29396ed9ac
Instead of having the same error checks in vtd_realize() and amdvi_realize(), move that over to the generic x86_iommu_realize(). Reviewed-by: Peter Xu <peterx@redhat.com> Reviewed-by: Eduardo Habkost <ehabkost@redhat.com> Signed-off-by: Mohammed Gamal <mgamal@redhat.com> Reviewed-by: Thomas Huth <thuth@redhat.com>
3128 lines
97 KiB
C
3128 lines
97 KiB
C
/*
|
|
* QEMU emulation of an Intel IOMMU (VT-d)
|
|
* (DMA Remapping device)
|
|
*
|
|
* Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com>
|
|
* Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "qemu/error-report.h"
|
|
#include "qapi/error.h"
|
|
#include "hw/sysbus.h"
|
|
#include "exec/address-spaces.h"
|
|
#include "intel_iommu_internal.h"
|
|
#include "hw/pci/pci.h"
|
|
#include "hw/pci/pci_bus.h"
|
|
#include "hw/i386/pc.h"
|
|
#include "hw/i386/apic-msidef.h"
|
|
#include "hw/boards.h"
|
|
#include "hw/i386/x86-iommu.h"
|
|
#include "hw/pci-host/q35.h"
|
|
#include "sysemu/kvm.h"
|
|
#include "hw/i386/apic_internal.h"
|
|
#include "kvm_i386.h"
|
|
#include "trace.h"
|
|
|
|
static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val,
|
|
uint64_t wmask, uint64_t w1cmask)
|
|
{
|
|
stq_le_p(&s->csr[addr], val);
|
|
stq_le_p(&s->wmask[addr], wmask);
|
|
stq_le_p(&s->w1cmask[addr], w1cmask);
|
|
}
|
|
|
|
static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask)
|
|
{
|
|
stq_le_p(&s->womask[addr], mask);
|
|
}
|
|
|
|
static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val,
|
|
uint32_t wmask, uint32_t w1cmask)
|
|
{
|
|
stl_le_p(&s->csr[addr], val);
|
|
stl_le_p(&s->wmask[addr], wmask);
|
|
stl_le_p(&s->w1cmask[addr], w1cmask);
|
|
}
|
|
|
|
static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask)
|
|
{
|
|
stl_le_p(&s->womask[addr], mask);
|
|
}
|
|
|
|
/* "External" get/set operations */
|
|
static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val)
|
|
{
|
|
uint64_t oldval = ldq_le_p(&s->csr[addr]);
|
|
uint64_t wmask = ldq_le_p(&s->wmask[addr]);
|
|
uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]);
|
|
stq_le_p(&s->csr[addr],
|
|
((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
|
|
}
|
|
|
|
static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val)
|
|
{
|
|
uint32_t oldval = ldl_le_p(&s->csr[addr]);
|
|
uint32_t wmask = ldl_le_p(&s->wmask[addr]);
|
|
uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]);
|
|
stl_le_p(&s->csr[addr],
|
|
((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
|
|
}
|
|
|
|
static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr)
|
|
{
|
|
uint64_t val = ldq_le_p(&s->csr[addr]);
|
|
uint64_t womask = ldq_le_p(&s->womask[addr]);
|
|
return val & ~womask;
|
|
}
|
|
|
|
static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr)
|
|
{
|
|
uint32_t val = ldl_le_p(&s->csr[addr]);
|
|
uint32_t womask = ldl_le_p(&s->womask[addr]);
|
|
return val & ~womask;
|
|
}
|
|
|
|
/* "Internal" get/set operations */
|
|
static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr)
|
|
{
|
|
return ldq_le_p(&s->csr[addr]);
|
|
}
|
|
|
|
static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr)
|
|
{
|
|
return ldl_le_p(&s->csr[addr]);
|
|
}
|
|
|
|
static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val)
|
|
{
|
|
stq_le_p(&s->csr[addr], val);
|
|
}
|
|
|
|
static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr,
|
|
uint32_t clear, uint32_t mask)
|
|
{
|
|
uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask;
|
|
stl_le_p(&s->csr[addr], new_val);
|
|
return new_val;
|
|
}
|
|
|
|
static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr,
|
|
uint64_t clear, uint64_t mask)
|
|
{
|
|
uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask;
|
|
stq_le_p(&s->csr[addr], new_val);
|
|
return new_val;
|
|
}
|
|
|
|
/* GHashTable functions */
|
|
static gboolean vtd_uint64_equal(gconstpointer v1, gconstpointer v2)
|
|
{
|
|
return *((const uint64_t *)v1) == *((const uint64_t *)v2);
|
|
}
|
|
|
|
static guint vtd_uint64_hash(gconstpointer v)
|
|
{
|
|
return (guint)*(const uint64_t *)v;
|
|
}
|
|
|
|
static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value,
|
|
gpointer user_data)
|
|
{
|
|
VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
|
|
uint16_t domain_id = *(uint16_t *)user_data;
|
|
return entry->domain_id == domain_id;
|
|
}
|
|
|
|
/* The shift of an addr for a certain level of paging structure */
|
|
static inline uint32_t vtd_slpt_level_shift(uint32_t level)
|
|
{
|
|
assert(level != 0);
|
|
return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_SL_LEVEL_BITS;
|
|
}
|
|
|
|
static inline uint64_t vtd_slpt_level_page_mask(uint32_t level)
|
|
{
|
|
return ~((1ULL << vtd_slpt_level_shift(level)) - 1);
|
|
}
|
|
|
|
static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value,
|
|
gpointer user_data)
|
|
{
|
|
VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
|
|
VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data;
|
|
uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask;
|
|
uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K;
|
|
return (entry->domain_id == info->domain_id) &&
|
|
(((entry->gfn & info->mask) == gfn) ||
|
|
(entry->gfn == gfn_tlb));
|
|
}
|
|
|
|
/* Reset all the gen of VTDAddressSpace to zero and set the gen of
|
|
* IntelIOMMUState to 1.
|
|
*/
|
|
static void vtd_reset_context_cache(IntelIOMMUState *s)
|
|
{
|
|
VTDAddressSpace *vtd_as;
|
|
VTDBus *vtd_bus;
|
|
GHashTableIter bus_it;
|
|
uint32_t devfn_it;
|
|
|
|
trace_vtd_context_cache_reset();
|
|
|
|
g_hash_table_iter_init(&bus_it, s->vtd_as_by_busptr);
|
|
|
|
while (g_hash_table_iter_next (&bus_it, NULL, (void**)&vtd_bus)) {
|
|
for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) {
|
|
vtd_as = vtd_bus->dev_as[devfn_it];
|
|
if (!vtd_as) {
|
|
continue;
|
|
}
|
|
vtd_as->context_cache_entry.context_cache_gen = 0;
|
|
}
|
|
}
|
|
s->context_cache_gen = 1;
|
|
}
|
|
|
|
static void vtd_reset_iotlb(IntelIOMMUState *s)
|
|
{
|
|
assert(s->iotlb);
|
|
g_hash_table_remove_all(s->iotlb);
|
|
}
|
|
|
|
static uint64_t vtd_get_iotlb_key(uint64_t gfn, uint16_t source_id,
|
|
uint32_t level)
|
|
{
|
|
return gfn | ((uint64_t)(source_id) << VTD_IOTLB_SID_SHIFT) |
|
|
((uint64_t)(level) << VTD_IOTLB_LVL_SHIFT);
|
|
}
|
|
|
|
static uint64_t vtd_get_iotlb_gfn(hwaddr addr, uint32_t level)
|
|
{
|
|
return (addr & vtd_slpt_level_page_mask(level)) >> VTD_PAGE_SHIFT_4K;
|
|
}
|
|
|
|
static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id,
|
|
hwaddr addr)
|
|
{
|
|
VTDIOTLBEntry *entry;
|
|
uint64_t key;
|
|
int level;
|
|
|
|
for (level = VTD_SL_PT_LEVEL; level < VTD_SL_PML4_LEVEL; level++) {
|
|
key = vtd_get_iotlb_key(vtd_get_iotlb_gfn(addr, level),
|
|
source_id, level);
|
|
entry = g_hash_table_lookup(s->iotlb, &key);
|
|
if (entry) {
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
out:
|
|
return entry;
|
|
}
|
|
|
|
static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id,
|
|
uint16_t domain_id, hwaddr addr, uint64_t slpte,
|
|
uint8_t access_flags, uint32_t level)
|
|
{
|
|
VTDIOTLBEntry *entry = g_malloc(sizeof(*entry));
|
|
uint64_t *key = g_malloc(sizeof(*key));
|
|
uint64_t gfn = vtd_get_iotlb_gfn(addr, level);
|
|
|
|
trace_vtd_iotlb_page_update(source_id, addr, slpte, domain_id);
|
|
if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) {
|
|
trace_vtd_iotlb_reset("iotlb exceeds size limit");
|
|
vtd_reset_iotlb(s);
|
|
}
|
|
|
|
entry->gfn = gfn;
|
|
entry->domain_id = domain_id;
|
|
entry->slpte = slpte;
|
|
entry->access_flags = access_flags;
|
|
entry->mask = vtd_slpt_level_page_mask(level);
|
|
*key = vtd_get_iotlb_key(gfn, source_id, level);
|
|
g_hash_table_replace(s->iotlb, key, entry);
|
|
}
|
|
|
|
/* Given the reg addr of both the message data and address, generate an
|
|
* interrupt via MSI.
|
|
*/
|
|
static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg,
|
|
hwaddr mesg_data_reg)
|
|
{
|
|
MSIMessage msi;
|
|
|
|
assert(mesg_data_reg < DMAR_REG_SIZE);
|
|
assert(mesg_addr_reg < DMAR_REG_SIZE);
|
|
|
|
msi.address = vtd_get_long_raw(s, mesg_addr_reg);
|
|
msi.data = vtd_get_long_raw(s, mesg_data_reg);
|
|
|
|
trace_vtd_irq_generate(msi.address, msi.data);
|
|
|
|
apic_get_class()->send_msi(&msi);
|
|
}
|
|
|
|
/* Generate a fault event to software via MSI if conditions are met.
|
|
* Notice that the value of FSTS_REG being passed to it should be the one
|
|
* before any update.
|
|
*/
|
|
static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts)
|
|
{
|
|
if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO ||
|
|
pre_fsts & VTD_FSTS_IQE) {
|
|
trace_vtd_err("There are previous interrupt conditions "
|
|
"to be serviced by software, fault event "
|
|
"is not generated.");
|
|
return;
|
|
}
|
|
vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP);
|
|
if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) {
|
|
trace_vtd_err("Interrupt Mask set, irq is not generated.");
|
|
} else {
|
|
vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
|
|
vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
|
|
}
|
|
}
|
|
|
|
/* Check if the Fault (F) field of the Fault Recording Register referenced by
|
|
* @index is Set.
|
|
*/
|
|
static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index)
|
|
{
|
|
/* Each reg is 128-bit */
|
|
hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
|
|
addr += 8; /* Access the high 64-bit half */
|
|
|
|
assert(index < DMAR_FRCD_REG_NR);
|
|
|
|
return vtd_get_quad_raw(s, addr) & VTD_FRCD_F;
|
|
}
|
|
|
|
/* Update the PPF field of Fault Status Register.
|
|
* Should be called whenever change the F field of any fault recording
|
|
* registers.
|
|
*/
|
|
static void vtd_update_fsts_ppf(IntelIOMMUState *s)
|
|
{
|
|
uint32_t i;
|
|
uint32_t ppf_mask = 0;
|
|
|
|
for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
|
|
if (vtd_is_frcd_set(s, i)) {
|
|
ppf_mask = VTD_FSTS_PPF;
|
|
break;
|
|
}
|
|
}
|
|
vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask);
|
|
trace_vtd_fsts_ppf(!!ppf_mask);
|
|
}
|
|
|
|
static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index)
|
|
{
|
|
/* Each reg is 128-bit */
|
|
hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
|
|
addr += 8; /* Access the high 64-bit half */
|
|
|
|
assert(index < DMAR_FRCD_REG_NR);
|
|
|
|
vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F);
|
|
vtd_update_fsts_ppf(s);
|
|
}
|
|
|
|
/* Must not update F field now, should be done later */
|
|
static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index,
|
|
uint16_t source_id, hwaddr addr,
|
|
VTDFaultReason fault, bool is_write)
|
|
{
|
|
uint64_t hi = 0, lo;
|
|
hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
|
|
|
|
assert(index < DMAR_FRCD_REG_NR);
|
|
|
|
lo = VTD_FRCD_FI(addr);
|
|
hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault);
|
|
if (!is_write) {
|
|
hi |= VTD_FRCD_T;
|
|
}
|
|
vtd_set_quad_raw(s, frcd_reg_addr, lo);
|
|
vtd_set_quad_raw(s, frcd_reg_addr + 8, hi);
|
|
|
|
trace_vtd_frr_new(index, hi, lo);
|
|
}
|
|
|
|
/* Try to collapse multiple pending faults from the same requester */
|
|
static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id)
|
|
{
|
|
uint32_t i;
|
|
uint64_t frcd_reg;
|
|
hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */
|
|
|
|
for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
|
|
frcd_reg = vtd_get_quad_raw(s, addr);
|
|
if ((frcd_reg & VTD_FRCD_F) &&
|
|
((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) {
|
|
return true;
|
|
}
|
|
addr += 16; /* 128-bit for each */
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* Log and report an DMAR (address translation) fault to software */
|
|
static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id,
|
|
hwaddr addr, VTDFaultReason fault,
|
|
bool is_write)
|
|
{
|
|
uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
|
|
|
|
assert(fault < VTD_FR_MAX);
|
|
|
|
if (fault == VTD_FR_RESERVED_ERR) {
|
|
/* This is not a normal fault reason case. Drop it. */
|
|
return;
|
|
}
|
|
|
|
trace_vtd_dmar_fault(source_id, fault, addr, is_write);
|
|
|
|
if (fsts_reg & VTD_FSTS_PFO) {
|
|
trace_vtd_err("New fault is not recorded due to "
|
|
"Primary Fault Overflow.");
|
|
return;
|
|
}
|
|
|
|
if (vtd_try_collapse_fault(s, source_id)) {
|
|
trace_vtd_err("New fault is not recorded due to "
|
|
"compression of faults.");
|
|
return;
|
|
}
|
|
|
|
if (vtd_is_frcd_set(s, s->next_frcd_reg)) {
|
|
trace_vtd_err("Next Fault Recording Reg is used, "
|
|
"new fault is not recorded, set PFO field.");
|
|
vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO);
|
|
return;
|
|
}
|
|
|
|
vtd_record_frcd(s, s->next_frcd_reg, source_id, addr, fault, is_write);
|
|
|
|
if (fsts_reg & VTD_FSTS_PPF) {
|
|
trace_vtd_err("There are pending faults already, "
|
|
"fault event is not generated.");
|
|
vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg);
|
|
s->next_frcd_reg++;
|
|
if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
|
|
s->next_frcd_reg = 0;
|
|
}
|
|
} else {
|
|
vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK,
|
|
VTD_FSTS_FRI(s->next_frcd_reg));
|
|
vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */
|
|
s->next_frcd_reg++;
|
|
if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
|
|
s->next_frcd_reg = 0;
|
|
}
|
|
/* This case actually cause the PPF to be Set.
|
|
* So generate fault event (interrupt).
