qemu/util/qemu-sockets.c
Eric Blake 240f64b6dc qapi: Use strict QMP input visitor in more places
The following uses of a QMP input visitor should be strict
(that is, excess keys in QDict input should be flagged if not
converted to QAPI):

- Testsuite code unrelated to explicitly testing non-strict
mode (test-qmp-commands, test-visitor-serialization); since
we want more code to be strict by default, having more tests
of strict mode doesn't hurt

- Code used for cloning QAPI objects (replay-input.c,
qemu-sockets.c); we are reparsing a QObject just barely
produced by the qmp output visitor and which therefore should
not have any garbage, so while it is extra work to be strict,
it validates that our clone is correct [note that a later patch
series will simplify these two uses by creating an actual
clone visitor that is much more efficient than a
generate/reparse cycle]

- qmp_object_add(), which calls into user_creatable_add_type().
Since command line parsing for '-object' uses the same
user_creatable_add_type() through the OptsVisitor, and that is
always strict, we want to ensure that any nested dictionaries
would be treated the same in QMP and from the command line (I
don't actually know if such nested dictionaries exist).  Note
that on this code change, strictness only matters for nested
dictionaries (if even possible), since we already flag excess
input at the top level during an earlier object_property_set()
on an unknown key, whether from QemuOpts:

$ ./x86_64-softmmu/qemu-system-x86_64 -nographic -nodefaults -qmp stdio -object secret,id=sec0,data=letmein,format=raw,foo=bar
qemu-system-x86_64: -object secret,id=sec0,data=letmein,format=raw,foo=bar: Property '.foo' not found

or from QMP:

$ ./x86_64-softmmu/qemu-system-x86_64 -nographic -nodefaults -qmp stdio
{"QMP": {"version": {"qemu": {"micro": 93, "minor": 5, "major": 2}, "package": ""}, "capabilities": []}}
{"execute":"qmp_capabilities"}
{"return": {}}
{"execute":"object-add","arguments":{"qom-type":"secret","id":"sec0","props":{"format":"raw","data":"letmein","foo":"bar"}}}
{"error": {"class": "GenericError", "desc": "Property '.foo' not found"}}

The only remaining uses of non-strict input visits are:

- QMP 'qom-set' (which eventually executes
object_property_set_qobject()) - mark it as something to revisit
in the future (I didn't want to spend any more time on this patch
auditing if we have any QOM dictionary properties that might be
impacted, and couldn't easily prove whether this code path is
shared with anything else).

- test-qmp-input-visitor: explicit tests of non-strict mode. If
we later get rid of users that don't need strictness, then this
test should be merged with test-qmp-input-strict

Signed-off-by: Eric Blake <eblake@redhat.com>
Message-Id: <1461879932-9020-7-git-send-email-eblake@redhat.com>
Signed-off-by: Markus Armbruster <armbru@redhat.com>
2016-05-12 09:47:54 +02:00

1154 lines
31 KiB
C

/*
* inet and unix socket functions for qemu
*
* (c) 2008 Gerd Hoffmann <kraxel@redhat.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; under version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* Contributions after 2012-01-13 are licensed under the terms of the
* GNU GPL, version 2 or (at your option) any later version.
