bf45a2e67c
fabs, fnabs and fneg are just flipping the bit sign of an FP register, this can be implemented in TCG instead of using softfloat. Signed-off-by: Aurelien Jarno <aurelien@aurel32.net> Signed-off-by: Alexander Graf <agraf@suse.de>
1716 lines
48 KiB
C
1716 lines
48 KiB
C
/*
|
|
* PowerPC floating point and SPE emulation helpers for QEMU.
|
|
*
|
|
* Copyright (c) 2003-2007 Jocelyn Mayer
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
#include "cpu.h"
|
|
#include "helper.h"
|
|
|
|
/*****************************************************************************/
|
|
/* Floating point operations helpers */
|
|
uint64_t helper_float32_to_float64(CPUPPCState *env, uint32_t arg)
|
|
{
|
|
CPU_FloatU f;
|
|
CPU_DoubleU d;
|
|
|
|
f.l = arg;
|
|
d.d = float32_to_float64(f.f, &env->fp_status);
|
|
return d.ll;
|
|
}
|
|
|
|
uint32_t helper_float64_to_float32(CPUPPCState *env, uint64_t arg)
|
|
{
|
|
CPU_FloatU f;
|
|
CPU_DoubleU d;
|
|
|
|
d.ll = arg;
|
|
f.f = float64_to_float32(d.d, &env->fp_status);
|
|
return f.l;
|
|
}
|
|
|
|
static inline int isden(float64 d)
|
|
{
|
|
CPU_DoubleU u;
|
|
|
|
u.d = d;
|
|
|
|
return ((u.ll >> 52) & 0x7FF) == 0;
|
|
}
|
|
|
|
uint32_t helper_compute_fprf(CPUPPCState *env, uint64_t arg, uint32_t set_fprf)
|
|
{
|
|
CPU_DoubleU farg;
|
|
int isneg;
|
|
int ret;
|
|
|
|
farg.ll = arg;
|
|
isneg = float64_is_neg(farg.d);
|
|
if (unlikely(float64_is_any_nan(farg.d))) {
|
|
if (float64_is_signaling_nan(farg.d)) {
|
|
/* Signaling NaN: flags are undefined */
|
|
ret = 0x00;
|
|
} else {
|
|
/* Quiet NaN */
|
|
ret = 0x11;
|
|
}
|
|
} else if (unlikely(float64_is_infinity(farg.d))) {
|
|
/* +/- infinity */
|
|
if (isneg) {
|
|
ret = 0x09;
|
|
} else {
|
|
ret = 0x05;
|
|
}
|
|
} else {
|
|
if (float64_is_zero(farg.d)) {
|
|
/* +/- zero */
|
|
if (isneg) {
|
|
ret = 0x12;
|
|
} else {
|
|
ret = 0x02;
|
|
}
|
|
} else {
|
|
if (isden(farg.d)) {
|
|
/* Denormalized numbers */
|
|
ret = 0x10;
|
|
} else {
|
|
/* Normalized numbers */
|
|
ret = 0x00;
|
|
}
|
|
if (isneg) {
|
|
ret |= 0x08;
|
|
} else {
|
|
ret |= 0x04;
|
|
}
|
|
}
|
|
}
|
|
if (set_fprf) {
|
|
/* We update FPSCR_FPRF */
|
|
env->fpscr &= ~(0x1F << FPSCR_FPRF);
|
|
env->fpscr |= ret << FPSCR_FPRF;
|
|
}
|
|
/* We just need fpcc to update Rc1 */
|
|
return ret & 0xF;
|
|
}
|
|
|
|
/* Floating-point invalid operations exception */
|
|
static inline uint64_t fload_invalid_op_excp(CPUPPCState *env, int op)
|
|
{
|
|
uint64_t ret = 0;
|
|
int ve;
|
|
|
|
ve = fpscr_ve;
|
|
switch (op) {
|
|
case POWERPC_EXCP_FP_VXSNAN:
|
|
env->fpscr |= 1 << FPSCR_VXSNAN;
|
|
break;
|
|
case POWERPC_EXCP_FP_VXSOFT:
|
|
env->fpscr |= 1 << FPSCR_VXSOFT;
|
|
break;
|
|
case POWERPC_EXCP_FP_VXISI:
|
|
/* Magnitude subtraction of infinities */
|
|
env->fpscr |= 1 << FPSCR_VXISI;
|
|
goto update_arith;
|
|
case POWERPC_EXCP_FP_VXIDI:
|
|
/* Division of infinity by infinity */
|
|
env->fpscr |= 1 << FPSCR_VXIDI;
|
|
goto update_arith;
|
|
case POWERPC_EXCP_FP_VXZDZ:
|
|
/* Division of zero by zero */
|
|
env->fpscr |= 1 << FPSCR_VXZDZ;
|
|
goto update_arith;
|
|
case POWERPC_EXCP_FP_VXIMZ:
|
|
/* Multiplication of zero by infinity */
|
|
env->fpscr |= 1 << FPSCR_VXIMZ;
|
|
goto update_arith;
|
|
case POWERPC_EXCP_FP_VXVC:
|
|
/* Ordered comparison of NaN */
|
|
env->fpscr |= 1 << FPSCR_VXVC;
|
|
env->fpscr &= ~(0xF << FPSCR_FPCC);
|
|
env->fpscr |= 0x11 << FPSCR_FPCC;
|
|
/* We must update the target FPR before raising the exception */
|
|
if (ve != 0) {
|
|
env->exception_index = POWERPC_EXCP_PROGRAM;
|
|
env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_VXVC;
|
|
/* Update the floating-point enabled exception summary */
|
|
env->fpscr |= 1 << FPSCR_FEX;
|
|
/* Exception is differed */
|
|
ve = 0;
|
|
}
|
|
break;
|
|
case POWERPC_EXCP_FP_VXSQRT:
|
|
/* Square root of a negative number */
|
|
env->fpscr |= 1 << FPSCR_VXSQRT;
|
|
update_arith:
|
|
env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
|
|
if (ve == 0) {
|
|
/* Set the result to quiet NaN */
|
|
ret = 0x7FF8000000000000ULL;
|
|
env->fpscr &= ~(0xF << FPSCR_FPCC);
|
|
env->fpscr |= 0x11 << FPSCR_FPCC;
|
|
}
|
|
break;
|
|
case POWERPC_EXCP_FP_VXCVI:
|
|
/* Invalid conversion */
|
|
env->fpscr |= 1 << FPSCR_VXCVI;
|
|
env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
|
|
if (ve == 0) {
|
|
/* Set the result to quiet NaN */
|
|
ret = 0x7FF8000000000000ULL;
|
|
env->fpscr &= ~(0xF << FPSCR_FPCC);
|
|
env->fpscr |= 0x11 << FPSCR_FPCC;
|
|
}
|
|
break;
|
|
}
|
|
/* Update the floating-point invalid operation summary */
|
|
env->fpscr |= 1 << FPSCR_VX;
|
|
/* Update the floating-point exception summary */
|
|
env->fpscr |= 1 << FPSCR_FX;
|
|
if (ve != 0) {
|
|
/* Update the floating-point enabled exception summary */
|
|
env->fpscr |= 1 << FPSCR_FEX;
|
|
if (msr_fe0 != 0 || msr_fe1 != 0) {
|
|
helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM,
|
|
POWERPC_EXCP_FP | op);
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static inline void float_zero_divide_excp(CPUPPCState *env)
|
|
{
|
|
env->fpscr |= 1 << FPSCR_ZX;
|
|
env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
|
|
/* Update the floating-point exception summary */
|
|
env->fpscr |= 1 << FPSCR_FX;
|
|
if (fpscr_ze != 0) {
|
|
/* Update the floating-point enabled exception summary */
|
|
env->fpscr |= 1 << FPSCR_FEX;
|
|
if (msr_fe0 != 0 || msr_fe1 != 0) {
|
|
helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM,
|
|
POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX);
|
|
}
|
|
}
|
|
}
|
|
|
|
static inline void float_overflow_excp(CPUPPCState *env)
|
|
{
|
|
env->fpscr |= 1 << FPSCR_OX;
|
|
/* Update the floating-point exception summary */
|
|
env->fpscr |= 1 << FPSCR_FX;
|
|
if (fpscr_oe != 0) {
|
|
/* XXX: should adjust the result */
|
|