|
|
*/
|
|
vtd_generate_fault_event(s, fsts_reg);
|
|
}
|
|
}
|
|
|
|
/* Handle Invalidation Queue Errors of queued invalidation interface error
|
|
* conditions.
|
|
*/
|
|
static void vtd_handle_inv_queue_error(IntelIOMMUState *s)
|
|
{
|
|
uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
|
|
|
|
vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE);
|
|
vtd_generate_fault_event(s, fsts_reg);
|
|
}
|
|
|
|
/* Set the IWC field and try to generate an invalidation completion interrupt */
|
|
static void vtd_generate_completion_event(IntelIOMMUState *s)
|
|
{
|
|
if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) {
|
|
trace_vtd_inv_desc_wait_irq("One pending, skip current");
|
|
return;
|
|
}
|
|
vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC);
|
|
vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP);
|
|
if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) {
|
|
trace_vtd_inv_desc_wait_irq("IM in IECTL_REG is set, "
|
|
"new event not generated");
|
|
return;
|
|
} else {
|
|
/* Generate the interrupt event */
|
|
trace_vtd_inv_desc_wait_irq("Generating complete event");
|
|
vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
|
|
vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
|
|
}
|
|
}
|
|
|
|
static inline bool vtd_root_entry_present(VTDRootEntry *root)
|
|
{
|
|
return root->val & VTD_ROOT_ENTRY_P;
|
|
}
|
|
|
|
static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index,
|
|
VTDRootEntry *re)
|
|
{
|
|
dma_addr_t addr;
|
|
|
|
addr = s->root + index * sizeof(*re);
|
|
if (dma_memory_read(&address_space_memory, addr, re, sizeof(*re))) {
|
|
trace_vtd_re_invalid(re->rsvd, re->val);
|
|
re->val = 0;
|
|
return -VTD_FR_ROOT_TABLE_INV;
|
|
}
|
|
re->val = le64_to_cpu(re->val);
|
|
return 0;
|
|
}
|
|
|
|
static inline bool vtd_ce_present(VTDContextEntry *context)
|
|
{
|
|
return context->lo & VTD_CONTEXT_ENTRY_P;
|
|
}
|
|
|
|
static int vtd_get_context_entry_from_root(VTDRootEntry *root, uint8_t index,
|
|
VTDContextEntry *ce)
|
|
{
|
|
dma_addr_t addr;
|
|
|
|
/* we have checked that root entry is present */
|
|
addr = (root->val & VTD_ROOT_ENTRY_CTP) + index * sizeof(*ce);
|
|
if (dma_memory_read(&address_space_memory, addr, ce, sizeof(*ce))) {
|
|
trace_vtd_re_invalid(root->rsvd, root->val);
|
|
return -VTD_FR_CONTEXT_TABLE_INV;
|
|
}
|
|
ce->lo = le64_to_cpu(ce->lo);
|
|
ce->hi = le64_to_cpu(ce->hi);
|
|
return 0;
|
|
}
|
|
|
|
static inline dma_addr_t vtd_ce_get_slpt_base(VTDContextEntry *ce)
|
|
{
|
|
return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR;
|
|
}
|
|
|
|
static inline uint64_t vtd_get_slpte_addr(uint64_t slpte, uint8_t aw)
|
|
{
|
|
return slpte & VTD_SL_PT_BASE_ADDR_MASK(aw);
|
|
}
|
|
|
|
/* Whether the pte indicates the address of the page frame */
|
|
static inline bool vtd_is_last_slpte(uint64_t slpte, uint32_t level)
|
|
{
|
|
return level == VTD_SL_PT_LEVEL || (slpte & VTD_SL_PT_PAGE_SIZE_MASK);
|
|
}
|
|
|
|
/* Get the content of a spte located in @base_addr[@index] */
|
|
static uint64_t vtd_get_slpte(dma_addr_t base_addr, uint32_t index)
|
|
{
|
|
uint64_t slpte;
|
|
|
|
assert(index < VTD_SL_PT_ENTRY_NR);
|
|
|
|
if (dma_memory_read(&address_space_memory,
|
|
base_addr + index * sizeof(slpte), &slpte,
|
|
sizeof(slpte))) {
|
|
slpte = (uint64_t)-1;
|
|
return slpte;
|
|
}
|
|
slpte = le64_to_cpu(slpte);
|
|
return slpte;
|
|
}
|
|
|
|
/* Given an iova and the level of paging structure, return the offset
|
|
* of current level.
|
|
*/
|
|
static inline uint32_t vtd_iova_level_offset(uint64_t iova, uint32_t level)
|
|
{
|
|
return (iova >> vtd_slpt_level_shift(level)) &
|
|
((1ULL << VTD_SL_LEVEL_BITS) - 1);
|
|
}
|
|
|
|
/* Check Capability Register to see if the @level of page-table is supported */
|
|
static inline bool vtd_is_level_supported(IntelIOMMUState *s, uint32_t level)
|
|
{
|
|
return VTD_CAP_SAGAW_MASK & s->cap &
|
|
(1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT));
|
|
}
|
|
|
|
/* Get the page-table level that hardware should use for the second-level
|
|
* page-table walk from the Address Width field of context-entry.
|
|
*/
|
|
static inline uint32_t vtd_ce_get_level(VTDContextEntry *ce)
|
|
{
|
|
return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW);
|
|
}
|
|
|
|
static inline uint32_t vtd_ce_get_agaw(VTDContextEntry *ce)
|
|
{
|
|
return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9;
|
|
}
|
|
|
|
static inline uint32_t vtd_ce_get_type(VTDContextEntry *ce)
|
|
{
|
|
return ce->lo & VTD_CONTEXT_ENTRY_TT;
|
|
}
|
|
|
|
/* Return true if check passed, otherwise false */
|
|
static inline bool vtd_ce_type_check(X86IOMMUState *x86_iommu,
|
|
VTDContextEntry *ce)
|
|
{
|
|
switch (vtd_ce_get_type(ce)) {
|
|
case VTD_CONTEXT_TT_MULTI_LEVEL:
|
|
/* Always supported */
|
|
break;
|
|
case VTD_CONTEXT_TT_DEV_IOTLB:
|
|
if (!x86_iommu->dt_supported) {
|
|
return false;
|
|
}
|
|
break;
|
|
case VTD_CONTEXT_TT_PASS_THROUGH:
|
|
if (!x86_iommu->pt_supported) {
|
|
return false;
|
|
}
|
|
break;
|
|
default:
|
|
/* Unknwon type */
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static inline uint64_t vtd_iova_limit(VTDContextEntry *ce, uint8_t aw)
|
|
{
|
|
uint32_t ce_agaw = vtd_ce_get_agaw(ce);
|
|
return 1ULL << MIN(ce_agaw, aw);
|
|
}
|
|
|
|
/* Return true if IOVA passes range check, otherwise false. */
|
|
static inline bool vtd_iova_range_check(uint64_t iova, VTDContextEntry *ce,
|
|
uint8_t aw)
|
|
{
|
|
/*
|
|
* Check if @iova is above 2^X-1, where X is the minimum of MGAW
|
|
* in CAP_REG and AW in context-entry.
|
|
*/
|
|
return !(iova & ~(vtd_iova_limit(ce, aw) - 1));
|
|
}
|
|
|
|
/*
|
|
* Rsvd field masks for spte:
|
|
* Index [1] to [4] 4k pages
|
|
* Index [5] to [8] large pages
|
|
*/
|
|
static uint64_t vtd_paging_entry_rsvd_field[9];
|
|
|
|
static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level)
|
|
{
|
|
if (slpte & VTD_SL_PT_PAGE_SIZE_MASK) {
|
|
/* Maybe large page */
|
|
return slpte & vtd_paging_entry_rsvd_field[level + 4];
|
|
} else {
|
|
return slpte & vtd_paging_entry_rsvd_field[level];
|
|
}
|
|
}
|
|
|
|
/* Find the VTD address space associated with a given bus number */
|
|
static VTDBus *vtd_find_as_from_bus_num(IntelIOMMUState *s, uint8_t bus_num)
|
|
{
|
|
VTDBus *vtd_bus = s->vtd_as_by_bus_num[bus_num];
|
|
if (!vtd_bus) {
|
|
/*
|
|
* Iterate over the registered buses to find the one which
|
|
* currently hold this bus number, and update the bus_num
|
|
* lookup table:
|
|
*/
|
|
GHashTableIter iter;
|
|
|
|
g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
|
|
while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
|
|
if (pci_bus_num(vtd_bus->bus) == bus_num) {
|
|
s->vtd_as_by_bus_num[bus_num] = vtd_bus;
|
|
return vtd_bus;
|
|
}
|
|
}
|
|
}
|
|
return vtd_bus;
|
|
}
|
|
|
|
/* Given the @iova, get relevant @slptep. @slpte_level will be the last level
|
|
* of the translation, can be used for deciding the size of large page.
|
|
*/
|
|
static int vtd_iova_to_slpte(VTDContextEntry *ce, uint64_t iova, bool is_write,
|
|
uint64_t *slptep, uint32_t *slpte_level,
|
|
bool *reads, bool *writes, uint8_t aw_bits)
|
|
{
|
|
dma_addr_t addr = vtd_ce_get_slpt_base(ce);
|
|
uint32_t level = vtd_ce_get_level(ce);
|
|
uint32_t offset;
|
|
uint64_t slpte;
|
|
uint64_t access_right_check;
|
|
|
|
if (!vtd_iova_range_check(iova, ce, aw_bits)) {
|
|
trace_vtd_err_dmar_iova_overflow(iova);
|
|
return -VTD_FR_ADDR_BEYOND_MGAW;
|
|
}
|
|
|
|
/* FIXME: what is the Atomics request here? */
|
|
access_right_check = is_write ? VTD_SL_W : VTD_SL_R;
|
|
|
|
while (true) {
|
|
offset = vtd_iova_level_offset(iova, level);
|
|
slpte = vtd_get_slpte(addr, offset);
|
|
|
|
if (slpte == (uint64_t)-1) {
|
|
trace_vtd_err_dmar_slpte_read_error(iova, level);
|
|
if (level == vtd_ce_get_level(ce)) {
|
|
/* Invalid programming of context-entry */
|
|
return -VTD_FR_CONTEXT_ENTRY_INV;
|
|
} else {
|
|
return -VTD_FR_PAGING_ENTRY_INV;
|
|
}
|
|
}
|
|
*reads = (*reads) && (slpte & VTD_SL_R);
|
|
*writes = (*writes) && (slpte & VTD_SL_W);
|
|
if (!(slpte & access_right_check)) {
|
|
trace_vtd_err_dmar_slpte_perm_error(iova, level, slpte, is_write);
|
|
return is_write ? -VTD_FR_WRITE : -VTD_FR_READ;
|
|
}
|
|
if (vtd_slpte_nonzero_rsvd(slpte, level)) {
|
|
trace_vtd_err_dmar_slpte_resv_error(iova, level, slpte);
|
|
return -VTD_FR_PAGING_ENTRY_RSVD;
|
|
}
|
|
|
|
if (vtd_is_last_slpte(slpte, level)) {
|
|
*slptep = slpte;
|
|
*slpte_level = level;
|
|
return 0;
|
|
}
|
|
addr = vtd_get_slpte_addr(slpte, aw_bits);
|
|
level--;
|
|
}
|
|
}
|
|
|
|
typedef int (*vtd_page_walk_hook)(IOMMUTLBEntry *entry, void *private);
|
|
|
|
/**
|
|
* vtd_page_walk_level - walk over specific level for IOVA range
|
|
*
|
|
* @addr: base GPA addr to start the walk
|
|
* @start: IOVA range start address
|
|
* @end: IOVA range end address (start <= addr < end)
|
|
* @hook_fn: hook func to be called when detected page
|
|
* @private: private data to be passed into hook func
|
|
* @read: whether parent level has read permission
|
|
* @write: whether parent level has write permission
|
|
* @notify_unmap: whether we should notify invalid entries
|
|
* @aw: maximum address width
|
|
*/
|
|
static int vtd_page_walk_level(dma_addr_t addr, uint64_t start,
|
|
uint64_t end, vtd_page_walk_hook hook_fn,
|
|
void *private, uint32_t level, bool read,
|
|
bool write, bool notify_unmap, uint8_t aw)
|
|
{
|
|
bool read_cur, write_cur, entry_valid;
|
|
uint32_t offset;
|
|
uint64_t slpte;
|
|
uint64_t subpage_size, subpage_mask;
|
|
IOMMUTLBEntry entry;
|
|
uint64_t iova = start;
|
|
uint64_t iova_next;
|
|
int ret = 0;
|
|
|
|
trace_vtd_page_walk_level(addr, level, start, end);
|
|
|
|
subpage_size = 1ULL << vtd_slpt_level_shift(level);
|
|
subpage_mask = vtd_slpt_level_page_mask(level);
|
|
|
|
while (iova < end) {
|
|
iova_next = (iova & subpage_mask) + subpage_size;
|
|
|
|
offset = vtd_iova_level_offset(iova, level);
|
|
slpte = vtd_get_slpte(addr, offset);
|
|
|
|
if (slpte == (uint64_t)-1) {
|
|
trace_vtd_page_walk_skip_read(iova, iova_next);
|
|
goto next;
|
|
}
|
|
|
|
if (vtd_slpte_nonzero_rsvd(slpte, level)) {
|
|
trace_vtd_page_walk_skip_reserve(iova, iova_next);
|
|
goto next;
|
|
}
|
|
|
|
/* Permissions are stacked with parents' */
|
|
read_cur = read && (slpte & VTD_SL_R);
|
|
write_cur = write && (slpte & VTD_SL_W);
|
|
|
|
/*
|
|
* As long as we have either read/write permission, this is a
|
|
* valid entry. The rule works for both page entries and page
|
|
* table entries.
