qemu/hw/ppc/spapr_hcall.c
David Gibson 7222b94a83 target/ppc: Cleanup HPTE accessors for 64-bit hash MMU
Accesses to the hashed page table (HPT) are complicated by the fact that
the HPT could be in one of three places:
   1) Within guest memory - when we're emulating a full guest CPU at the
      hardware level (e.g. powernv, mac99, g3beige)
   2) Within qemu, but outside guest memory - when we're emulating user and
      supervisor instructions within TCG, but instead of emulating
      the CPU's hypervisor mode, we just emulate a hypervisor's behaviour
      (pseries in TCG or KVM-PR)
   3) Within the host kernel - a pseries machine using KVM-HV
      acceleration.  Mostly accesses to the HPT are handled by KVM,
      but there are a few cases where qemu needs to access it via a
      special fd for the purpose.

In order to batch accesses to the fd in case (3), we use a somewhat awkward
ppc_hash64_start_access() / ppc_hash64_stop_access() pair, which for case
(3) reads / releases several HPTEs from the kernel as a batch (usually a
whole PTEG).  For cases (1) & (2) it just returns an address value.  The
actual HPTE load helpers then need to interpret the returned token
differently in the 3 cases.

This patch keeps the same basic structure, but simplfiies the details.
First start_access() / stop_access() are renamed to map_hptes() and
unmap_hptes() to make their operation more obvious.  Second, map_hptes()
now always returns a qemu pointer, which can always be used in the same way
by the load_hpte() helpers.  In case (1) it comes from address_space_map()
in case (2) directly from qemu's HPT buffer and in case (3) from a
temporary buffer read from the KVM fd.

While we're at it, make things a bit more consistent in terms of types and
variable names: avoid variables named 'index' (it shadows index(3) which
can lead to confusing results), use 'hwaddr ptex' for HPTE indices and
uint64_t for each of the HPTE words, use ptex throughout the call stack
instead of pte_offset in some places (we still need that at the bottom
layer, but nowhere else).

Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2017-03-01 11:23:39 +11:00

1109 lines
31 KiB
C

#include "qemu/osdep.h"
#include "qapi/error.h"
#include "sysemu/hw_accel.h"
#include "sysemu/sysemu.h"
#include "qemu/log.h"
#include "cpu.h"
#include "exec/exec-all.h"
#include "helper_regs.h"
#include "hw/ppc/spapr.h"
#include "mmu-hash64.h"
#include "cpu-models.h"
#include "trace.h"
#include "kvm_ppc.h"
#include "hw/ppc/spapr_ovec.h"
struct SPRSyncState {
int spr;
target_ulong value;
target_ulong mask;
};
static void do_spr_sync(CPUState *cs, run_on_cpu_data arg)
{
struct SPRSyncState *s = arg.host_ptr;
PowerPCCPU *cpu = POWERPC_CPU(cs);
CPUPPCState *env = &cpu->env;
cpu_synchronize_state(cs);
env->spr[s->spr] &= ~s->mask;
env->spr[s->spr] |= s->value;
}
static void set_spr(CPUState *cs, int spr, target_ulong value,
target_ulong mask)
{
struct SPRSyncState s = {
.spr = spr,
.value = value,
.mask = mask
};
run_on_cpu(cs, do_spr_sync, RUN_ON_CPU_HOST_PTR(&s));
}
static bool has_spr(PowerPCCPU *cpu, int spr)
{
/* We can test whether the SPR is defined by checking for a valid name */
return cpu->env.spr_cb[spr].name != NULL;
}
static inline bool valid_ptex(PowerPCCPU *cpu, target_ulong ptex)
{
/*
* hash value/pteg group index is normalized by htab_mask
*/
if (((ptex & ~7ULL) / HPTES_PER_GROUP) & ~cpu->env.htab_mask) {
return false;
}
return true;
}
static bool is_ram_address(sPAPRMachineState *spapr, hwaddr addr)
{
MachineState *machine = MACHINE(spapr);
MemoryHotplugState *hpms = &spapr->hotplug_memory;
if (addr < machine->ram_size) {
return true;
}
if ((addr >= hpms->base)
&& ((addr - hpms->base) < memory_region_size(&hpms->mr))) {
return true;
}
return false;
}
static target_ulong h_enter(PowerPCCPU *cpu, sPAPRMachineState *spapr,
target_ulong opcode, target_ulong *args)
{
target_ulong flags = args[0];
target_ulong ptex = args[1];
target_ulong pteh = args[2];
target_ulong ptel = args[3];
unsigned apshift;
target_ulong raddr;
target_ulong slot;
const ppc_hash_pte64_t *hptes;
apshift = ppc_hash64_hpte_page_shift_noslb(cpu, pteh, ptel);
if (!apshift) {
/* Bad page size encoding */
return H_PARAMETER;
}
raddr = (ptel & HPTE64_R_RPN) & ~((1ULL << apshift) - 1);
if (is_ram_address(spapr, raddr)) {
/* Regular RAM - should have WIMG=0010 */
if ((ptel & HPTE64_R_WIMG) != HPTE64_R_M) {
return H_PARAMETER;
}
} else {
target_ulong wimg_flags;
/* Looks like an IO address */
/* FIXME: What WIMG combinations could be sensible for IO?
