qemu/hw/s390x/css.c
Philippe Mathieu-Daudé 715ff23ef2 hw/s390x/css: Remove double initialization
Fix eventual copy/paste mistake introduced in commit bc994b74ea
("s390x/css: Use static initialization for channel_subsys fields").

Signed-off-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Reviewed-by: Thomas Huth <thuth@redhat.com>
Message-Id: <20200907024020.854465-1-philmd@redhat.com>
Signed-off-by: Cornelia Huck <cohuck@redhat.com>
2020-10-02 13:52:49 +02:00

2611 lines
75 KiB
C

/*
* Channel subsystem base support.
*
* Copyright 2012 IBM Corp.
* Author(s): Cornelia Huck <cornelia.huck@de.ibm.com>
*
* This work is licensed under the terms of the GNU GPL, version 2 or (at
* your option) any later version. See the COPYING file in the top-level
* directory.
*/
#include "qemu/osdep.h"
#include "qapi/error.h"
#include "qapi/visitor.h"
#include "qemu/bitops.h"
#include "qemu/error-report.h"
#include "exec/address-spaces.h"
#include "cpu.h"
#include "hw/s390x/ioinst.h"
#include "hw/qdev-properties.h"
#include "hw/s390x/css.h"
#include "trace.h"
#include "hw/s390x/s390_flic.h"
#include "hw/s390x/s390-virtio-ccw.h"
#include "hw/s390x/s390-ccw.h"
typedef struct CrwContainer {
CRW crw;
QTAILQ_ENTRY(CrwContainer) sibling;
} CrwContainer;
static const VMStateDescription vmstate_crw = {
.name = "s390_crw",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT16(flags, CRW),
VMSTATE_UINT16(rsid, CRW),
VMSTATE_END_OF_LIST()
},
};
static const VMStateDescription vmstate_crw_container = {
.name = "s390_crw_container",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_STRUCT(crw, CrwContainer, 0, vmstate_crw, CRW),
VMSTATE_END_OF_LIST()
},
};
typedef struct ChpInfo {
uint8_t in_use;
uint8_t type;
uint8_t is_virtual;
} ChpInfo;
static const VMStateDescription vmstate_chp_info = {
.name = "s390_chp_info",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT8(in_use, ChpInfo),
VMSTATE_UINT8(type, ChpInfo),
VMSTATE_UINT8(is_virtual, ChpInfo),
VMSTATE_END_OF_LIST()
}
};
typedef struct SubchSet {
SubchDev *sch[MAX_SCHID + 1];
unsigned long schids_used[BITS_TO_LONGS(MAX_SCHID + 1)];
unsigned long devnos_used[BITS_TO_LONGS(MAX_SCHID + 1)];
} SubchSet;
static const VMStateDescription vmstate_scsw = {
.name = "s390_scsw",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT16(flags, SCSW),
VMSTATE_UINT16(ctrl, SCSW),
VMSTATE_UINT32(cpa, SCSW),
VMSTATE_UINT8(dstat, SCSW),
VMSTATE_UINT8(cstat, SCSW),
VMSTATE_UINT16(count, SCSW),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription vmstate_pmcw = {
.name = "s390_pmcw",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32(intparm, PMCW),
VMSTATE_UINT16(flags, PMCW),
VMSTATE_UINT16(devno, PMCW),
VMSTATE_UINT8(lpm, PMCW),
VMSTATE_UINT8(pnom, PMCW),
VMSTATE_UINT8(lpum, PMCW),
VMSTATE_UINT8(pim, PMCW),
VMSTATE_UINT16(mbi, PMCW),
VMSTATE_UINT8(pom, PMCW),
VMSTATE_UINT8(pam, PMCW),
VMSTATE_UINT8_ARRAY(chpid, PMCW, 8),
VMSTATE_UINT32(chars, PMCW),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription vmstate_schib = {
.name = "s390_schib",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_STRUCT(pmcw, SCHIB, 0, vmstate_pmcw, PMCW),
VMSTATE_STRUCT(scsw, SCHIB, 0, vmstate_scsw, SCSW),
VMSTATE_UINT64(mba, SCHIB),
VMSTATE_UINT8_ARRAY(mda, SCHIB, 4),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription vmstate_ccw1 = {