/* Update the floating-point enabled exception summary */
|
|
env->fpscr |= 1 << FPSCR_FEX;
|
|
/* We must update the target FPR before raising the exception */
|
|
env->exception_index = POWERPC_EXCP_PROGRAM;
|
|
env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
|
|
} else {
|
|
env->fpscr |= 1 << FPSCR_XX;
|
|
env->fpscr |= 1 << FPSCR_FI;
|
|
}
|
|
}
|
|
|
|
static inline void float_underflow_excp(CPUPPCState *env)
|
|
{
|
|
env->fpscr |= 1 << FPSCR_UX;
|
|
/* Update the floating-point exception summary */
|
|
env->fpscr |= 1 << FPSCR_FX;
|
|
if (fpscr_ue != 0) {
|
|
/* XXX: should adjust the result */
|
|
/* Update the floating-point enabled exception summary */
|
|
env->fpscr |= 1 << FPSCR_FEX;
|
|
/* We must update the target FPR before raising the exception */
|
|
env->exception_index = POWERPC_EXCP_PROGRAM;
|
|
env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
|
|
}
|
|
}
|
|
|
|
static inline void float_inexact_excp(CPUPPCState *env)
|
|
{
|
|
env->fpscr |= 1 << FPSCR_XX;
|
|
/* Update the floating-point exception summary */
|
|
env->fpscr |= 1 << FPSCR_FX;
|
|
if (fpscr_xe != 0) {
|
|
/* Update the floating-point enabled exception summary */
|
|
env->fpscr |= 1 << FPSCR_FEX;
|
|
/* We must update the target FPR before raising the exception */
|
|
env->exception_index = POWERPC_EXCP_PROGRAM;
|
|
env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
|
|
}
|
|
}
|
|
|
|
static inline void fpscr_set_rounding_mode(CPUPPCState *env)
|
|
{
|
|
int rnd_type;
|
|
|
|
/* Set rounding mode */
|
|
switch (fpscr_rn) {
|
|
case 0:
|
|
/* Best approximation (round to nearest) */
|
|
rnd_type = float_round_nearest_even;
|
|
break;
|
|
case 1:
|
|
/* Smaller magnitude (round toward zero) */
|
|
rnd_type = float_round_to_zero;
|
|
break;
|
|
case 2:
|
|
/* Round toward +infinite */
|
|
rnd_type = float_round_up;
|
|
break;
|
|
default:
|
|
case 3:
|
|
/* Round toward -infinite */
|
|
rnd_type = float_round_down;
|
|
break;
|
|
}
|
|
set_float_rounding_mode(rnd_type, &env->fp_status);
|
|
}
|
|
|
|
void helper_fpscr_clrbit(CPUPPCState *env, uint32_t bit)
|
|
{
|
|
int prev;
|
|
|
|
prev = (env->fpscr >> bit) & 1;
|
|
env->fpscr &= ~(1 << bit);
|
|
if (prev == 1) {
|
|
switch (bit) {
|
|
case FPSCR_RN1:
|
|
case FPSCR_RN:
|
|
fpscr_set_rounding_mode(env);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void helper_fpscr_setbit(CPUPPCState *env, uint32_t bit)
|
|
{
|
|
int prev;
|
|
|
|
prev = (env->fpscr >> bit) & 1;
|
|
env->fpscr |= 1 << bit;
|
|
if (prev == 0) {
|
|
switch (bit) {
|
|
case FPSCR_VX:
|
|
env->fpscr |= 1 << FPSCR_FX;
|
|
if (fpscr_ve) {
|
|
goto raise_ve;
|
|
}
|
|
break;
|
|
case FPSCR_OX:
|
|
env->fpscr |= 1 << FPSCR_FX;
|
|
if (fpscr_oe) {
|
|
goto raise_oe;
|
|
}
|
|
break;
|
|
case FPSCR_UX:
|
|
env->fpscr |= 1 << FPSCR_FX;
|
|
if (fpscr_ue) {
|
|
goto raise_ue;
|
|
}
|
|
break;
|
|
case FPSCR_ZX:
|
|
env->fpscr |= 1 << FPSCR_FX;
|
|
if (fpscr_ze) {
|
|
goto raise_ze;
|
|
}
|
|
break;
|
|
case FPSCR_XX:
|
|
env->fpscr |= 1 << FPSCR_FX;
|
|
if (fpscr_xe) {
|
|
goto raise_xe;
|
|
}
|
|
break;
|
|
case FPSCR_VXSNAN:
|
|
case FPSCR_VXISI:
|
|
case FPSCR_VXIDI:
|
|
case FPSCR_VXZDZ:
|
|
case FPSCR_VXIMZ:
|
|
case FPSCR_VXVC:
|
|
case FPSCR_VXSOFT:
|
|
case FPSCR_VXSQRT:
|
|
case FPSCR_VXCVI:
|
|
env->fpscr |= 1 << FPSCR_VX;
|
|
env->fpscr |= 1 << FPSCR_FX;
|
|
if (fpscr_ve != 0) {
|
|
goto raise_ve;
|
|
}
|
|
break;
|
|
case FPSCR_VE:
|
|
if (fpscr_vx != 0) {
|
|
raise_ve:
|
|
env->error_code = POWERPC_EXCP_FP;
|
|
if (fpscr_vxsnan) {
|
|
env->error_code |= POWERPC_EXCP_FP_VXSNAN;
|
|
}
|
|
if (fpscr_vxisi) {
|
|
env->error_code |= POWERPC_EXCP_FP_VXISI;
|
|
}
|
|
if (fpscr_vxidi) {
|
|
env->error_code |= POWERPC_EXCP_FP_VXIDI;
|
|
}
|
|
if (fpscr_vxzdz) {
|
|
env->error_code |= POWERPC_EXCP_FP_VXZDZ;
|
|
}
|
|
if (fpscr_vximz) {
|
|
env->error_code |= POWERPC_EXCP_FP_VXIMZ;
|
|
}
|
|
if (fpscr_vxvc) {
|
|
env->error_code |= POWERPC_EXCP_FP_VXVC;
|
|
}
|
|
if (fpscr_vxsoft) {
|
|
env->error_code |= POWERPC_EXCP_FP_VXSOFT;
|
|
}
|
|
if (fpscr_vxsqrt) {
|
|
env->error_code |= POWERPC_EXCP_FP_VXSQRT;
|
|
}
|
|
if (fpscr_vxcvi) {
|
|
env->error_code |= POWERPC_EXCP_FP_VXCVI;
|
|
}
|
|
goto raise_excp;
|
|
}
|
|
break;
|
|
case FPSCR_OE:
|
|
if (fpscr_ox != 0) {
|
|
raise_oe:
|
|
env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
|
|
goto raise_excp;
|
|
}
|
|
break;
|
|
case FPSCR_UE:
|
|
if (fpscr_ux != 0) {
|
|
raise_ue:
|
|
env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
|
|
goto raise_excp;
|
|
}
|
|
break;
|
|
case FPSCR_ZE:
|
|
if (fpscr_zx != 0) {
|
|
raise_ze:
|
|
env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX;
|
|
goto raise_excp;
|
|
}
|
|
break;
|
|
case FPSCR_XE:
|
|
if (fpscr_xx != 0) {
|
|
raise_xe:
|
|
env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
|
|
goto raise_excp;
|
|
}
|
|
break;
|
|
case FPSCR_RN1:
|
|
case FPSCR_RN:
|
|
fpscr_set_rounding_mode(env);
|
|
break;
|
|
default:
|
|
break;
|
|
raise_excp:
|
|
/* Update the floating-point enabled exception summary */
|
|
env->fpscr |= 1 << FPSCR_FEX;
|
|
/* We have to update Rc1 before raising the exception */
|
|
env->exception_index = POWERPC_EXCP_PROGRAM;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void helper_store_fpscr(CPUPPCState *env, uint64_t arg, uint32_t mask)
|
|
{
|
|
/*
|
|
* We use only the 32 LSB of the incoming fpr
|
|
*/
|
|
uint32_t prev, new;
|
|
int i;
|
|
|
|
prev = env->fpscr;
|
|
new = (uint32_t)arg;
|
|
new &= ~0x60000000;
|
|
new |= prev & 0x60000000;
|
|
for (i = 0; i < 8; i++) {
|
|
if (mask & (1 << i)) {
|
|
env->fpscr &= ~(0xF << (4 * i));
|
|
env->fpscr |= new & (0xF << (4 * i));
|
|
}
|
|
}
|
|
/* Update VX and FEX */
|
|
if (fpscr_ix != 0) {
|
|
env->fpscr |= 1 << FPSCR_VX;
|
|
} else {
|
|
env->fpscr &= ~(1 << FPSCR_VX);