* For now we allow WIMG=010x, but are there others? */
/* FIXME: Should we check against registered IO addresses? */
wimg_flags = (ptel & (HPTE64_R_W | HPTE64_R_I | HPTE64_R_M));
if (wimg_flags != HPTE64_R_I &&
wimg_flags != (HPTE64_R_I | HPTE64_R_M)) {
return H_PARAMETER;
}
}
pteh &= ~0x60ULL;
if (!valid_ptex(cpu, ptex)) {
return H_PARAMETER;
}
slot = ptex & 7ULL;
ptex = ptex & ~7ULL;
if (likely((flags & H_EXACT) == 0)) {
hptes = ppc_hash64_map_hptes(cpu, ptex, HPTES_PER_GROUP);
for (slot = 0; slot < 8; slot++) {
if (!(ppc_hash64_hpte0(cpu, hptes, slot) & HPTE64_V_VALID)) {
break;
}
}
ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP);
if (slot == 8) {
return H_PTEG_FULL;
}
} else {
hptes = ppc_hash64_map_hptes(cpu, ptex + slot, 1);
if (ppc_hash64_hpte0(cpu, hptes, 0) & HPTE64_V_VALID) {
ppc_hash64_unmap_hptes(cpu, hptes, ptex + slot, 1);
return H_PTEG_FULL;
}
ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1);
}
ppc_hash64_store_hpte(cpu, ptex + slot, pteh | HPTE64_V_HPTE_DIRTY, ptel);
args[0] = ptex + slot;
return H_SUCCESS;
}
typedef enum {
REMOVE_SUCCESS = 0,
REMOVE_NOT_FOUND = 1,
REMOVE_PARM = 2,
REMOVE_HW = 3,
} RemoveResult;
static RemoveResult remove_hpte(PowerPCCPU *cpu, target_ulong ptex,
target_ulong avpn,
target_ulong flags,
target_ulong *vp, target_ulong *rp)
{
const ppc_hash_pte64_t *hptes;
target_ulong v, r;
if (!valid_ptex(cpu, ptex)) {
return REMOVE_PARM;
}
hptes = ppc_hash64_map_hptes(cpu, ptex, 1);
v = ppc_hash64_hpte0(cpu, hptes, 0);
r = ppc_hash64_hpte1(cpu, hptes, 0);
ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1);
if ((v & HPTE64_V_VALID) == 0 ||
((flags & H_AVPN) && (v & ~0x7fULL) != avpn) ||
((flags & H_ANDCOND) && (v & avpn) != 0)) {
return REMOVE_NOT_FOUND;
}
*vp = v;
*rp = r;
ppc_hash64_store_hpte(cpu, ptex, HPTE64_V_HPTE_DIRTY, 0);
ppc_hash64_tlb_flush_hpte(cpu, ptex, v, r);
return REMOVE_SUCCESS;
}
static target_ulong h_remove(PowerPCCPU *cpu, sPAPRMachineState *spapr,
target_ulong opcode, target_ulong *args)
{
CPUPPCState *env = &cpu->env;
target_ulong flags = args[0];
target_ulong ptex = args[1];
target_ulong avpn = args[2];
RemoveResult ret;
ret = remove_hpte(cpu, ptex, avpn, flags,
&args[0], &args[1]);
switch (ret) {
case REMOVE_SUCCESS:
check_tlb_flush(env, true);
return H_SUCCESS;
case REMOVE_NOT_FOUND:
return H_NOT_FOUND;
case REMOVE_PARM:
return H_PARAMETER;
case REMOVE_HW:
return H_HARDWARE;
}
g_assert_not_reached();
}
#define H_BULK_REMOVE_TYPE 0xc000000000000000ULL
#define H_BULK_REMOVE_REQUEST 0x4000000000000000ULL
#define H_BULK_REMOVE_RESPONSE 0x8000000000000000ULL
#define H_BULK_REMOVE_END 0xc000000000000000ULL
#define H_BULK_REMOVE_CODE 0x3000000000000000ULL
#define H_BULK_REMOVE_SUCCESS 0x0000000000000000ULL
#define H_BULK_REMOVE_NOT_FOUND 0x1000000000000000ULL
#define H_BULK_REMOVE_PARM 0x2000000000000000ULL
#define H_BULK_REMOVE_HW 0x3000000000000000ULL
#define H_BULK_REMOVE_RC 0x0c00000000000000ULL
#define H_BULK_REMOVE_FLAGS 0x0300000000000000ULL
#define H_BULK_REMOVE_ABSOLUTE 0x0000000000000000ULL
#define H_BULK_REMOVE_ANDCOND 0x0100000000000000ULL
#define H_BULK_REMOVE_AVPN 0x0200000000000000ULL
#define H_BULK_REMOVE_PTEX 0x00ffffffffffffffULL
#define H_BULK_REMOVE_MAX_BATCH 4
static target_ulong h_bulk_remove(PowerPCCPU *cpu, sPAPRMachineState *spapr,