.name = "s390_ccw1",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT8(cmd_code, CCW1),
VMSTATE_UINT8(flags, CCW1),
VMSTATE_UINT16(count, CCW1),
VMSTATE_UINT32(cda, CCW1),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription vmstate_ciw = {
.name = "s390_ciw",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT8(type, CIW),
VMSTATE_UINT8(command, CIW),
VMSTATE_UINT16(count, CIW),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription vmstate_sense_id = {
.name = "s390_sense_id",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT8(reserved, SenseId),
VMSTATE_UINT16(cu_type, SenseId),
VMSTATE_UINT8(cu_model, SenseId),
VMSTATE_UINT16(dev_type, SenseId),
VMSTATE_UINT8(dev_model, SenseId),
VMSTATE_UINT8(unused, SenseId),
VMSTATE_STRUCT_ARRAY(ciw, SenseId, MAX_CIWS, 0, vmstate_ciw, CIW),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription vmstate_orb = {
.name = "s390_orb",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32(intparm, ORB),
VMSTATE_UINT16(ctrl0, ORB),
VMSTATE_UINT8(lpm, ORB),
VMSTATE_UINT8(ctrl1, ORB),
VMSTATE_UINT32(cpa, ORB),
VMSTATE_END_OF_LIST()
}
};
static bool vmstate_schdev_orb_needed(void *opaque)
{
return css_migration_enabled();
}
static const VMStateDescription vmstate_schdev_orb = {
.name = "s390_subch_dev/orb",
.version_id = 1,
.minimum_version_id = 1,
.needed = vmstate_schdev_orb_needed,
.fields = (VMStateField[]) {
VMSTATE_STRUCT(orb, SubchDev, 1, vmstate_orb, ORB),
VMSTATE_END_OF_LIST()
}
};
static int subch_dev_post_load(void *opaque, int version_id);
static int subch_dev_pre_save(void *opaque);
const char err_hint_devno[] = "Devno mismatch, tried to load wrong section!"
" Likely reason: some sequences of plug and unplug can break"
" migration for machine versions prior to 2.7 (known design flaw).";
const VMStateDescription vmstate_subch_dev = {
.name = "s390_subch_dev",
.version_id = 1,
.minimum_version_id = 1,
.post_load = subch_dev_post_load,
.pre_save = subch_dev_pre_save,
.fields = (VMStateField[]) {
VMSTATE_UINT8_EQUAL(cssid, SubchDev, "Bug!"),
VMSTATE_UINT8_EQUAL(ssid, SubchDev, "Bug!"),
VMSTATE_UINT16(migrated_schid, SubchDev),
VMSTATE_UINT16_EQUAL(devno, SubchDev, err_hint_devno),
VMSTATE_BOOL(thinint_active, SubchDev),
VMSTATE_STRUCT(curr_status, SubchDev, 0, vmstate_schib, SCHIB),
VMSTATE_UINT8_ARRAY(sense_data, SubchDev, 32),
VMSTATE_UINT64(channel_prog, SubchDev),
VMSTATE_STRUCT(last_cmd, SubchDev, 0, vmstate_ccw1, CCW1),
VMSTATE_BOOL(last_cmd_valid, SubchDev),
VMSTATE_STRUCT(id, SubchDev, 0, vmstate_sense_id, SenseId),
VMSTATE_BOOL(ccw_fmt_1, SubchDev),
VMSTATE_UINT8(ccw_no_data_cnt, SubchDev),
VMSTATE_END_OF_LIST()
},
.subsections = (const VMStateDescription * []) {
&vmstate_schdev_orb,
NULL
}
};
typedef struct IndAddrPtrTmp {
IndAddr **parent;
uint64_t addr;
int32_t len;
} IndAddrPtrTmp;
static int post_load_ind_addr(void *opaque, int version_id)
{
IndAddrPtrTmp *ptmp = opaque;
IndAddr **ind_addr = ptmp->parent;
if (ptmp->len != 0) {
*ind_addr = get_indicator(ptmp->addr, ptmp->len);
} else {
*ind_addr = NULL;
}
return 0;
}
static int pre_save_ind_addr(void *opaque)
{
IndAddrPtrTmp *ptmp = opaque;
IndAddr *ind_addr = *(ptmp->parent);
if (ind_addr != NULL) {
ptmp->len = ind_addr->len;
ptmp->addr = ind_addr->addr;
} else {
ptmp->len = 0;
ptmp->addr = 0L;
}
return 0;
}
const VMStateDescription vmstate_ind_addr_tmp = {