|
|
}
|
|
if ((fpscr_ex & fpscr_eex) != 0) {
|
|
env->fpscr |= 1 << FPSCR_FEX;
|
|
env->exception_index = POWERPC_EXCP_PROGRAM;
|
|
/* XXX: we should compute it properly */
|
|
env->error_code = POWERPC_EXCP_FP;
|
|
} else {
|
|
env->fpscr &= ~(1 << FPSCR_FEX);
|
|
}
|
|
fpscr_set_rounding_mode(env);
|
|
}
|
|
|
|
void store_fpscr(CPUPPCState *env, uint64_t arg, uint32_t mask)
|
|
{
|
|
helper_store_fpscr(env, arg, mask);
|
|
}
|
|
|
|
void helper_float_check_status(CPUPPCState *env)
|
|
{
|
|
int status = get_float_exception_flags(&env->fp_status);
|
|
|
|
if (status & float_flag_divbyzero) {
|
|
float_zero_divide_excp(env);
|
|
} else if (status & float_flag_overflow) {
|
|
float_overflow_excp(env);
|
|
} else if (status & float_flag_underflow) {
|
|
float_underflow_excp(env);
|
|
} else if (status & float_flag_inexact) {
|
|
float_inexact_excp(env);
|
|
}
|
|
|
|
if (env->exception_index == POWERPC_EXCP_PROGRAM &&
|
|
(env->error_code & POWERPC_EXCP_FP)) {
|
|
/* Differred floating-point exception after target FPR update */
|
|
if (msr_fe0 != 0 || msr_fe1 != 0) {
|
|
helper_raise_exception_err(env, env->exception_index,
|
|
env->error_code);
|
|
}
|
|
}
|
|
}
|
|
|
|
void helper_reset_fpstatus(CPUPPCState *env)
|
|
{
|
|
set_float_exception_flags(0, &env->fp_status);
|
|
}
|
|
|
|
/* fadd - fadd. */
|
|
uint64_t helper_fadd(CPUPPCState *env, uint64_t arg1, uint64_t arg2)
|
|
{
|
|
CPU_DoubleU farg1, farg2;
|
|
|
|
farg1.ll = arg1;
|
|
farg2.ll = arg2;
|
|
|
|
if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d) &&
|
|
float64_is_neg(farg1.d) != float64_is_neg(farg2.d))) {
|
|
/* Magnitude subtraction of infinities */
|
|
farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI);
|
|
} else {
|
|
if (unlikely(float64_is_signaling_nan(farg1.d) ||
|
|
float64_is_signaling_nan(farg2.d))) {
|
|
/* sNaN addition */
|
|
fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN);
|
|
}
|
|
farg1.d = float64_add(farg1.d, farg2.d, &env->fp_status);
|
|
}
|
|
|
|
return farg1.ll;
|
|
}
|
|
|
|
/* fsub - fsub. */
|
|
uint64_t helper_fsub(CPUPPCState *env, uint64_t arg1, uint64_t arg2)
|
|
{
|
|
CPU_DoubleU farg1, farg2;
|
|
|
|
farg1.ll = arg1;
|
|
farg2.ll = arg2;
|
|
|
|
if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d) &&
|
|
float64_is_neg(farg1.d) == float64_is_neg(farg2.d))) {
|
|
/* Magnitude subtraction of infinities */
|
|
farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI);
|
|
} else {
|
|
if (unlikely(float64_is_signaling_nan(farg1.d) ||
|
|
float64_is_signaling_nan(farg2.d))) {
|
|
/* sNaN subtraction */
|
|
fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN);
|
|
}
|
|
farg1.d = float64_sub(farg1.d, farg2.d, &env->fp_status);
|
|
}
|
|
|
|
return farg1.ll;
|
|
}
|
|
|
|
/* fmul - fmul. */
|
|
uint64_t helper_fmul(CPUPPCState *env, uint64_t arg1, uint64_t arg2)
|
|
{
|
|
CPU_DoubleU farg1, farg2;
|
|
|
|
farg1.ll = arg1;
|
|
farg2.ll = arg2;
|
|
|
|
if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
|
|
(float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
|
|
/* Multiplication of zero by infinity */
|
|
farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ);
|
|
} else {
|
|
if (unlikely(float64_is_signaling_nan(farg1.d) ||
|
|
float64_is_signaling_nan(farg2.d))) {
|
|
/* sNaN multiplication */
|
|
fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN);
|
|
}
|
|
farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status);
|
|
}
|
|
|
|
return farg1.ll;
|
|
}
|
|
|
|
/* fdiv - fdiv. */
|
|
uint64_t helper_fdiv(CPUPPCState *env, uint64_t arg1, uint64_t arg2)
|
|
{
|
|
CPU_DoubleU farg1, farg2;
|
|
|
|
farg1.ll = arg1;
|
|
farg2.ll = arg2;
|
|
|
|
if (unlikely(float64_is_infinity(farg1.d) &&
|
|
float64_is_infinity(farg2.d))) {
|
|
/* Division of infinity by infinity */
|
|
farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIDI);
|
|
} else if (unlikely(float64_is_zero(farg1.d) && float64_is_zero(farg2.d))) {
|
|
/* Division of zero by zero */
|
|
farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXZDZ);
|
|
} else {
|
|
if (unlikely(float64_is_signaling_nan(farg1.d) ||
|
|
float64_is_signaling_nan(farg2.d))) {
|
|
/* sNaN division */
|
|
fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN);
|
|
}
|
|
farg1.d = float64_div(farg1.d, farg2.d, &env->fp_status);
|
|
}
|
|
|
|
return farg1.ll;
|
|
}
|
|
|
|
/* fctiw - fctiw. */
|
|
uint64_t helper_fctiw(CPUPPCState *env, uint64_t arg)
|
|
{
|
|
CPU_DoubleU farg;
|
|
|
|
farg.ll = arg;
|
|
|
|
if (unlikely(float64_is_signaling_nan(farg.d))) {
|
|
/* sNaN conversion */
|
|
farg.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN |
|
|
POWERPC_EXCP_FP_VXCVI);
|
|
} else if (unlikely(float64_is_quiet_nan(farg.d) ||
|
|
float64_is_infinity(farg.d))) {
|
|
/* qNan / infinity conversion */
|
|
farg.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI);
|
|
} else {
|
|
farg.ll = float64_to_int32(farg.d, &env->fp_status);
|
|
/* XXX: higher bits are not supposed to be significant.
|
|
* to make tests easier, return the same as a real PowerPC 750
|
|
*/
|
|
farg.ll |= 0xFFF80000ULL << 32;
|
|
}
|
|
return farg.ll;
|
|
}
|
|
|
|
/* fctiwz - fctiwz. */
|
|
uint64_t helper_fctiwz(CPUPPCState *env, uint64_t arg)
|
|
{
|
|
CPU_DoubleU farg;
|
|
|
|
farg.ll = arg;
|
|
|
|
if (unlikely(float64_is_signaling_nan(farg.d))) {
|
|
/* sNaN conversion */
|
|
farg.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN |
|
|
POWERPC_EXCP_FP_VXCVI);
|
|
} else if (unlikely(float64_is_quiet_nan(farg.d) ||
|
|
float64_is_infinity(farg.d))) {
|
|
/* qNan / infinity conversion */
|
|
farg.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI);
|
|
} else {
|
|
farg.ll = float64_to_int32_round_to_zero(farg.d, &env->fp_status);
|
|
/* XXX: higher bits are not supposed to be significant.
