qemu/target-xtensa/op_helper.c
Max Filippov e848dd4248 target-xtensa: add basic checks to icache opcodes
Check privilege level for privileged instructions (IHU, III, IIU and IPFL
are privileged), memory accessibility for instructions that reference memory
(IH* and IPFL) and windowed register validity for all instruction cache
instructions.

Signed-off-by: Max Filippov <jcmvbkbc@gmail.com>
2014-02-24 04:47:01 +04:00

972 lines
28 KiB
C

/*
* Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the Open Source and Linux Lab nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "cpu.h"
#include "helper.h"
#include "qemu/host-utils.h"
#include "exec/softmmu_exec.h"
#include "exec/address-spaces.h"
static void do_unaligned_access(CPUXtensaState *env,
target_ulong addr, int is_write, int is_user, uintptr_t retaddr);
#define ALIGNED_ONLY
#define MMUSUFFIX _mmu
#define SHIFT 0
#include "exec/softmmu_template.h"
#define SHIFT 1
#include "exec/softmmu_template.h"
#define SHIFT 2
#include "exec/softmmu_template.h"
#define SHIFT 3
#include "exec/softmmu_template.h"
static void do_unaligned_access(CPUXtensaState *env,
target_ulong addr, int is_write, int is_user, uintptr_t retaddr)
{
if (xtensa_option_enabled(env->config, XTENSA_OPTION_UNALIGNED_EXCEPTION) &&
!xtensa_option_enabled(env->config, XTENSA_OPTION_HW_ALIGNMENT)) {
cpu_restore_state(env, retaddr);
HELPER(exception_cause_vaddr)(env,
env->pc, LOAD_STORE_ALIGNMENT_CAUSE, addr);
}
}
void tlb_fill(CPUXtensaState *env,
target_ulong vaddr, int is_write, int mmu_idx, uintptr_t retaddr)
{
uint32_t paddr;
uint32_t page_size;
unsigned access;
int ret = xtensa_get_physical_addr(env, true, vaddr, is_write, mmu_idx,
&paddr, &page_size, &access);
qemu_log("%s(%08x, %d, %d) -> %08x, ret = %d\n", __func__,
vaddr, is_write, mmu_idx, paddr, ret);
if (ret == 0) {
tlb_set_page(env,
vaddr & TARGET_PAGE_MASK,
paddr & TARGET_PAGE_MASK,
access, mmu_idx, page_size);
} else {
cpu_restore_state(env, retaddr);
HELPER(exception_cause_vaddr)(env, env->pc, ret, vaddr);
}
}
static void tb_invalidate_virtual_addr(CPUXtensaState *env, uint32_t vaddr)
{
uint32_t paddr;
uint32_t page_size;
unsigned access;
int ret = xtensa_get_physical_addr(env, false, vaddr, 2, 0,
&paddr, &page_size, &access);
if (ret == 0) {
tb_invalidate_phys_addr(&address_space_memory, paddr);
}
}
void HELPER(exception)(CPUXtensaState *env, uint32_t excp)
{
env->exception_index = excp;
if (excp == EXCP_DEBUG) {
env->exception_taken = 0;
}
cpu_loop_exit(env);
}
void HELPER(exception_cause)(CPUXtensaState *env, uint32_t pc, uint32_t cause)
{
uint32_t vector;
env->pc = pc;
if (env->sregs[PS] & PS_EXCM) {
if (env->config->ndepc) {
env->sregs[DEPC] = pc;
} else {
env->sregs[EPC1] = pc;
}
vector = EXC_DOUBLE;
} else {
env->sregs[EPC1] = pc;