.name = "s390_ind_addr_tmp",
.pre_save = pre_save_ind_addr,
.post_load = post_load_ind_addr,
.fields = (VMStateField[]) {
VMSTATE_INT32(len, IndAddrPtrTmp),
VMSTATE_UINT64(addr, IndAddrPtrTmp),
VMSTATE_END_OF_LIST()
}
};
const VMStateDescription vmstate_ind_addr = {
.name = "s390_ind_addr_tmp",
.fields = (VMStateField[]) {
VMSTATE_WITH_TMP(IndAddr*, IndAddrPtrTmp, vmstate_ind_addr_tmp),
VMSTATE_END_OF_LIST()
}
};
typedef struct CssImage {
SubchSet *sch_set[MAX_SSID + 1];
ChpInfo chpids[MAX_CHPID + 1];
} CssImage;
static const VMStateDescription vmstate_css_img = {
.name = "s390_css_img",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
/* Subchannel sets have no relevant state. */
VMSTATE_STRUCT_ARRAY(chpids, CssImage, MAX_CHPID + 1, 0,
vmstate_chp_info, ChpInfo),
VMSTATE_END_OF_LIST()
}
};
typedef struct IoAdapter {
uint32_t id;
uint8_t type;
uint8_t isc;
uint8_t flags;
} IoAdapter;
typedef struct ChannelSubSys {
QTAILQ_HEAD(, CrwContainer) pending_crws;
bool sei_pending;
bool do_crw_mchk;
bool crws_lost;
uint8_t max_cssid;
uint8_t max_ssid;
bool chnmon_active;
uint64_t chnmon_area;
CssImage *css[MAX_CSSID + 1];
uint8_t default_cssid;
/* don't migrate, see css_register_io_adapters */
IoAdapter *io_adapters[CSS_IO_ADAPTER_TYPE_NUMS][MAX_ISC + 1];
/* don't migrate, see get_indicator and IndAddrPtrTmp */
QTAILQ_HEAD(, IndAddr) indicator_addresses;
} ChannelSubSys;
static const VMStateDescription vmstate_css = {
.name = "s390_css",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_QTAILQ_V(pending_crws, ChannelSubSys, 1, vmstate_crw_container,
CrwContainer, sibling),
VMSTATE_BOOL(sei_pending, ChannelSubSys),
VMSTATE_BOOL(do_crw_mchk, ChannelSubSys),
VMSTATE_BOOL(crws_lost, ChannelSubSys),
/* These were kind of migrated by virtio */
VMSTATE_UINT8(max_cssid, ChannelSubSys),
VMSTATE_UINT8(max_ssid, ChannelSubSys),
VMSTATE_BOOL(chnmon_active, ChannelSubSys),
VMSTATE_UINT64(chnmon_area, ChannelSubSys),
VMSTATE_ARRAY_OF_POINTER_TO_STRUCT(css, ChannelSubSys, MAX_CSSID + 1,
0, vmstate_css_img, CssImage),
VMSTATE_UINT8(default_cssid, ChannelSubSys),
VMSTATE_END_OF_LIST()
}
};
static ChannelSubSys channel_subsys = {
.pending_crws = QTAILQ_HEAD_INITIALIZER(channel_subsys.pending_crws),
.do_crw_mchk = true,
.sei_pending = false,
.crws_lost = false,
.chnmon_active = false,
.indicator_addresses =
QTAILQ_HEAD_INITIALIZER(channel_subsys.indicator_addresses),
};
static int subch_dev_pre_save(void *opaque)
{
SubchDev *s = opaque;
/* Prepare remote_schid for save */
s->migrated_schid = s->schid;
return 0;
}
static int subch_dev_post_load(void *opaque, int version_id)
{
SubchDev *s = opaque;
/* Re-assign the subchannel to remote_schid if necessary */
if (s->migrated_schid != s->schid) {
if (css_find_subch(true, s->cssid, s->ssid, s->schid) == s) {
/*
* Cleanup the slot before moving to s->migrated_schid provided
* it still belongs to us, i.e. it was not changed by previous
* invocation of this function.
*/
css_subch_assign(s->cssid, s->ssid, s->schid, s->devno, NULL);
}
/* It's OK to re-assign without a prior de-assign. */
s->schid = s->migrated_schid;
css_subch_assign(s->cssid, s->ssid, s->schid, s->devno, s);
}
if (css_migration_enabled()) {
/* No compat voodoo to do ;) */
return 0;
}
/*
* Hack alert. If we don't migrate the channel subsystem status
* we still need to find out if the guest enabled mss/mcss-e.