|
|
* to make tests easier, return the same as a real PowerPC 750
|
|
*/
|
|
farg.ll |= 0xFFF80000ULL << 32;
|
|
}
|
|
return farg.ll;
|
|
}
|
|
|
|
#if defined(TARGET_PPC64)
|
|
/* fcfid - fcfid. */
|
|
uint64_t helper_fcfid(CPUPPCState *env, uint64_t arg)
|
|
{
|
|
CPU_DoubleU farg;
|
|
|
|
farg.d = int64_to_float64(arg, &env->fp_status);
|
|
return farg.ll;
|
|
}
|
|
|
|
/* fctid - fctid. */
|
|
uint64_t helper_fctid(CPUPPCState *env, uint64_t arg)
|
|
{
|
|
CPU_DoubleU farg;
|
|
|
|
farg.ll = arg;
|
|
|
|
if (unlikely(float64_is_signaling_nan(farg.d))) {
|
|
/* sNaN conversion */
|
|
farg.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN |
|
|
POWERPC_EXCP_FP_VXCVI);
|
|
} else if (unlikely(float64_is_quiet_nan(farg.d) ||
|
|
float64_is_infinity(farg.d))) {
|
|
/* qNan / infinity conversion */
|
|
farg.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI);
|
|
} else {
|
|
farg.ll = float64_to_int64(farg.d, &env->fp_status);
|
|
}
|
|
return farg.ll;
|
|
}
|
|
|
|
/* fctidz - fctidz. */
|
|
uint64_t helper_fctidz(CPUPPCState *env, uint64_t arg)
|
|
{
|
|
CPU_DoubleU farg;
|
|
|
|
farg.ll = arg;
|
|
|
|
if (unlikely(float64_is_signaling_nan(farg.d))) {
|
|
/* sNaN conversion */
|
|
farg.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN |
|
|
POWERPC_EXCP_FP_VXCVI);
|
|
} else if (unlikely(float64_is_quiet_nan(farg.d) ||
|
|
float64_is_infinity(farg.d))) {
|
|
/* qNan / infinity conversion */
|
|
farg.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI);
|
|
} else {
|
|
farg.ll = float64_to_int64_round_to_zero(farg.d, &env->fp_status);
|
|
}
|
|
return farg.ll;
|
|
}
|
|
|
|
#endif
|
|
|
|
static inline uint64_t do_fri(CPUPPCState *env, uint64_t arg,
|
|
int rounding_mode)
|
|
{
|
|
CPU_DoubleU farg;
|
|
|
|
farg.ll = arg;
|
|
|
|
if (unlikely(float64_is_signaling_nan(farg.d))) {
|
|
/* sNaN round */
|
|
farg.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN |
|
|
POWERPC_EXCP_FP_VXCVI);
|
|
} else if (unlikely(float64_is_quiet_nan(farg.d) ||
|
|
float64_is_infinity(farg.d))) {
|
|
/* qNan / infinity round */
|
|
farg.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI);
|
|
} else {
|
|
set_float_rounding_mode(rounding_mode, &env->fp_status);
|
|
farg.ll = float64_round_to_int(farg.d, &env->fp_status);
|
|
/* Restore rounding mode from FPSCR */
|
|
fpscr_set_rounding_mode(env);
|
|
}
|
|
return farg.ll;
|
|
}
|
|
|
|
uint64_t helper_frin(CPUPPCState *env, uint64_t arg)
|
|
{
|
|
return do_fri(env, arg, float_round_nearest_even);
|
|
}
|
|
|
|
uint64_t helper_friz(CPUPPCState *env, uint64_t arg)
|
|
{
|
|
return do_fri(env, arg, float_round_to_zero);
|
|
}
|
|
|
|
uint64_t helper_frip(CPUPPCState *env, uint64_t arg)
|
|
{
|
|
return do_fri(env, arg, float_round_up);
|
|
}
|
|
|
|
uint64_t helper_frim(CPUPPCState *env, uint64_t arg)
|
|
{
|
|
return do_fri(env, arg, float_round_down);
|
|
}
|
|
|
|
/* fmadd - fmadd. */
|
|
uint64_t helper_fmadd(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
|
|
uint64_t arg3)
|
|
{
|
|
CPU_DoubleU farg1, farg2, farg3;
|
|
|
|
farg1.ll = arg1;
|
|
farg2.ll = arg2;
|
|
farg3.ll = arg3;
|
|
|
|
if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
|
|
(float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
|
|
/* Multiplication of zero by infinity */
|
|
farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ);
|
|
} else {
|
|
if (unlikely(float64_is_signaling_nan(farg1.d) ||
|
|
float64_is_signaling_nan(farg2.d) ||
|
|
float64_is_signaling_nan(farg3.d))) {
|
|
/* sNaN operation */
|
|
fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN);
|
|
}
|
|
/* This is the way the PowerPC specification defines it */
|
|
float128 ft0_128, ft1_128;
|
|
|
|
ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
|
|
ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
|
|
ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
|
|
if (unlikely(float128_is_infinity(ft0_128) &&
|
|
float64_is_infinity(farg3.d) &&
|
|
float128_is_neg(ft0_128) != float64_is_neg(farg3.d))) {
|
|
/* Magnitude subtraction of infinities */
|
|
farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI);
|
|
} else {
|
|
ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
|
|
ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
|
|
farg1.d = float128_to_float64(ft0_128, &env->fp_status);
|
|
}
|
|
}
|
|
|
|
return farg1.ll;
|
|
}
|
|
|
|
/* fmsub - fmsub. */
|
|
uint64_t helper_fmsub(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
|
|
uint64_t arg3)
|
|
{
|
|
CPU_DoubleU farg1, farg2, farg3;
|
|
|
|
farg1.ll = arg1;
|
|
farg2.ll = arg2;
|
|
farg3.ll = arg3;
|
|
|
|
if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
|
|
(float64_is_zero(farg1.d) &&
|
|
float64_is_infinity(farg2.d)))) {
|
|
/* Multiplication of zero by infinity */
|
|
farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ);
|
|
} else {
|
|
if (unlikely(float64_is_signaling_nan(farg1.d) ||
|
|
float64_is_signaling_nan(farg2.d) ||
|
|
float64_is_signaling_nan(farg3.d))) {
|
|
/* sNaN operation */
|
|
fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN);
|
|
}
|
|
/* This is the way the PowerPC specification defines it */
|
|
float128 ft0_128, ft1_128;
|
|
|
|
ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
|
|
ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
|
|
ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
|
|
if (unlikely(float128_is_infinity(ft0_128) &&
|
|
float64_is_infinity(farg3.d) &&
|
|
float128_is_neg(ft0_128) == float64_is_neg(farg3.d))) {
|
|
/* Magnitude subtraction of infinities */
|
|
farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI);
|
|
} else {
|
|
ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
|
|
ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
|
|
farg1.d = float128_to_float64(ft0_128, &env->fp_status);
|
|
}
|
|
}
|
|
return farg1.ll;
|
|
}
|
|
|
|
/* fnmadd - fnmadd. */
|
|