vector = (env->sregs[PS] & PS_UM) ? EXC_USER : EXC_KERNEL;
}
env->sregs[EXCCAUSE] = cause;
env->sregs[PS] |= PS_EXCM;
HELPER(exception)(env, vector);
}
void HELPER(exception_cause_vaddr)(CPUXtensaState *env,
uint32_t pc, uint32_t cause, uint32_t vaddr)
{
env->sregs[EXCVADDR] = vaddr;
HELPER(exception_cause)(env, pc, cause);
}
void debug_exception_env(CPUXtensaState *env, uint32_t cause)
{
if (xtensa_get_cintlevel(env) < env->config->debug_level) {
HELPER(debug_exception)(env, env->pc, cause);
}
}
void HELPER(debug_exception)(CPUXtensaState *env, uint32_t pc, uint32_t cause)
{
unsigned level = env->config->debug_level;
env->pc = pc;
env->sregs[DEBUGCAUSE] = cause;
env->sregs[EPC1 + level - 1] = pc;
env->sregs[EPS2 + level - 2] = env->sregs[PS];
env->sregs[PS] = (env->sregs[PS] & ~PS_INTLEVEL) | PS_EXCM |
(level << PS_INTLEVEL_SHIFT);
HELPER(exception)(env, EXC_DEBUG);
}
uint32_t HELPER(nsa)(uint32_t v)
{
if (v & 0x80000000) {
v = ~v;
}
return v ? clz32(v) - 1 : 31;
}
uint32_t HELPER(nsau)(uint32_t v)
{
return v ? clz32(v) : 32;
}
static void copy_window_from_phys(CPUXtensaState *env,
uint32_t window, uint32_t phys, uint32_t n)
{
assert(phys < env->config->nareg);
if (phys + n <= env->config->nareg) {
memcpy(env->regs + window, env->phys_regs + phys,
n * sizeof(uint32_t));
} else {
uint32_t n1 = env->config->nareg - phys;
memcpy(env->regs + window, env->phys_regs + phys,
n1 * sizeof(uint32_t));
memcpy(env->regs + window + n1, env->phys_regs,
(n - n1) * sizeof(uint32_t));
}
}
static void copy_phys_from_window(CPUXtensaState *env,
uint32_t phys, uint32_t window, uint32_t n)
{
assert(phys < env->config->nareg);
if (phys + n <= env->config->nareg) {
memcpy(env->phys_regs + phys, env->regs + window,
n * sizeof(uint32_t));
} else {
uint32_t n1 = env->config->nareg - phys;
memcpy(env->phys_regs + phys, env->regs + window,
n1 * sizeof(uint32_t));
memcpy(env->phys_regs, env->regs + window + n1,
(n - n1) * sizeof(uint32_t));
}
}
static inline unsigned windowbase_bound(unsigned a, const CPUXtensaState *env)
{
return a & (env->config->nareg / 4 - 1);
}
static inline unsigned windowstart_bit(unsigned a, const CPUXtensaState *env)
{
return 1 << windowbase_bound(a, env);
}
void xtensa_sync_window_from_phys(CPUXtensaState *env)
{
copy_window_from_phys(env, 0, env->sregs[WINDOW_BASE] * 4, 16);
}
void xtensa_sync_phys_from_window(CPUXtensaState *env)
{
copy_phys_from_window(env, env->sregs[WINDOW_BASE] * 4, 0, 16);
}
static void rotate_window_abs(CPUXtensaState *env, uint32_t position)
{
xtensa_sync_phys_from_window(env);
env->sregs[WINDOW_BASE] = windowbase_bound(position, env);
xtensa_sync_window_from_phys(env);
}
static void rotate_window(CPUXtensaState *env, uint32_t delta)
{
rotate_window_abs(env, env->sregs[WINDOW_BASE] + delta);
}
void HELPER(wsr_windowbase)(CPUXtensaState *env, uint32_t v)