*/
#include "qemu/osdep.h"
#include "monitor/monitor.h"
#include "qapi/error.h"
#include "qemu/sockets.h"
#include "qemu/main-loop.h"
#include "qapi/qmp-input-visitor.h"
#include "qapi/qmp-output-visitor.h"
#include "qapi-visit.h"
#include "qemu/cutils.h"
#ifndef AI_ADDRCONFIG
# define AI_ADDRCONFIG 0
#endif
#ifndef AI_V4MAPPED
# define AI_V4MAPPED 0
#endif
static int inet_getport(struct addrinfo *e)
{
struct sockaddr_in *i4;
struct sockaddr_in6 *i6;
switch (e->ai_family) {
case PF_INET6:
i6 = (void*)e->ai_addr;
return ntohs(i6->sin6_port);
case PF_INET:
i4 = (void*)e->ai_addr;
return ntohs(i4->sin_port);
default:
return 0;
}
}
static void inet_setport(struct addrinfo *e, int port)
{
struct sockaddr_in *i4;
struct sockaddr_in6 *i6;
switch (e->ai_family) {
case PF_INET6:
i6 = (void*)e->ai_addr;
i6->sin6_port = htons(port);
break;
case PF_INET:
i4 = (void*)e->ai_addr;
i4->sin_port = htons(port);
break;
}
}
NetworkAddressFamily inet_netfamily(int family)
{
switch (family) {
case PF_INET6: return NETWORK_ADDRESS_FAMILY_IPV6;
case PF_INET: return NETWORK_ADDRESS_FAMILY_IPV4;
case PF_UNIX: return NETWORK_ADDRESS_FAMILY_UNIX;
}
return NETWORK_ADDRESS_FAMILY_UNKNOWN;
}
/*
* Matrix we're trying to apply
*
* ipv4 ipv6 family
* - - PF_UNSPEC
* - f PF_INET
* - t PF_INET6
* f - PF_INET6
* f f <error>
* f t PF_INET6
* t - PF_INET
* t f PF_INET
* t t PF_INET6
*
* NB, this matrix is only about getting the neccessary results
* from getaddrinfo(). Some of the cases require further work
* after reading results from getaddrinfo in order to fully
* apply the logic the end user wants. eg with the last case
* ipv4=t + ipv6=t + PF_INET6, getaddrinfo alone can only
* guarantee the ipv6=t part of the request - we need more
* checks to provide ipv4=t part of the guarantee. This is
* outside scope of this method and not currently handled by
* callers at all.
*/
static int inet_ai_family_from_address(InetSocketAddress *addr,
Error **errp)
{
if (addr->has_ipv6 && addr->has_ipv4 &&
!addr->ipv6 && !addr->ipv4) {
error_setg(errp, "Cannot disable IPv4 and IPv6 at same time");
return PF_UNSPEC;
}
if ((addr->has_ipv6 && addr->ipv6) || (addr->has_ipv4 && !addr->ipv4)) {
return PF_INET6;
}
if ((addr->has_ipv4 && addr->ipv4) || (addr->has_ipv6 && !addr->ipv6)) {
return PF_INET;
}
return PF_UNSPEC;
}
static int inet_listen_saddr(InetSocketAddress *saddr,
int port_offset,
bool update_addr,
Error **errp)
{
struct addrinfo ai,*res,*e;
char port[33];
char uaddr[INET6_ADDRSTRLEN+1];
char uport[33];
int slisten, rc, port_min, port_max, p;
Error *err = NULL;
memset(&ai,0, sizeof(ai));
ai.ai_flags = AI_PASSIVE;
ai.ai_family = inet_ai_family_from_address(saddr, &err);
ai.ai_socktype = SOCK_STREAM;
if (err) {
error_propagate(errp, err);
return -1;
}
if (saddr->host == NULL) {
error_setg(errp, "host not specified");
return -1;
}
if (saddr->port != NULL) {
pstrcpy(port, sizeof(port), saddr->port);
} else {
port[0] = '\0';
}
/* lookup */
if (port_offset) {
unsigned long long baseport;
if (strlen(port) == 0) {
error_setg(errp, "port not specified");
return -1;
}
if (parse_uint_full(port, &baseport, 10) < 0) {
error_setg(errp, "can't convert to a number: %s", port);
return -1;
}
if (baseport > 65535 ||
baseport + port_offset > 65535) {
error_setg(errp, "port %s out of range", port);
return -1;
}
snprintf(port, sizeof(port), "%d", (int)baseport + port_offset);
}
rc = getaddrinfo(strlen(saddr->host) ? saddr->host : NULL,
strlen(port) ? port : NULL, &ai, &res);
if (rc != 0) {
error_setg(errp, "address resolution failed for %s:%s: %s",
saddr->host, port, gai_strerror(rc));
return -1;
}
/* create socket + bind */
for (e = res; e != NULL; e = e->ai_next) {