uint64_t helper_fnmadd(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
|
|
uint64_t arg3)
|
|
{
|
|
CPU_DoubleU farg1, farg2, farg3;
|
|
|
|
farg1.ll = arg1;
|
|
farg2.ll = arg2;
|
|
farg3.ll = arg3;
|
|
|
|
if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
|
|
(float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
|
|
/* Multiplication of zero by infinity */
|
|
farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ);
|
|
} else {
|
|
if (unlikely(float64_is_signaling_nan(farg1.d) ||
|
|
float64_is_signaling_nan(farg2.d) ||
|
|
float64_is_signaling_nan(farg3.d))) {
|
|
/* sNaN operation */
|
|
fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN);
|
|
}
|
|
/* This is the way the PowerPC specification defines it */
|
|
float128 ft0_128, ft1_128;
|
|
|
|
ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
|
|
ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
|
|
ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
|
|
if (unlikely(float128_is_infinity(ft0_128) &&
|
|
float64_is_infinity(farg3.d) &&
|
|
float128_is_neg(ft0_128) != float64_is_neg(farg3.d))) {
|
|
/* Magnitude subtraction of infinities */
|
|
farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI);
|
|
} else {
|
|
ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
|
|
ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
|
|
farg1.d = float128_to_float64(ft0_128, &env->fp_status);
|
|
}
|
|
if (likely(!float64_is_any_nan(farg1.d))) {
|
|
farg1.d = float64_chs(farg1.d);
|
|
}
|
|
}
|
|
return farg1.ll;
|
|
}
|
|
|
|
/* fnmsub - fnmsub. */
|
|
uint64_t helper_fnmsub(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
|
|
uint64_t arg3)
|
|
{
|
|
CPU_DoubleU farg1, farg2, farg3;
|
|
|
|
farg1.ll = arg1;
|
|
farg2.ll = arg2;
|
|
farg3.ll = arg3;
|
|
|
|
if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
|
|
(float64_is_zero(farg1.d) &&
|
|
float64_is_infinity(farg2.d)))) {
|
|
/* Multiplication of zero by infinity */
|
|
farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ);
|
|
} else {
|
|
if (unlikely(float64_is_signaling_nan(farg1.d) ||
|
|
float64_is_signaling_nan(farg2.d) ||
|
|
float64_is_signaling_nan(farg3.d))) {
|
|
/* sNaN operation */
|
|
fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN);
|
|
}
|
|
/* This is the way the PowerPC specification defines it */
|
|
float128 ft0_128, ft1_128;
|
|
|
|
ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
|
|
ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
|
|
ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
|
|
if (unlikely(float128_is_infinity(ft0_128) &&
|
|
float64_is_infinity(farg3.d) &&
|
|
float128_is_neg(ft0_128) == float64_is_neg(farg3.d))) {
|
|
/* Magnitude subtraction of infinities */
|
|
farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI);
|
|
} else {
|
|
ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
|
|
ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
|
|
farg1.d = float128_to_float64(ft0_128, &env->fp_status);
|
|
}
|
|
if (likely(!float64_is_any_nan(farg1.d))) {
|
|
farg1.d = float64_chs(farg1.d);
|
|
}
|
|
}
|
|
return farg1.ll;
|
|
}
|
|
|
|
/* frsp - frsp. */
|
|
uint64_t helper_frsp(CPUPPCState *env, uint64_t arg)
|
|
{
|
|
CPU_DoubleU farg;
|
|
float32 f32;
|
|
|
|
farg.ll = arg;
|
|
|
|
if (unlikely(float64_is_signaling_nan(farg.d))) {
|
|
/* sNaN square root */
|
|
fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN);
|
|
}
|
|
f32 = float64_to_float32(farg.d, &env->fp_status);
|
|
farg.d = float32_to_float64(f32, &env->fp_status);
|
|
|
|
return farg.ll;
|
|
}
|
|
|
|
/* fsqrt - fsqrt. */
|
|
uint64_t helper_fsqrt(CPUPPCState *env, uint64_t arg)
|
|
{
|
|
CPU_DoubleU farg;
|
|
|
|
farg.ll = arg;
|
|
|
|
if (unlikely(float64_is_neg(farg.d) && !float64_is_zero(farg.d))) {
|
|
/* Square root of a negative nonzero number */
|
|
farg.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSQRT);
|
|
} else {
|
|
if (unlikely(float64_is_signaling_nan(farg.d))) {
|
|
/* sNaN square root */
|
|
fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN);
|
|
}
|
|
farg.d = float64_sqrt(farg.d, &env->fp_status);
|
|
}
|
|
return farg.ll;
|
|
}
|
|
|
|
/* fre - fre. */
|
|
uint64_t helper_fre(CPUPPCState *env, uint64_t arg)
|
|
{
|
|
CPU_DoubleU farg;
|
|
|
|
farg.ll = arg;
|
|
|
|
if (unlikely(float64_is_signaling_nan(farg.d))) {
|
|
/* sNaN reciprocal */
|
|
fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN);
|
|
}
|
|
farg.d = float64_div(float64_one, farg.d, &env->fp_status);
|
|
return farg.d;
|
|
}
|
|
|
|
/* fres - fres. */
|
|
uint64_t helper_fres(CPUPPCState *env, uint64_t arg)
|
|
{
|
|
CPU_DoubleU farg;
|
|
float32 f32;
|
|
|
|
farg.ll = arg;
|
|
|
|
if (unlikely(float64_is_signaling_nan(farg.d))) {
|
|
/* sNaN reciprocal */
|
|
fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN);
|
|
}
|
|
farg.d = float64_div(float64_one, farg.d, &env->fp_status);
|
|
f32 = float64_to_float32(farg.d, &env->fp_status);
|
|
farg.d = float32_to_float64(f32, &env->fp_status);
|
|
|
|
return farg.ll;
|
|
}
|
|
|
|
/* frsqrte - frsqrte. */
|
|
uint64_t helper_frsqrte(CPUPPCState *env, uint64_t arg)
|
|
{
|
|
CPU_DoubleU farg;
|
|
float32 f32;
|
|
|
|
farg.ll = arg;
|
|
|
|
if (unlikely(float64_is_neg(farg.d) && !float64_is_zero(farg.d))) {
|
|
/* Reciprocal square root of a negative nonzero number */
|
|
farg.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSQRT);
|
|
} else {
|
|
if (unlikely(float64_is_signaling_nan(farg.d))) {
|
|
/* sNaN reciprocal square root */
|
|
fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN);
|
|
}
|
|
farg.d = float64_sqrt(farg.d, &env->fp_status);
|
|
farg.d = float64_div(float64_one, farg.d, &env->fp_status);
|
|
f32 = float64_to_float32(farg.d, &env->fp_status);
|
|
farg.d = float32_to_float64(f32, &env->fp_status);
|
|
}
|
|
return farg.ll;
|
|
}
|
|
|
|
/* fsel - fsel. */
|
|