target_ulong opcode, target_ulong *args)
{
CPUPPCState *env = &cpu->env;
int i;
target_ulong rc = H_SUCCESS;
for (i = 0; i < H_BULK_REMOVE_MAX_BATCH; i++) {
target_ulong *tsh = &args[i*2];
target_ulong tsl = args[i*2 + 1];
target_ulong v, r, ret;
if ((*tsh & H_BULK_REMOVE_TYPE) == H_BULK_REMOVE_END) {
break;
} else if ((*tsh & H_BULK_REMOVE_TYPE) != H_BULK_REMOVE_REQUEST) {
return H_PARAMETER;
}
*tsh &= H_BULK_REMOVE_PTEX | H_BULK_REMOVE_FLAGS;
*tsh |= H_BULK_REMOVE_RESPONSE;
if ((*tsh & H_BULK_REMOVE_ANDCOND) && (*tsh & H_BULK_REMOVE_AVPN)) {
*tsh |= H_BULK_REMOVE_PARM;
return H_PARAMETER;
}
ret = remove_hpte(cpu, *tsh & H_BULK_REMOVE_PTEX, tsl,
(*tsh & H_BULK_REMOVE_FLAGS) >> 26,
&v, &r);
*tsh |= ret << 60;
switch (ret) {
case REMOVE_SUCCESS:
*tsh |= (r & (HPTE64_R_C | HPTE64_R_R)) << 43;
break;
case REMOVE_PARM:
rc = H_PARAMETER;
goto exit;
case REMOVE_HW:
rc = H_HARDWARE;
goto exit;
}
}
exit:
check_tlb_flush(env, true);
return rc;
}
static target_ulong h_protect(PowerPCCPU *cpu, sPAPRMachineState *spapr,
target_ulong opcode, target_ulong *args)
{
CPUPPCState *env = &cpu->env;
target_ulong flags = args[0];
target_ulong ptex = args[1];
target_ulong avpn = args[2];
const ppc_hash_pte64_t *hptes;
target_ulong v, r;
if (!valid_ptex(cpu, ptex)) {
return H_PARAMETER;
}
hptes = ppc_hash64_map_hptes(cpu, ptex, 1);
v = ppc_hash64_hpte0(cpu, hptes, 0);
r = ppc_hash64_hpte1(cpu, hptes, 0);
ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1);
if ((v & HPTE64_V_VALID) == 0 ||
((flags & H_AVPN) && (v & ~0x7fULL) != avpn)) {
return H_NOT_FOUND;
}
r &= ~(HPTE64_R_PP0 | HPTE64_R_PP | HPTE64_R_N |
HPTE64_R_KEY_HI | HPTE64_R_KEY_LO);
r |= (flags << 55) & HPTE64_R_PP0;
r |= (flags << 48) & HPTE64_R_KEY_HI;
r |= flags & (HPTE64_R_PP | HPTE64_R_N | HPTE64_R_KEY_LO);
ppc_hash64_store_hpte(cpu, ptex,
(v & ~HPTE64_V_VALID) | HPTE64_V_HPTE_DIRTY, 0);
ppc_hash64_tlb_flush_hpte(cpu, ptex, v, r);
/* Flush the tlb */
check_tlb_flush(env, true);
/* Don't need a memory barrier, due to qemu's global lock */
ppc_hash64_store_hpte(cpu, ptex, v | HPTE64_V_HPTE_DIRTY, r);
return H_SUCCESS;
}
static target_ulong h_read(PowerPCCPU *cpu, sPAPRMachineState *spapr,
target_ulong opcode, target_ulong *args)
{
CPUPPCState *env = &cpu->env;
target_ulong flags = args[0];
target_ulong ptex = args[1];
uint8_t *hpte;
int i, ridx, n_entries = 1;
if (!valid_ptex(cpu, ptex)) {
return H_PARAMETER;
}
if (flags & H_READ_4) {
/* Clear the two low order bits */
ptex &= ~(3ULL);
n_entries = 4;
}
hpte = env->external_htab + (ptex * HASH_PTE_SIZE_64);
for (i = 0, ridx = 0; i < n_entries; i++) {
args[ridx++] = ldq_p(hpte);
args[ridx++] = ldq_p(hpte + (HASH_PTE_SIZE_64/2));
hpte += HASH_PTE_SIZE_64;
}
return H_SUCCESS;
}
static target_ulong h_set_sprg0(PowerPCCPU *cpu, sPAPRMachineState *spapr,
target_ulong opcode, target_ulong *args)
{
cpu_synchronize_state(CPU(cpu));
cpu->env.spr[SPR_SPRG0] = args[0];
return H_SUCCESS;
}
static target_ulong h_set_dabr(PowerPCCPU *cpu, sPAPRMachineState *spapr,
target_ulong opcode, target_ulong *args)
{
if (!has_spr(cpu, SPR_DABR)) {
return H_HARDWARE; /* DABR register not available */
}
cpu_synchronize_state(CPU(cpu));
if (has_spr(cpu, SPR_DABRX)) {
cpu->env.spr[SPR_DABRX] = 0x3; /* Use Problem and Privileged state */