* If the subchannel is enabled, it certainly was able to access it,
* so adjust the max_ssid/max_cssid values for relevant ssid/cssid
* values. This is not watertight, but better than nothing.
*/
if (s->curr_status.pmcw.flags & PMCW_FLAGS_MASK_ENA) {
if (s->ssid) {
channel_subsys.max_ssid = MAX_SSID;
}
if (s->cssid != channel_subsys.default_cssid) {
channel_subsys.max_cssid = MAX_CSSID;
}
}
return 0;
}
void css_register_vmstate(void)
{
vmstate_register(NULL, 0, &vmstate_css, &channel_subsys);
}
IndAddr *get_indicator(hwaddr ind_addr, int len)
{
IndAddr *indicator;
QTAILQ_FOREACH(indicator, &channel_subsys.indicator_addresses, sibling) {
if (indicator->addr == ind_addr) {
indicator->refcnt++;
return indicator;
}
}
indicator = g_new0(IndAddr, 1);
indicator->addr = ind_addr;
indicator->len = len;
indicator->refcnt = 1;
QTAILQ_INSERT_TAIL(&channel_subsys.indicator_addresses,
indicator, sibling);
return indicator;
}
static int s390_io_adapter_map(AdapterInfo *adapter, uint64_t map_addr,
bool do_map)
{
S390FLICState *fs = s390_get_flic();
S390FLICStateClass *fsc = s390_get_flic_class(fs);
return fsc->io_adapter_map(fs, adapter->adapter_id, map_addr, do_map);
}
void release_indicator(AdapterInfo *adapter, IndAddr *indicator)
{
assert(indicator->refcnt > 0);
indicator->refcnt--;
if (indicator->refcnt > 0) {
return;
}
QTAILQ_REMOVE(&channel_subsys.indicator_addresses, indicator, sibling);
if (indicator->map) {
s390_io_adapter_map(adapter, indicator->map, false);
}
g_free(indicator);
}
int map_indicator(AdapterInfo *adapter, IndAddr *indicator)
{
int ret;
if (indicator->map) {
return 0; /* already mapped is not an error */
}
indicator->map = indicator->addr;
ret = s390_io_adapter_map(adapter, indicator->map, true);
if ((ret != 0) && (ret != -ENOSYS)) {
goto out_err;
}
return 0;
out_err:
indicator->map = 0;
return ret;
}
int css_create_css_image(uint8_t cssid, bool default_image)
{
trace_css_new_image(cssid, default_image ? "(default)" : "");
/* 255 is reserved */
if (cssid == 255) {
return -EINVAL;
}
if (channel_subsys.css[cssid]) {
return -EBUSY;
}
channel_subsys.css[cssid] = g_new0(CssImage, 1);
if (default_image) {
channel_subsys.default_cssid = cssid;
}
return 0;
}
uint32_t css_get_adapter_id(CssIoAdapterType type, uint8_t isc)
{
if (type >= CSS_IO_ADAPTER_TYPE_NUMS || isc > MAX_ISC ||
!channel_subsys.io_adapters[type][isc]) {
return -1;
}
return channel_subsys.io_adapters[type][isc]->id;
}
/**
* css_register_io_adapters: Register I/O adapters per ISC during init
*
* @swap: an indication if byte swap is needed.
* @maskable: an indication if the adapter is subject to the mask operation.
* @flags: further characteristics of the adapter.
* e.g. suppressible, an indication if the adapter is subject to AIS.
* @errp: location to store error information.
*/
void css_register_io_adapters(CssIoAdapterType type, bool swap, bool maskable,
uint8_t flags, Error **errp)
{
uint32_t id;
int ret, isc;
IoAdapter *adapter;
S390FLICState *fs = s390_get_flic();
S390FLICStateClass *fsc = s390_get_flic_class(fs);
/*
* Disallow multiple registrations for the same device type.
* Report an error if registering for an already registered type.
*/
if (channel_subsys.io_adapters[type][0]) {
error_setg(errp, "Adapters for type %d already registered", type);
}
for (isc = 0; isc <= MAX_ISC; isc++) {
id = (type << 3) | isc;
ret = fsc->register_io_adapter(fs, id, isc, swap, maskable, flags);
if (ret == 0) {
adapter = g_new0(IoAdapter, 1);
adapter->id = id;
adapter->isc = isc;
adapter->type = type;
adapter->flags = flags;
channel_subsys.io_adapters[type][isc] = adapter;
} else {
error_setg_errno(errp, -ret, "Unexpected error %d when "
"registering adapter %d", ret, id);
break;
}
}
/*
* No need to free registered adapters in kvm: kvm will clean up
* when the machine goes away.