uint64_t helper_fsel(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
|
|
uint64_t arg3)
|
|
{
|
|
CPU_DoubleU farg1;
|
|
|
|
farg1.ll = arg1;
|
|
|
|
if ((!float64_is_neg(farg1.d) || float64_is_zero(farg1.d)) &&
|
|
!float64_is_any_nan(farg1.d)) {
|
|
return arg2;
|
|
} else {
|
|
return arg3;
|
|
}
|
|
}
|
|
|
|
void helper_fcmpu(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
|
|
uint32_t crfD)
|
|
{
|
|
CPU_DoubleU farg1, farg2;
|
|
uint32_t ret = 0;
|
|
|
|
farg1.ll = arg1;
|
|
farg2.ll = arg2;
|
|
|
|
if (unlikely(float64_is_any_nan(farg1.d) ||
|
|
float64_is_any_nan(farg2.d))) {
|
|
ret = 0x01UL;
|
|
} else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
|
|
ret = 0x08UL;
|
|
} else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
|
|
ret = 0x04UL;
|
|
} else {
|
|
ret = 0x02UL;
|
|
}
|
|
|
|
env->fpscr &= ~(0x0F << FPSCR_FPRF);
|
|
env->fpscr |= ret << FPSCR_FPRF;
|
|
env->crf[crfD] = ret;
|
|
if (unlikely(ret == 0x01UL
|
|
&& (float64_is_signaling_nan(farg1.d) ||
|
|
float64_is_signaling_nan(farg2.d)))) {
|
|
/* sNaN comparison */
|
|
fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN);
|
|
}
|
|
}
|
|
|
|
void helper_fcmpo(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
|
|
uint32_t crfD)
|
|
{
|
|
CPU_DoubleU farg1, farg2;
|
|
uint32_t ret = 0;
|
|
|
|
farg1.ll = arg1;
|
|
farg2.ll = arg2;
|
|
|
|
if (unlikely(float64_is_any_nan(farg1.d) ||
|
|
float64_is_any_nan(farg2.d))) {
|
|
ret = 0x01UL;
|
|
} else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
|
|
ret = 0x08UL;
|
|
} else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
|
|
ret = 0x04UL;
|
|
} else {
|
|
ret = 0x02UL;
|
|
}
|
|
|
|
env->fpscr &= ~(0x0F << FPSCR_FPRF);
|
|
env->fpscr |= ret << FPSCR_FPRF;
|
|
env->crf[crfD] = ret;
|
|
if (unlikely(ret == 0x01UL)) {
|
|
if (float64_is_signaling_nan(farg1.d) ||
|
|
float64_is_signaling_nan(farg2.d)) {
|
|
/* sNaN comparison */
|
|
fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN |
|
|
POWERPC_EXCP_FP_VXVC);
|
|
} else {
|
|
/* qNaN comparison */
|
|
fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXVC);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Single-precision floating-point conversions */
|
|
static inline uint32_t efscfsi(CPUPPCState *env, uint32_t val)
|
|
{
|
|
CPU_FloatU u;
|
|
|
|
u.f = int32_to_float32(val, &env->vec_status);
|
|
|
|
return u.l;
|
|
}
|
|
|
|
static inline uint32_t efscfui(CPUPPCState *env, uint32_t val)
|
|
{
|
|
CPU_FloatU u;
|
|
|
|
u.f = uint32_to_float32(val, &env->vec_status);
|
|
|
|
return u.l;
|
|
}
|
|
|
|
static inline int32_t efsctsi(CPUPPCState *env, uint32_t val)
|
|
{
|
|
CPU_FloatU u;
|
|
|
|
u.l = val;
|
|
/* NaN are not treated the same way IEEE 754 does */
|
|
if (unlikely(float32_is_quiet_nan(u.f))) {
|
|
return 0;
|
|
}
|
|
|
|
return float32_to_int32(u.f, &env->vec_status);
|
|
}
|
|
|
|
static inline uint32_t efsctui(CPUPPCState *env, uint32_t val)
|
|
{
|
|
CPU_FloatU u;
|
|
|
|
u.l = val;
|
|
/* NaN are not treated the same way IEEE 754 does */
|
|
if (unlikely(float32_is_quiet_nan(u.f))) {
|
|
return 0;
|
|
}
|
|
|
|
return float32_to_uint32(u.f, &env->vec_status);
|
|
}
|
|
|
|
static inline uint32_t efsctsiz(CPUPPCState *env, uint32_t val)
|
|
{
|
|
CPU_FloatU u;
|
|
|
|
u.l = val;
|
|
/* NaN are not treated the same way IEEE 754 does */
|
|
if (unlikely(float32_is_quiet_nan(u.f))) {
|
|
return 0;
|
|
}
|
|
|
|
return float32_to_int32_round_to_zero(u.f, &env->vec_status);
|
|
}
|
|
|
|
static inline uint32_t efsctuiz(CPUPPCState *env, uint32_t val)
|
|
{
|
|
CPU_FloatU u;
|
|
|
|
u.l = val;
|
|
/* NaN are not treated the same way IEEE 754 does */
|
|
if (unlikely(float32_is_quiet_nan(u.f))) {
|
|
return 0;
|
|
}
|
|
|
|
return float32_to_uint32_round_to_zero(u.f, &env->vec_status);
|
|
}
|
|
|
|
static inline uint32_t efscfsf(CPUPPCState *env, uint32_t val)
|
|
{
|
|
CPU_FloatU u;
|
|
float32 tmp;
|
|
|
|
u.f = int32_to_float32(val, &env->vec_status);
|
|
tmp = int64_to_float32(1ULL << 32, &env->vec_status);
|
|
u.f = float32_div(u.f, tmp, &env->vec_status);
|
|
|
|
return u.l;
|
|
}
|
|
|
|
static inline uint32_t efscfuf(CPUPPCState *env, uint32_t val)
|
|
{
|
|
CPU_FloatU u;
|
|
float32 tmp;
|
|
|
|
u.f = uint32_to_float32(val, &env->vec_status);
|
|
tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
|
|
u.f = float32_div(u.f, tmp, &env->vec_status);
|
|
|
|
return u.l;
|
|
}
|
|
|
|
static inline uint32_t efsctsf(CPUPPCState *env, uint32_t val)
|
|
{
|
|
CPU_FloatU u;
|
|
float32 tmp;
|
|
|
|
u.l = val;
|
|
/* NaN are not treated the same way IEEE 754 does */
|
|
if (unlikely(float32_is_quiet_nan(u.f))) {
|
|
return 0;
|
|
}
|
|
tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
|
|
u.f = float32_mul(u.f, tmp, &env->vec_status);
|
|
|
|
return float32_to_int32(u.f, &env->vec_status);
|
|
}
|
|
|
|
static inline uint32_t efsctuf(CPUPPCState *env, uint32_t val)
|
|
{
|
|
CPU_FloatU u;
|
|
float32 tmp;
|
|
|
|
u.l = val;
|
|
/* NaN are not treated the same way IEEE 754 does */
|
|
if (unlikely(float32_is_quiet_nan(u.f))) {
|
|
return 0;
|
|
}
|
|
tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
|
|
u.f = float32_mul(u.f, tmp, &env->vec_status);
|
|
|
|
return float32_to_uint32(u.f, &env->vec_status);
|
|
}
|
|
|
|
#define HELPER_SPE_SINGLE_CONV(name) \
|
|
uint32_t helper_e##name(CPUPPCState *env, uint32_t val) \
|
|
{ \
|
|
return e##name(env, val); \
|
|
}
|
|
/* efscfsi */
|
|
HELPER_SPE_SINGLE_CONV(fscfsi);
|
|
/* efscfui */
|
|
HELPER_SPE_SINGLE_CONV(fscfui);
|
|
/* efscfuf */
|
|
HELPER_SPE_SINGLE_CONV(fscfuf);
|
|
/* efscfsf */
|
|
HELPER_SPE_SINGLE_CONV(fscfsf);
|
|
/* efsctsi */
|
|
HELPER_SPE_SINGLE_CONV(fsctsi);
|
|
/* efsctui */
|
|
HELPER_SPE_SINGLE_CONV(fsctui);
|
|
/* efsctsiz */
|
|
HELPER_SPE_SINGLE_CONV(fsctsiz);
|
|
/* efsctuiz */
|
|
HELPER_SPE_SINGLE_CONV(fsctuiz);
|
|
/* efsctsf */
|
|
HELPER_SPE_SINGLE_CONV(fsctsf);
|
|