|
|
*/
|
|
entry_valid = read_cur | write_cur;
|
|
|
|
if (vtd_is_last_slpte(slpte, level)) {
|
|
entry.target_as = &address_space_memory;
|
|
entry.iova = iova & subpage_mask;
|
|
/* NOTE: this is only meaningful if entry_valid == true */
|
|
entry.translated_addr = vtd_get_slpte_addr(slpte, aw);
|
|
entry.addr_mask = ~subpage_mask;
|
|
entry.perm = IOMMU_ACCESS_FLAG(read_cur, write_cur);
|
|
if (!entry_valid && !notify_unmap) {
|
|
trace_vtd_page_walk_skip_perm(iova, iova_next);
|
|
goto next;
|
|
}
|
|
trace_vtd_page_walk_one(level, entry.iova, entry.translated_addr,
|
|
entry.addr_mask, entry.perm);
|
|
if (hook_fn) {
|
|
ret = hook_fn(&entry, private);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
}
|
|
} else {
|
|
if (!entry_valid) {
|
|
trace_vtd_page_walk_skip_perm(iova, iova_next);
|
|
goto next;
|
|
}
|
|
ret = vtd_page_walk_level(vtd_get_slpte_addr(slpte, aw), iova,
|
|
MIN(iova_next, end), hook_fn, private,
|
|
level - 1, read_cur, write_cur,
|
|
notify_unmap, aw);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
next:
|
|
iova = iova_next;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* vtd_page_walk - walk specific IOVA range, and call the hook
|
|
*
|
|
* @ce: context entry to walk upon
|
|
* @start: IOVA address to start the walk
|
|
* @end: IOVA range end address (start <= addr < end)
|
|
* @hook_fn: the hook that to be called for each detected area
|
|
* @private: private data for the hook function
|
|
* @aw: maximum address width
|
|
*/
|
|
static int vtd_page_walk(VTDContextEntry *ce, uint64_t start, uint64_t end,
|
|
vtd_page_walk_hook hook_fn, void *private,
|
|
bool notify_unmap, uint8_t aw)
|
|
{
|
|
dma_addr_t addr = vtd_ce_get_slpt_base(ce);
|
|
uint32_t level = vtd_ce_get_level(ce);
|
|
|
|
if (!vtd_iova_range_check(start, ce, aw)) {
|
|
return -VTD_FR_ADDR_BEYOND_MGAW;
|
|
}
|
|
|
|
if (!vtd_iova_range_check(end, ce, aw)) {
|
|
/* Fix end so that it reaches the maximum */
|
|
end = vtd_iova_limit(ce, aw);
|
|
}
|
|
|
|
return vtd_page_walk_level(addr, start, end, hook_fn, private,
|
|
level, true, true, notify_unmap, aw);
|
|
}
|
|
|
|
/* Map a device to its corresponding domain (context-entry) */
|
|
static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num,
|
|
uint8_t devfn, VTDContextEntry *ce)
|
|
{
|
|
VTDRootEntry re;
|
|
int ret_fr;
|
|
X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
|
|
|
|
ret_fr = vtd_get_root_entry(s, bus_num, &re);
|
|
if (ret_fr) {
|
|
return ret_fr;
|
|
}
|
|
|
|
if (!vtd_root_entry_present(&re)) {
|
|
/* Not error - it's okay we don't have root entry. */
|
|
trace_vtd_re_not_present(bus_num);
|
|
return -VTD_FR_ROOT_ENTRY_P;
|
|
}
|
|
|
|
if (re.rsvd || (re.val & VTD_ROOT_ENTRY_RSVD(s->aw_bits))) {
|
|
trace_vtd_re_invalid(re.rsvd, re.val);
|
|
return -VTD_FR_ROOT_ENTRY_RSVD;
|
|
}
|
|
|
|
ret_fr = vtd_get_context_entry_from_root(&re, devfn, ce);
|
|
if (ret_fr) {
|
|
return ret_fr;
|
|
}
|
|
|
|
if (!vtd_ce_present(ce)) {
|
|
/* Not error - it's okay we don't have context entry. */
|
|
trace_vtd_ce_not_present(bus_num, devfn);
|
|
return -VTD_FR_CONTEXT_ENTRY_P;
|
|
}
|
|
|
|
if ((ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI) ||
|
|
(ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO(s->aw_bits))) {
|
|
trace_vtd_ce_invalid(ce->hi, ce->lo);
|
|
return -VTD_FR_CONTEXT_ENTRY_RSVD;
|
|
}
|
|
|
|
/* Check if the programming of context-entry is valid */
|
|
if (!vtd_is_level_supported(s, vtd_ce_get_level(ce))) {
|
|
trace_vtd_ce_invalid(ce->hi, ce->lo);
|
|
return -VTD_FR_CONTEXT_ENTRY_INV;
|
|
}
|
|
|
|
/* Do translation type check */
|
|
if (!vtd_ce_type_check(x86_iommu, ce)) {
|
|
trace_vtd_ce_invalid(ce->hi, ce->lo);
|
|
return -VTD_FR_CONTEXT_ENTRY_INV;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Fetch translation type for specific device. Returns <0 if error
|
|
* happens, otherwise return the shifted type to check against
|
|
* VTD_CONTEXT_TT_*.
|
|
*/
|
|
static int vtd_dev_get_trans_type(VTDAddressSpace *as)
|
|
{
|
|
IntelIOMMUState *s;
|
|
VTDContextEntry ce;
|
|
int ret;
|
|
|
|
s = as->iommu_state;
|
|
|
|
ret = vtd_dev_to_context_entry(s, pci_bus_num(as->bus),
|
|
as->devfn, &ce);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
|
|
return vtd_ce_get_type(&ce);
|
|
}
|
|
|
|
static bool vtd_dev_pt_enabled(VTDAddressSpace *as)
|
|
{
|
|
int ret;
|
|
|
|
assert(as);
|
|
|
|
ret = vtd_dev_get_trans_type(as);
|
|
if (ret < 0) {
|
|
/*
|
|
* Possibly failed to parse the context entry for some reason
|
|
* (e.g., during init, or any guest configuration errors on
|
|
* context entries). We should assume PT not enabled for
|
|
* safety.
|
|
*/
|
|
return false;
|
|
}
|
|
|
|
return ret == VTD_CONTEXT_TT_PASS_THROUGH;
|
|
}
|
|
|
|
/* Return whether the device is using IOMMU translation. */
|
|
static bool vtd_switch_address_space(VTDAddressSpace *as)
|
|
{
|
|
bool use_iommu;
|
|
/* Whether we need to take the BQL on our own */
|
|
bool take_bql = !qemu_mutex_iothread_locked();
|
|
|
|
assert(as);
|
|
|
|
use_iommu = as->iommu_state->dmar_enabled & !vtd_dev_pt_enabled(as);
|
|
|
|
trace_vtd_switch_address_space(pci_bus_num(as->bus),
|
|
VTD_PCI_SLOT(as->devfn),
|
|
VTD_PCI_FUNC(as->devfn),
|
|
use_iommu);
|
|
|
|
/*
|
|
* It's possible that we reach here without BQL, e.g., when called
|
|
* from vtd_pt_enable_fast_path(). However the memory APIs need
|
|
* it. We'd better make sure we have had it already, or, take it.
|
|
*/
|
|
if (take_bql) {
|
|
qemu_mutex_lock_iothread();
|
|
}
|
|
|
|
/* Turn off first then on the other */
|
|
if (use_iommu) {
|
|
memory_region_set_enabled(&as->sys_alias, false);
|
|
memory_region_set_enabled(MEMORY_REGION(&as->iommu), true);
|
|
} else {
|
|
memory_region_set_enabled(MEMORY_REGION(&as->iommu), false);
|
|
memory_region_set_enabled(&as->sys_alias, true);
|
|
}
|
|
|
|
if (take_bql) {
|
|
qemu_mutex_unlock_iothread();
|
|
}
|
|
|
|
return use_iommu;
|
|
}
|
|
|
|
static void vtd_switch_address_space_all(IntelIOMMUState *s)
|
|
{
|
|
GHashTableIter iter;
|
|
VTDBus *vtd_bus;
|
|
int i;
|
|
|
|
g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
|
|
while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
|
|
for (i = 0; i < PCI_DEVFN_MAX; i++) {
|
|
if (!vtd_bus->dev_as[i]) {
|
|
continue;
|
|
}
|
|
vtd_switch_address_space(vtd_bus->dev_as[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
static inline uint16_t vtd_make_source_id(uint8_t bus_num, uint8_t devfn)
|
|
{
|
|
return ((bus_num & 0xffUL) << 8) | (devfn & 0xffUL);
|
|
}
|
|
|
|
static const bool vtd_qualified_faults[] = {
|
|
[VTD_FR_RESERVED] = false,
|
|
[VTD_FR_ROOT_ENTRY_P] = false,
|
|
[VTD_FR_CONTEXT_ENTRY_P] = true,
|
|
[VTD_FR_CONTEXT_ENTRY_INV] = true,
|
|
[VTD_FR_ADDR_BEYOND_MGAW] = true,
|
|
[VTD_FR_WRITE] = true,
|
|
[VTD_FR_READ] = true,
|
|
[VTD_FR_PAGING_ENTRY_INV] = true,
|
|
[VTD_FR_ROOT_TABLE_INV] = false,
|
|
[VTD_FR_CONTEXT_TABLE_INV] = false,
|
|
[VTD_FR_ROOT_ENTRY_RSVD] = false,
|
|
[VTD_FR_PAGING_ENTRY_RSVD] = true,
|
|
[VTD_FR_CONTEXT_ENTRY_TT] = true,
|
|
[VTD_FR_RESERVED_ERR] = false,
|
|
[VTD_FR_MAX] = false,
|
|
};
|
|
|
|
/* To see if a fault condition is "qualified", which is reported to software
|
|
* only if the FPD field in the context-entry used to process the faulting
|
|
* request is 0.
|
|
*/
|
|
static inline bool vtd_is_qualified_fault(VTDFaultReason fault)
|
|
{
|
|
return vtd_qualified_faults[fault];
|
|
}
|
|
|
|
static inline bool vtd_is_interrupt_addr(hwaddr addr)
|
|
{
|
|
return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST;
|
|
}
|
|
|
|
static void vtd_pt_enable_fast_path(IntelIOMMUState *s, uint16_t source_id)
|
|
{
|
|
VTDBus *vtd_bus;
|
|
VTDAddressSpace *vtd_as;
|
|
bool success = false;
|
|
|
|
vtd_bus = vtd_find_as_from_bus_num(s, VTD_SID_TO_BUS(source_id));
|
|
if (!vtd_bus) {
|
|
goto out;
|
|
}
|
|
|
|
vtd_as = vtd_bus->dev_as[VTD_SID_TO_DEVFN(source_id)];
|
|
if (!vtd_as) {
|
|
goto out;
|
|
}
|
|
|
|
if (vtd_switch_address_space(vtd_as) == false) {
|
|
/* We switched off IOMMU region successfully. */
|
|
success = true;
|
|
}
|
|
|
|
out:
|
|
trace_vtd_pt_enable_fast_path(source_id, success);
|
|
}
|
|
|
|
/* Map dev to context-entry then do a paging-structures walk to do a iommu
|
|
* translation.
|
|
*
|
|
* Called from RCU critical section.
|
|
*
|
|
* @bus_num: The bus number
|
|
* @devfn: The devfn, which is the combined of device and function number
|
|
* @is_write: The access is a write operation
|
|
* @entry: IOMMUTLBEntry that contain the addr to be translated and result
|
|
*
|
|
* Returns true if translation is successful, otherwise false.
|
|
*/
|
|
static bool vtd_do_iommu_translate(VTDAddressSpace *vtd_as, PCIBus *bus,
|
|
uint8_t devfn, hwaddr addr, bool is_write,
|
|
IOMMUTLBEntry *entry)
|
|
{
|
|
IntelIOMMUState *s = vtd_as->iommu_state;
|
|
VTDContextEntry ce;
|
|
uint8_t bus_num = pci_bus_num(bus);
|
|
VTDContextCacheEntry *cc_entry = &vtd_as->context_cache_entry;
|
|
uint64_t slpte, page_mask;
|
|
uint32_t level;
|
|
uint16_t source_id = vtd_make_source_id(bus_num, devfn);
|
|
int ret_fr;
|
|
bool is_fpd_set = false;
|
|
bool reads = true;
|
|
bool writes = true;
|
|
uint8_t access_flags;
|
|
VTDIOTLBEntry *iotlb_entry;
|
|
|
|
/*
|
|
* We have standalone memory region for interrupt addresses, we
|
|
* should never receive translation requests in this region.
|
|
*/
|
|
assert(!vtd_is_interrupt_addr(addr));
|
|
|
|
/* Try to fetch slpte form IOTLB */
|
|
iotlb_entry = vtd_lookup_iotlb(s, source_id, addr);
|
|
if (iotlb_entry) {
|
|
trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->slpte,
|
|
iotlb_entry->domain_id);
|
|
slpte = iotlb_entry->slpte;
|
|
access_flags = iotlb_entry->access_flags;
|
|
page_mask = iotlb_entry->mask;
|
|
goto out;
|
|
}
|
|
|
|
/* Try to fetch context-entry from cache first */
|
|
if (cc_entry->context_cache_gen == s->context_cache_gen) {
|
|
trace_vtd_iotlb_cc_hit(bus_num, devfn, cc_entry->context_entry.hi,
|
|
cc_entry->context_entry.lo,
|
|
cc_entry->context_cache_gen);
|
|
ce = cc_entry->context_entry;
|
|
is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
|
|
} else {
|
|
ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce);
|
|
is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
|
|
if (ret_fr) {
|
|
ret_fr = -ret_fr;
|
|
if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) {
|
|
trace_vtd_fault_disabled();
|
|
} else {
|
|
vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write);
|
|
}
|
|
goto error;
|
|
}
|
|
/* Update context-cache */
|
|
trace_vtd_iotlb_cc_update(bus_num, devfn, ce.hi, ce.lo,
|
|
cc_entry->context_cache_gen,
|
|
s->context_cache_gen);
|
|
cc_entry->context_entry = ce;
|
|
cc_entry->context_cache_gen = s->context_cache_gen;
|
|
}
|
|
|
|
/*
|
|
* We don't need to translate for pass-through context entries.
|
|
* Also, let's ignore IOTLB caching as well for PT devices.
|
|
*/
|
|
if (vtd_ce_get_type(&ce) == VTD_CONTEXT_TT_PASS_THROUGH) {
|
|
entry->iova = addr & VTD_PAGE_MASK_4K;
|
|
entry->translated_addr = entry->iova;
|
|
entry->addr_mask = ~VTD_PAGE_MASK_4K;
|
|
entry->perm = IOMMU_RW;
|
|
trace_vtd_translate_pt(source_id, entry->iova);
|
|
|
|
/*
|
|
* When this happens, it means firstly caching-mode is not
|
|
* enabled, and this is the first passthrough translation for
|
|
* the device. Let's enable the fast path for passthrough.
|
|
*
|
|
* When passthrough is disabled again for the device, we can
|
|
* capture it via the context entry invalidation, then the
|
|
* IOMMU region can be swapped back.