} else if (!(args[0] & 0x4)) { /* Breakpoint Translation set? */
return H_RESERVED_DABR;
}
cpu->env.spr[SPR_DABR] = args[0];
return H_SUCCESS;
}
static target_ulong h_set_xdabr(PowerPCCPU *cpu, sPAPRMachineState *spapr,
target_ulong opcode, target_ulong *args)
{
target_ulong dabrx = args[1];
if (!has_spr(cpu, SPR_DABR) || !has_spr(cpu, SPR_DABRX)) {
return H_HARDWARE;
}
if ((dabrx & ~0xfULL) != 0 || (dabrx & H_DABRX_HYPERVISOR) != 0
|| (dabrx & (H_DABRX_KERNEL | H_DABRX_USER)) == 0) {
return H_PARAMETER;
}
cpu_synchronize_state(CPU(cpu));
cpu->env.spr[SPR_DABRX] = dabrx;
cpu->env.spr[SPR_DABR] = args[0];
return H_SUCCESS;
}
static target_ulong h_page_init(PowerPCCPU *cpu, sPAPRMachineState *spapr,
target_ulong opcode, target_ulong *args)
{
target_ulong flags = args[0];
hwaddr dst = args[1];
hwaddr src = args[2];
hwaddr len = TARGET_PAGE_SIZE;
uint8_t *pdst, *psrc;
target_long ret = H_SUCCESS;
if (flags & ~(H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE
| H_COPY_PAGE | H_ZERO_PAGE)) {
qemu_log_mask(LOG_UNIMP, "h_page_init: Bad flags (" TARGET_FMT_lx "\n",
flags);
return H_PARAMETER;
}
/* Map-in destination */
if (!is_ram_address(spapr, dst) || (dst & ~TARGET_PAGE_MASK) != 0) {
return H_PARAMETER;
}
pdst = cpu_physical_memory_map(dst, &len, 1);
if (!pdst || len != TARGET_PAGE_SIZE) {
return H_PARAMETER;
}
if (flags & H_COPY_PAGE) {
/* Map-in source, copy to destination, and unmap source again */
if (!is_ram_address(spapr, src) || (src & ~TARGET_PAGE_MASK) != 0) {
ret = H_PARAMETER;
goto unmap_out;
}
psrc = cpu_physical_memory_map(src, &len, 0);
if (!psrc || len != TARGET_PAGE_SIZE) {
ret = H_PARAMETER;
goto unmap_out;
}
memcpy(pdst, psrc, len);
cpu_physical_memory_unmap(psrc, len, 0, len);
} else if (flags & H_ZERO_PAGE) {
memset(pdst, 0, len); /* Just clear the destination page */
}
if (kvm_enabled() && (flags & H_ICACHE_SYNCHRONIZE) != 0) {
kvmppc_dcbst_range(cpu, pdst, len);
}
if (flags & (H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE)) {
if (kvm_enabled()) {
kvmppc_icbi_range(cpu, pdst, len);
} else {
tb_flush(CPU(cpu));
}
}
unmap_out:
cpu_physical_memory_unmap(pdst, TARGET_PAGE_SIZE, 1, len);
return ret;
}
#define FLAGS_REGISTER_VPA 0x0000200000000000ULL
#define FLAGS_REGISTER_DTL 0x0000400000000000ULL
#define FLAGS_REGISTER_SLBSHADOW 0x0000600000000000ULL
#define FLAGS_DEREGISTER_VPA 0x0000a00000000000ULL
#define FLAGS_DEREGISTER_DTL 0x0000c00000000000ULL
#define FLAGS_DEREGISTER_SLBSHADOW 0x0000e00000000000ULL
#define VPA_MIN_SIZE 640
#define VPA_SIZE_OFFSET 0x4
#define VPA_SHARED_PROC_OFFSET 0x9
#define VPA_SHARED_PROC_VAL 0x2
static target_ulong register_vpa(CPUPPCState *env, target_ulong vpa)
{
CPUState *cs = CPU(ppc_env_get_cpu(env));
uint16_t size;
uint8_t tmp;
if (vpa == 0) {
hcall_dprintf("Can't cope with registering a VPA at logical 0\n");
return H_HARDWARE;
}
if (vpa % env->dcache_line_size) {
return H_PARAMETER;
}
/* FIXME: bounds check the address */
size = lduw_be_phys(cs->as, vpa + 0x4);
if (size < VPA_MIN_SIZE) {
return H_PARAMETER;
}
/* VPA is not allowed to cross a page boundary */
if ((vpa / 4096) != ((vpa + size - 1) / 4096)) {
return H_PARAMETER;
}
env->vpa_addr = vpa;
tmp = ldub_phys(cs->as, env->vpa_addr + VPA_SHARED_PROC_OFFSET);
tmp |= VPA_SHARED_PROC_VAL;
stb_phys(cs->as, env->vpa_addr + VPA_SHARED_PROC_OFFSET, tmp);