/* efsctuf */
|
|
HELPER_SPE_SINGLE_CONV(fsctuf);
|
|
|
|
#define HELPER_SPE_VECTOR_CONV(name) \
|
|
uint64_t helper_ev##name(CPUPPCState *env, uint64_t val) \
|
|
{ \
|
|
return ((uint64_t)e##name(env, val >> 32) << 32) | \
|
|
(uint64_t)e##name(env, val); \
|
|
}
|
|
/* evfscfsi */
|
|
HELPER_SPE_VECTOR_CONV(fscfsi);
|
|
/* evfscfui */
|
|
HELPER_SPE_VECTOR_CONV(fscfui);
|
|
/* evfscfuf */
|
|
HELPER_SPE_VECTOR_CONV(fscfuf);
|
|
/* evfscfsf */
|
|
HELPER_SPE_VECTOR_CONV(fscfsf);
|
|
/* evfsctsi */
|
|
HELPER_SPE_VECTOR_CONV(fsctsi);
|
|
/* evfsctui */
|
|
HELPER_SPE_VECTOR_CONV(fsctui);
|
|
/* evfsctsiz */
|
|
HELPER_SPE_VECTOR_CONV(fsctsiz);
|
|
/* evfsctuiz */
|
|
HELPER_SPE_VECTOR_CONV(fsctuiz);
|
|
/* evfsctsf */
|
|
HELPER_SPE_VECTOR_CONV(fsctsf);
|
|
/* evfsctuf */
|
|
HELPER_SPE_VECTOR_CONV(fsctuf);
|
|
|
|
/* Single-precision floating-point arithmetic */
|
|
static inline uint32_t efsadd(CPUPPCState *env, uint32_t op1, uint32_t op2)
|
|
{
|
|
CPU_FloatU u1, u2;
|
|
|
|
u1.l = op1;
|
|
u2.l = op2;
|
|
u1.f = float32_add(u1.f, u2.f, &env->vec_status);
|
|
return u1.l;
|
|
}
|
|
|
|
static inline uint32_t efssub(CPUPPCState *env, uint32_t op1, uint32_t op2)
|
|
{
|
|
CPU_FloatU u1, u2;
|
|
|
|
u1.l = op1;
|
|
u2.l = op2;
|
|
u1.f = float32_sub(u1.f, u2.f, &env->vec_status);
|
|
return u1.l;
|
|
}
|
|
|
|
static inline uint32_t efsmul(CPUPPCState *env, uint32_t op1, uint32_t op2)
|
|
{
|
|
CPU_FloatU u1, u2;
|
|
|
|
u1.l = op1;
|
|
u2.l = op2;
|
|
u1.f = float32_mul(u1.f, u2.f, &env->vec_status);
|
|
return u1.l;
|
|
}
|
|
|
|
static inline uint32_t efsdiv(CPUPPCState *env, uint32_t op1, uint32_t op2)
|
|
{
|
|
CPU_FloatU u1, u2;
|
|
|
|
u1.l = op1;
|
|
u2.l = op2;
|
|
u1.f = float32_div(u1.f, u2.f, &env->vec_status);
|
|
return u1.l;
|
|
}
|
|
|
|
#define HELPER_SPE_SINGLE_ARITH(name) \
|
|
uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \
|
|
{ \
|
|
return e##name(env, op1, op2); \
|
|
}
|
|
/* efsadd */
|
|
HELPER_SPE_SINGLE_ARITH(fsadd);
|
|
/* efssub */
|
|
HELPER_SPE_SINGLE_ARITH(fssub);
|
|
/* efsmul */
|
|
HELPER_SPE_SINGLE_ARITH(fsmul);
|
|
/* efsdiv */
|
|
HELPER_SPE_SINGLE_ARITH(fsdiv);
|
|
|
|
#define HELPER_SPE_VECTOR_ARITH(name) \
|
|
uint64_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \
|
|
{ \
|
|
return ((uint64_t)e##name(env, op1 >> 32, op2 >> 32) << 32) | \
|
|
(uint64_t)e##name(env, op1, op2); \
|
|
}
|
|
/* evfsadd */
|
|
HELPER_SPE_VECTOR_ARITH(fsadd);
|
|
/* evfssub */
|
|
HELPER_SPE_VECTOR_ARITH(fssub);
|
|
/* evfsmul */
|
|
HELPER_SPE_VECTOR_ARITH(fsmul);
|
|
/* evfsdiv */
|
|
HELPER_SPE_VECTOR_ARITH(fsdiv);
|
|
|
|
/* Single-precision floating-point comparisons */
|
|
static inline uint32_t efscmplt(CPUPPCState *env, uint32_t op1, uint32_t op2)
|
|
{
|
|
CPU_FloatU u1, u2;
|
|
|
|
u1.l = op1;
|
|
u2.l = op2;
|
|
return float32_lt(u1.f, u2.f, &env->vec_status) ? 4 : 0;
|
|
}
|
|
|
|
static inline uint32_t efscmpgt(CPUPPCState *env, uint32_t op1, uint32_t op2)
|
|
{
|
|
CPU_FloatU u1, u2;
|
|
|
|
u1.l = op1;
|
|
u2.l = op2;
|
|
return float32_le(u1.f, u2.f, &env->vec_status) ? 0 : 4;
|
|
}
|
|
|
|
static inline uint32_t efscmpeq(CPUPPCState *env, uint32_t op1, uint32_t op2)
|
|
{
|
|
CPU_FloatU u1, u2;
|
|
|
|
u1.l = op1;
|
|
u2.l = op2;
|
|
return float32_eq(u1.f, u2.f, &env->vec_status) ? 4 : 0;
|
|
}
|
|
|
|
static inline uint32_t efststlt(CPUPPCState *env, uint32_t op1, uint32_t op2)
|
|
{
|
|
/* XXX: TODO: ignore special values (NaN, infinites, ...) */
|
|
return efscmplt(env, op1, op2);
|
|
}
|
|
|
|
static inline uint32_t efststgt(CPUPPCState *env, uint32_t op1, uint32_t op2)
|
|
{
|
|
/* XXX: TODO: ignore special values (NaN, infinites, ...) */
|
|
return efscmpgt(env, op1, op2);
|
|
}
|
|
|
|
static inline uint32_t efststeq(CPUPPCState *env, uint32_t op1, uint32_t op2)
|
|
{
|
|
/* XXX: TODO: ignore special values (NaN, infinites, ...) */
|
|
return efscmpeq(env, op1, op2);
|
|
}
|
|
|
|
#define HELPER_SINGLE_SPE_CMP(name) \
|
|
uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \
|
|
{ \
|
|
return e##name(env, op1, op2) << 2; \
|
|
}
|
|
/* efststlt */
|
|
HELPER_SINGLE_SPE_CMP(fststlt);
|
|
/* efststgt */
|
|
HELPER_SINGLE_SPE_CMP(fststgt);
|
|
/* efststeq */
|
|
HELPER_SINGLE_SPE_CMP(fststeq);
|
|
/* efscmplt */
|
|
HELPER_SINGLE_SPE_CMP(fscmplt);
|
|
/* efscmpgt */
|
|
HELPER_SINGLE_SPE_CMP(fscmpgt);
|
|
/* efscmpeq */
|
|
HELPER_SINGLE_SPE_CMP(fscmpeq);
|
|
|
|
static inline uint32_t evcmp_merge(int t0, int t1)
|
|
{
|
|
return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1);
|
|
}
|
|
|
|
#define HELPER_VECTOR_SPE_CMP(name) \
|
|
uint32_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \
|
|
{ \
|
|
return evcmp_merge(e##name(env, op1 >> 32, op2 >> 32), \
|
|
e##name(env, op1, op2)); \
|
|
}
|
|
/* evfststlt */
|
|
HELPER_VECTOR_SPE_CMP(fststlt);
|
|
/* evfststgt */
|
|
HELPER_VECTOR_SPE_CMP(fststgt);
|
|
/* evfststeq */
|
|
HELPER_VECTOR_SPE_CMP(fststeq);
|
|
/* evfscmplt */
|
|
HELPER_VECTOR_SPE_CMP(fscmplt);
|
|
/* evfscmpgt */
|
|
HELPER_VECTOR_SPE_CMP(fscmpgt);
|
|
/* evfscmpeq */
|
|
HELPER_VECTOR_SPE_CMP(fscmpeq);
|
|
|
|
/* Double-precision floating-point conversion */
|
|
uint64_t helper_efdcfsi(CPUPPCState *env, uint32_t val)
|
|
{
|
|
CPU_DoubleU u;
|
|
|
|
u.d = int32_to_float64(val, &env->vec_status);
|
|
|
|
return u.ll;
|
|
}
|
|
|
|
uint64_t helper_efdcfsid(CPUPPCState *env, uint64_t val)
|
|
{
|
|
CPU_DoubleU u;
|
|
|
|
u.d = int64_to_float64(val, &env->vec_status);
|
|
|
|
return u.ll;
|
|
}
|
|
|
|
uint64_t helper_efdcfui(CPUPPCState *env, uint32_t val)
|
|
{
|
|
CPU_DoubleU u;
|
|
|
|
u.d = uint32_to_float64(val, &env->vec_status);
|
|
|
|
return u.ll;
|
|
}
|
|
|
|
uint64_t helper_efdcfuid(CPUPPCState *env, uint64_t val)
|
|
{
|
|
CPU_DoubleU u;
|
|
|
|
u.d = uint64_to_float64(val, &env->vec_status);
|
|
|
|
return u.ll;
|
|
}
|
|
|
|
uint32_t helper_efdctsi(CPUPPCState *env, uint64_t val)