{
rotate_window_abs(env, v);
}
void HELPER(entry)(CPUXtensaState *env, uint32_t pc, uint32_t s, uint32_t imm)
{
int callinc = (env->sregs[PS] & PS_CALLINC) >> PS_CALLINC_SHIFT;
if (s > 3 || ((env->sregs[PS] & (PS_WOE | PS_EXCM)) ^ PS_WOE) != 0) {
qemu_log("Illegal entry instruction(pc = %08x), PS = %08x\n",
pc, env->sregs[PS]);
HELPER(exception_cause)(env, pc, ILLEGAL_INSTRUCTION_CAUSE);
} else {
env->regs[(callinc << 2) | (s & 3)] = env->regs[s] - (imm << 3);
rotate_window(env, callinc);
env->sregs[WINDOW_START] |=
windowstart_bit(env->sregs[WINDOW_BASE], env);
}
}
void HELPER(window_check)(CPUXtensaState *env, uint32_t pc, uint32_t w)
{
uint32_t windowbase = windowbase_bound(env->sregs[WINDOW_BASE], env);
uint32_t windowstart = env->sregs[WINDOW_START];
uint32_t m, n;
if ((env->sregs[PS] & (PS_WOE | PS_EXCM)) ^ PS_WOE) {
return;
}
for (n = 1; ; ++n) {
if (n > w) {
return;
}
if (windowstart & windowstart_bit(windowbase + n, env)) {
break;
}
}
m = windowbase_bound(windowbase + n, env);
rotate_window(env, n);
env->sregs[PS] = (env->sregs[PS] & ~PS_OWB) |
(windowbase << PS_OWB_SHIFT) | PS_EXCM;
env->sregs[EPC1] = env->pc = pc;
if (windowstart & windowstart_bit(m + 1, env)) {
HELPER(exception)(env, EXC_WINDOW_OVERFLOW4);
} else if (windowstart & windowstart_bit(m + 2, env)) {
HELPER(exception)(env, EXC_WINDOW_OVERFLOW8);
} else {
HELPER(exception)(env, EXC_WINDOW_OVERFLOW12);
}
}
uint32_t HELPER(retw)(CPUXtensaState *env, uint32_t pc)
{
int n = (env->regs[0] >> 30) & 0x3;
int m = 0;
uint32_t windowbase = windowbase_bound(env->sregs[WINDOW_BASE], env);
uint32_t windowstart = env->sregs[WINDOW_START];
uint32_t ret_pc = 0;
if (windowstart & windowstart_bit(windowbase - 1, env)) {
m = 1;
} else if (windowstart & windowstart_bit(windowbase - 2, env)) {
m = 2;
} else if (windowstart & windowstart_bit(windowbase - 3, env)) {
m = 3;
}
if (n == 0 || (m != 0 && m != n) ||
((env->sregs[PS] & (PS_WOE | PS_EXCM)) ^ PS_WOE) != 0) {
qemu_log("Illegal retw instruction(pc = %08x), "
"PS = %08x, m = %d, n = %d\n",
pc, env->sregs[PS], m, n);
HELPER(exception_cause)(env, pc, ILLEGAL_INSTRUCTION_CAUSE);
} else {
int owb = windowbase;
ret_pc = (pc & 0xc0000000) | (env->regs[0] & 0x3fffffff);
rotate_window(env, -n);
if (windowstart & windowstart_bit(env->sregs[WINDOW_BASE], env)) {
env->sregs[WINDOW_START] &= ~windowstart_bit(owb, env);
} else {
/* window underflow */
env->sregs[PS] = (env->sregs[PS] & ~PS_OWB) |
(windowbase << PS_OWB_SHIFT) | PS_EXCM;
env->sregs[EPC1] = env->pc = pc;
if (n == 1) {
HELPER(exception)(env, EXC_WINDOW_UNDERFLOW4);
} else if (n == 2) {
HELPER(exception)(env, EXC_WINDOW_UNDERFLOW8);
} else if (n == 3) {
HELPER(exception)(env, EXC_WINDOW_UNDERFLOW12);
}
}
}
return ret_pc;
}
void HELPER(rotw)(CPUXtensaState *env, uint32_t imm4)