|
|
*/
|
|
vtd_pt_enable_fast_path(s, source_id);
|
|
|
|
return true;
|
|
}
|
|
|
|
ret_fr = vtd_iova_to_slpte(&ce, addr, is_write, &slpte, &level,
|
|
&reads, &writes, s->aw_bits);
|
|
if (ret_fr) {
|
|
ret_fr = -ret_fr;
|
|
if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) {
|
|
trace_vtd_fault_disabled();
|
|
} else {
|
|
vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write);
|
|
}
|
|
goto error;
|
|
}
|
|
|
|
page_mask = vtd_slpt_level_page_mask(level);
|
|
access_flags = IOMMU_ACCESS_FLAG(reads, writes);
|
|
vtd_update_iotlb(s, source_id, VTD_CONTEXT_ENTRY_DID(ce.hi), addr, slpte,
|
|
access_flags, level);
|
|
out:
|
|
entry->iova = addr & page_mask;
|
|
entry->translated_addr = vtd_get_slpte_addr(slpte, s->aw_bits) & page_mask;
|
|
entry->addr_mask = ~page_mask;
|
|
entry->perm = access_flags;
|
|
return true;
|
|
|
|
error:
|
|
entry->iova = 0;
|
|
entry->translated_addr = 0;
|
|
entry->addr_mask = 0;
|
|
entry->perm = IOMMU_NONE;
|
|
return false;
|
|
}
|
|
|
|
static void vtd_root_table_setup(IntelIOMMUState *s)
|
|
{
|
|
s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
|
|
s->root_extended = s->root & VTD_RTADDR_RTT;
|
|
s->root &= VTD_RTADDR_ADDR_MASK(s->aw_bits);
|
|
|
|
trace_vtd_reg_dmar_root(s->root, s->root_extended);
|
|
}
|
|
|
|
static void vtd_iec_notify_all(IntelIOMMUState *s, bool global,
|
|
uint32_t index, uint32_t mask)
|
|
{
|
|
x86_iommu_iec_notify_all(X86_IOMMU_DEVICE(s), global, index, mask);
|
|
}
|
|
|
|
static void vtd_interrupt_remap_table_setup(IntelIOMMUState *s)
|
|
{
|
|
uint64_t value = 0;
|
|
value = vtd_get_quad_raw(s, DMAR_IRTA_REG);
|
|
s->intr_size = 1UL << ((value & VTD_IRTA_SIZE_MASK) + 1);
|
|
s->intr_root = value & VTD_IRTA_ADDR_MASK(s->aw_bits);
|
|
s->intr_eime = value & VTD_IRTA_EIME;
|
|
|
|
/* Notify global invalidation */
|
|
vtd_iec_notify_all(s, true, 0, 0);
|
|
|
|
trace_vtd_reg_ir_root(s->intr_root, s->intr_size);
|
|
}
|
|
|
|
static void vtd_iommu_replay_all(IntelIOMMUState *s)
|
|
{
|
|
IntelIOMMUNotifierNode *node;
|
|
|
|
QLIST_FOREACH(node, &s->notifiers_list, next) {
|
|
memory_region_iommu_replay_all(&node->vtd_as->iommu);
|
|
}
|
|
}
|
|
|
|
static void vtd_context_global_invalidate(IntelIOMMUState *s)
|
|
{
|
|
trace_vtd_inv_desc_cc_global();
|
|
s->context_cache_gen++;
|
|
if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) {
|
|
vtd_reset_context_cache(s);
|
|
}
|
|
vtd_switch_address_space_all(s);
|
|
/*
|
|
* From VT-d spec 6.5.2.1, a global context entry invalidation
|
|
* should be followed by a IOTLB global invalidation, so we should
|
|
* be safe even without this. Hoewever, let's replay the region as
|
|
* well to be safer, and go back here when we need finer tunes for
|
|
* VT-d emulation codes.
|
|
*/
|
|
vtd_iommu_replay_all(s);
|
|
}
|
|
|
|
/* Do a context-cache device-selective invalidation.
|
|
* @func_mask: FM field after shifting
|
|
*/
|
|
static void vtd_context_device_invalidate(IntelIOMMUState *s,
|
|
uint16_t source_id,
|
|
uint16_t func_mask)
|
|
{
|
|
uint16_t mask;
|
|
VTDBus *vtd_bus;
|
|
VTDAddressSpace *vtd_as;
|
|
uint8_t bus_n, devfn;
|
|
uint16_t devfn_it;
|
|
|
|
trace_vtd_inv_desc_cc_devices(source_id, func_mask);
|
|
|
|
switch (func_mask & 3) {
|
|
case 0:
|
|
mask = 0; /* No bits in the SID field masked */
|
|
break;
|
|
case 1:
|
|
mask = 4; /* Mask bit 2 in the SID field */
|
|
break;
|
|
case 2:
|
|
mask = 6; /* Mask bit 2:1 in the SID field */
|
|
break;
|
|
case 3:
|
|
mask = 7; /* Mask bit 2:0 in the SID field */
|
|
break;
|
|
}
|
|
mask = ~mask;
|
|
|
|
bus_n = VTD_SID_TO_BUS(source_id);
|
|
vtd_bus = vtd_find_as_from_bus_num(s, bus_n);
|
|
if (vtd_bus) {
|
|
devfn = VTD_SID_TO_DEVFN(source_id);
|
|
for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) {
|
|
vtd_as = vtd_bus->dev_as[devfn_it];
|
|
if (vtd_as && ((devfn_it & mask) == (devfn & mask))) {
|
|
trace_vtd_inv_desc_cc_device(bus_n, VTD_PCI_SLOT(devfn_it),
|
|
VTD_PCI_FUNC(devfn_it));
|
|
vtd_as->context_cache_entry.context_cache_gen = 0;
|
|
/*
|
|
* Do switch address space when needed, in case if the
|
|
* device passthrough bit is switched.
|
|
*/
|
|
vtd_switch_address_space(vtd_as);
|
|
/*
|
|
* So a device is moving out of (or moving into) a
|
|
* domain, a replay() suites here to notify all the
|
|
* IOMMU_NOTIFIER_MAP registers about this change.
|
|
* This won't bring bad even if we have no such
|
|
* notifier registered - the IOMMU notification
|
|
* framework will skip MAP notifications if that
|
|
* happened.
|
|
*/
|
|
memory_region_iommu_replay_all(&vtd_as->iommu);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Context-cache invalidation
|
|
* Returns the Context Actual Invalidation Granularity.
|
|
* @val: the content of the CCMD_REG
|
|
*/
|
|
static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val)
|
|
{
|
|
uint64_t caig;
|
|
uint64_t type = val & VTD_CCMD_CIRG_MASK;
|
|
|
|
switch (type) {
|
|
case VTD_CCMD_DOMAIN_INVL:
|
|
/* Fall through */
|
|
case VTD_CCMD_GLOBAL_INVL:
|
|
caig = VTD_CCMD_GLOBAL_INVL_A;
|
|
vtd_context_global_invalidate(s);
|
|
break;
|
|
|
|
case VTD_CCMD_DEVICE_INVL:
|
|
caig = VTD_CCMD_DEVICE_INVL_A;
|
|
vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val));
|
|
break;
|
|
|
|
default:
|
|
trace_vtd_err("Context cache invalidate type error.");
|
|
caig = 0;
|
|
}
|
|
return caig;
|
|
}
|
|
|
|
static void vtd_iotlb_global_invalidate(IntelIOMMUState *s)
|
|
{
|
|
trace_vtd_inv_desc_iotlb_global();
|
|
vtd_reset_iotlb(s);
|
|
vtd_iommu_replay_all(s);
|
|
}
|
|
|
|
static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id)
|
|
{
|
|
IntelIOMMUNotifierNode *node;
|
|
VTDContextEntry ce;
|
|
VTDAddressSpace *vtd_as;
|
|
|
|
trace_vtd_inv_desc_iotlb_domain(domain_id);
|
|
|
|
g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain,
|
|
&domain_id);
|
|
|
|
QLIST_FOREACH(node, &s->notifiers_list, next) {
|
|
vtd_as = node->vtd_as;
|
|
if (!vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
|
|
vtd_as->devfn, &ce) &&
|
|
domain_id == VTD_CONTEXT_ENTRY_DID(ce.hi)) {
|
|
memory_region_iommu_replay_all(&vtd_as->iommu);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int vtd_page_invalidate_notify_hook(IOMMUTLBEntry *entry,
|
|
void *private)
|
|
{
|
|
memory_region_notify_iommu((IOMMUMemoryRegion *)private, *entry);
|
|
return 0;
|
|
}
|
|
|
|
static void vtd_iotlb_page_invalidate_notify(IntelIOMMUState *s,
|
|
uint16_t domain_id, hwaddr addr,
|
|
uint8_t am)
|
|
{
|
|
IntelIOMMUNotifierNode *node;
|
|
VTDContextEntry ce;
|
|
int ret;
|
|
|
|
QLIST_FOREACH(node, &(s->notifiers_list), next) {
|
|
VTDAddressSpace *vtd_as = node->vtd_as;
|
|
ret = vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
|
|
vtd_as->devfn, &ce);
|
|
if (!ret && domain_id == VTD_CONTEXT_ENTRY_DID(ce.hi)) {
|
|
vtd_page_walk(&ce, addr, addr + (1 << am) * VTD_PAGE_SIZE,
|
|
vtd_page_invalidate_notify_hook,
|
|
(void *)&vtd_as->iommu, true, s->aw_bits);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id,
|
|
hwaddr addr, uint8_t am)
|
|
{
|
|
VTDIOTLBPageInvInfo info;
|
|
|
|
trace_vtd_inv_desc_iotlb_pages(domain_id, addr, am);
|
|
|
|
assert(am <= VTD_MAMV);
|
|
info.domain_id = domain_id;
|
|
info.addr = addr;
|
|
info.mask = ~((1 << am) - 1);
|
|
g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info);
|
|
vtd_iotlb_page_invalidate_notify(s, domain_id, addr, am);
|
|
}
|
|
|
|
/* Flush IOTLB
|
|
* Returns the IOTLB Actual Invalidation Granularity.
|
|
* @val: the content of the IOTLB_REG
|
|
*/
|
|
static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val)
|
|
{
|
|
uint64_t iaig;
|
|
uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK;
|
|
uint16_t domain_id;
|
|
hwaddr addr;
|
|
uint8_t am;
|
|
|
|
switch (type) {
|
|
case VTD_TLB_GLOBAL_FLUSH:
|
|
iaig = VTD_TLB_GLOBAL_FLUSH_A;
|
|
vtd_iotlb_global_invalidate(s);
|
|
break;
|
|
|
|
case VTD_TLB_DSI_FLUSH:
|
|
domain_id = VTD_TLB_DID(val);
|
|
iaig = VTD_TLB_DSI_FLUSH_A;
|
|
vtd_iotlb_domain_invalidate(s, domain_id);
|
|
break;
|
|
|
|
case VTD_TLB_PSI_FLUSH:
|
|
domain_id = VTD_TLB_DID(val);
|
|
addr = vtd_get_quad_raw(s, DMAR_IVA_REG);
|
|
am = VTD_IVA_AM(addr);
|
|
addr = VTD_IVA_ADDR(addr);
|
|
if (am > VTD_MAMV) {
|
|
trace_vtd_err("IOTLB PSI flush: address mask overflow.");
|
|
iaig = 0;
|
|
break;
|
|
}
|
|
iaig = VTD_TLB_PSI_FLUSH_A;
|
|
vtd_iotlb_page_invalidate(s, domain_id, addr, am);
|
|
break;
|
|
|
|
default:
|
|
trace_vtd_err("IOTLB flush: invalid granularity.");
|
|
iaig = 0;
|
|
}
|
|
return iaig;
|
|
}
|
|
|
|
static void vtd_fetch_inv_desc(IntelIOMMUState *s);
|
|
|
|
static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s)
|
|
{
|
|
return s->qi_enabled && (s->iq_tail == s->iq_head) &&
|
|
(s->iq_last_desc_type == VTD_INV_DESC_WAIT);
|
|
}
|
|
|
|
static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en)
|
|
{
|
|
uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG);
|
|
|
|
trace_vtd_inv_qi_enable(en);
|
|
|
|
if (en) {
|
|
s->iq = iqa_val & VTD_IQA_IQA_MASK(s->aw_bits);
|
|
/* 2^(x+8) entries */
|
|
s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8);
|
|
s->qi_enabled = true;
|
|
trace_vtd_inv_qi_setup(s->iq, s->iq_size);
|
|
/* Ok - report back to driver */
|
|
vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES);
|
|
|
|
if (s->iq_tail != 0) {
|
|
/*
|
|
* This is a spec violation but Windows guests are known to set up
|
|
* Queued Invalidation this way so we allow the write and process
|
|
* Invalidation Descriptors right away.