return H_SUCCESS;
}
static target_ulong deregister_vpa(CPUPPCState *env, target_ulong vpa)
{
if (env->slb_shadow_addr) {
return H_RESOURCE;
}
if (env->dtl_addr) {
return H_RESOURCE;
}
env->vpa_addr = 0;
return H_SUCCESS;
}
static target_ulong register_slb_shadow(CPUPPCState *env, target_ulong addr)
{
CPUState *cs = CPU(ppc_env_get_cpu(env));
uint32_t size;
if (addr == 0) {
hcall_dprintf("Can't cope with SLB shadow at logical 0\n");
return H_HARDWARE;
}
size = ldl_be_phys(cs->as, addr + 0x4);
if (size < 0x8) {
return H_PARAMETER;
}
if ((addr / 4096) != ((addr + size - 1) / 4096)) {
return H_PARAMETER;
}
if (!env->vpa_addr) {
return H_RESOURCE;
}
env->slb_shadow_addr = addr;
env->slb_shadow_size = size;
return H_SUCCESS;
}
static target_ulong deregister_slb_shadow(CPUPPCState *env, target_ulong addr)
{
env->slb_shadow_addr = 0;
env->slb_shadow_size = 0;
return H_SUCCESS;
}
static target_ulong register_dtl(CPUPPCState *env, target_ulong addr)
{
CPUState *cs = CPU(ppc_env_get_cpu(env));
uint32_t size;
if (addr == 0) {
hcall_dprintf("Can't cope with DTL at logical 0\n");
return H_HARDWARE;
}
size = ldl_be_phys(cs->as, addr + 0x4);
if (size < 48) {
return H_PARAMETER;
}
if (!env->vpa_addr) {
return H_RESOURCE;
}
env->dtl_addr = addr;
env->dtl_size = size;
return H_SUCCESS;
}
static target_ulong deregister_dtl(CPUPPCState *env, target_ulong addr)
{
env->dtl_addr = 0;
env->dtl_size = 0;
return H_SUCCESS;
}
static target_ulong h_register_vpa(PowerPCCPU *cpu, sPAPRMachineState *spapr,
target_ulong opcode, target_ulong *args)
{
target_ulong flags = args[0];
target_ulong procno = args[1];
target_ulong vpa = args[2];
target_ulong ret = H_PARAMETER;
CPUPPCState *tenv;
PowerPCCPU *tcpu;
tcpu = ppc_get_vcpu_by_dt_id(procno);
if (!tcpu) {
return H_PARAMETER;
}
tenv = &tcpu->env;
switch (flags) {
case FLAGS_REGISTER_VPA:
ret = register_vpa(tenv, vpa);
break;
case FLAGS_DEREGISTER_VPA:
ret = deregister_vpa(tenv, vpa);
break;
case FLAGS_REGISTER_SLBSHADOW:
ret = register_slb_shadow(tenv, vpa);
break;
case FLAGS_DEREGISTER_SLBSHADOW:
ret = deregister_slb_shadow(tenv, vpa);
break;
case FLAGS_REGISTER_DTL:
ret = register_dtl(tenv, vpa);
break;
case FLAGS_DEREGISTER_DTL:
ret = deregister_dtl(tenv, vpa);
break;
}
return ret;
}
static target_ulong h_cede(PowerPCCPU *cpu, sPAPRMachineState *spapr,
target_ulong opcode, target_ulong *args)
{
CPUPPCState *env = &cpu->env;
CPUState *cs = CPU(cpu);
env->msr |= (1ULL << MSR_EE);
hreg_compute_hflags(env);
if (!cpu_has_work(cs)) {
cs->halted = 1;
cs->exception_index = EXCP_HLT;
cs->exit_request = 1;
}
return H_SUCCESS;
}
static target_ulong h_rtas(PowerPCCPU *cpu, sPAPRMachineState *spapr,
target_ulong opcode, target_ulong *args)
{
target_ulong rtas_r3 = args[0];
uint32_t token = rtas_ld(rtas_r3, 0);
uint32_t nargs = rtas_ld(rtas_r3, 1);
uint32_t nret = rtas_ld(rtas_r3, 2);
return spapr_rtas_call(cpu, spapr, token, nargs, rtas_r3 + 12,
nret, rtas_r3 + 12 + 4*nargs);
}
static target_ulong h_logical_load(PowerPCCPU *cpu, sPAPRMachineState *spapr,
target_ulong opcode, target_ulong *args)
{
CPUState *cs = CPU(cpu);
target_ulong size = args[0];
target_ulong addr = args[1];
switch (size) {
case 1:
args[0] = ldub_phys(cs->as, addr);
return H_SUCCESS;
case 2:
args[0] = lduw_phys(cs->as, addr);