{
rotate_window(env, imm4);
}
void HELPER(restore_owb)(CPUXtensaState *env)
{
rotate_window_abs(env, (env->sregs[PS] & PS_OWB) >> PS_OWB_SHIFT);
}
void HELPER(movsp)(CPUXtensaState *env, uint32_t pc)
{
if ((env->sregs[WINDOW_START] &
(windowstart_bit(env->sregs[WINDOW_BASE] - 3, env) |
windowstart_bit(env->sregs[WINDOW_BASE] - 2, env) |
windowstart_bit(env->sregs[WINDOW_BASE] - 1, env))) == 0) {
HELPER(exception_cause)(env, pc, ALLOCA_CAUSE);
}
}
void HELPER(wsr_lbeg)(CPUXtensaState *env, uint32_t v)
{
if (env->sregs[LBEG] != v) {
tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1);
env->sregs[LBEG] = v;
}
}
void HELPER(wsr_lend)(CPUXtensaState *env, uint32_t v)
{
if (env->sregs[LEND] != v) {
tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1);
env->sregs[LEND] = v;
tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1);
}
}
void HELPER(dump_state)(CPUXtensaState *env)
{
XtensaCPU *cpu = xtensa_env_get_cpu(env);
cpu_dump_state(CPU(cpu), stderr, fprintf, 0);
}
void HELPER(waiti)(CPUXtensaState *env, uint32_t pc, uint32_t intlevel)
{
CPUState *cpu;
env->pc = pc;
env->sregs[PS] = (env->sregs[PS] & ~PS_INTLEVEL) |
(intlevel << PS_INTLEVEL_SHIFT);
check_interrupts(env);
if (env->pending_irq_level) {
cpu_loop_exit(env);
return;
}
cpu = CPU(xtensa_env_get_cpu(env));
env->halt_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
cpu->halted = 1;
if (xtensa_option_enabled(env->config, XTENSA_OPTION_TIMER_INTERRUPT)) {
xtensa_rearm_ccompare_timer(env);
}
HELPER(exception)(env, EXCP_HLT);
}
void HELPER(timer_irq)(CPUXtensaState *env, uint32_t id, uint32_t active)
{
xtensa_timer_irq(env, id, active);
}
void HELPER(advance_ccount)(CPUXtensaState *env, uint32_t d)
{
xtensa_advance_ccount(env, d);
}
void HELPER(check_interrupts)(CPUXtensaState *env)
{
check_interrupts(env);
}
void HELPER(itlb_hit_test)(CPUXtensaState *env, uint32_t vaddr)
{
get_page_addr_code(env, vaddr);
}
/*!
* Check vaddr accessibility/cache attributes and raise an exception if
* specified by the ATOMCTL SR.
*
* Note: local memory exclusion is not implemented
*/
void HELPER(check_atomctl)(CPUXtensaState *env, uint32_t pc, uint32_t vaddr)
{
uint32_t paddr, page_size, access;
uint32_t atomctl = env->sregs[ATOMCTL];
int rc = xtensa_get_physical_addr(env, true, vaddr, 1,
xtensa_get_cring(env), &paddr, &page_size, &access);
/*
* s32c1i never causes LOAD_PROHIBITED_CAUSE exceptions,
* see opcode description in the ISA
*/
if (rc == 0 &&
(access & (PAGE_READ | PAGE_WRITE)) != (PAGE_READ | PAGE_WRITE)) {
rc = STORE_PROHIBITED_CAUSE;
}
if (rc) {
HELPER(exception_cause_vaddr)(env, pc, rc, vaddr);
}
/*
* When data cache is not configured use ATOMCTL bypass field.
* See ISA, 4.3.12.4 The Atomic Operation Control Register (ATOMCTL)
* under the Conditional Store Option.
