qemu/hw/riscv/boot.c
Bin Meng 8f6196266e hw/riscv/boot.c: Introduce riscv_find_firmware()
Rename previous riscv_find_firmware() to riscv_find_bios(), and
introduce a new riscv_find_firmware() to implement the first half
part of the work done in riscv_find_and_load_firmware().

This new API is helpful for machine that wants to know the final
chosen firmware file name but does not want to load it.

Signed-off-by: Bin Meng <bmeng@tinylab.org>
Reviewed-by: Daniel Henrique Barboza <dbarboza@ventanamicro.com>
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Message-Id: <20221229091828.1945072-12-bmeng@tinylab.org>
Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
2023-01-20 10:14:13 +10:00

393 lines
13 KiB
C

/*
* QEMU RISC-V Boot Helper
*
* Copyright (c) 2017 SiFive, Inc.
* Copyright (c) 2019 Alistair Francis <alistair.francis@wdc.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2 or later, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/datadir.h"
#include "qemu/units.h"
#include "qemu/error-report.h"
#include "exec/cpu-defs.h"
#include "hw/boards.h"
#include "hw/loader.h"
#include "hw/riscv/boot.h"
#include "hw/riscv/boot_opensbi.h"
#include "elf.h"
#include "sysemu/device_tree.h"
#include "sysemu/qtest.h"
#include "sysemu/kvm.h"
#include "sysemu/reset.h"
#include <libfdt.h>
bool riscv_is_32bit(RISCVHartArrayState *harts)
{
return harts->harts[0].env.misa_mxl_max == MXL_RV32;
}
/*
* Return the per-socket PLIC hart topology configuration string
* (caller must free with g_free())
*/
char *riscv_plic_hart_config_string(int hart_count)
{
g_autofree const char **vals = g_new(const char *, hart_count + 1);
int i;
for (i = 0; i < hart_count; i++) {
CPUState *cs = qemu_get_cpu(i);
CPURISCVState *env = &RISCV_CPU(cs)->env;
if (kvm_enabled()) {
vals[i] = "S";
} else if (riscv_has_ext(env, RVS)) {
vals[i] = "MS";
} else {
vals[i] = "M";
}
}
vals[i] = NULL;
/* g_strjoinv() obliges us to cast away const here */
return g_strjoinv(",", (char **)vals);
}
target_ulong riscv_calc_kernel_start_addr(RISCVHartArrayState *harts,
target_ulong firmware_end_addr) {
if (riscv_is_32bit(harts)) {
return QEMU_ALIGN_UP(firmware_end_addr, 4 * MiB);
} else {
return QEMU_ALIGN_UP(firmware_end_addr, 2 * MiB);
}
}
const char *riscv_default_firmware_name(RISCVHartArrayState *harts)
{
if (riscv_is_32bit(harts)) {
return RISCV32_BIOS_BIN;
}
return RISCV64_BIOS_BIN;
}
static char *riscv_find_bios(const char *bios_filename)
{
char *filename;
filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_filename);
if (filename == NULL) {
if (!qtest_enabled()) {
/*
* We only ship OpenSBI binary bios images in the QEMU source.
* For machines that use images other than the default bios,
* running QEMU test will complain hence let's suppress the error
* report for QEMU testing.
*/
error_report("Unable to find the RISC-V BIOS \"%s\"",
bios_filename);
exit(1);
}
}
return filename;
}
char *riscv_find_firmware(const char *firmware_filename,
const char *default_machine_firmware)
{
char *filename = NULL;
if ((!firmware_filename) || (!strcmp(firmware_filename, "default"))) {
/*
* The user didn't specify -bios, or has specified "-bios default".
* That means we are going to load the OpenSBI binary included in
* the QEMU source.