getnameinfo((struct sockaddr*)e->ai_addr,e->ai_addrlen,
uaddr,INET6_ADDRSTRLEN,uport,32,
NI_NUMERICHOST | NI_NUMERICSERV);
slisten = qemu_socket(e->ai_family, e->ai_socktype, e->ai_protocol);
if (slisten < 0) {
if (!e->ai_next) {
error_setg_errno(errp, errno, "Failed to create socket");
}
continue;
}
socket_set_fast_reuse(slisten);
#ifdef IPV6_V6ONLY
if (e->ai_family == PF_INET6) {
/* listen on both ipv4 and ipv6 */
const int off = 0;
qemu_setsockopt(slisten, IPPROTO_IPV6, IPV6_V6ONLY, &off,
sizeof(off));
}
#endif
port_min = inet_getport(e);
port_max = saddr->has_to ? saddr->to + port_offset : port_min;
for (p = port_min; p <= port_max; p++) {
inet_setport(e, p);
if (bind(slisten, e->ai_addr, e->ai_addrlen) == 0) {
goto listen;
}
if (p == port_max) {
if (!e->ai_next) {
error_setg_errno(errp, errno, "Failed to bind socket");
}
}
}
closesocket(slisten);
}
freeaddrinfo(res);
return -1;
listen:
if (listen(slisten,1) != 0) {
error_setg_errno(errp, errno, "Failed to listen on socket");
closesocket(slisten);
freeaddrinfo(res);
return -1;
}
if (update_addr) {
g_free(saddr->host);
saddr->host = g_strdup(uaddr);
g_free(saddr->port);
saddr->port = g_strdup_printf("%d",
inet_getport(e) - port_offset);
saddr->has_ipv6 = saddr->ipv6 = e->ai_family == PF_INET6;
saddr->has_ipv4 = saddr->ipv4 = e->ai_family != PF_INET6;
}
freeaddrinfo(res);
return slisten;
}
#ifdef _WIN32
#define QEMU_SOCKET_RC_INPROGRESS(rc) \
((rc) == -EINPROGRESS || (rc) == -EWOULDBLOCK || (rc) == -WSAEALREADY)
#else
#define QEMU_SOCKET_RC_INPROGRESS(rc) \
((rc) == -EINPROGRESS)
#endif
/* Struct to store connect state for non blocking connect */
typedef struct ConnectState {
int fd;
struct addrinfo *addr_list;
struct addrinfo *current_addr;
NonBlockingConnectHandler *callback;
void *opaque;
} ConnectState;
static int inet_connect_addr(struct addrinfo *addr, bool *in_progress,
ConnectState *connect_state, Error **errp);
static void wait_for_connect(void *opaque)
{
ConnectState *s = opaque;
int val = 0, rc = 0;
socklen_t valsize = sizeof(val);
bool in_progress;
Error *err = NULL;
qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
do {
rc = qemu_getsockopt(s->fd, SOL_SOCKET, SO_ERROR, &val, &valsize);
} while (rc == -1 && errno == EINTR);
/* update rc to contain error */
if (!rc && val) {
rc = -1;
errno = val;
}
/* connect error */
if (rc < 0) {
error_setg_errno(&err, errno, "Error connecting to socket");
closesocket(s->fd);
s->fd = rc;
}
/* try to connect to the next address on the list */
if (s->current_addr) {
while (s->current_addr->ai_next != NULL && s->fd < 0) {
s->current_addr = s->current_addr->ai_next;
s->fd = inet_connect_addr(s->current_addr, &in_progress, s, NULL);
if (s->fd < 0) {
error_free(err);
err = NULL;
error_setg_errno(&err, errno, "Unable to start socket connect");
}
/* connect in progress */
if (in_progress) {
goto out;
}
}
freeaddrinfo(s->addr_list);
}
if (s->callback) {
s->callback(s->fd, err, s->opaque);
}
g_free(s);
out:
error_free(err);
}
static int inet_connect_addr(struct addrinfo *addr, bool *in_progress,
ConnectState *connect_state, Error **errp)
{
int sock, rc;
*in_progress = false;
sock = qemu_socket(addr->ai_family, addr->ai_socktype, addr->ai_protocol);
if (sock < 0) {
error_setg_errno(errp, errno, "Failed to create socket");
return -1;
}
socket_set_fast_reuse(sock);
if (connect_state != NULL) {
qemu_set_nonblock(sock);
}
/* connect to peer */
do {
rc = 0;
if (connect(sock, addr->ai_addr, addr->ai_addrlen) < 0) {
rc = -errno;
}
} while (rc == -EINTR);
if (connect_state != NULL && QEMU_SOCKET_RC_INPROGRESS(rc)) {
connect_state->fd = sock;
qemu_set_fd_handler(sock, NULL, wait_for_connect, connect_state);