*/
if (ret) {
for (isc--; isc >= 0; isc--) {
g_free(channel_subsys.io_adapters[type][isc]);
channel_subsys.io_adapters[type][isc] = NULL;
}
}
}
static void css_clear_io_interrupt(uint16_t subchannel_id,
uint16_t subchannel_nr)
{
Error *err = NULL;
static bool no_clear_irq;
S390FLICState *fs = s390_get_flic();
S390FLICStateClass *fsc = s390_get_flic_class(fs);
int r;
if (unlikely(no_clear_irq)) {
return;
}
r = fsc->clear_io_irq(fs, subchannel_id, subchannel_nr);
switch (r) {
case 0:
break;
case -ENOSYS:
no_clear_irq = true;
/*
* Ignore unavailability, as the user can't do anything
* about it anyway.
*/
break;
default:
error_setg_errno(&err, -r, "unexpected error condition");
error_propagate(&error_abort, err);
}
}
static inline uint16_t css_do_build_subchannel_id(uint8_t cssid, uint8_t ssid)
{
if (channel_subsys.max_cssid > 0) {
return (cssid << 8) | (1 << 3) | (ssid << 1) | 1;
}
return (ssid << 1) | 1;
}
uint16_t css_build_subchannel_id(SubchDev *sch)
{
return css_do_build_subchannel_id(sch->cssid, sch->ssid);
}
void css_inject_io_interrupt(SubchDev *sch)
{
uint8_t isc = (sch->curr_status.pmcw.flags & PMCW_FLAGS_MASK_ISC) >> 11;
trace_css_io_interrupt(sch->cssid, sch->ssid, sch->schid,
sch->curr_status.pmcw.intparm, isc, "");
s390_io_interrupt(css_build_subchannel_id(sch),
sch->schid,
sch->curr_status.pmcw.intparm,
isc << 27);
}
void css_conditional_io_interrupt(SubchDev *sch)
{
/*
* If the subchannel is not enabled, it is not made status pending
* (see PoP p. 16-17, "Status Control").
*/
if (!(sch->curr_status.pmcw.flags & PMCW_FLAGS_MASK_ENA)) {
return;
}
/*
* If the subchannel is not currently status pending, make it pending
* with alert status.
*/
if (!(sch->curr_status.scsw.ctrl & SCSW_STCTL_STATUS_PEND)) {
uint8_t isc = (sch->curr_status.pmcw.flags & PMCW_FLAGS_MASK_ISC) >> 11;
trace_css_io_interrupt(sch->cssid, sch->ssid, sch->schid,
sch->curr_status.pmcw.intparm, isc,
"(unsolicited)");
sch->curr_status.scsw.ctrl &= ~SCSW_CTRL_MASK_STCTL;
sch->curr_status.scsw.ctrl |=
SCSW_STCTL_ALERT | SCSW_STCTL_STATUS_PEND;
/* Inject an I/O interrupt. */
s390_io_interrupt(css_build_subchannel_id(sch),
sch->schid,
sch->curr_status.pmcw.intparm,
isc << 27);
}
}
int css_do_sic(CPUS390XState *env, uint8_t isc, uint16_t mode)
{
S390FLICState *fs = s390_get_flic();
S390FLICStateClass *fsc = s390_get_flic_class(fs);
int r;
if (env->psw.mask & PSW_MASK_PSTATE) {
r = -PGM_PRIVILEGED;
goto out;
}
trace_css_do_sic(mode, isc);
switch (mode) {
case SIC_IRQ_MODE_ALL:
case SIC_IRQ_MODE_SINGLE:
break;
default:
r = -PGM_OPERAND;
goto out;
}
r = fsc->modify_ais_mode(fs, isc, mode) ? -PGM_OPERATION : 0;
out:
return r;
}
void css_adapter_interrupt(CssIoAdapterType type, uint8_t isc)
{
S390FLICState *fs = s390_get_flic();
S390FLICStateClass *fsc = s390_get_flic_class(fs);
uint32_t io_int_word = (isc << 27) | IO_INT_WORD_AI;
IoAdapter *adapter = channel_subsys.io_adapters[type][isc];
if (!adapter) {
return;
}
trace_css_adapter_interrupt(isc);
if (fs->ais_supported) {
if (fsc->inject_airq(fs, type, isc, adapter->flags)) {
error_report("Failed to inject airq with AIS supported");
exit(1);
}
} else {
s390_io_interrupt(0, 0, 0, io_int_word);
}
}
static void sch_handle_clear_func(SubchDev *sch)
{
SCHIB *schib = &sch->curr_status;