|
|
*/
|
|
trace_vtd_warn_invalid_qi_tail(s->iq_tail);
|
|
if (!(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
|
|
vtd_fetch_inv_desc(s);
|
|
}
|
|
}
|
|
} else {
|
|
if (vtd_queued_inv_disable_check(s)) {
|
|
/* disable Queued Invalidation */
|
|
vtd_set_quad_raw(s, DMAR_IQH_REG, 0);
|
|
s->iq_head = 0;
|
|
s->qi_enabled = false;
|
|
/* Ok - report back to driver */
|
|
vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0);
|
|
} else {
|
|
trace_vtd_err_qi_disable(s->iq_head, s->iq_tail, s->iq_last_desc_type);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Set Root Table Pointer */
|
|
static void vtd_handle_gcmd_srtp(IntelIOMMUState *s)
|
|
{
|
|
vtd_root_table_setup(s);
|
|
/* Ok - report back to driver */
|
|
vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS);
|
|
}
|
|
|
|
/* Set Interrupt Remap Table Pointer */
|
|
static void vtd_handle_gcmd_sirtp(IntelIOMMUState *s)
|
|
{
|
|
vtd_interrupt_remap_table_setup(s);
|
|
/* Ok - report back to driver */
|
|
vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRTPS);
|
|
}
|
|
|
|
/* Handle Translation Enable/Disable */
|
|
static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en)
|
|
{
|
|
if (s->dmar_enabled == en) {
|
|
return;
|
|
}
|
|
|
|
trace_vtd_dmar_enable(en);
|
|
|
|
if (en) {
|
|
s->dmar_enabled = true;
|
|
/* Ok - report back to driver */
|
|
vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES);
|
|
} else {
|
|
s->dmar_enabled = false;
|
|
|
|
/* Clear the index of Fault Recording Register */
|
|
s->next_frcd_reg = 0;
|
|
/* Ok - report back to driver */
|
|
vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0);
|
|
}
|
|
|
|
vtd_switch_address_space_all(s);
|
|
}
|
|
|
|
/* Handle Interrupt Remap Enable/Disable */
|
|
static void vtd_handle_gcmd_ire(IntelIOMMUState *s, bool en)
|
|
{
|
|
trace_vtd_ir_enable(en);
|
|
|
|
if (en) {
|
|
s->intr_enabled = true;
|
|
/* Ok - report back to driver */
|
|
vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRES);
|
|
} else {
|
|
s->intr_enabled = false;
|
|
/* Ok - report back to driver */
|
|
vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_IRES, 0);
|
|
}
|
|
}
|
|
|
|
/* Handle write to Global Command Register */
|
|
static void vtd_handle_gcmd_write(IntelIOMMUState *s)
|
|
{
|
|
uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG);
|
|
uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG);
|
|
uint32_t changed = status ^ val;
|
|
|
|
trace_vtd_reg_write_gcmd(status, val);
|
|
if (changed & VTD_GCMD_TE) {
|
|
/* Translation enable/disable */
|
|
vtd_handle_gcmd_te(s, val & VTD_GCMD_TE);
|
|
}
|
|
if (val & VTD_GCMD_SRTP) {
|
|
/* Set/update the root-table pointer */
|
|
vtd_handle_gcmd_srtp(s);
|
|
}
|
|
if (changed & VTD_GCMD_QIE) {
|
|
/* Queued Invalidation Enable */
|
|
vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE);
|
|
}
|
|
if (val & VTD_GCMD_SIRTP) {
|
|
/* Set/update the interrupt remapping root-table pointer */
|
|
vtd_handle_gcmd_sirtp(s);
|
|
}
|
|
if (changed & VTD_GCMD_IRE) {
|
|
/* Interrupt remap enable/disable */
|
|
vtd_handle_gcmd_ire(s, val & VTD_GCMD_IRE);
|
|
}
|
|
}
|
|
|
|
/* Handle write to Context Command Register */
|
|
static void vtd_handle_ccmd_write(IntelIOMMUState *s)
|
|
{
|
|
uint64_t ret;
|
|
uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG);
|
|
|
|
/* Context-cache invalidation request */
|
|
if (val & VTD_CCMD_ICC) {
|
|
if (s->qi_enabled) {
|
|
trace_vtd_err("Queued Invalidation enabled, "
|
|
"should not use register-based invalidation");
|
|
return;
|
|
}
|
|
ret = vtd_context_cache_invalidate(s, val);
|
|
/* Invalidation completed. Change something to show */
|
|
vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL);
|
|
ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK,
|
|
ret);
|
|
}
|
|
}
|
|
|
|
/* Handle write to IOTLB Invalidation Register */
|
|
static void vtd_handle_iotlb_write(IntelIOMMUState *s)
|
|
{
|
|
uint64_t ret;
|
|
uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG);
|
|
|
|
/* IOTLB invalidation request */
|
|
if (val & VTD_TLB_IVT) {
|
|
if (s->qi_enabled) {
|
|
trace_vtd_err("Queued Invalidation enabled, "
|
|
"should not use register-based invalidation.");
|
|
return;
|
|
}
|
|
ret = vtd_iotlb_flush(s, val);
|
|
/* Invalidation completed. Change something to show */
|
|
vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL);
|
|
ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG,
|
|
VTD_TLB_FLUSH_GRANU_MASK_A, ret);
|
|
}
|
|
}
|
|
|
|
/* Fetch an Invalidation Descriptor from the Invalidation Queue */
|
|
static bool vtd_get_inv_desc(dma_addr_t base_addr, uint32_t offset,
|
|
VTDInvDesc *inv_desc)
|
|
{
|
|
dma_addr_t addr = base_addr + offset * sizeof(*inv_desc);
|
|
if (dma_memory_read(&address_space_memory, addr, inv_desc,
|
|
sizeof(*inv_desc))) {
|
|
trace_vtd_err("Read INV DESC failed.");
|
|
inv_desc->lo = 0;
|
|
inv_desc->hi = 0;
|
|
return false;
|
|
}
|
|
inv_desc->lo = le64_to_cpu(inv_desc->lo);
|
|
inv_desc->hi = le64_to_cpu(inv_desc->hi);
|
|
return true;
|
|
}
|
|
|
|
static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
|
|
{
|
|
if ((inv_desc->hi & VTD_INV_DESC_WAIT_RSVD_HI) ||
|
|
(inv_desc->lo & VTD_INV_DESC_WAIT_RSVD_LO)) {
|
|
trace_vtd_inv_desc_wait_invalid(inv_desc->hi, inv_desc->lo);
|
|
return false;
|
|
}
|
|
if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) {
|
|
/* Status Write */
|
|
uint32_t status_data = (uint32_t)(inv_desc->lo >>
|
|
VTD_INV_DESC_WAIT_DATA_SHIFT);
|
|
|
|
assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF));
|
|
|
|
/* FIXME: need to be masked with HAW? */
|
|
dma_addr_t status_addr = inv_desc->hi;
|
|
trace_vtd_inv_desc_wait_sw(status_addr, status_data);
|
|
status_data = cpu_to_le32(status_data);
|
|
if (dma_memory_write(&address_space_memory, status_addr, &status_data,
|
|
sizeof(status_data))) {
|
|
trace_vtd_inv_desc_wait_write_fail(inv_desc->hi, inv_desc->lo);
|
|
return false;
|
|
}
|
|
} else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) {
|
|
/* Interrupt flag */
|
|
vtd_generate_completion_event(s);
|
|
} else {
|
|
trace_vtd_inv_desc_wait_invalid(inv_desc->hi, inv_desc->lo);
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool vtd_process_context_cache_desc(IntelIOMMUState *s,
|
|
VTDInvDesc *inv_desc)
|
|
{
|
|
uint16_t sid, fmask;
|
|
|
|
if ((inv_desc->lo & VTD_INV_DESC_CC_RSVD) || inv_desc->hi) {
|
|
trace_vtd_inv_desc_cc_invalid(inv_desc->hi, inv_desc->lo);
|
|
return false;
|
|
}
|
|
switch (inv_desc->lo & VTD_INV_DESC_CC_G) {
|
|
case VTD_INV_DESC_CC_DOMAIN:
|
|
trace_vtd_inv_desc_cc_domain(
|
|
(uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo));
|
|
/* Fall through */
|
|
case VTD_INV_DESC_CC_GLOBAL:
|
|
vtd_context_global_invalidate(s);
|
|
break;
|
|
|
|
case VTD_INV_DESC_CC_DEVICE:
|
|
sid = VTD_INV_DESC_CC_SID(inv_desc->lo);
|
|
fmask = VTD_INV_DESC_CC_FM(inv_desc->lo);
|
|
vtd_context_device_invalidate(s, sid, fmask);
|
|
break;
|
|
|
|
default:
|
|
trace_vtd_inv_desc_cc_invalid(inv_desc->hi, inv_desc->lo);
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
|
|
{
|
|
uint16_t domain_id;
|
|
uint8_t am;
|
|
hwaddr addr;
|
|
|
|
if ((inv_desc->lo & VTD_INV_DESC_IOTLB_RSVD_LO) ||
|
|
(inv_desc->hi & VTD_INV_DESC_IOTLB_RSVD_HI)) {
|
|
trace_vtd_inv_desc_iotlb_invalid(inv_desc->hi, inv_desc->lo);
|
|
return false;
|
|
}
|
|
|
|
switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) {
|
|
case VTD_INV_DESC_IOTLB_GLOBAL:
|
|
vtd_iotlb_global_invalidate(s);
|
|
break;
|
|
|
|
case VTD_INV_DESC_IOTLB_DOMAIN:
|
|
domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
|
|
vtd_iotlb_domain_invalidate(s, domain_id);
|
|
break;
|
|
|
|
case VTD_INV_DESC_IOTLB_PAGE:
|
|
domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
|
|
addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi);
|
|
am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi);
|
|
if (am > VTD_MAMV) {
|
|
trace_vtd_inv_desc_iotlb_invalid(inv_desc->hi, inv_desc->lo);
|
|
return false;
|
|
}
|
|
vtd_iotlb_page_invalidate(s, domain_id, addr, am);
|
|
break;
|
|
|
|
default:
|
|
trace_vtd_inv_desc_iotlb_invalid(inv_desc->hi, inv_desc->lo);
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool vtd_process_inv_iec_desc(IntelIOMMUState *s,
|
|
VTDInvDesc *inv_desc)
|
|
{
|
|
trace_vtd_inv_desc_iec(inv_desc->iec.granularity,
|
|
inv_desc->iec.index,
|
|
inv_desc->iec.index_mask);
|
|
|
|
vtd_iec_notify_all(s, !inv_desc->iec.granularity,
|
|
inv_desc->iec.index,
|
|
inv_desc->iec.index_mask);
|
|
return true;
|
|
}
|
|
|
|
static bool vtd_process_device_iotlb_desc(IntelIOMMUState *s,
|
|
VTDInvDesc *inv_desc)
|
|
{
|
|
VTDAddressSpace *vtd_dev_as;
|
|
IOMMUTLBEntry entry;
|
|
struct VTDBus *vtd_bus;
|
|
hwaddr addr;
|
|
uint64_t sz;
|
|
uint16_t sid;
|
|
uint8_t devfn;
|
|
bool size;
|
|
uint8_t bus_num;
|
|
|
|
addr = VTD_INV_DESC_DEVICE_IOTLB_ADDR(inv_desc->hi);
|
|
sid = VTD_INV_DESC_DEVICE_IOTLB_SID(inv_desc->lo);
|
|
devfn = sid & 0xff;
|
|
bus_num = sid >> 8;
|
|
size = VTD_INV_DESC_DEVICE_IOTLB_SIZE(inv_desc->hi);
|
|
|
|
if ((inv_desc->lo & VTD_INV_DESC_DEVICE_IOTLB_RSVD_LO) ||
|
|
(inv_desc->hi & VTD_INV_DESC_DEVICE_IOTLB_RSVD_HI)) {
|
|
trace_vtd_inv_desc_iotlb_invalid(inv_desc->hi, inv_desc->lo);
|
|
return false;
|
|
}
|
|
|
|
vtd_bus = vtd_find_as_from_bus_num(s, bus_num);
|
|
if (!vtd_bus) {
|
|
goto done;
|
|
}
|
|
|
|
vtd_dev_as = vtd_bus->dev_as[devfn];
|
|
if (!vtd_dev_as) {
|
|
goto done;
|
|
}
|
|
|
|
/* According to ATS spec table 2.4:
|
|
* S = 0, bits 15:12 = xxxx range size: 4K
|
|
* S = 1, bits 15:12 = xxx0 range size: 8K
|
|
* S = 1, bits 15:12 = xx01 range size: 16K
|
|
* S = 1, bits 15:12 = x011 range size: 32K
|
|
* S = 1, bits 15:12 = 0111 range size: 64K
|
|
* ...
|
|
*/
|
|
if (size) {
|
|
sz = (VTD_PAGE_SIZE * 2) << cto64(addr >> VTD_PAGE_SHIFT);
|
|
addr &= ~(sz - 1);
|
|
} else {
|
|
sz = VTD_PAGE_SIZE;
|
|
}
|
|
|
|
entry.target_as = &vtd_dev_as->as;
|
|
entry.addr_mask = sz - 1;
|
|
entry.iova = addr;
|
|
entry.perm = IOMMU_NONE;
|
|
entry.translated_addr = 0;
|
|
memory_region_notify_iommu(&vtd_dev_as->iommu, entry);
|
|
|
|
done:
|
|
return true;
|
|
}
|
|
|
|
static bool vtd_process_inv_desc(IntelIOMMUState *s)
|
|
{
|
|
VTDInvDesc inv_desc;
|
|
uint8_t desc_type;
|
|
|
|
trace_vtd_inv_qi_head(s->iq_head);
|
|
if (!vtd_get_inv_desc(s->iq, s->iq_head, &inv_desc)) {
|
|
s->iq_last_desc_type = VTD_INV_DESC_NONE;
|
|
return false;
|
|
}
|
|
desc_type = inv_desc.lo & VTD_INV_DESC_TYPE;
|
|
/* FIXME: should update at first or at last? */
|
|
s->iq_last_desc_type = desc_type;
|
|
|
|
switch (desc_type) {
|
|
case VTD_INV_DESC_CC:
|
|
trace_vtd_inv_desc("context-cache", inv_desc.hi, inv_desc.lo);
|
|
if (!vtd_process_context_cache_desc(s, &inv_desc)) {
|
|
return false;
|
|
}
|
|
break;
|
|
|
|
case VTD_INV_DESC_IOTLB:
|
|
trace_vtd_inv_desc("iotlb", inv_desc.hi, inv_desc.lo);
|
|
if (!vtd_process_iotlb_desc(s, &inv_desc)) {
|
|
return false;
|
|
}
|
|
break;
|
|
|
|
case VTD_INV_DESC_WAIT:
|
|
trace_vtd_inv_desc("wait", inv_desc.hi, inv_desc.lo);
|
|
if (!vtd_process_wait_desc(s, &inv_desc)) {
|
|
return false;
|
|
}
|
|
break;
|
|
|
|
case VTD_INV_DESC_IEC:
|
|
trace_vtd_inv_desc("iec", inv_desc.hi, inv_desc.lo);
|
|
if (!vtd_process_inv_iec_desc(s, &inv_desc)) {
|
|
return false;
|
|
}
|
|
break;
|
|
|
|
case VTD_INV_DESC_DEVICE:
|
|
trace_vtd_inv_desc("device", inv_desc.hi, inv_desc.lo);
|
|
if (!vtd_process_device_iotlb_desc(s, &inv_desc)) {
|
|
return false;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
trace_vtd_inv_desc_invalid(inv_desc.hi, inv_desc.lo);
|
|
return false;
|
|
}
|
|
s->iq_head++;
|
|
if (s->iq_head == s->iq_size) {
|
|
s->iq_head = 0;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* Try to fetch and process more Invalidation Descriptors */
|
|
static void vtd_fetch_inv_desc(IntelIOMMUState *s)
|
|
{
|
|
trace_vtd_inv_qi_fetch();
|
|
|
|
if (s->iq_tail >= s->iq_size) {
|
|
/* Detects an invalid Tail pointer */
|
|
trace_vtd_err_qi_tail(s->iq_tail, s->iq_size);
|
|
vtd_handle_inv_queue_error(s);
|
|
return;
|
|
}
|
|
while (s->iq_head != s->iq_tail) {
|
|
if (!vtd_process_inv_desc(s)) {
|
|
/* Invalidation Queue Errors */
|
|
vtd_handle_inv_queue_error(s);
|
|
break;
|
|
}
|
|
/* Must update the IQH_REG in time */
|
|
vtd_set_quad_raw(s, DMAR_IQH_REG,
|
|
(((uint64_t)(s->iq_head)) << VTD_IQH_QH_SHIFT) &
|
|
VTD_IQH_QH_MASK);
|
|
}
|
|
}
|
|
|
|
/* Handle write to Invalidation Queue Tail Register */
|
|
static void vtd_handle_iqt_write(IntelIOMMUState *s)
|
|
{
|
|
uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG);
|
|
|
|
s->iq_tail = VTD_IQT_QT(val);
|
|
trace_vtd_inv_qi_tail(s->iq_tail);
|
|
|
|
if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
|
|
/* Process Invalidation Queue here */
|
|
vtd_fetch_inv_desc(s);
|
|
}
|
|
}
|
|
|
|
static void vtd_handle_fsts_write(IntelIOMMUState *s)
|
|
{
|
|
uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
|
|
uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
|
|
uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE;
|
|
|
|
if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) {
|
|
vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
|
|
trace_vtd_fsts_clear_ip();
|
|
}
|
|
/* FIXME: when IQE is Clear, should we try to fetch some Invalidation
|
|
* Descriptors if there are any when Queued Invalidation is enabled?
|
|
*/
|
|
}
|
|
|
|
static void vtd_handle_fectl_write(IntelIOMMUState *s)
|
|
{
|
|
uint32_t fectl_reg;
|
|
/* FIXME: when software clears the IM field, check the IP field. But do we
|
|
* need to compare the old value and the new value to conclude that
|
|
* software clears the IM field? Or just check if the IM field is zero?
|
|
*/
|
|
fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
|
|
|
|
trace_vtd_reg_write_fectl(fectl_reg);
|
|
|
|
if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) {
|
|
vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
|
|
vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
|
|
}
|
|
}
|
|
|
|
static void vtd_handle_ics_write(IntelIOMMUState *s)
|
|
{
|
|
uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG);
|
|
uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
|
|
|
|
if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) {
|
|
trace_vtd_reg_ics_clear_ip();
|
|
vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
|
|
}
|
|
}
|
|
|
|
static void vtd_handle_iectl_write(IntelIOMMUState *s)
|
|
{
|
|
uint32_t iectl_reg;
|
|
/* FIXME: when software clears the IM field, check the IP field. But do we
|
|
* need to compare the old value and the new value to conclude that
|
|
* software clears the IM field? Or just check if the IM field is zero?