return H_SUCCESS;
case 4:
args[0] = ldl_phys(cs->as, addr);
return H_SUCCESS;
case 8:
args[0] = ldq_phys(cs->as, addr);
return H_SUCCESS;
}
return H_PARAMETER;
}
static target_ulong h_logical_store(PowerPCCPU *cpu, sPAPRMachineState *spapr,
target_ulong opcode, target_ulong *args)
{
CPUState *cs = CPU(cpu);
target_ulong size = args[0];
target_ulong addr = args[1];
target_ulong val = args[2];
switch (size) {
case 1:
stb_phys(cs->as, addr, val);
return H_SUCCESS;
case 2:
stw_phys(cs->as, addr, val);
return H_SUCCESS;
case 4:
stl_phys(cs->as, addr, val);
return H_SUCCESS;
case 8:
stq_phys(cs->as, addr, val);
return H_SUCCESS;
}
return H_PARAMETER;
}
static target_ulong h_logical_memop(PowerPCCPU *cpu, sPAPRMachineState *spapr,
target_ulong opcode, target_ulong *args)
{
CPUState *cs = CPU(cpu);
target_ulong dst = args[0]; /* Destination address */
target_ulong src = args[1]; /* Source address */
target_ulong esize = args[2]; /* Element size (0=1,1=2,2=4,3=8) */
target_ulong count = args[3]; /* Element count */
target_ulong op = args[4]; /* 0 = copy, 1 = invert */
uint64_t tmp;
unsigned int mask = (1 << esize) - 1;
int step = 1 << esize;
if (count > 0x80000000) {
return H_PARAMETER;
}
if ((dst & mask) || (src & mask) || (op > 1)) {
return H_PARAMETER;
}
if (dst >= src && dst < (src + (count << esize))) {
dst = dst + ((count - 1) << esize);
src = src + ((count - 1) << esize);
step = -step;
}
while (count--) {
switch (esize) {
case 0:
tmp = ldub_phys(cs->as, src);
break;
case 1:
tmp = lduw_phys(cs->as, src);
break;
case 2:
tmp = ldl_phys(cs->as, src);
break;
case 3:
tmp = ldq_phys(cs->as, src);
break;
default:
return H_PARAMETER;
}
if (op == 1) {
tmp = ~tmp;
}
switch (esize) {
case 0:
stb_phys(cs->as, dst, tmp);
break;
case 1:
stw_phys(cs->as, dst, tmp);
break;
case 2:
stl_phys(cs->as, dst, tmp);
break;
case 3:
stq_phys(cs->as, dst, tmp);
break;
}
dst = dst + step;
src = src + step;
}
return H_SUCCESS;
}
static target_ulong h_logical_icbi(PowerPCCPU *cpu, sPAPRMachineState *spapr,
target_ulong opcode, target_ulong *args)
{
/* Nothing to do on emulation, KVM will trap this in the kernel */
return H_SUCCESS;
}
static target_ulong h_logical_dcbf(PowerPCCPU *cpu, sPAPRMachineState *spapr,
target_ulong opcode, target_ulong *args)
{
/* Nothing to do on emulation, KVM will trap this in the kernel */
return H_SUCCESS;
}
static target_ulong h_set_mode_resource_le(PowerPCCPU *cpu,
target_ulong mflags,
target_ulong value1,
target_ulong value2)
{
CPUState *cs;
if (value1) {
return H_P3;
}
if (value2) {
return H_P4;
}
switch (mflags) {
case H_SET_MODE_ENDIAN_BIG:
CPU_FOREACH(cs) {
set_spr(cs, SPR_LPCR, 0, LPCR_ILE);
}
spapr_pci_switch_vga(true);
return H_SUCCESS;
case H_SET_MODE_ENDIAN_LITTLE:
CPU_FOREACH(cs) {
set_spr(cs, SPR_LPCR, LPCR_ILE, LPCR_ILE);
}
spapr_pci_switch_vga(false);
return H_SUCCESS;
}
return H_UNSUPPORTED_FLAG;
}
static target_ulong h_set_mode_resource_addr_trans_mode(PowerPCCPU *cpu,
target_ulong mflags,
target_ulong value1,
target_ulong value2)
{
CPUState *cs;
PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
if (!(pcc->insns_flags2 & PPC2_ISA207S)) {
return H_P2;
}
if (value1) {
return H_P3;
}
if (value2) {
return H_P4;
}
if (mflags == AIL_RESERVED) {
return H_UNSUPPORTED_FLAG;
}
CPU_FOREACH(cs) {
