DECODE_CMD_MOVSX, exec_movsx},
{X86_DECODE_CMD_XCHG, exec_xchg},
{X86_DECODE_CMD_XADD, exec_xadd},
};
static struct cmd_handler _cmd_handler[X86_DECODE_CMD_LAST];
static void init_cmd_handler()
{
int i;
for (i = 0; i < ARRAY_SIZE(handlers); i++) {
_cmd_handler[handlers[i].cmd] = handlers[i];
}
}
void load_regs(struct CPUState *cpu)
{
X86CPU *x86_cpu = X86_CPU(cpu);
CPUX86State *env = &x86_cpu->env;
int i = 0;
RRX(env, R_EAX) = rreg(cpu->hvf_fd, HV_X86_RAX);
RRX(env, R_EBX) = rreg(cpu->hvf_fd, HV_X86_RBX);
RRX(env, R_ECX) = rreg(cpu->hvf_fd, HV_X86_RCX);
RRX(env, R_EDX) = rreg(cpu->hvf_fd, HV_X86_RDX);
RRX(env, R_ESI) = rreg(cpu->hvf_fd, HV_X86_RSI);
RRX(env, R_EDI) = rreg(cpu->hvf_fd, HV_X86_RDI);
RRX(env, R_ESP) = rreg(cpu->hvf_fd, HV_X86_RSP);
RRX(env, R_EBP) = rreg(cpu->hvf_fd, HV_X86_RBP);
for (i = 8; i < 16; i++) {
RRX(env, i) = rreg(cpu->hvf_fd, HV_X86_RAX + i);
}
RFLAGS(env) = rreg(cpu->hvf_fd, HV_X86_RFLAGS);
rflags_to_lflags(env);
RIP(env) = rreg(cpu->hvf_fd, HV_X86_RIP);
}
void store_regs(struct CPUState *cpu)
{
X86CPU *x86_cpu = X86_CPU(cpu);
CPUX86State *env = &x86_cpu->env;
int i = 0;
wreg(cpu->hvf_fd, HV_X86_RAX, RAX(env));
wreg(cpu->hvf_fd, HV_X86_RBX, RBX(env));
wreg(cpu->hvf_fd, HV_X86_RCX, RCX(env));
wreg(cpu->hvf_fd, HV_X86_RDX, RDX(env));
wreg(cpu->hvf_fd, HV_X86_RSI, RSI(env));
wreg(cpu->hvf_fd, HV_X86_RDI, RDI(env));
wreg(cpu->hvf_fd, HV_X86_RBP, RBP(env));
wreg(cpu->hvf_fd, HV_X86_RSP, RSP(env));
for (i = 8; i < 16; i++) {
wreg(cpu->hvf_fd, HV_X86_RAX + i, RRX(env, i));
}
lflags_to_rflags(env);
wreg(cpu->hvf_fd, HV_X86_RFLAGS, RFLAGS(env));
macvm_set_rip(cpu, RIP(env));
}
bool exec_instruction(struct CPUX86State *env, struct x86_decode *ins)
{
/*if (hvf_vcpu_id(cpu))
printf("%d, %llx: exec_instruction %s\n", hvf_vcpu_id(cpu), RIP(cpu),
decode_cmd_to_string(ins->cmd));*/
if (!_cmd_handler[ins->cmd].handler) {
printf("Unimplemented handler (%llx) for %d (%x %x) \n", RIP(env),
ins->cmd, ins->opcode[0],
ins->opcode_len > 1 ? ins->opcode[1] : 0);
RIP(env) += ins->len;
return true;
}
_cmd_handler[ins->cmd].handler(env, ins);
return true;
}
void init_emu()
{
init_cmd_handler();
}