*/
filename = riscv_find_bios(default_machine_firmware);
} else if (strcmp(firmware_filename, "none")) {
filename = riscv_find_bios(firmware_filename);
}
return filename;
}
target_ulong riscv_find_and_load_firmware(MachineState *machine,
const char *default_machine_firmware,
hwaddr firmware_load_addr,
symbol_fn_t sym_cb)
{
char *firmware_filename;
target_ulong firmware_end_addr = firmware_load_addr;
firmware_filename = riscv_find_firmware(machine->firmware,
default_machine_firmware);
if (firmware_filename) {
/* If not "none" load the firmware */
firmware_end_addr = riscv_load_firmware(firmware_filename,
firmware_load_addr, sym_cb);
g_free(firmware_filename);
}
return firmware_end_addr;
}
target_ulong riscv_load_firmware(const char *firmware_filename,
hwaddr firmware_load_addr,
symbol_fn_t sym_cb)
{
uint64_t firmware_entry, firmware_end;
ssize_t firmware_size;
if (load_elf_ram_sym(firmware_filename, NULL, NULL, NULL,
&firmware_entry, NULL, &firmware_end, NULL,
0, EM_RISCV, 1, 0, NULL, true, sym_cb) > 0) {
return firmware_end;
}
firmware_size = load_image_targphys_as(firmware_filename,
firmware_load_addr,
current_machine->ram_size, NULL);
if (firmware_size > 0) {
return firmware_load_addr + firmware_size;
}
error_report("could not load firmware '%s'", firmware_filename);
exit(1);
}
target_ulong riscv_load_kernel(const char *kernel_filename,
target_ulong kernel_start_addr,
symbol_fn_t sym_cb)
{
uint64_t kernel_load_base, kernel_entry;
/*
* NB: Use low address not ELF entry point to ensure that the fw_dynamic
* behaviour when loading an ELF matches the fw_payload, fw_jump and BBL
* behaviour, as well as fw_dynamic with a raw binary, all of which jump to
* the (expected) load address load address. This allows kernels to have
* separate SBI and ELF entry points (used by FreeBSD, for example).
*/
if (load_elf_ram_sym(kernel_filename, NULL, NULL, NULL,
NULL, &kernel_load_base, NULL, NULL, 0,
EM_RISCV, 1, 0, NULL, true, sym_cb) > 0) {
return kernel_load_base;
}
if (load_uimage_as(kernel_filename, &kernel_entry, NULL, NULL,
NULL, NULL, NULL) > 0) {
return kernel_entry;
}
if (load_image_targphys_as(kernel_filename, kernel_start_addr,
current_machine->ram_size, NULL) > 0) {
return kernel_start_addr;
}
error_report("could not load kernel '%s'", kernel_filename);
exit(1);
}
hwaddr riscv_load_initrd(const char *filename, uint64_t mem_size,
uint64_t kernel_entry, hwaddr *start)
{
ssize_t size;
/*
* We want to put the initrd far enough into RAM that when the
* kernel is uncompressed it will not clobber the initrd. However
* on boards without much RAM we must ensure that we still leave
* enough room for a decent sized initrd, and on boards with large
* amounts of RAM we must avoid the initrd being so far up in RAM
* that it is outside lowmem and inaccessible to the kernel.
* So for boards with less than 256MB of RAM we put the initrd
* halfway into RAM, and for boards with 256MB of RAM or more we put
* the initrd at 128MB.
*/
*start = kernel_entry + MIN(mem_size / 2, 128 * MiB);
size = load_ramdisk(filename, *start, mem_size - *start);
if (size == -1) {
size = load_image_targphys(filename, *start, mem_size - *start);
if (size == -1) {
error_report("could not load ramdisk '%s'", filename);
exit(1);
}
}
return *start + size;
}
uint64_t riscv_load_fdt(hwaddr dram_base, uint64_t mem_size, void *fdt)
{
uint64_t temp, fdt_addr;
hwaddr dram_end = dram_base + mem_size;
int ret, fdtsize = fdt_totalsize(fdt);
if (fdtsize <= 0) {
error_report("invalid device-tree");
exit(1);
}
/*
* We should put fdt as far as possible to avoid kernel/initrd overwriting
* its content. But it should be addressable by 32 bit system as well.
* Thus, put it at an 2MB aligned address that less than fdt size from the
* end of dram or 3GB whichever is lesser.