*/
if (!xtensa_option_enabled(env->config, XTENSA_OPTION_DCACHE)) {
access = PAGE_CACHE_BYPASS;
}
switch (access & PAGE_CACHE_MASK) {
case PAGE_CACHE_WB:
atomctl >>= 2;
/* fall through */
case PAGE_CACHE_WT:
atomctl >>= 2;
/* fall through */
case PAGE_CACHE_BYPASS:
if ((atomctl & 0x3) == 0) {
HELPER(exception_cause_vaddr)(env, pc,
LOAD_STORE_ERROR_CAUSE, vaddr);
}
break;
case PAGE_CACHE_ISOLATE:
HELPER(exception_cause_vaddr)(env, pc,
LOAD_STORE_ERROR_CAUSE, vaddr);
break;
default:
break;
}
}
void HELPER(wsr_rasid)(CPUXtensaState *env, uint32_t v)
{
v = (v & 0xffffff00) | 0x1;
if (v != env->sregs[RASID]) {
env->sregs[RASID] = v;
tlb_flush(env, 1);
}
}
static uint32_t get_page_size(const CPUXtensaState *env, bool dtlb, uint32_t way)
{
uint32_t tlbcfg = env->sregs[dtlb ? DTLBCFG : ITLBCFG];
switch (way) {
case 4:
return (tlbcfg >> 16) & 0x3;
case 5:
return (tlbcfg >> 20) & 0x1;
case 6:
return (tlbcfg >> 24) & 0x1;
default:
return 0;
}
}
/*!
* Get bit mask for the virtual address bits translated by the TLB way
*/
uint32_t xtensa_tlb_get_addr_mask(const CPUXtensaState *env, bool dtlb, uint32_t way)
{
if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
bool varway56 = dtlb ?
env->config->dtlb.varway56 :
env->config->itlb.varway56;
switch (way) {
case 4:
return 0xfff00000 << get_page_size(env, dtlb, way) * 2;
case 5:
if (varway56) {
return 0xf8000000 << get_page_size(env, dtlb, way);
} else {
return 0xf8000000;
}
case 6:
if (varway56) {
return 0xf0000000 << (1 - get_page_size(env, dtlb, way));
} else {
return 0xf0000000;
}
default:
return 0xfffff000;
}
} else {
return REGION_PAGE_MASK;
}
}
/*!
* Get bit mask for the 'VPN without index' field.
* See ISA, 4.6.5.6, data format for RxTLB0
*/
static uint32_t get_vpn_mask(const CPUXtensaState *env, bool dtlb, uint32_t way)
{
if (way < 4) {
bool is32 = (dtlb ?
env->config->dtlb.nrefillentries :
env->config->itlb.nrefillentries) == 32;
return is32 ? 0xffff8000 : 0xffffc000;
} else if (way == 4) {
return xtensa_tlb_get_addr_mask(env, dtlb, way) << 2;
} else if (way <= 6) {
uint32_t mask = xtensa_tlb_get_addr_mask(env, dtlb, way);
bool varway56 = dtlb ?
env->config->dtlb.varway56 :
env->config->itlb.varway56;
if (varway56) {
return mask << (way == 5 ? 2 : 3);
} else {
return mask << 1;
}
} else {
return 0xfffff000;
}
}
/*!
* Split virtual address into VPN (with index) and entry index
* for the given TLB way
*/
void split_tlb_entry_spec_way(const CPUXtensaState *env, uint32_t v, bool dtlb,
uint32_t *vpn, uint32_t wi, uint32_t *ei)
{
bool varway56 = dtlb ?
env->config->dtlb.varway56 :
env->config->itlb.varway56;
if (!dtlb) {
wi &= 7;
}
if (wi < 4) {
bool is32 = (dtlb ?