set_spr(cs, SPR_LPCR, mflags << LPCR_AIL_SHIFT, LPCR_AIL);
}
return H_SUCCESS;
}
static target_ulong h_set_mode(PowerPCCPU *cpu, sPAPRMachineState *spapr,
target_ulong opcode, target_ulong *args)
{
target_ulong resource = args[1];
target_ulong ret = H_P2;
switch (resource) {
case H_SET_MODE_RESOURCE_LE:
ret = h_set_mode_resource_le(cpu, args[0], args[2], args[3]);
break;
case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
ret = h_set_mode_resource_addr_trans_mode(cpu, args[0],
args[2], args[3]);
break;
}
return ret;
}
#define H_SIGNAL_SYS_RESET_ALL -1
#define H_SIGNAL_SYS_RESET_ALLBUTSELF -2
static target_ulong h_signal_sys_reset(PowerPCCPU *cpu,
sPAPRMachineState *spapr,
target_ulong opcode, target_ulong *args)
{
target_long target = args[0];
CPUState *cs;
if (target < 0) {
/* Broadcast */
if (target < H_SIGNAL_SYS_RESET_ALLBUTSELF) {
return H_PARAMETER;
}
CPU_FOREACH(cs) {
PowerPCCPU *c = POWERPC_CPU(cs);
if (target == H_SIGNAL_SYS_RESET_ALLBUTSELF) {
if (c == cpu) {
continue;
}
}
run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
}
return H_SUCCESS;
} else {
/* Unicast */
CPU_FOREACH(cs) {
if (cpu->cpu_dt_id == target) {
run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
return H_SUCCESS;
}
}
return H_PARAMETER;
}
}
static target_ulong h_client_architecture_support(PowerPCCPU *cpu,
sPAPRMachineState *spapr,
target_ulong opcode,
target_ulong *args)
{
target_ulong list = ppc64_phys_to_real(args[0]);
target_ulong ov_table;
bool explicit_match = false; /* Matched the CPU's real PVR */
uint32_t max_compat = cpu->max_compat;
uint32_t best_compat = 0;
int i;
sPAPROptionVector *ov5_guest, *ov5_cas_old, *ov5_updates;
/*
* We scan the supplied table of PVRs looking for two things
* 1. Is our real CPU PVR in the list?
* 2. What's the "best" listed logical PVR
*/
for (i = 0; i < 512; ++i) {
uint32_t pvr, pvr_mask;
pvr_mask = ldl_be_phys(&address_space_memory, list);
pvr = ldl_be_phys(&address_space_memory, list + 4);
list += 8;
if (~pvr_mask & pvr) {
break; /* Terminator record */
}
if ((cpu->env.spr[SPR_PVR] & pvr_mask) == (pvr & pvr_mask)) {
explicit_match = true;
} else {
if (ppc_check_compat(cpu, pvr, best_compat, max_compat)) {
best_compat = pvr;
}
}
}
if ((best_compat == 0) && (!explicit_match || max_compat)) {
/* We couldn't find a suitable compatibility mode, and either
* the guest doesn't support "raw" mode for this CPU, or raw
* mode is disabled because a maximum compat mode is set */
return H_HARDWARE;
}
/* Parsing finished */
trace_spapr_cas_pvr(cpu->compat_pvr, explicit_match, best_compat);
/* Update CPUs */
if (cpu->compat_pvr != best_compat) {
Error *local_err = NULL;
ppc_set_compat_all(best_compat, &local_err);
if (local_err) {
error_report_err(local_err);
return H_HARDWARE;
}
}
/* For the future use: here @ov_table points to the first option vector */
ov_table = list;
ov5_guest = spapr_ovec_parse_vector(ov_table, 5);
/* NOTE: there are actually a number of ov5 bits where input from the
* guest is always zero, and the platform/QEMU enables them independently
* of guest input. To model these properly we'd want some sort of mask,
* but since they only currently apply to memory migration as defined
* by LoPAPR 1.1, 14.5.4.8, which QEMU doesn't implement, we don't need
* to worry about this for now.