*in_progress = true;
} else if (rc < 0) {
error_setg_errno(errp, errno, "Failed to connect socket");
closesocket(sock);
return -1;
}
return sock;
}
static struct addrinfo *inet_parse_connect_saddr(InetSocketAddress *saddr,
Error **errp)
{
struct addrinfo ai, *res;
int rc;
Error *err = NULL;
static int useV4Mapped = 1;
memset(&ai, 0, sizeof(ai));
ai.ai_flags = AI_CANONNAME | AI_ADDRCONFIG;
if (atomic_read(&useV4Mapped)) {
ai.ai_flags |= AI_V4MAPPED;
}
ai.ai_family = inet_ai_family_from_address(saddr, &err);
ai.ai_socktype = SOCK_STREAM;
if (err) {
error_propagate(errp, err);
return NULL;
}
if (saddr->host == NULL || saddr->port == NULL) {
error_setg(errp, "host and/or port not specified");
return NULL;
}
/* lookup */
rc = getaddrinfo(saddr->host, saddr->port, &ai, &res);
/* At least FreeBSD and OS-X 10.6 declare AI_V4MAPPED but
* then don't implement it in their getaddrinfo(). Detect
* this and retry without the flag since that's preferrable
* to a fatal error
*/
if (rc == EAI_BADFLAGS &&
(ai.ai_flags & AI_V4MAPPED)) {
atomic_set(&useV4Mapped, 0);
ai.ai_flags &= ~AI_V4MAPPED;
rc = getaddrinfo(saddr->host, saddr->port, &ai, &res);
}
if (rc != 0) {
error_setg(errp, "address resolution failed for %s:%s: %s",
saddr->host, saddr->port, gai_strerror(rc));
return NULL;
}
return res;
}
/**
* Create a socket and connect it to an address.
*
* @saddr: Inet socket address specification
* @errp: set on error
* @callback: callback function for non-blocking connect
* @opaque: opaque for callback function
*
* Returns: -1 on error, file descriptor on success.
*
* If @callback is non-null, the connect is non-blocking. If this
* function succeeds, callback will be called when the connection
* completes, with the file descriptor on success, or -1 on error.
*/
static int inet_connect_saddr(InetSocketAddress *saddr, Error **errp,
NonBlockingConnectHandler *callback, void *opaque)
{
Error *local_err = NULL;
struct addrinfo *res, *e;
int sock = -1;
bool in_progress;
ConnectState *connect_state = NULL;
res = inet_parse_connect_saddr(saddr, errp);
if (!res) {
return -1;
}
if (callback != NULL) {
connect_state = g_malloc0(sizeof(*connect_state));
connect_state->addr_list = res;
connect_state->callback = callback;
connect_state->opaque = opaque;
}
for (e = res; e != NULL; e = e->ai_next) {
error_free(local_err);
local_err = NULL;
if (connect_state != NULL) {
connect_state->current_addr = e;
}
sock = inet_connect_addr(e, &in_progress, connect_state, &local_err);
if (sock >= 0) {
break;
}
}
if (sock < 0) {
error_propagate(errp, local_err);
} else if (in_progress) {
/* wait_for_connect() will do the rest */
return sock;
} else {
if (callback) {
callback(sock, NULL, opaque);
}
}
g_free(connect_state);
freeaddrinfo(res);
return sock;
}
static int inet_dgram_saddr(InetSocketAddress *sraddr,
InetSocketAddress *sladdr,
Error **errp)
{
struct addrinfo ai, *peer = NULL, *local = NULL;
const char *addr;
const char *port;
int sock = -1, rc;
Error *err = NULL;
/* lookup peer addr */
memset(&ai,0, sizeof(ai));
ai.ai_flags = AI_CANONNAME | AI_V4MAPPED | AI_ADDRCONFIG;
ai.ai_family = inet_ai_family_from_address(sraddr, &err);
ai.ai_socktype = SOCK_DGRAM;
if (err) {
error_propagate(errp, err);
goto err;
}
addr = sraddr->host;
port = sraddr->port;
if (addr == NULL || strlen(addr) == 0) {
addr = "localhost";
}
if (port == NULL || strlen(port) == 0) {
error_setg(errp, "remote port not specified");
goto err;
}
if (0 != (rc = getaddrinfo(addr, port, &ai, &peer))) {
error_setg(errp, "address resolution failed for %s:%s: %s", addr, port,
gai_strerror(rc));
goto err;
}
/* lookup local addr */
memset(&ai,0, sizeof(ai));