env->config->dtlb.nrefillentries :
env->config->itlb.nrefillentries) == 32;
*ei = (v >> 12) & (is32 ? 0x7 : 0x3);
} else {
switch (wi) {
case 4:
{
uint32_t eibase = 20 + get_page_size(env, dtlb, wi) * 2;
*ei = (v >> eibase) & 0x3;
}
break;
case 5:
if (varway56) {
uint32_t eibase = 27 + get_page_size(env, dtlb, wi);
*ei = (v >> eibase) & 0x3;
} else {
*ei = (v >> 27) & 0x1;
}
break;
case 6:
if (varway56) {
uint32_t eibase = 29 - get_page_size(env, dtlb, wi);
*ei = (v >> eibase) & 0x7;
} else {
*ei = (v >> 28) & 0x1;
}
break;
default:
*ei = 0;
break;
}
}
*vpn = v & xtensa_tlb_get_addr_mask(env, dtlb, wi);
}
/*!
* Split TLB address into TLB way, entry index and VPN (with index).
* See ISA, 4.6.5.5 - 4.6.5.8 for the TLB addressing format
*/
static void split_tlb_entry_spec(CPUXtensaState *env, uint32_t v, bool dtlb,
uint32_t *vpn, uint32_t *wi, uint32_t *ei)
{
if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
*wi = v & (dtlb ? 0xf : 0x7);
split_tlb_entry_spec_way(env, v, dtlb, vpn, *wi, ei);
} else {
*vpn = v & REGION_PAGE_MASK;
*wi = 0;
*ei = (v >> 29) & 0x7;
}
}
static xtensa_tlb_entry *get_tlb_entry(CPUXtensaState *env,
uint32_t v, bool dtlb, uint32_t *pwi)
{
uint32_t vpn;
uint32_t wi;
uint32_t ei;
split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei);
if (pwi) {
*pwi = wi;
}
return xtensa_tlb_get_entry(env, dtlb, wi, ei);
}
uint32_t HELPER(rtlb0)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
{
if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
uint32_t wi;
const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi);
return (entry->vaddr & get_vpn_mask(env, dtlb, wi)) | entry->asid;
} else {
return v & REGION_PAGE_MASK;
}
}
uint32_t HELPER(rtlb1)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
{
const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, NULL);
return entry->paddr | entry->attr;
}
void HELPER(itlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
{
if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
uint32_t wi;
xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi);
if (entry->variable && entry->asid) {
tlb_flush_page(env, entry->vaddr);
entry->asid = 0;
}
}
}
uint32_t HELPER(ptlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
{
if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
uint32_t wi;
uint32_t ei;
uint8_t ring;
int res = xtensa_tlb_lookup(env, v, dtlb, &wi, &ei, &ring);
switch (res) {
case 0:
if (ring >= xtensa_get_ring(env)) {
return (v & 0xfffff000) | wi | (dtlb ? 0x10 : 0x8);
}
break;
case INST_TLB_MULTI_HIT_CAUSE:
case LOAD_STORE_TLB_MULTI_HIT_CAUSE:
HELPER(exception_cause_vaddr)(env, env->pc, res, v);
break;
}
return 0;
} else {
return (v & REGION_PAGE_MASK) | 0x1;
}
}
void xtensa_tlb_set_entry_mmu(const CPUXtensaState *env,
xtensa_tlb_entry *entry, bool dtlb,
unsigned wi, unsigned ei, uint32_t vpn, uint32_t pte)
{
entry->vaddr = vpn;
entry->paddr = pte & xtensa_tlb_get_addr_mask(env, dtlb, wi);
entry->asid = (env->sregs[RASID] >> ((pte >> 1) & 0x18)) & 0xff;
entry->attr = pte & 0xf;
}
void xtensa_tlb_set_entry(CPUXtensaState *env, bool dtlb,