*/
ov5_cas_old = spapr_ovec_clone(spapr->ov5_cas);
/* full range of negotiated ov5 capabilities */
spapr_ovec_intersect(spapr->ov5_cas, spapr->ov5, ov5_guest);
spapr_ovec_cleanup(ov5_guest);
/* capabilities that have been added since CAS-generated guest reset.
* if capabilities have since been removed, generate another reset
*/
ov5_updates = spapr_ovec_new();
spapr->cas_reboot = spapr_ovec_diff(ov5_updates,
ov5_cas_old, spapr->ov5_cas);
if (!spapr->cas_reboot) {
spapr->cas_reboot =
(spapr_h_cas_compose_response(spapr, args[1], args[2],
ov5_updates) != 0);
}
spapr_ovec_cleanup(ov5_updates);
if (spapr->cas_reboot) {
qemu_system_reset_request();
}
return H_SUCCESS;
}
static spapr_hcall_fn papr_hypercall_table[(MAX_HCALL_OPCODE / 4) + 1];
static spapr_hcall_fn kvmppc_hypercall_table[KVMPPC_HCALL_MAX - KVMPPC_HCALL_BASE + 1];
void spapr_register_hypercall(target_ulong opcode, spapr_hcall_fn fn)
{
spapr_hcall_fn *slot;
if (opcode <= MAX_HCALL_OPCODE) {
assert((opcode & 0x3) == 0);
slot = &papr_hypercall_table[opcode / 4];
} else {
assert((opcode >= KVMPPC_HCALL_BASE) && (opcode <= KVMPPC_HCALL_MAX));
slot = &kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
}
assert(!(*slot));
*slot = fn;
}
target_ulong spapr_hypercall(PowerPCCPU *cpu, target_ulong opcode,
target_ulong *args)
{
sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
if ((opcode <= MAX_HCALL_OPCODE)
&& ((opcode & 0x3) == 0)) {
spapr_hcall_fn fn = papr_hypercall_table[opcode / 4];
if (fn) {
return fn(cpu, spapr, opcode, args);
}
} else if ((opcode >= KVMPPC_HCALL_BASE) &&
(opcode <= KVMPPC_HCALL_MAX)) {
spapr_hcall_fn fn = kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
if (fn) {
return fn(cpu, spapr, opcode, args);
}
}
qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x" TARGET_FMT_lx "\n",
opcode);
return H_FUNCTION;
}
static void hypercall_register_types(void)
{
/* hcall-pft */
spapr_register_hypercall(H_ENTER, h_enter);
spapr_register_hypercall(H_REMOVE, h_remove);
spapr_register_hypercall(H_PROTECT, h_protect);
spapr_register_hypercall(H_READ, h_read);
/* hcall-bulk */
spapr_register_hypercall(H_BULK_REMOVE, h_bulk_remove);
/* hcall-splpar */
spapr_register_hypercall(H_REGISTER_VPA, h_register_vpa);
spapr_register_hypercall(H_CEDE, h_cede);
spapr_register_hypercall(H_SIGNAL_SYS_RESET, h_signal_sys_reset);
/* processor register resource access h-calls */
spapr_register_hypercall(H_SET_SPRG0, h_set_sprg0);
spapr_register_hypercall(H_SET_DABR, h_set_dabr);
spapr_register_hypercall(H_SET_XDABR, h_set_xdabr);
spapr_register_hypercall(H_PAGE_INIT, h_page_init);
spapr_register_hypercall(H_SET_MODE, h_set_mode);
/* "debugger" hcalls (also used by SLOF). Note: We do -not- differenciate
* here between the "CI" and the "CACHE" variants, they will use whatever
* mapping attributes qemu is using. When using KVM, the kernel will
* enforce the attributes more strongly
*/
spapr_register_hypercall(H_LOGICAL_CI_LOAD, h_logical_load);
spapr_register_hypercall(H_LOGICAL_CI_STORE, h_logical_store);
spapr_register_hypercall(H_LOGICAL_CACHE_LOAD, h_logical_load);
spapr_register_hypercall(H_LOGICAL_CACHE_STORE, h_logical_store);
spapr_register_hypercall(H_LOGICAL_ICBI, h_logical_icbi);
spapr_register_hypercall(H_LOGICAL_DCBF, h_logical_dcbf);
spapr_register_hypercall(KVMPPC_H_LOGICAL_MEMOP, h_logical_memop);
/* qemu/KVM-PPC specific hcalls */
spapr_register_hypercall(KVMPPC_H_RTAS, h_rtas);
/* ibm,client-architecture-support support */
spapr_register_hypercall(KVMPPC_H_CAS, h_client_architecture_support);
}
type_init(hypercall_register_types)