ai.ai_flags = AI_PASSIVE;
ai.ai_family = peer->ai_family;
ai.ai_socktype = SOCK_DGRAM;
if (sladdr) {
addr = sladdr->host;
port = sladdr->port;
if (addr == NULL || strlen(addr) == 0) {
addr = NULL;
}
if (!port || strlen(port) == 0) {
port = "0";
}
} else {
addr = NULL;
port = "0";
}
if (0 != (rc = getaddrinfo(addr, port, &ai, &local))) {
error_setg(errp, "address resolution failed for %s:%s: %s", addr, port,
gai_strerror(rc));
goto err;
}
/* create socket */
sock = qemu_socket(peer->ai_family, peer->ai_socktype, peer->ai_protocol);
if (sock < 0) {
error_setg_errno(errp, errno, "Failed to create socket");
goto err;
}
socket_set_fast_reuse(sock);
/* bind socket */
if (bind(sock, local->ai_addr, local->ai_addrlen) < 0) {
error_setg_errno(errp, errno, "Failed to bind socket");
goto err;
}
/* connect to peer */
if (connect(sock,peer->ai_addr,peer->ai_addrlen) < 0) {
error_setg_errno(errp, errno, "Failed to connect socket");
goto err;
}
freeaddrinfo(local);
freeaddrinfo(peer);
return sock;
err:
if (-1 != sock)
closesocket(sock);
if (local)
freeaddrinfo(local);
if (peer)
freeaddrinfo(peer);
return -1;
}
/* compatibility wrapper */
InetSocketAddress *inet_parse(const char *str, Error **errp)
{
InetSocketAddress *addr;
const char *optstr, *h;
char host[65];
char port[33];
int to;
int pos;
addr = g_new0(InetSocketAddress, 1);
/* parse address */
if (str[0] == ':') {
/* no host given */
host[0] = '\0';
if (1 != sscanf(str, ":%32[^,]%n", port, &pos)) {
error_setg(errp, "error parsing port in address '%s'", str);
goto fail;
}
} else if (str[0] == '[') {
/* IPv6 addr */
if (2 != sscanf(str, "[%64[^]]]:%32[^,]%n", host, port, &pos)) {
error_setg(errp, "error parsing IPv6 address '%s'", str);
goto fail;
}
addr->ipv6 = addr->has_ipv6 = true;
} else {
/* hostname or IPv4 addr */
if (2 != sscanf(str, "%64[^:]:%32[^,]%n", host, port, &pos)) {
error_setg(errp, "error parsing address '%s'", str);
goto fail;
}
if (host[strspn(host, "0123456789.")] == '\0') {
addr->ipv4 = addr->has_ipv4 = true;
}
}
addr->host = g_strdup(host);
addr->port = g_strdup(port);
/* parse options */
optstr = str + pos;
h = strstr(optstr, ",to=");
if (h) {
h += 4;
if (sscanf(h, "%d%n", &to, &pos) != 1 ||
(h[pos] != '\0' && h[pos] != ',')) {
error_setg(errp, "error parsing to= argument");
goto fail;
}
addr->has_to = true;
addr->to = to;
}
if (strstr(optstr, ",ipv4")) {
addr->ipv4 = addr->has_ipv4 = true;
}
if (strstr(optstr, ",ipv6")) {
addr->ipv6 = addr->has_ipv6 = true;
}
return addr;
fail:
qapi_free_InetSocketAddress(addr);
return NULL;
}
int inet_listen(const char *str, char *ostr, int olen,
int socktype, int port_offset, Error **errp)
{
char *optstr;
int sock = -1;
InetSocketAddress *addr;
addr = inet_parse(str, errp);
if (addr != NULL) {
sock = inet_listen_saddr(addr, port_offset, true, errp);
if (sock != -1 && ostr) {
optstr = strchr(str, ',');
if (addr->ipv6) {
snprintf(ostr, olen, "[%s]:%s%s",
addr->host,
addr->port,
optstr ? optstr : "");
} else {
snprintf(ostr, olen, "%s:%s%s",
addr->host,
addr->port,
optstr ? optstr : "");
}
}
qapi_free_InetSocketAddress(addr);
}
return sock;
}
/**
* Create a blocking socket and connect it to an address.
*
* @str: address string
* @errp: set in case of an error
*
* Returns -1 in case of error, file descriptor on success
**/
int inet_connect(const char *str, Error **errp)
{
int sock = -1;
InetSocketAddress *addr;
addr = inet_parse(str, errp);
if (addr != NULL) {
sock = inet_connect_saddr(addr, errp, NULL, NULL);
qapi_free_InetSocketAddress(addr);
}
return sock;
}
/**
* Create a non-blocking socket and connect it to an address.
* Calls the callback function with fd in case of success or -1 in case of
* error.