|
|
{
|
|
CPU_DoubleU u;
|
|
|
|
u.ll = val;
|
|
/* NaN are not treated the same way IEEE 754 does */
|
|
if (unlikely(float64_is_any_nan(u.d))) {
|
|
return 0;
|
|
}
|
|
|
|
return float64_to_int32(u.d, &env->vec_status);
|
|
}
|
|
|
|
uint32_t helper_efdctui(CPUPPCState *env, uint64_t val)
|
|
{
|
|
CPU_DoubleU u;
|
|
|
|
u.ll = val;
|
|
/* NaN are not treated the same way IEEE 754 does */
|
|
if (unlikely(float64_is_any_nan(u.d))) {
|
|
return 0;
|
|
}
|
|
|
|
return float64_to_uint32(u.d, &env->vec_status);
|
|
}
|
|
|
|
uint32_t helper_efdctsiz(CPUPPCState *env, uint64_t val)
|
|
{
|
|
CPU_DoubleU u;
|
|
|
|
u.ll = val;
|
|
/* NaN are not treated the same way IEEE 754 does */
|
|
if (unlikely(float64_is_any_nan(u.d))) {
|
|
return 0;
|
|
}
|
|
|
|
return float64_to_int32_round_to_zero(u.d, &env->vec_status);
|
|
}
|
|
|
|
uint64_t helper_efdctsidz(CPUPPCState *env, uint64_t val)
|
|
{
|
|
CPU_DoubleU u;
|
|
|
|
u.ll = val;
|
|
/* NaN are not treated the same way IEEE 754 does */
|
|
if (unlikely(float64_is_any_nan(u.d))) {
|
|
return 0;
|
|
}
|
|
|
|
return float64_to_int64_round_to_zero(u.d, &env->vec_status);
|
|
}
|
|
|
|
uint32_t helper_efdctuiz(CPUPPCState *env, uint64_t val)
|
|
{
|
|
CPU_DoubleU u;
|
|
|
|
u.ll = val;
|
|
/* NaN are not treated the same way IEEE 754 does */
|
|
if (unlikely(float64_is_any_nan(u.d))) {
|
|
return 0;
|
|
}
|
|
|
|
return float64_to_uint32_round_to_zero(u.d, &env->vec_status);
|
|
}
|
|
|
|
uint64_t helper_efdctuidz(CPUPPCState *env, uint64_t val)
|
|
{
|
|
CPU_DoubleU u;
|
|
|
|
u.ll = val;
|
|
/* NaN are not treated the same way IEEE 754 does */
|
|
if (unlikely(float64_is_any_nan(u.d))) {
|
|
return 0;
|
|
}
|
|
|
|
return float64_to_uint64_round_to_zero(u.d, &env->vec_status);
|
|
}
|
|
|
|
uint64_t helper_efdcfsf(CPUPPCState *env, uint32_t val)
|
|
{
|
|
CPU_DoubleU u;
|
|
float64 tmp;
|
|
|
|
u.d = int32_to_float64(val, &env->vec_status);
|
|
tmp = int64_to_float64(1ULL << 32, &env->vec_status);
|
|
u.d = float64_div(u.d, tmp, &env->vec_status);
|
|
|
|
return u.ll;
|
|
}
|
|
|
|
uint64_t helper_efdcfuf(CPUPPCState *env, uint32_t val)
|
|
{
|
|
CPU_DoubleU u;
|
|
float64 tmp;
|
|
|
|
u.d = uint32_to_float64(val, &env->vec_status);
|
|
tmp = int64_to_float64(1ULL << 32, &env->vec_status);
|
|
u.d = float64_div(u.d, tmp, &env->vec_status);
|
|
|
|
return u.ll;
|
|
}
|
|
|
|
uint32_t helper_efdctsf(CPUPPCState *env, uint64_t val)
|
|
{
|
|
CPU_DoubleU u;
|
|
float64 tmp;
|
|
|
|
u.ll = val;
|
|
/* NaN are not treated the same way IEEE 754 does */
|
|
if (unlikely(float64_is_any_nan(u.d))) {
|
|
return 0;
|
|
}
|
|
tmp = uint64_to_float64(1ULL << 32, &env->vec_status);
|
|
u.d = float64_mul(u.d, tmp, &env->vec_status);
|
|
|
|
return float64_to_int32(u.d, &env->vec_status);
|
|
}
|
|
|
|
uint32_t helper_efdctuf(CPUPPCState *env, uint64_t val)
|
|
{
|
|
CPU_DoubleU u;
|
|
float64 tmp;
|
|
|
|
u.ll = val;
|
|
/* NaN are not treated the same way IEEE 754 does */
|
|
if (unlikely(float64_is_any_nan(u.d))) {
|
|
return 0;
|
|
}
|
|
tmp = uint64_to_float64(1ULL << 32, &env->vec_status);
|
|
u.d = float64_mul(u.d, tmp, &env->vec_status);
|
|
|
|
return float64_to_uint32(u.d, &env->vec_status);
|
|
}
|
|
|
|
uint32_t helper_efscfd(CPUPPCState *env, uint64_t val)
|
|
{
|
|
CPU_DoubleU u1;
|
|
CPU_FloatU u2;
|
|
|
|
u1.ll = val;
|
|
u2.f = float64_to_float32(u1.d, &env->vec_status);
|
|
|
|
return u2.l;
|
|
}
|
|
|
|
uint64_t helper_efdcfs(CPUPPCState *env, uint32_t val)
|
|
{
|
|
CPU_DoubleU u2;
|
|
CPU_FloatU u1;
|
|
|
|
u1.l = val;
|
|
u2.d = float32_to_float64(u1.f, &env->vec_status);
|
|
|
|
return u2.ll;
|
|
}
|
|
|
|
/* Double precision fixed-point arithmetic */
|
|
uint64_t helper_efdadd(CPUPPCState *env, uint64_t op1, uint64_t op2)
|
|
{
|
|
CPU_DoubleU u1, u2;
|
|
|
|
u1.ll = op1;
|
|
u2.ll = op2;
|
|
u1.d = float64_add(u1.d, u2.d, &env->vec_status);
|
|
return u1.ll;
|
|
}
|
|
|
|
uint64_t helper_efdsub(CPUPPCState *env, uint64_t op1, uint64_t op2)
|
|
{
|
|
CPU_DoubleU u1, u2;
|
|
|
|
u1.ll = op1;
|
|
u2.ll = op2;
|
|
u1.d = float64_sub(u1.d, u2.d, &env->vec_status);
|
|
return u1.ll;
|
|
}
|
|
|
|
uint64_t helper_efdmul(CPUPPCState *env, uint64_t op1, uint64_t op2)
|
|
{
|
|
CPU_DoubleU u1, u2;
|
|
|
|
u1.ll = op1;
|
|
u2.ll = op2;
|
|
u1.d = float64_mul(u1.d, u2.d, &env->vec_status);
|
|
return u1.ll;
|
|
}
|
|
|
|
uint64_t helper_efddiv(CPUPPCState *env, uint64_t op1, uint64_t op2)
|
|
{
|
|
CPU_DoubleU u1, u2;
|
|
|
|
u1.ll = op1;
|
|
u2.ll = op2;
|
|
u1.d = float64_div(u1.d, u2.d, &env->vec_status);
|
|
return u1.ll;
|
|
}
|
|
|
|
/* Double precision floating point helpers */
|
|
uint32_t helper_efdtstlt(CPUPPCState *env, uint64_t op1, uint64_t op2)
|
|
{
|
|
CPU_DoubleU u1, u2;
|
|
|
|
u1.ll = op1;
|
|
u2.ll = op2;
|
|
return float64_lt(u1.d, u2.d, &env->vec_status) ? 4 : 0;
|
|
}
|
|
|
|
uint32_t helper_efdtstgt(CPUPPCState *env, uint64_t op1, uint64_t op2)
|
|
{
|
|
CPU_DoubleU u1, u2;
|
|
|
|
u1.ll = op1;
|
|
u2.ll = op2;
|
|
return float64_le(u1.d, u2.d, &env->vec_status) ? 0 : 4;
|
|
}
|
|
|
|
uint32_t helper_efdtsteq(CPUPPCState *env, uint64_t op1, uint64_t op2)
|
|
{
|
|
CPU_DoubleU u1, u2;
|
|
|
|
u1.ll = op1;
|
|
u2.ll = op2;
|
|
return float64_eq_quiet(u1.d, u2.d, &env->vec_status) ? 4 : 0;
|
|
}
|
|
|
|
uint32_t helper_efdcmplt(CPUPPCState *env, uint64_t op1, uint64_t op2)
|
|
{
|
|
/* XXX: TODO: test special values (NaN, infinites, ...) */
|
|
return helper_efdtstlt(env, op1, op2);
|
|
}
|
|
|
|
uint32_t helper_efdcmpgt(CPUPPCState *env, uint64_t op1, uint64_t op2)
|
|
{
|
|
/* XXX: TODO: test special values (NaN, infinites, ...) */
|
|
return helper_efdtstgt(env, op1, op2);
|
|
}
|
|
|
|
uint32_t helper_efdcmpeq(CPUPPCState *env, uint64_t op1, uint64_t op2)
|
|
{
|
|
/* XXX: TODO: test special values (NaN, infinites, ...) */
|
|
return helper_efdtsteq(env, op1, op2);
|
|
}
|