|
|
*/
|
|
iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
|
|
|
|
trace_vtd_reg_write_iectl(iectl_reg);
|
|
|
|
if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) {
|
|
vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
|
|
vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
|
|
}
|
|
}
|
|
|
|
static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size)
|
|
{
|
|
IntelIOMMUState *s = opaque;
|
|
uint64_t val;
|
|
|
|
trace_vtd_reg_read(addr, size);
|
|
|
|
if (addr + size > DMAR_REG_SIZE) {
|
|
trace_vtd_err("Read MMIO over range.");
|
|
return (uint64_t)-1;
|
|
}
|
|
|
|
switch (addr) {
|
|
/* Root Table Address Register, 64-bit */
|
|
case DMAR_RTADDR_REG:
|
|
if (size == 4) {
|
|
val = s->root & ((1ULL << 32) - 1);
|
|
} else {
|
|
val = s->root;
|
|
}
|
|
break;
|
|
|
|
case DMAR_RTADDR_REG_HI:
|
|
assert(size == 4);
|
|
val = s->root >> 32;
|
|
break;
|
|
|
|
/* Invalidation Queue Address Register, 64-bit */
|
|
case DMAR_IQA_REG:
|
|
val = s->iq | (vtd_get_quad(s, DMAR_IQA_REG) & VTD_IQA_QS);
|
|
if (size == 4) {
|
|
val = val & ((1ULL << 32) - 1);
|
|
}
|
|
break;
|
|
|
|
case DMAR_IQA_REG_HI:
|
|
assert(size == 4);
|
|
val = s->iq >> 32;
|
|
break;
|
|
|
|
default:
|
|
if (size == 4) {
|
|
val = vtd_get_long(s, addr);
|
|
} else {
|
|
val = vtd_get_quad(s, addr);
|
|
}
|
|
}
|
|
|
|
return val;
|
|
}
|
|
|
|
static void vtd_mem_write(void *opaque, hwaddr addr,
|
|
uint64_t val, unsigned size)
|
|
{
|
|
IntelIOMMUState *s = opaque;
|
|
|
|
trace_vtd_reg_write(addr, size, val);
|
|
|
|
if (addr + size > DMAR_REG_SIZE) {
|
|
trace_vtd_err("Write MMIO over range.");
|
|
return;
|
|
}
|
|
|
|
switch (addr) {
|
|
/* Global Command Register, 32-bit */
|
|
case DMAR_GCMD_REG:
|
|
vtd_set_long(s, addr, val);
|
|
vtd_handle_gcmd_write(s);
|
|
break;
|
|
|
|
/* Context Command Register, 64-bit */
|
|
case DMAR_CCMD_REG:
|
|
if (size == 4) {
|
|
vtd_set_long(s, addr, val);
|
|
} else {
|
|
vtd_set_quad(s, addr, val);
|
|
vtd_handle_ccmd_write(s);
|
|
}
|
|
break;
|
|
|
|
case DMAR_CCMD_REG_HI:
|
|
assert(size == 4);
|
|
vtd_set_long(s, addr, val);
|
|
vtd_handle_ccmd_write(s);
|
|
break;
|
|
|
|
/* IOTLB Invalidation Register, 64-bit */
|
|
case DMAR_IOTLB_REG:
|
|
if (size == 4) {
|
|
vtd_set_long(s, addr, val);
|
|
} else {
|
|
vtd_set_quad(s, addr, val);
|
|
vtd_handle_iotlb_write(s);
|
|
}
|
|
break;
|
|
|
|
case DMAR_IOTLB_REG_HI:
|
|
assert(size == 4);
|
|
vtd_set_long(s, addr, val);
|
|
vtd_handle_iotlb_write(s);
|
|
break;
|
|
|
|
/* Invalidate Address Register, 64-bit */
|
|
case DMAR_IVA_REG:
|
|
if (size == 4) {
|
|
vtd_set_long(s, addr, val);
|
|
} else {
|
|
vtd_set_quad(s, addr, val);
|
|
}
|
|
break;
|
|
|
|
case DMAR_IVA_REG_HI:
|
|
assert(size == 4);
|
|
vtd_set_long(s, addr, val);
|
|
break;
|
|
|
|
/* Fault Status Register, 32-bit */
|
|
case DMAR_FSTS_REG:
|
|
assert(size == 4);
|
|
vtd_set_long(s, addr, val);
|
|
vtd_handle_fsts_write(s);
|
|
break;
|
|
|
|
/* Fault Event Control Register, 32-bit */
|
|
case DMAR_FECTL_REG:
|
|
assert(size == 4);
|
|
vtd_set_long(s, addr, val);
|
|
vtd_handle_fectl_write(s);
|
|
break;
|
|
|
|
/* Fault Event Data Register, 32-bit */
|
|
case DMAR_FEDATA_REG:
|
|
assert(size == 4);
|
|
vtd_set_long(s, addr, val);
|
|
break;
|
|
|
|
/* Fault Event Address Register, 32-bit */
|
|
case DMAR_FEADDR_REG:
|
|
assert(size == 4);
|
|
vtd_set_long(s, addr, val);
|
|
break;
|
|
|
|
/* Fault Event Upper Address Register, 32-bit */
|
|
case DMAR_FEUADDR_REG:
|
|
assert(size == 4);
|
|
vtd_set_long(s, addr, val);
|
|
break;
|
|
|
|
/* Protected Memory Enable Register, 32-bit */
|
|
case DMAR_PMEN_REG:
|
|
assert(size == 4);
|
|
vtd_set_long(s, addr, val);
|
|
break;
|
|
|
|
/* Root Table Address Register, 64-bit */
|
|
case DMAR_RTADDR_REG:
|
|
if (size == 4) {
|
|
vtd_set_long(s, addr, val);
|
|
} else {
|
|
vtd_set_quad(s, addr, val);
|
|
}
|
|
break;
|
|
|
|
case DMAR_RTADDR_REG_HI:
|
|
assert(size == 4);
|
|
vtd_set_long(s, addr, val);
|
|
break;
|
|
|
|
/* Invalidation Queue Tail Register, 64-bit */
|
|
case DMAR_IQT_REG:
|
|
if (size == 4) {
|
|
vtd_set_long(s, addr, val);
|
|
} else {
|
|
vtd_set_quad(s, addr, val);
|
|
}
|
|
vtd_handle_iqt_write(s);
|
|
break;
|
|
|
|
case DMAR_IQT_REG_HI:
|
|
assert(size == 4);
|
|
vtd_set_long(s, addr, val);
|
|
/* 19:63 of IQT_REG is RsvdZ, do nothing here */
|
|
break;
|
|
|
|
/* Invalidation Queue Address Register, 64-bit */
|
|
case DMAR_IQA_REG:
|
|
if (size == 4) {
|
|
vtd_set_long(s, addr, val);
|
|
} else {
|
|
vtd_set_quad(s, addr, val);
|
|
}
|
|
break;
|
|
|
|
case DMAR_IQA_REG_HI:
|
|
assert(size == 4);
|
|
vtd_set_long(s, addr, val);
|
|
break;
|
|
|
|
/* Invalidation Completion Status Register, 32-bit */
|
|
case DMAR_ICS_REG:
|
|
assert(size == 4);
|
|
vtd_set_long(s, addr, val);
|
|
vtd_handle_ics_write(s);
|
|
break;
|
|
|
|
/* Invalidation Event Control Register, 32-bit */
|
|
case DMAR_IECTL_REG:
|
|
assert(size == 4);
|
|
vtd_set_long(s, addr, val);
|
|
vtd_handle_iectl_write(s);
|
|
break;
|
|
|
|
/* Invalidation Event Data Register, 32-bit */
|
|
case DMAR_IEDATA_REG:
|
|
assert(size == 4);
|
|
vtd_set_long(s, addr, val);
|
|
break;
|
|
|
|
/* Invalidation Event Address Register, 32-bit */
|
|
case DMAR_IEADDR_REG:
|
|
assert(size == 4);
|
|
vtd_set_long(s, addr, val);
|
|
break;
|
|
|
|
/* Invalidation Event Upper Address Register, 32-bit */
|
|
case DMAR_IEUADDR_REG:
|
|
assert(size == 4);
|
|
vtd_set_long(s, addr, val);
|
|
break;
|
|
|
|
/* Fault Recording Registers, 128-bit */
|
|
case DMAR_FRCD_REG_0_0:
|
|
if (size == 4) {
|
|
vtd_set_long(s, addr, val);
|
|
} else {
|
|
vtd_set_quad(s, addr, val);
|
|
}
|
|
break;
|
|
|
|
case DMAR_FRCD_REG_0_1:
|
|
assert(size == 4);
|
|
vtd_set_long(s, addr, val);
|
|
break;
|
|
|
|
case DMAR_FRCD_REG_0_2:
|
|
if (size == 4) {
|
|
vtd_set_long(s, addr, val);
|
|
} else {
|
|
vtd_set_quad(s, addr, val);
|
|
/* May clear bit 127 (Fault), update PPF */
|
|
vtd_update_fsts_ppf(s);
|
|
}
|
|
break;
|
|
|
|
case DMAR_FRCD_REG_0_3:
|
|
assert(size == 4);
|
|
vtd_set_long(s, addr, val);
|
|
/* May clear bit 127 (Fault), update PPF */
|
|
vtd_update_fsts_ppf(s);
|
|
break;
|
|
|
|
case DMAR_IRTA_REG:
|
|
if (size == 4) {
|
|
vtd_set_long(s, addr, val);
|
|
} else {
|
|
vtd_set_quad(s, addr, val);
|
|
}
|
|
break;
|
|
|
|
case DMAR_IRTA_REG_HI:
|
|
assert(size == 4);
|
|
vtd_set_long(s, addr, val);
|
|
break;
|
|
|
|
default:
|
|
if (size == 4) {
|
|
vtd_set_long(s, addr, val);
|
|
} else {
|
|
vtd_set_quad(s, addr, val);
|
|
}
|
|
}
|
|
}
|
|
|
|
static IOMMUTLBEntry vtd_iommu_translate(IOMMUMemoryRegion *iommu, hwaddr addr,
|
|
IOMMUAccessFlags flag)
|
|
{
|
|
VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
|
|
IntelIOMMUState *s = vtd_as->iommu_state;
|
|
IOMMUTLBEntry iotlb = {
|
|
/* We'll fill in the rest later. */
|
|
.target_as = &address_space_memory,
|
|
};
|
|
bool success;
|
|
|
|
if (likely(s->dmar_enabled)) {
|
|
success = vtd_do_iommu_translate(vtd_as, vtd_as->bus, vtd_as->devfn,
|
|
addr, flag & IOMMU_WO, &iotlb);
|
|
} else {
|
|
/* DMAR disabled, passthrough, use 4k-page*/
|
|
iotlb.iova = addr & VTD_PAGE_MASK_4K;
|
|
iotlb.translated_addr = addr & VTD_PAGE_MASK_4K;
|
|
iotlb.addr_mask = ~VTD_PAGE_MASK_4K;
|
|
iotlb.perm = IOMMU_RW;
|
|
success = true;
|
|
}
|
|
|
|
if (likely(success)) {
|
|
trace_vtd_dmar_translate(pci_bus_num(vtd_as->bus),
|
|
VTD_PCI_SLOT(vtd_as->devfn),
|
|
VTD_PCI_FUNC(vtd_as->devfn),
|
|
iotlb.iova, iotlb.translated_addr,
|
|
iotlb.addr_mask);
|
|
} else {
|
|
trace_vtd_err_dmar_translate(pci_bus_num(vtd_as->bus),
|
|
VTD_PCI_SLOT(vtd_as->devfn),
|
|
VTD_PCI_FUNC(vtd_as->devfn),
|
|
iotlb.iova);
|
|
}
|
|
|
|
return iotlb;
|
|
}
|
|
|
|
static void vtd_iommu_notify_flag_changed(IOMMUMemoryRegion *iommu,
|
|
IOMMUNotifierFlag old,
|
|
IOMMUNotifierFlag new)
|
|
{
|
|
VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
|
|
IntelIOMMUState *s = vtd_as->iommu_state;
|
|
IntelIOMMUNotifierNode *node = NULL;
|
|
IntelIOMMUNotifierNode *next_node = NULL;
|
|
|
|
if (!s->caching_mode && new & IOMMU_NOTIFIER_MAP) {
|
|
error_report("We need to set caching-mode=1 for intel-iommu to enable "
|
|
"device assignment with IOMMU protection.");
|
|
exit(1);
|
|
}
|
|
|
|
if (old == IOMMU_NOTIFIER_NONE) {
|
|
node = g_malloc0(sizeof(*node));
|
|
node->vtd_as = vtd_as;
|
|
QLIST_INSERT_HEAD(&s->notifiers_list, node, next);
|
|
return;
|
|
}
|
|
|
|
/* update notifier node with new flags */
|
|
QLIST_FOREACH_SAFE(node, &s->notifiers_list, next, next_node) {
|
|
if (node->vtd_as == vtd_as) {
|
|
if (new == IOMMU_NOTIFIER_NONE) {
|
|
QLIST_REMOVE(node, next);
|
|
g_free(node);
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int vtd_post_load(void *opaque, int version_id)
|
|
{
|
|
IntelIOMMUState *iommu = opaque;
|
|
|
|
/*
|
|
* Memory regions are dynamically turned on/off depending on
|
|
* context entry configurations from the guest. After migration,
|
|
* we need to make sure the memory regions are still correct.