*
* @str: address string
* @callback: callback function that is called when connect completes,
* cannot be NULL.
* @opaque: opaque for callback function
* @errp: set in case of an error
*
* Returns: -1 on immediate error, file descriptor on success.
**/
int inet_nonblocking_connect(const char *str,
NonBlockingConnectHandler *callback,
void *opaque, Error **errp)
{
int sock = -1;
InetSocketAddress *addr;
g_assert(callback != NULL);
addr = inet_parse(str, errp);
if (addr != NULL) {
sock = inet_connect_saddr(addr, errp, callback, opaque);
qapi_free_InetSocketAddress(addr);
}
return sock;
}
#ifndef _WIN32
static int unix_listen_saddr(UnixSocketAddress *saddr,
bool update_addr,
Error **errp)
{
struct sockaddr_un un;
int sock, fd;
sock = qemu_socket(PF_UNIX, SOCK_STREAM, 0);
if (sock < 0) {
error_setg_errno(errp, errno, "Failed to create Unix socket");
return -1;
}
memset(&un, 0, sizeof(un));
un.sun_family = AF_UNIX;
if (saddr->path && strlen(saddr->path)) {
snprintf(un.sun_path, sizeof(un.sun_path), "%s", saddr->path);
} else {
const char *tmpdir = getenv("TMPDIR");
tmpdir = tmpdir ? tmpdir : "/tmp";
if (snprintf(un.sun_path, sizeof(un.sun_path), "%s/qemu-socket-XXXXXX",
tmpdir) >= sizeof(un.sun_path)) {
error_setg_errno(errp, errno,
"TMPDIR environment variable (%s) too large", tmpdir);
goto err;
}
/*
* This dummy fd usage silences the mktemp() unsecure warning.
* Using mkstemp() doesn't make things more secure here
* though. bind() complains about existing files, so we have
* to unlink first and thus re-open the race window. The
* worst case possible is bind() failing, i.e. a DoS attack.
*/
fd = mkstemp(un.sun_path);
if (fd < 0) {
error_setg_errno(errp, errno,
"Failed to make a temporary socket name in %s", tmpdir);
goto err;
}
close(fd);
if (update_addr) {
g_free(saddr->path);
saddr->path = g_strdup(un.sun_path);
}
}
if (unlink(un.sun_path) < 0 && errno != ENOENT) {
error_setg_errno(errp, errno,
"Failed to unlink socket %s", un.sun_path);
goto err;
}
if (bind(sock, (struct sockaddr*) &un, sizeof(un)) < 0) {
error_setg_errno(errp, errno, "Failed to bind socket to %s", un.sun_path);
goto err;
}
if (listen(sock, 1) < 0) {
error_setg_errno(errp, errno, "Failed to listen on socket");
goto err;
}
return sock;
err:
closesocket(sock);
return -1;
}
static int unix_connect_saddr(UnixSocketAddress *saddr, Error **errp,
NonBlockingConnectHandler *callback, void *opaque)
{
struct sockaddr_un un;
ConnectState *connect_state = NULL;
int sock, rc;
if (saddr->path == NULL) {
error_setg(errp, "unix connect: no path specified");
return -1;
}
sock = qemu_socket(PF_UNIX, SOCK_STREAM, 0);
if (sock < 0) {
error_setg_errno(errp, errno, "Failed to create socket");
return -1;
}
if (callback != NULL) {
connect_state = g_malloc0(sizeof(*connect_state));
connect_state->callback = callback;
connect_state->opaque = opaque;
qemu_set_nonblock(sock);
}
memset(&un, 0, sizeof(un));
un.sun_family = AF_UNIX;
snprintf(un.sun_path, sizeof(un.sun_path), "%s", saddr->path);
/* connect to peer */
do {
rc = 0;
if (connect(sock, (struct sockaddr *) &un, sizeof(un)) < 0) {
rc = -errno;
}
} while (rc == -EINTR);
if (connect_state != NULL && QEMU_SOCKET_RC_INPROGRESS(rc)) {
connect_state->fd = sock;
qemu_set_fd_handler(sock, NULL, wait_for_connect, connect_state);
return sock;
} else if (rc >= 0) {
/* non blocking socket immediate success, call callback */
if (callback != NULL) {