unsigned wi, unsigned ei, uint32_t vpn, uint32_t pte)
{
xtensa_tlb_entry *entry = xtensa_tlb_get_entry(env, dtlb, wi, ei);
if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
if (entry->variable) {
if (entry->asid) {
tlb_flush_page(env, entry->vaddr);
}
xtensa_tlb_set_entry_mmu(env, entry, dtlb, wi, ei, vpn, pte);
tlb_flush_page(env, entry->vaddr);
} else {
qemu_log("%s %d, %d, %d trying to set immutable entry\n",
__func__, dtlb, wi, ei);
}
} else {
tlb_flush_page(env, entry->vaddr);
if (xtensa_option_enabled(env->config,
XTENSA_OPTION_REGION_TRANSLATION)) {
entry->paddr = pte & REGION_PAGE_MASK;
}
entry->attr = pte & 0xf;
}
}
void HELPER(wtlb)(CPUXtensaState *env, uint32_t p, uint32_t v, uint32_t dtlb)
{
uint32_t vpn;
uint32_t wi;
uint32_t ei;
split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei);
xtensa_tlb_set_entry(env, dtlb, wi, ei, vpn, p);
}
void HELPER(wsr_ibreakenable)(CPUXtensaState *env, uint32_t v)
{
uint32_t change = v ^ env->sregs[IBREAKENABLE];
unsigned i;
for (i = 0; i < env->config->nibreak; ++i) {
if (change & (1 << i)) {
tb_invalidate_virtual_addr(env, env->sregs[IBREAKA + i]);
}
}
env->sregs[IBREAKENABLE] = v & ((1 << env->config->nibreak) - 1);
}
void HELPER(wsr_ibreaka)(CPUXtensaState *env, uint32_t i, uint32_t v)
{
if (env->sregs[IBREAKENABLE] & (1 << i) && env->sregs[IBREAKA + i] != v) {
tb_invalidate_virtual_addr(env, env->sregs[IBREAKA + i]);
tb_invalidate_virtual_addr(env, v);
}
env->sregs[IBREAKA + i] = v;
}
static void set_dbreak(CPUXtensaState *env, unsigned i, uint32_t dbreaka,
uint32_t dbreakc)
{
int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
uint32_t mask = dbreakc | ~DBREAKC_MASK;
if (env->cpu_watchpoint[i]) {
cpu_watchpoint_remove_by_ref(env, env->cpu_watchpoint[i]);
}
if (dbreakc & DBREAKC_SB) {
flags |= BP_MEM_WRITE;
}
if (dbreakc & DBREAKC_LB) {
flags |= BP_MEM_READ;
}
/* contiguous mask after inversion is one less than some power of 2 */
if ((~mask + 1) & ~mask) {
qemu_log("DBREAKC mask is not contiguous: 0x%08x\n", dbreakc);
/* cut mask after the first zero bit */
mask = 0xffffffff << (32 - clo32(mask));
}
if (cpu_watchpoint_insert(env, dbreaka & mask, ~mask + 1,
flags, &env->cpu_watchpoint[i])) {
env->cpu_watchpoint[i] = NULL;
qemu_log("Failed to set data breakpoint at 0x%08x/%d\n",
dbreaka & mask, ~mask + 1);
}
}
void HELPER(wsr_dbreaka)(CPUXtensaState *env, uint32_t i, uint32_t v)
{
uint32_t dbreakc = env->sregs[DBREAKC + i];
if ((dbreakc & DBREAKC_SB_LB) &&
env->sregs[DBREAKA + i] != v) {
set_dbreak(env, i, v, dbreakc);
}
env->sregs[DBREAKA + i] = v;
}
void HELPER(wsr_dbreakc)(CPUXtensaState *env, uint32_t i, uint32_t v)
{
if ((env->sregs[DBREAKC + i] ^ v) & (DBREAKC_SB_LB | DBREAKC_MASK)) {
if (v & DBREAKC_SB_LB) {
set_dbreak(env, i, env->sregs[DBREAKA + i], v);
} else {
if (env->cpu_watchpoint[i]) {
cpu_watchpoint_remove_by_ref(env, env->cpu_watchpoint[i]);
env->cpu_watchpoint[i] = NULL;
}
}
}
env->sregs[DBREAKC + i] = v;
}
void HELPER(wur_fcr)(CPUXtensaState *env, uint32_t v)
{
static const int rounding_mode[] = {
float_round_nearest_even,
float_round_to_zero,