int path;
/* Path management: In our simple css, we always choose the only path. */
path = 0x80;
/* Reset values prior to 'issuing the clear signal'. */
schib->pmcw.lpum = 0;
schib->pmcw.pom = 0xff;
schib->scsw.flags &= ~SCSW_FLAGS_MASK_PNO;
/* We always 'attempt to issue the clear signal', and we always succeed. */
sch->channel_prog = 0x0;
sch->last_cmd_valid = false;
schib->scsw.ctrl &= ~SCSW_ACTL_CLEAR_PEND;
schib->scsw.ctrl |= SCSW_STCTL_STATUS_PEND;
schib->scsw.dstat = 0;
schib->scsw.cstat = 0;
schib->pmcw.lpum = path;
}
static void sch_handle_halt_func(SubchDev *sch)
{
SCHIB *schib = &sch->curr_status;
hwaddr curr_ccw = sch->channel_prog;
int path;
/* Path management: In our simple css, we always choose the only path. */
path = 0x80;
/* We always 'attempt to issue the halt signal', and we always succeed. */
sch->channel_prog = 0x0;
sch->last_cmd_valid = false;
schib->scsw.ctrl &= ~SCSW_ACTL_HALT_PEND;
schib->scsw.ctrl |= SCSW_STCTL_STATUS_PEND;
if ((schib->scsw.ctrl & (SCSW_ACTL_SUBCH_ACTIVE |
SCSW_ACTL_DEVICE_ACTIVE)) ||
!((schib->scsw.ctrl & SCSW_ACTL_START_PEND) ||
(schib->scsw.ctrl & SCSW_ACTL_SUSP))) {
schib->scsw.dstat = SCSW_DSTAT_DEVICE_END;
}
if ((schib->scsw.ctrl & (SCSW_ACTL_SUBCH_ACTIVE |
SCSW_ACTL_DEVICE_ACTIVE)) ||
(schib->scsw.ctrl & SCSW_ACTL_SUSP)) {
schib->scsw.cpa = curr_ccw + 8;
}
schib->scsw.cstat = 0;
schib->pmcw.lpum = path;
}
/*
* As the SenseId struct cannot be packed (would cause unaligned accesses), we
* have to copy the individual fields to an unstructured area using the correct
* layout (see SA22-7204-01 "Common I/O-Device Commands").
*/
static void copy_sense_id_to_guest(uint8_t *dest, SenseId *src)
{
int i;
dest[0] = src->reserved;
stw_be_p(dest + 1, src->cu_type);
dest[3] = src->cu_model;
stw_be_p(dest + 4, src->dev_type);
dest[6] = src->dev_model;
dest[7] = src->unused;
for (i = 0; i < ARRAY_SIZE(src->ciw); i++) {
dest[8 + i * 4] = src->ciw[i].type;
dest[9 + i * 4] = src->ciw[i].command;
stw_be_p(dest + 10 + i * 4, src->ciw[i].count);
}
}
static CCW1 copy_ccw_from_guest(hwaddr addr, bool fmt1)
{
CCW0 tmp0;
CCW1 tmp1;
CCW1 ret;
if (fmt1) {
cpu_physical_memory_read(addr, &tmp1, sizeof(tmp1));
ret.cmd_code = tmp1.cmd_code;
ret.flags = tmp1.flags;
ret.count = be16_to_cpu(tmp1.count);
ret.cda = be32_to_cpu(tmp1.cda);
} else {
cpu_physical_memory_read(addr, &tmp0, sizeof(tmp0));
if ((tmp0.cmd_code & 0x0f) == CCW_CMD_TIC) {
ret.cmd_code = CCW_CMD_TIC;
ret.flags = 0;
ret.count = 0;
} else {
ret.cmd_code = tmp0.cmd_code;
ret.flags = tmp0.flags;
ret.count = be16_to_cpu(tmp0.count);
}
ret.cda = be16_to_cpu(tmp0.cda1) | (tmp0.cda0 << 16);
}
return ret;
}
/**
* If out of bounds marks the stream broken. If broken returns -EINVAL,
* otherwise the requested length (may be zero)
*/
static inline int cds_check_len(CcwDataStream *cds, int len)
{
if (cds->at_byte + len > cds->count) {
cds->flags |= CDS_F_STREAM_BROKEN;
}
return cds->flags & CDS_F_STREAM_BROKEN ? -EINVAL : len;
}
static inline bool cds_ccw_addrs_ok(hwaddr addr, int len, bool ccw_fmt1)
{
return (addr + len) < (ccw_fmt1 ? (1UL << 31) : (1UL << 24));
}
static int ccw_dstream_rw_noflags(CcwDataStream *cds, void *buff, int len,
CcwDataStreamOp op)
{
int ret;
ret = cds_check_len(cds, len);