|
|
*/
|
|
vtd_switch_address_space_all(iommu);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const VMStateDescription vtd_vmstate = {
|
|
.name = "iommu-intel",
|
|
.version_id = 1,
|
|
.minimum_version_id = 1,
|
|
.priority = MIG_PRI_IOMMU,
|
|
.post_load = vtd_post_load,
|
|
.fields = (VMStateField[]) {
|
|
VMSTATE_UINT64(root, IntelIOMMUState),
|
|
VMSTATE_UINT64(intr_root, IntelIOMMUState),
|
|
VMSTATE_UINT64(iq, IntelIOMMUState),
|
|
VMSTATE_UINT32(intr_size, IntelIOMMUState),
|
|
VMSTATE_UINT16(iq_head, IntelIOMMUState),
|
|
VMSTATE_UINT16(iq_tail, IntelIOMMUState),
|
|
VMSTATE_UINT16(iq_size, IntelIOMMUState),
|
|
VMSTATE_UINT16(next_frcd_reg, IntelIOMMUState),
|
|
VMSTATE_UINT8_ARRAY(csr, IntelIOMMUState, DMAR_REG_SIZE),
|
|
VMSTATE_UINT8(iq_last_desc_type, IntelIOMMUState),
|
|
VMSTATE_BOOL(root_extended, IntelIOMMUState),
|
|
VMSTATE_BOOL(dmar_enabled, IntelIOMMUState),
|
|
VMSTATE_BOOL(qi_enabled, IntelIOMMUState),
|
|
VMSTATE_BOOL(intr_enabled, IntelIOMMUState),
|
|
VMSTATE_BOOL(intr_eime, IntelIOMMUState),
|
|
VMSTATE_END_OF_LIST()
|
|
}
|
|
};
|
|
|
|
static const MemoryRegionOps vtd_mem_ops = {
|
|
.read = vtd_mem_read,
|
|
.write = vtd_mem_write,
|
|
.endianness = DEVICE_LITTLE_ENDIAN,
|
|
.impl = {
|
|
.min_access_size = 4,
|
|
.max_access_size = 8,
|
|
},
|
|
.valid = {
|
|
.min_access_size = 4,
|
|
.max_access_size = 8,
|
|
},
|
|
};
|
|
|
|
static Property vtd_properties[] = {
|
|
DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0),
|
|
DEFINE_PROP_ON_OFF_AUTO("eim", IntelIOMMUState, intr_eim,
|
|
ON_OFF_AUTO_AUTO),
|
|
DEFINE_PROP_BOOL("x-buggy-eim", IntelIOMMUState, buggy_eim, false),
|
|
DEFINE_PROP_UINT8("x-aw-bits", IntelIOMMUState, aw_bits,
|
|
VTD_HOST_ADDRESS_WIDTH),
|
|
DEFINE_PROP_BOOL("caching-mode", IntelIOMMUState, caching_mode, FALSE),
|
|
DEFINE_PROP_END_OF_LIST(),
|
|
};
|
|
|
|
/* Read IRTE entry with specific index */
|
|
static int vtd_irte_get(IntelIOMMUState *iommu, uint16_t index,
|
|
VTD_IR_TableEntry *entry, uint16_t sid)
|
|
{
|
|
static const uint16_t vtd_svt_mask[VTD_SQ_MAX] = \
|
|
{0xffff, 0xfffb, 0xfff9, 0xfff8};
|
|
dma_addr_t addr = 0x00;
|
|
uint16_t mask, source_id;
|
|
uint8_t bus, bus_max, bus_min;
|
|
|
|
addr = iommu->intr_root + index * sizeof(*entry);
|
|
if (dma_memory_read(&address_space_memory, addr, entry,
|
|
sizeof(*entry))) {
|
|
trace_vtd_err("Memory read failed for IRTE.");
|
|
return -VTD_FR_IR_ROOT_INVAL;
|
|
}
|
|
|
|
trace_vtd_ir_irte_get(index, le64_to_cpu(entry->data[1]),
|
|
le64_to_cpu(entry->data[0]));
|
|
|
|
if (!entry->irte.present) {
|
|
trace_vtd_err_irte(index, le64_to_cpu(entry->data[1]),
|
|
le64_to_cpu(entry->data[0]));
|
|
return -VTD_FR_IR_ENTRY_P;
|
|
}
|
|
|
|
if (entry->irte.__reserved_0 || entry->irte.__reserved_1 ||
|
|
entry->irte.__reserved_2) {
|
|
trace_vtd_err_irte(index, le64_to_cpu(entry->data[1]),
|
|
le64_to_cpu(entry->data[0]));
|
|
return -VTD_FR_IR_IRTE_RSVD;
|
|
}
|
|
|
|
if (sid != X86_IOMMU_SID_INVALID) {
|
|
/* Validate IRTE SID */
|
|
source_id = le32_to_cpu(entry->irte.source_id);
|
|
switch (entry->irte.sid_vtype) {
|
|
case VTD_SVT_NONE:
|
|
break;
|
|
|
|
case VTD_SVT_ALL:
|
|
mask = vtd_svt_mask[entry->irte.sid_q];
|
|
if ((source_id & mask) != (sid & mask)) {
|
|
trace_vtd_err_irte_sid(index, sid, source_id);
|
|
return -VTD_FR_IR_SID_ERR;
|
|
}
|
|
break;
|
|
|
|
case VTD_SVT_BUS:
|
|
bus_max = source_id >> 8;
|
|
bus_min = source_id & 0xff;
|
|
bus = sid >> 8;
|
|
if (bus > bus_max || bus < bus_min) {
|
|
trace_vtd_err_irte_sid_bus(index, bus, bus_min, bus_max);
|
|
return -VTD_FR_IR_SID_ERR;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
trace_vtd_err_irte_svt(index, entry->irte.sid_vtype);
|
|
/* Take this as verification failure. */
|
|
return -VTD_FR_IR_SID_ERR;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Fetch IRQ information of specific IR index */
|
|
static int vtd_remap_irq_get(IntelIOMMUState *iommu, uint16_t index,
|
|
VTDIrq *irq, uint16_t sid)
|
|
{
|
|
VTD_IR_TableEntry irte = {};
|
|
int ret = 0;
|
|
|
|
ret = vtd_irte_get(iommu, index, &irte, sid);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
|
|
irq->trigger_mode = irte.irte.trigger_mode;
|
|
irq->vector = irte.irte.vector;
|
|
irq->delivery_mode = irte.irte.delivery_mode;
|
|
irq->dest = le32_to_cpu(irte.irte.dest_id);
|
|
if (!iommu->intr_eime) {
|
|
#define VTD_IR_APIC_DEST_MASK (0xff00ULL)
|
|
#define VTD_IR_APIC_DEST_SHIFT (8)
|
|
irq->dest = (irq->dest & VTD_IR_APIC_DEST_MASK) >>
|
|
VTD_IR_APIC_DEST_SHIFT;
|
|
}
|
|
irq->dest_mode = irte.irte.dest_mode;
|
|
irq->redir_hint = irte.irte.redir_hint;
|
|
|
|
trace_vtd_ir_remap(index, irq->trigger_mode, irq->vector,
|
|
irq->delivery_mode, irq->dest, irq->dest_mode);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Generate one MSI message from VTDIrq info */
|
|
static void vtd_generate_msi_message(VTDIrq *irq, MSIMessage *msg_out)
|
|
{
|
|
VTD_MSIMessage msg = {};
|
|
|
|
/* Generate address bits */
|
|
msg.dest_mode = irq->dest_mode;
|
|
msg.redir_hint = irq->redir_hint;
|
|
msg.dest = irq->dest;
|
|
msg.__addr_hi = irq->dest & 0xffffff00;
|
|
msg.__addr_head = cpu_to_le32(0xfee);
|
|
/* Keep this from original MSI address bits */
|
|
msg.__not_used = irq->msi_addr_last_bits;
|
|
|
|
/* Generate data bits */
|
|
msg.vector = irq->vector;
|
|
msg.delivery_mode = irq->delivery_mode;
|
|
msg.level = 1;
|
|
msg.trigger_mode = irq->trigger_mode;
|
|
|
|
msg_out->address = msg.msi_addr;
|
|
msg_out->data = msg.msi_data;
|
|
}
|
|
|
|
/* Interrupt remapping for MSI/MSI-X entry */
|
|
static int vtd_interrupt_remap_msi(IntelIOMMUState *iommu,
|
|
MSIMessage *origin,
|
|
MSIMessage *translated,
|
|
uint16_t sid)
|
|
{
|
|
int ret = 0;
|
|
VTD_IR_MSIAddress addr;
|
|
uint16_t index;
|
|
VTDIrq irq = {};
|
|
|
|
assert(origin && translated);
|
|
|
|
trace_vtd_ir_remap_msi_req(origin->address, origin->data);
|
|
|
|
if (!iommu || !iommu->intr_enabled) {
|
|
memcpy(translated, origin, sizeof(*origin));
|
|
goto out;
|
|
}
|
|
|
|
if (origin->address & VTD_MSI_ADDR_HI_MASK) {
|
|
trace_vtd_err("MSI address high 32 bits non-zero when "
|
|
"Interrupt Remapping enabled.");
|
|
return -VTD_FR_IR_REQ_RSVD;
|
|
}
|
|
|
|
addr.data = origin->address & VTD_MSI_ADDR_LO_MASK;
|
|
if (addr.addr.__head != 0xfee) {
|
|
trace_vtd_err("MSI addr low 32 bit invalid.");
|
|
return -VTD_FR_IR_REQ_RSVD;
|
|
}
|
|
|
|
/* This is compatible mode. */
|
|
if (addr.addr.int_mode != VTD_IR_INT_FORMAT_REMAP) {
|
|
memcpy(translated, origin, sizeof(*origin));
|
|
goto out;
|
|
}
|
|
|
|
index = addr.addr.index_h << 15 | le16_to_cpu(addr.addr.index_l);
|
|
|
|
#define VTD_IR_MSI_DATA_SUBHANDLE (0x0000ffff)
|
|
#define VTD_IR_MSI_DATA_RESERVED (0xffff0000)
|
|
|
|
if (addr.addr.sub_valid) {
|
|
/* See VT-d spec 5.1.2.2 and 5.1.3 on subhandle */
|
|
index += origin->data & VTD_IR_MSI_DATA_SUBHANDLE;
|
|
}
|
|
|
|
ret = vtd_remap_irq_get(iommu, index, &irq, sid);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
|
|
if (addr.addr.sub_valid) {
|
|
trace_vtd_ir_remap_type("MSI");
|
|
if (origin->data & VTD_IR_MSI_DATA_RESERVED) {
|
|
trace_vtd_err_ir_msi_invalid(sid, origin->address, origin->data);
|
|
return -VTD_FR_IR_REQ_RSVD;
|
|
}
|
|
} else {
|
|
uint8_t vector = origin->data & 0xff;
|
|
uint8_t trigger_mode = (origin->data >> MSI_DATA_TRIGGER_SHIFT) & 0x1;
|
|
|
|
trace_vtd_ir_remap_type("IOAPIC");
|
|
/* IOAPIC entry vector should be aligned with IRTE vector
|
|
* (see vt-d spec 5.1.5.1). */
|
|
if (vector != irq.vector) {
|
|
trace_vtd_warn_ir_vector(sid, index, vector, irq.vector);
|
|
}
|
|
|
|
/* The Trigger Mode field must match the Trigger Mode in the IRTE.
|
|
* (see vt-d spec 5.1.5.1). */
|
|
if (trigger_mode != irq.trigger_mode) {
|
|
trace_vtd_warn_ir_trigger(sid, index, trigger_mode,
|
|
irq.trigger_mode);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We'd better keep the last two bits, assuming that guest OS
|
|
* might modify it. Keep it does not hurt after all.
|
|
*/
|
|
irq.msi_addr_last_bits = addr.addr.__not_care;
|
|
|
|
/* Translate VTDIrq to MSI message */
|
|
vtd_generate_msi_message(&irq, translated);
|
|
|
|
out:
|
|
trace_vtd_ir_remap_msi(origin->address, origin->data,
|
|
translated->address, translated->data);
|
|
return 0;
|
|
}
|
|
|
|
static int vtd_int_remap(X86IOMMUState *iommu, MSIMessage *src,
|
|
MSIMessage *dst, uint16_t sid)
|
|
{
|
|
return vtd_interrupt_remap_msi(INTEL_IOMMU_DEVICE(iommu),
|
|
src, dst, sid);
|
|
}
|
|
|
|
static MemTxResult vtd_mem_ir_read(void *opaque, hwaddr addr,
|
|
uint64_t *data, unsigned size,
|
|
MemTxAttrs attrs)
|
|
{
|
|
return MEMTX_OK;
|
|
}
|
|
|
|
static MemTxResult vtd_mem_ir_write(void *opaque, hwaddr addr,
|
|
uint64_t value, unsigned size,
|
|
MemTxAttrs attrs)
|
|
{
|
|
int ret = 0;
|
|
MSIMessage from = {}, to = {};
|
|
uint16_t sid = X86_IOMMU_SID_INVALID;
|
|
|
|
from.address = (uint64_t) addr + VTD_INTERRUPT_ADDR_FIRST;
|
|
from.data = (uint32_t) value;
|
|
|
|
if (!attrs.unspecified) {
|
|
/* We have explicit Source ID */
|
|
sid = attrs.requester_id;
|
|
}
|
|
|
|
ret = vtd_interrupt_remap_msi(opaque, &from, &to, sid);
|
|
if (ret) {
|
|
/* TODO: report error */
|
|
/* Drop this interrupt */
|
|
return MEMTX_ERROR;
|
|
}
|
|
|
|
apic_get_class()->send_msi(&to);
|
|
|
|
return MEMTX_OK;
|
|
}
|
|
|
|
static const MemoryRegionOps vtd_mem_ir_ops = {
|
|
.read_with_attrs = vtd_mem_ir_read,
|
|
.write_with_attrs = vtd_mem_ir_write,
|
|
.endianness = DEVICE_LITTLE_ENDIAN,
|
|
.impl = {
|
|
.min_access_size = 4,
|
|
.max_access_size = 4,
|
|
},
|
|
.valid = {
|
|
.min_access_size = 4,
|
|
.max_access_size = 4,
|
|
},
|
|
};
|
|
|
|
VTDAddressSpace *vtd_find_add_as(IntelIOMMUState *s, PCIBus *bus, int devfn)
|
|
{
|
|
uintptr_t key = (uintptr_t)bus;
|
|
VTDBus *vtd_bus = g_hash_table_lookup(s->vtd_as_by_busptr, &key);
|
|
VTDAddressSpace *vtd_dev_as;
|
|
char name[128];
|
|
|
|
if (!vtd_bus) {
|
|
uintptr_t *new_key = g_malloc(sizeof(*new_key));
|
|
*new_key = (uintptr_t)bus;
|
|
/* No corresponding free() */
|
|
vtd_bus = g_malloc0(sizeof(VTDBus) + sizeof(VTDAddressSpace *) * \
|
|
PCI_DEVFN_MAX);
|
|
vtd_bus->bus = bus;
|
|
g_hash_table_insert(s->vtd_as_by_busptr, new_key, vtd_bus);
|
|
}
|
|
|
|
vtd_dev_as = vtd_bus->dev_as[devfn];
|
|
|
|
if (!vtd_dev_as) {
|
|
snprintf(name, sizeof(name), "intel_iommu_devfn_%d", devfn);
|
|
vtd_bus->dev_as[devfn] = vtd_dev_as = g_malloc0(sizeof(VTDAddressSpace));
|
|
|
|
vtd_dev_as->bus = bus;
|
|
vtd_dev_as->devfn = (uint8_t)devfn;
|
|
vtd_dev_as->iommu_state = s;
|
|
vtd_dev_as->context_cache_entry.context_cache_gen = 0;
|
|
|
|
/*
|
|
* Memory region relationships looks like (Address range shows
|
|
* only lower 32 bits to make it short in length...):
|
|
*
|
|
* |-----------------+-------------------+----------|
|
|
* | Name | Address range | Priority |
|
|
* |-----------------+-------------------+----------+
|
|
* | vtd_root | 00000000-ffffffff | 0 |
|
|
* | intel_iommu | 00000000-ffffffff | 1 |
|
|
* | vtd_sys_alias | 00000000-ffffffff | 1 |
|
|
* | intel_iommu_ir | fee00000-feefffff | 64 |
|
|
* |-----------------+-------------------+----------|
|
|
*
|
|
* We enable/disable DMAR by switching enablement for
|
|
* vtd_sys_alias and intel_iommu regions. IR region is always
|
|
* enabled.
|
|
*/
|
|
memory_region_init_iommu(&vtd_dev_as->iommu, sizeof(vtd_dev_as->iommu),
|
|
TYPE_INTEL_IOMMU_MEMORY_REGION, OBJECT(s),
|
|
"intel_iommu_dmar",
|
|
UINT64_MAX);
|
|
memory_region_init_alias(&vtd_dev_as->sys_alias, OBJECT(s),
|
|
"vtd_sys_alias", get_system_memory(),
|
|
0, memory_region_size(get_system_memory()));
|
|
memory_region_init_io(&vtd_dev_as->iommu_ir, OBJECT(s),
|
|
&vtd_mem_ir_ops, s, "intel_iommu_ir",
|
|
VTD_INTERRUPT_ADDR_SIZE);
|
|
memory_region_init(&vtd_dev_as->root, OBJECT(s),
|
|
"vtd_root", UINT64_MAX);
|
|
memory_region_add_subregion_overlap(&vtd_dev_as->root,
|
|
VTD_INTERRUPT_ADDR_FIRST,
|
|
&vtd_dev_as->iommu_ir, 64);
|
|
address_space_init(&vtd_dev_as->as, &vtd_dev_as->root, name);
|
|
memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
|
|
&vtd_dev_as->sys_alias, 1);
|
|
memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
|
|
MEMORY_REGION(&vtd_dev_as->iommu),
|
|
1);
|
|
vtd_switch_address_space(vtd_dev_as);
|
|
}
|
|
return vtd_dev_as;
|
|
}
|
|
|
|
/* Unmap the whole range in the notifier's scope. */
|
|
static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n)
|
|
{
|
|
IOMMUTLBEntry entry;
|
|
hwaddr size;
|
|
hwaddr start = n->start;
|
|
hwaddr end = n->end;
|
|
IntelIOMMUState *s = as->iommu_state;
|
|
|
|
/*
|
|
* Note: all the codes in this function has a assumption that IOVA
|
|
* bits are no more than VTD_MGAW bits (which is restricted by
|
|
* VT-d spec), otherwise we need to consider overflow of 64 bits.