*/
temp = (dram_base < 3072 * MiB) ? MIN(dram_end, 3072 * MiB) : dram_end;
fdt_addr = QEMU_ALIGN_DOWN(temp - fdtsize, 2 * MiB);
ret = fdt_pack(fdt);
/* Should only fail if we've built a corrupted tree */
g_assert(ret == 0);
/* copy in the device tree */
qemu_fdt_dumpdtb(fdt, fdtsize);
rom_add_blob_fixed_as("fdt", fdt, fdtsize, fdt_addr,
&address_space_memory);
qemu_register_reset_nosnapshotload(qemu_fdt_randomize_seeds,
rom_ptr_for_as(&address_space_memory, fdt_addr, fdtsize));
return fdt_addr;
}
void riscv_rom_copy_firmware_info(MachineState *machine, hwaddr rom_base,
hwaddr rom_size, uint32_t reset_vec_size,
uint64_t kernel_entry)
{
struct fw_dynamic_info dinfo;
size_t dinfo_len;
if (sizeof(dinfo.magic) == 4) {
dinfo.magic = cpu_to_le32(FW_DYNAMIC_INFO_MAGIC_VALUE);
dinfo.version = cpu_to_le32(FW_DYNAMIC_INFO_VERSION);
dinfo.next_mode = cpu_to_le32(FW_DYNAMIC_INFO_NEXT_MODE_S);
dinfo.next_addr = cpu_to_le32(kernel_entry);
} else {
dinfo.magic = cpu_to_le64(FW_DYNAMIC_INFO_MAGIC_VALUE);
dinfo.version = cpu_to_le64(FW_DYNAMIC_INFO_VERSION);
dinfo.next_mode = cpu_to_le64(FW_DYNAMIC_INFO_NEXT_MODE_S);
dinfo.next_addr = cpu_to_le64(kernel_entry);
}
dinfo.options = 0;
dinfo.boot_hart = 0;
dinfo_len = sizeof(dinfo);
/**
* copy the dynamic firmware info. This information is specific to
* OpenSBI but doesn't break any other firmware as long as they don't
* expect any certain value in "a2" register.
*/
if (dinfo_len > (rom_size - reset_vec_size)) {
error_report("not enough space to store dynamic firmware info");
exit(1);
}
rom_add_blob_fixed_as("mrom.finfo", &dinfo, dinfo_len,
rom_base + reset_vec_size,
&address_space_memory);
}
void riscv_setup_rom_reset_vec(MachineState *machine, RISCVHartArrayState *harts,
hwaddr start_addr,
hwaddr rom_base, hwaddr rom_size,
uint64_t kernel_entry,
uint64_t fdt_load_addr)
{
int i;
uint32_t start_addr_hi32 = 0x00000000;
uint32_t fdt_load_addr_hi32 = 0x00000000;
if (!riscv_is_32bit(harts)) {
start_addr_hi32 = start_addr >> 32;
fdt_load_addr_hi32 = fdt_load_addr >> 32;
}
/* reset vector */
uint32_t reset_vec[10] = {
0x00000297, /* 1: auipc t0, %pcrel_hi(fw_dyn) */
0x02828613, /* addi a2, t0, %pcrel_lo(1b) */
0xf1402573, /* csrr a0, mhartid */
0,
0,
0x00028067, /* jr t0 */
start_addr, /* start: .dword */
start_addr_hi32,
fdt_load_addr, /* fdt_laddr: .dword */
fdt_load_addr_hi32,
/* fw_dyn: */
};
if (riscv_is_32bit(harts)) {
reset_vec[3] = 0x0202a583; /* lw a1, 32(t0) */
reset_vec[4] = 0x0182a283; /* lw t0, 24(t0) */
} else {
reset_vec[3] = 0x0202b583; /* ld a1, 32(t0) */
reset_vec[4] = 0x0182b283; /* ld t0, 24(t0) */
}
/* copy in the reset vector in little_endian byte order */
for (i = 0; i < ARRAY_SIZE(reset_vec); i++) {
reset_vec[i] = cpu_to_le32(reset_vec[i]);
}
rom_add_blob_fixed_as("mrom.reset", reset_vec, sizeof(reset_vec),
rom_base, &address_space_memory);
riscv_rom_copy_firmware_info(machine, rom_base, rom_size, sizeof(reset_vec),
kernel_entry);
}
void riscv_setup_direct_kernel(hwaddr kernel_addr, hwaddr fdt_addr)
{
CPUState *cs;
for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
RISCVCPU *riscv_cpu = RISCV_CPU(cs);
riscv_cpu->env.kernel_addr = kernel_addr;
riscv_cpu->env.fdt_addr = fdt_addr;
}
}
void riscv_setup_firmware_boot(MachineState *machine)
{
if (machine->kernel_filename) {
FWCfgState *fw_cfg;
fw_cfg = fw_cfg_find();
assert(fw_cfg);
/*
* Expose the kernel, the command line, and the initrd in fw_cfg.
* We don't process them here at all, it's all left to the
* firmware.
*/
load_image_to_fw_cfg(fw_cfg,
FW_CFG_KERNEL_SIZE, FW_CFG_KERNEL_DATA,
machine->kernel_filename,
true);
load_image_to_fw_cfg(fw_cfg,
FW_CFG_INITRD_SIZE, FW_CFG_INITRD_DATA,
machine->initrd_filename, false);
if (machine->kernel_cmdline) {
fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
strlen(machine->kernel_cmdline) + 1);
fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA,
machine->kernel_cmdline);
}
}
}