float_round_up,
float_round_down,
};
env->uregs[FCR] = v & 0xfffff07f;
set_float_rounding_mode(rounding_mode[v & 3], &env->fp_status);
}
float32 HELPER(abs_s)(float32 v)
{
return float32_abs(v);
}
float32 HELPER(neg_s)(float32 v)
{
return float32_chs(v);
}
float32 HELPER(add_s)(CPUXtensaState *env, float32 a, float32 b)
{
return float32_add(a, b, &env->fp_status);
}
float32 HELPER(sub_s)(CPUXtensaState *env, float32 a, float32 b)
{
return float32_sub(a, b, &env->fp_status);
}
float32 HELPER(mul_s)(CPUXtensaState *env, float32 a, float32 b)
{
return float32_mul(a, b, &env->fp_status);
}
float32 HELPER(madd_s)(CPUXtensaState *env, float32 a, float32 b, float32 c)
{
return float32_muladd(b, c, a, 0,
&env->fp_status);
}
float32 HELPER(msub_s)(CPUXtensaState *env, float32 a, float32 b, float32 c)
{
return float32_muladd(b, c, a, float_muladd_negate_product,
&env->fp_status);
}
uint32_t HELPER(ftoi)(float32 v, uint32_t rounding_mode, uint32_t scale)
{
float_status fp_status = {0};
set_float_rounding_mode(rounding_mode, &fp_status);
return float32_to_int32(
float32_scalbn(v, scale, &fp_status), &fp_status);
}
uint32_t HELPER(ftoui)(float32 v, uint32_t rounding_mode, uint32_t scale)
{
float_status fp_status = {0};
float32 res;
set_float_rounding_mode(rounding_mode, &fp_status);
res = float32_scalbn(v, scale, &fp_status);
if (float32_is_neg(v) && !float32_is_any_nan(v)) {
return float32_to_int32(res, &fp_status);
} else {
return float32_to_uint32(res, &fp_status);
}
}
float32 HELPER(itof)(CPUXtensaState *env, uint32_t v, uint32_t scale)
{
return float32_scalbn(int32_to_float32(v, &env->fp_status),
(int32_t)scale, &env->fp_status);
}
float32 HELPER(uitof)(CPUXtensaState *env, uint32_t v, uint32_t scale)
{
return float32_scalbn(uint32_to_float32(v, &env->fp_status),
(int32_t)scale, &env->fp_status);
}
static inline void set_br(CPUXtensaState *env, bool v, uint32_t br)
{
if (v) {
env->sregs[BR] |= br;
} else {
env->sregs[BR] &= ~br;
}
}
void HELPER(un_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
{
set_br(env, float32_unordered_quiet(a, b, &env->fp_status), br);
}
void HELPER(oeq_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
{
set_br(env, float32_eq_quiet(a, b, &env->fp_status), br);
}
void HELPER(ueq_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
{
int v = float32_compare_quiet(a, b, &env->fp_status);
set_br(env, v == float_relation_equal || v == float_relation_unordered, br);
}
void HELPER(olt_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
{
set_br(env, float32_lt_quiet(a, b, &env->fp_status), br);
}
void HELPER(ult_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
{
int v = float32_compare_quiet(a, b, &env->fp_status);
set_br(env, v == float_relation_less || v == float_relation_unordered, br);
}
void HELPER(ole_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
{
set_br(env, float32_le_quiet(a, b, &env->fp_status), br);
}
void HELPER(ule_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
{
int v = float32_compare_quiet(a, b, &env->fp_status);
set_br(env, v != float_relation_greater, br);
}