callback(sock, NULL, opaque);
}
}
if (rc < 0) {
error_setg_errno(errp, -rc, "Failed to connect socket");
close(sock);
sock = -1;
}
g_free(connect_state);
return sock;
}
#else
static int unix_listen_saddr(UnixSocketAddress *saddr,
bool update_addr,
Error **errp)
{
error_setg(errp, "unix sockets are not available on windows");
errno = ENOTSUP;
return -1;
}
static int unix_connect_saddr(UnixSocketAddress *saddr, Error **errp,
NonBlockingConnectHandler *callback, void *opaque)
{
error_setg(errp, "unix sockets are not available on windows");
errno = ENOTSUP;
return -1;
}
#endif
/* compatibility wrapper */
int unix_listen(const char *str, char *ostr, int olen, Error **errp)
{
char *path, *optstr;
int sock, len;
UnixSocketAddress *saddr;
saddr = g_new0(UnixSocketAddress, 1);
optstr = strchr(str, ',');
if (optstr) {
len = optstr - str;
if (len) {
path = g_malloc(len+1);
snprintf(path, len+1, "%.*s", len, str);
saddr->path = path;
}
} else {
saddr->path = g_strdup(str);
}
sock = unix_listen_saddr(saddr, true, errp);
if (sock != -1 && ostr)
snprintf(ostr, olen, "%s%s", saddr->path, optstr ? optstr : "");
qapi_free_UnixSocketAddress(saddr);
return sock;
}
int unix_connect(const char *path, Error **errp)
{
UnixSocketAddress *saddr;
int sock;
saddr = g_new0(UnixSocketAddress, 1);
saddr->path = g_strdup(path);
sock = unix_connect_saddr(saddr, errp, NULL, NULL);
qapi_free_UnixSocketAddress(saddr);
return sock;
}
int unix_nonblocking_connect(const char *path,
NonBlockingConnectHandler *callback,
void *opaque, Error **errp)
{
UnixSocketAddress *saddr;
int sock = -1;
g_assert(callback != NULL);
saddr = g_new0(UnixSocketAddress, 1);
saddr->path = g_strdup(path);
sock = unix_connect_saddr(saddr, errp, callback, opaque);
qapi_free_UnixSocketAddress(saddr);
return sock;
}
SocketAddress *socket_parse(const char *str, Error **errp)
{
SocketAddress *addr;
addr = g_new0(SocketAddress, 1);
if (strstart(str, "unix:", NULL)) {
if (str[5] == '\0') {
error_setg(errp, "invalid Unix socket address");
goto fail;
} else {
addr->type = SOCKET_ADDRESS_KIND_UNIX;
addr->u.q_unix.data = g_new(UnixSocketAddress, 1);
addr->u.q_unix.data->path = g_strdup(str + 5);
}
} else if (strstart(str, "fd:", NULL)) {
if (str[3] == '\0') {
error_setg(errp, "invalid file descriptor address");
goto fail;
} else {
addr->type = SOCKET_ADDRESS_KIND_FD;
addr->u.fd.data = g_new(String, 1);
addr->u.fd.data->str = g_strdup(str + 3);
}
} else {
addr->type = SOCKET_ADDRESS_KIND_INET;
addr->u.inet.data = inet_parse(str, errp);
if (addr->u.inet.data == NULL) {
goto fail;
}
}
return addr;
fail:
qapi_free_SocketAddress(addr);
return NULL;
}
int socket_connect(SocketAddress *addr, Error **errp,
NonBlockingConnectHandler *callback, void *opaque)
{
int fd;
switch (addr->type) {
case SOCKET_ADDRESS_KIND_INET:
fd = inet_connect_saddr(addr->u.inet.data, errp, callback, opaque);
break;
case SOCKET_ADDRESS_KIND_UNIX:
fd = unix_connect_saddr(addr->u.q_unix.data, errp, callback, opaque);
break;
case SOCKET_ADDRESS_KIND_FD:
fd = monitor_get_fd(cur_mon, addr->u.fd.data->str, errp);
if (fd >= 0 && callback) {
qemu_set_nonblock(fd);
callback(fd, NULL, opaque);
}
break;
default:
abort();
}
return fd;
}
int socket_listen(SocketAddress *addr, Error **errp)
{
int fd;
switch (addr->type) {
case SOCKET_ADDRESS_KIND_INET:
fd = inet_listen_saddr(addr->u.inet.data, 0, false, errp);
break;
case SOCKET_ADDRESS_KIND_UNIX:
fd = unix_listen_saddr(addr->u.q_unix.data, false, errp);
break;
case SOCKET_ADDRESS_KIND_FD:
fd = monitor_get_fd(cur_mon, addr->u.fd.data->str, errp);
break;
default:
abort();
}
return fd;
}
int socket_dgram(SocketAddress *remote, SocketAddress *local, Error **errp)
{
int fd;
switch (remote->type) {
case SOCKET_ADDRESS_KIND_INET:
fd = inet_dgram_saddr(remote->u.inet.data,
local ? local->u.inet.data : NULL, errp);
break;
default:
error_setg(errp, "socket type unsupported for datagram");
fd = -1;
}
return fd;
}
static SocketAddress *
socket_sockaddr_to_address_inet(struct sockaddr_storage *sa,
socklen_t salen,
Error **errp)
{
char host[NI_MAXHOST];
char serv[NI_MAXSERV];
SocketAddress *addr;
InetSocketAddress *inet;
int ret;
ret = getnameinfo((struct sockaddr *)sa, salen,
host, sizeof(host),
serv, sizeof(serv),
NI_NUMERICHOST | NI_NUMERICSERV);
if (ret != 0) {
error_setg(errp, "Cannot format numeric socket address: %s",
gai_strerror(ret));
return NULL;
}
addr = g_new0(SocketAddress, 1);
addr->type = SOCKET_ADDRESS_KIND_INET;
inet = addr->u.inet.data = g_new0(InetSocketAddress, 1);
inet->host = g_strdup(host);
inet->port = g_strdup(serv);
if (sa->ss_family == AF_INET) {
inet->has_ipv4 = inet->ipv4 = true;
} else {
inet->has_ipv6 = inet->ipv6 = true;
}
return addr;
}
#ifndef WIN32
static SocketAddress *
socket_sockaddr_to_address_unix(struct sockaddr_storage *sa,
socklen_t salen,
Error **errp)
{
SocketAddress *addr;
struct sockaddr_un *su = (struct sockaddr_un *)sa;
addr = g_new0(SocketAddress, 1);
addr->type = SOCKET_ADDRESS_KIND_UNIX;
addr->u.q_unix.data = g_new0(UnixSocketAddress, 1);
if (su->sun_path[0]) {
addr->u.q_unix.data->path = g_strndup(su->sun_path,
sizeof(su->sun_path));
}
return addr;
}
#endif /* WIN32 */
SocketAddress *
socket_sockaddr_to_address(struct sockaddr_storage *sa,
socklen_t salen,
Error **errp)
{
switch (sa->ss_family) {
case AF_INET:
case AF_INET6:
return socket_sockaddr_to_address_inet(sa, salen, errp);
#ifndef WIN32
case AF_UNIX:
return socket_sockaddr_to_address_unix(sa, salen, errp);
#endif /* WIN32 */
default:
error_setg(errp, "socket family %d unsupported",
sa->ss_family);
return NULL;
}
return 0;
}
SocketAddress *socket_local_address(int fd, Error **errp)
{
struct sockaddr_storage ss;
socklen_t sslen = sizeof(ss);
if (getsockname(fd, (struct sockaddr *)&ss, &sslen) < 0) {
error_setg_errno(errp, errno, "%s",
"Unable to query local socket address");
return NULL;
}
return socket_sockaddr_to_address(&ss, sslen, errp);
}
SocketAddress *socket_remote_address(int fd, Error **errp)
{
struct sockaddr_storage ss;
socklen_t sslen = sizeof(ss);
if (getpeername(fd, (struct sockaddr *)&ss, &sslen) < 0) {
error_setg_errno(errp, errno, "%s",
"Unable to query remote socket address");
return NULL;
}
return socket_sockaddr_to_address(&ss, sslen, errp);
}
void qapi_copy_SocketAddress(SocketAddress **p_dest,
SocketAddress *src)
{
QmpOutputVisitor *qov;
QmpInputVisitor *qiv;
Visitor *ov, *iv;
QObject *obj;
*p_dest = NULL;
qov = qmp_output_visitor_new();
ov = qmp_output_get_visitor(qov);
visit_type_SocketAddress(ov, NULL, &src, &error_abort);
obj = qmp_output_get_qobject(qov);
qmp_output_visitor_cleanup(qov);
if (!obj) {
return;
}
qiv = qmp_input_visitor_new(obj, true);
iv = qmp_input_get_visitor(qiv);
visit_type_SocketAddress(iv, NULL, p_dest, &error_abort);
qmp_input_visitor_cleanup(qiv);
qobject_decref(obj);
}