if (ret <= 0) {
return ret;
}
if (!cds_ccw_addrs_ok(cds->cda, len, cds->flags & CDS_F_FMT)) {
return -EINVAL; /* channel program check */
}
if (op == CDS_OP_A) {
goto incr;
}
if (!cds->do_skip) {
ret = address_space_rw(&address_space_memory, cds->cda,
MEMTXATTRS_UNSPECIFIED, buff, len, op);
} else {
ret = MEMTX_OK;
}
if (ret != MEMTX_OK) {
cds->flags |= CDS_F_STREAM_BROKEN;
return -EINVAL;
}
incr:
cds->at_byte += len;
cds->cda += len;
return 0;
}
/* returns values between 1 and bsz, where bsz is a power of 2 */
static inline uint16_t ida_continuous_left(hwaddr cda, uint64_t bsz)
{
return bsz - (cda & (bsz - 1));
}
static inline uint64_t ccw_ida_block_size(uint8_t flags)
{
if ((flags & CDS_F_C64) && !(flags & CDS_F_I2K)) {
return 1ULL << 12;
}
return 1ULL << 11;
}
static inline int ida_read_next_idaw(CcwDataStream *cds)
{
union {uint64_t fmt2; uint32_t fmt1; } idaw;
int ret;
hwaddr idaw_addr;
bool idaw_fmt2 = cds->flags & CDS_F_C64;
bool ccw_fmt1 = cds->flags & CDS_F_FMT;
if (idaw_fmt2) {
idaw_addr = cds->cda_orig + sizeof(idaw.fmt2) * cds->at_idaw;
if (idaw_addr & 0x07 || !cds_ccw_addrs_ok(idaw_addr, 0, ccw_fmt1)) {
return -EINVAL; /* channel program check */
}
ret = address_space_read(&address_space_memory, idaw_addr,
MEMTXATTRS_UNSPECIFIED, &idaw.fmt2,
sizeof(idaw.fmt2));
cds->cda = be64_to_cpu(idaw.fmt2);
} else {
idaw_addr = cds->cda_orig + sizeof(idaw.fmt1) * cds->at_idaw;
if (idaw_addr & 0x03 || !cds_ccw_addrs_ok(idaw_addr, 0, ccw_fmt1)) {
return -EINVAL; /* channel program check */
}
ret = address_space_read(&address_space_memory, idaw_addr,
MEMTXATTRS_UNSPECIFIED, &idaw.fmt1,
sizeof(idaw.fmt1));
cds->cda = be64_to_cpu(idaw.fmt1);
if (cds->cda & 0x80000000) {
return -EINVAL; /* channel program check */
}
}
++(cds->at_idaw);
if (ret != MEMTX_OK) {
/* assume inaccessible address */
return -EINVAL; /* channel program check */
}
return 0;
}
static int ccw_dstream_rw_ida(CcwDataStream *cds, void *buff, int len,
CcwDataStreamOp op)
{
uint64_t bsz = ccw_ida_block_size(cds->flags);
int ret = 0;
uint16_t cont_left, iter_len;
ret = cds_check_len(cds, len);
if (ret <= 0) {
return ret;
}
if (!cds->at_idaw) {
/* read first idaw */
ret = ida_read_next_idaw(cds);
if (ret) {
goto err;
}
cont_left = ida_continuous_left(cds->cda, bsz);
} else {
cont_left = ida_continuous_left(cds->cda, bsz);
if (cont_left == bsz) {
ret = ida_read_next_idaw(cds);
if (ret) {
goto err;
}
if (cds->cda & (bsz - 1)) {
ret = -EINVAL; /* channel program check */
goto err;
}
}
}
do {
iter_len = MIN(len, cont_left);
if (op != CDS_OP_A) {
if (!cds->do_skip) {
ret = address_space_rw(&address_space_memory, cds->cda,
MEMTXATTRS_UNSPECIFIED, buff, iter_len,
op);
} else {
ret = MEMTX_OK;
}
if (ret != MEMTX_OK) {
/* assume inaccessible address */
ret = -EINVAL; /* channel program check */
goto err;
}
}
cds->at_byte += iter_len;
cds->cda += iter_len;
len -= iter_len;
if (!len) {
break;
}
ret = ida_read_next_idaw(cds);
if (ret) {
goto err;
}
cont_left = bsz;
} while (true);
return ret;
err:
cds->flags |= CDS_F_STREAM_BROKEN;
return ret;
}
void ccw_dstream_init(CcwDataStream *cds, CCW1 const *ccw, ORB const *orb)
{
/*
* We don't support MIDA (an optional facility) yet and we
* catch this earlier. Just for expressing the precondition.