|
|
*/
|
|
|
|
if (end > VTD_ADDRESS_SIZE(s->aw_bits)) {
|
|
/*
|
|
* Don't need to unmap regions that is bigger than the whole
|
|
* VT-d supported address space size
|
|
*/
|
|
end = VTD_ADDRESS_SIZE(s->aw_bits);
|
|
}
|
|
|
|
assert(start <= end);
|
|
size = end - start;
|
|
|
|
if (ctpop64(size) != 1) {
|
|
/*
|
|
* This size cannot format a correct mask. Let's enlarge it to
|
|
* suite the minimum available mask.
|
|
*/
|
|
int n = 64 - clz64(size);
|
|
if (n > s->aw_bits) {
|
|
/* should not happen, but in case it happens, limit it */
|
|
n = s->aw_bits;
|
|
}
|
|
size = 1ULL << n;
|
|
}
|
|
|
|
entry.target_as = &address_space_memory;
|
|
/* Adjust iova for the size */
|
|
entry.iova = n->start & ~(size - 1);
|
|
/* This field is meaningless for unmap */
|
|
entry.translated_addr = 0;
|
|
entry.perm = IOMMU_NONE;
|
|
entry.addr_mask = size - 1;
|
|
|
|
trace_vtd_as_unmap_whole(pci_bus_num(as->bus),
|
|
VTD_PCI_SLOT(as->devfn),
|
|
VTD_PCI_FUNC(as->devfn),
|
|
entry.iova, size);
|
|
|
|
memory_region_notify_one(n, &entry);
|
|
}
|
|
|
|
static void vtd_address_space_unmap_all(IntelIOMMUState *s)
|
|
{
|
|
IntelIOMMUNotifierNode *node;
|
|
VTDAddressSpace *vtd_as;
|
|
IOMMUNotifier *n;
|
|
|
|
QLIST_FOREACH(node, &s->notifiers_list, next) {
|
|
vtd_as = node->vtd_as;
|
|
IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
|
|
vtd_address_space_unmap(vtd_as, n);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int vtd_replay_hook(IOMMUTLBEntry *entry, void *private)
|
|
{
|
|
memory_region_notify_one((IOMMUNotifier *)private, entry);
|
|
return 0;
|
|
}
|
|
|
|
static void vtd_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
|
|
{
|
|
VTDAddressSpace *vtd_as = container_of(iommu_mr, VTDAddressSpace, iommu);
|
|
IntelIOMMUState *s = vtd_as->iommu_state;
|
|
uint8_t bus_n = pci_bus_num(vtd_as->bus);
|
|
VTDContextEntry ce;
|
|
|
|
/*
|
|
* The replay can be triggered by either a invalidation or a newly
|
|
* created entry. No matter what, we release existing mappings
|
|
* (it means flushing caches for UNMAP-only registers).
|
|
*/
|
|
vtd_address_space_unmap(vtd_as, n);
|
|
|
|
if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) {
|
|
trace_vtd_replay_ce_valid(bus_n, PCI_SLOT(vtd_as->devfn),
|
|
PCI_FUNC(vtd_as->devfn),
|
|
VTD_CONTEXT_ENTRY_DID(ce.hi),
|
|
ce.hi, ce.lo);
|
|
vtd_page_walk(&ce, 0, ~0ULL, vtd_replay_hook, (void *)n, false,
|
|
s->aw_bits);
|
|
} else {
|
|
trace_vtd_replay_ce_invalid(bus_n, PCI_SLOT(vtd_as->devfn),
|
|
PCI_FUNC(vtd_as->devfn));
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
/* Do the initialization. It will also be called when reset, so pay
|
|
* attention when adding new initialization stuff.
|
|
*/
|
|
static void vtd_init(IntelIOMMUState *s)
|
|
{
|
|
X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
|
|
|
|
memset(s->csr, 0, DMAR_REG_SIZE);
|
|
memset(s->wmask, 0, DMAR_REG_SIZE);
|
|
memset(s->w1cmask, 0, DMAR_REG_SIZE);
|
|
memset(s->womask, 0, DMAR_REG_SIZE);
|
|
|
|
s->root = 0;
|
|
s->root_extended = false;
|
|
s->dmar_enabled = false;
|
|
s->iq_head = 0;
|
|
s->iq_tail = 0;
|
|
s->iq = 0;
|
|
s->iq_size = 0;
|
|
s->qi_enabled = false;
|
|
s->iq_last_desc_type = VTD_INV_DESC_NONE;
|
|
s->next_frcd_reg = 0;
|
|
s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND |
|
|
VTD_CAP_MAMV | VTD_CAP_PSI | VTD_CAP_SLLPS |
|
|
VTD_CAP_SAGAW_39bit | VTD_CAP_MGAW(s->aw_bits);
|
|
if (s->aw_bits == VTD_HOST_AW_48BIT) {
|
|
s->cap |= VTD_CAP_SAGAW_48bit;
|
|
}
|
|
s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO;
|
|
|
|
/*
|
|
* Rsvd field masks for spte
|
|
*/
|
|
vtd_paging_entry_rsvd_field[0] = ~0ULL;
|
|
vtd_paging_entry_rsvd_field[1] = VTD_SPTE_PAGE_L1_RSVD_MASK(s->aw_bits);
|
|
vtd_paging_entry_rsvd_field[2] = VTD_SPTE_PAGE_L2_RSVD_MASK(s->aw_bits);
|
|
vtd_paging_entry_rsvd_field[3] = VTD_SPTE_PAGE_L3_RSVD_MASK(s->aw_bits);
|
|
vtd_paging_entry_rsvd_field[4] = VTD_SPTE_PAGE_L4_RSVD_MASK(s->aw_bits);
|
|
vtd_paging_entry_rsvd_field[5] = VTD_SPTE_LPAGE_L1_RSVD_MASK(s->aw_bits);
|
|
vtd_paging_entry_rsvd_field[6] = VTD_SPTE_LPAGE_L2_RSVD_MASK(s->aw_bits);
|
|
vtd_paging_entry_rsvd_field[7] = VTD_SPTE_LPAGE_L3_RSVD_MASK(s->aw_bits);
|
|
vtd_paging_entry_rsvd_field[8] = VTD_SPTE_LPAGE_L4_RSVD_MASK(s->aw_bits);
|
|
|
|
if (x86_iommu->intr_supported) {
|
|
s->ecap |= VTD_ECAP_IR | VTD_ECAP_MHMV;
|
|
if (s->intr_eim == ON_OFF_AUTO_ON) {
|
|
s->ecap |= VTD_ECAP_EIM;
|
|
}
|
|
assert(s->intr_eim != ON_OFF_AUTO_AUTO);
|
|
}
|
|
|
|
if (x86_iommu->dt_supported) {
|
|
s->ecap |= VTD_ECAP_DT;
|
|
}
|
|
|
|
if (x86_iommu->pt_supported) {
|
|
s->ecap |= VTD_ECAP_PT;
|
|
}
|
|
|
|
if (s->caching_mode) {
|
|
s->cap |= VTD_CAP_CM;
|
|
}
|
|
|
|
vtd_reset_context_cache(s);
|
|
vtd_reset_iotlb(s);
|
|
|
|
/* Define registers with default values and bit semantics */
|
|
vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0);
|
|
vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0);
|
|
vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0);
|
|
vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0);
|
|
vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL);
|
|
vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0);
|
|
vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffff000ULL, 0);
|
|
vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0);
|
|
vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL);
|
|
|
|
/* Advanced Fault Logging not supported */
|
|
vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL);
|
|
vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0);
|
|
vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0);
|
|
vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0);
|
|
|
|
/* Treated as RsvdZ when EIM in ECAP_REG is not supported
|
|
* vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
|
|
*/
|
|
vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0);
|
|
|
|
/* Treated as RO for implementations that PLMR and PHMR fields reported
|
|
* as Clear in the CAP_REG.
|
|
* vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
|
|
*/
|
|
vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0);
|
|
|
|
vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0);
|
|
vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0);
|
|
vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff007ULL, 0);
|
|
vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL);
|
|
vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0);
|
|
vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0);
|
|
vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0);
|
|
/* Treadted as RsvdZ when EIM in ECAP_REG is not supported */
|
|
vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0);
|
|
|
|
/* IOTLB registers */
|
|
vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0);
|
|
vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0);
|
|
vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL);
|
|
|
|
/* Fault Recording Registers, 128-bit */
|
|
vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0);
|
|
vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL);
|
|
|
|
/*
|
|
* Interrupt remapping registers.
|
|
*/
|
|
vtd_define_quad(s, DMAR_IRTA_REG, 0, 0xfffffffffffff80fULL, 0);
|
|
}
|
|
|
|
/* Should not reset address_spaces when reset because devices will still use
|
|
* the address space they got at first (won't ask the bus again).
|
|
*/
|
|
static void vtd_reset(DeviceState *dev)
|
|
{
|
|
IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
|
|
|
|
vtd_init(s);
|
|
|
|
/*
|
|
* When device reset, throw away all mappings and external caches
|
|
*/
|
|
vtd_address_space_unmap_all(s);
|
|
}
|
|
|
|
static AddressSpace *vtd_host_dma_iommu(PCIBus *bus, void *opaque, int devfn)
|
|
{
|
|
IntelIOMMUState *s = opaque;
|
|
VTDAddressSpace *vtd_as;
|
|
|
|
assert(0 <= devfn && devfn < PCI_DEVFN_MAX);
|
|
|
|
vtd_as = vtd_find_add_as(s, bus, devfn);
|
|
return &vtd_as->as;
|
|
}
|
|
|
|
static bool vtd_decide_config(IntelIOMMUState *s, Error **errp)
|
|
{
|
|
X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
|
|
|
|
/* Currently Intel IOMMU IR only support "kernel-irqchip={off|split}" */
|
|
if (x86_iommu->intr_supported && kvm_irqchip_in_kernel() &&
|
|
!kvm_irqchip_is_split()) {
|
|
error_setg(errp, "Intel Interrupt Remapping cannot work with "
|
|
"kernel-irqchip=on, please use 'split|off'.");
|
|
return false;
|
|
}
|
|
if (s->intr_eim == ON_OFF_AUTO_ON && !x86_iommu->intr_supported) {
|
|
error_setg(errp, "eim=on cannot be selected without intremap=on");
|
|
return false;
|
|
}
|
|
|
|
if (s->intr_eim == ON_OFF_AUTO_AUTO) {
|
|
s->intr_eim = (kvm_irqchip_in_kernel() || s->buggy_eim)
|
|
&& x86_iommu->intr_supported ?
|
|
ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
|
|
}
|
|
if (s->intr_eim == ON_OFF_AUTO_ON && !s->buggy_eim) {
|
|
if (!kvm_irqchip_in_kernel()) {
|
|
error_setg(errp, "eim=on requires accel=kvm,kernel-irqchip=split");
|
|
return false;
|
|
}
|
|
if (!kvm_enable_x2apic()) {
|
|
error_setg(errp, "eim=on requires support on the KVM side"
|
|
"(X2APIC_API, first shipped in v4.7)");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* Currently only address widths supported are 39 and 48 bits */
|
|
if ((s->aw_bits != VTD_HOST_AW_39BIT) &&
|
|
(s->aw_bits != VTD_HOST_AW_48BIT)) {
|
|
error_setg(errp, "Supported values for x-aw-bits are: %d, %d",
|
|
VTD_HOST_AW_39BIT, VTD_HOST_AW_48BIT);
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static void vtd_realize(DeviceState *dev, Error **errp)
|
|
{
|
|
MachineState *ms = MACHINE(qdev_get_machine());
|
|
PCMachineState *pcms = PC_MACHINE(ms);
|
|
PCIBus *bus = pcms->bus;
|
|
IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
|
|
X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(dev);
|
|
|
|
x86_iommu->type = TYPE_INTEL;
|
|
|
|
if (!vtd_decide_config(s, errp)) {
|
|
return;
|
|
}
|
|
|
|
QLIST_INIT(&s->notifiers_list);
|
|
memset(s->vtd_as_by_bus_num, 0, sizeof(s->vtd_as_by_bus_num));
|
|
memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s,
|
|
"intel_iommu", DMAR_REG_SIZE);
|
|
sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->csrmem);
|
|
/* No corresponding destroy */
|
|
s->iotlb = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
|
|
g_free, g_free);
|
|
s->vtd_as_by_busptr = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
|
|
g_free, g_free);
|
|
vtd_init(s);
|
|
sysbus_mmio_map(SYS_BUS_DEVICE(s), 0, Q35_HOST_BRIDGE_IOMMU_ADDR);
|
|
pci_setup_iommu(bus, vtd_host_dma_iommu, dev);
|
|
/* Pseudo address space under root PCI bus. */
|
|
pcms->ioapic_as = vtd_host_dma_iommu(bus, s, Q35_PSEUDO_DEVFN_IOAPIC);
|
|
}
|
|
|
|
static void vtd_class_init(ObjectClass *klass, void *data)
|
|
{
|
|
DeviceClass *dc = DEVICE_CLASS(klass);
|
|
X86IOMMUClass *x86_class = X86_IOMMU_CLASS(klass);
|
|
|
|
dc->reset = vtd_reset;
|
|
dc->vmsd = &vtd_vmstate;
|
|
dc->props = vtd_properties;
|
|
dc->hotpluggable = false;
|
|
x86_class->realize = vtd_realize;
|
|
x86_class->int_remap = vtd_int_remap;
|
|
/* Supported by the pc-q35-* machine types */
|
|
dc->user_creatable = true;
|
|
}
|
|
|
|
static const TypeInfo vtd_info = {
|
|
.name = TYPE_INTEL_IOMMU_DEVICE,
|
|
.parent = TYPE_X86_IOMMU_DEVICE,
|
|
.instance_size = sizeof(IntelIOMMUState),
|
|
.class_init = vtd_class_init,
|
|
};
|
|
|
|
static void vtd_iommu_memory_region_class_init(ObjectClass *klass,
|
|
void *data)
|
|
{
|
|
IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
|
|
|
|
imrc->translate = vtd_iommu_translate;
|
|
imrc->notify_flag_changed = vtd_iommu_notify_flag_changed;
|
|
imrc->replay = vtd_iommu_replay;
|
|
}
|
|
|
|
static const TypeInfo vtd_iommu_memory_region_info = {
|
|
.parent = TYPE_IOMMU_MEMORY_REGION,
|
|
.name = TYPE_INTEL_IOMMU_MEMORY_REGION,
|
|
.class_init = vtd_iommu_memory_region_class_init,
|
|
};
|
|
|
|
static void vtd_register_types(void)
|
|
{
|
|
type_register_static(&vtd_info);
|
|
type_register_static(&vtd_iommu_memory_region_info);
|
|
}
|
|
|
|
type_init(vtd_register_types)
|