*/
g_assert(!(orb->ctrl1 & ORB_CTRL1_MASK_MIDAW));
cds->flags = (orb->ctrl0 & ORB_CTRL0_MASK_I2K ? CDS_F_I2K : 0) |
(orb->ctrl0 & ORB_CTRL0_MASK_C64 ? CDS_F_C64 : 0) |
(orb->ctrl0 & ORB_CTRL0_MASK_FMT ? CDS_F_FMT : 0) |
(ccw->flags & CCW_FLAG_IDA ? CDS_F_IDA : 0);
cds->count = ccw->count;
cds->cda_orig = ccw->cda;
/* skip is only effective for read, read backwards, or sense commands */
cds->do_skip = (ccw->flags & CCW_FLAG_SKIP) &&
((ccw->cmd_code & 0x0f) == CCW_CMD_BASIC_SENSE ||
(ccw->cmd_code & 0x03) == 0x02 /* read */ ||
(ccw->cmd_code & 0x0f) == 0x0c /* read backwards */);
ccw_dstream_rewind(cds);
if (!(cds->flags & CDS_F_IDA)) {
cds->op_handler = ccw_dstream_rw_noflags;
} else {
cds->op_handler = ccw_dstream_rw_ida;
}
}
static int css_interpret_ccw(SubchDev *sch, hwaddr ccw_addr,
bool suspend_allowed)
{
int ret;
bool check_len;
int len;
CCW1 ccw;
if (!ccw_addr) {
return -EINVAL; /* channel-program check */
}
/* Check doubleword aligned and 31 or 24 (fmt 0) bit addressable. */
if (ccw_addr & (sch->ccw_fmt_1 ? 0x80000007 : 0xff000007)) {
return -EINVAL;
}
/* Translate everything to format-1 ccws - the information is the same. */
ccw = copy_ccw_from_guest(ccw_addr, sch->ccw_fmt_1);
/* Check for invalid command codes. */
if ((ccw.cmd_code & 0x0f) == 0) {
return -EINVAL;
}
if (((ccw.cmd_code & 0x0f) == CCW_CMD_TIC) &&
((ccw.cmd_code & 0xf0) != 0)) {
return -EINVAL;
}
if (!sch->ccw_fmt_1 && (ccw.count == 0) &&
(ccw.cmd_code != CCW_CMD_TIC)) {
return -EINVAL;
}
/* We don't support MIDA. */
if (ccw.flags & CCW_FLAG_MIDA) {
return -EINVAL;
}
if (ccw.flags & CCW_FLAG_SUSPEND) {
return suspend_allowed ? -EINPROGRESS : -EINVAL;
}
check_len = !((ccw.flags & CCW_FLAG_SLI) && !(ccw.flags & CCW_FLAG_DC));
if (!ccw.cda) {
if (sch->ccw_no_data_cnt == 255) {
return -EINVAL;
}
sch->ccw_no_data_cnt++;
}
/* Look at the command. */
ccw_dstream_init(&sch->cds, &ccw, &(sch->orb));
switch (ccw.cmd_code) {
case CCW_CMD_NOOP:
/* Nothing to do. */
ret = 0;
break;
case CCW_CMD_BASIC_SENSE:
if (check_len) {
if (ccw.count != sizeof(sch->sense_data)) {
ret = -EINVAL;
break;
}
}
len = MIN(ccw.count, sizeof(sch->sense_data));
ccw_dstream_write_buf(&sch->cds, sch->sense_data, len);
sch->curr_status.scsw.count = ccw_dstream_residual_count(&sch->cds);
memset(sch->sense_data, 0, sizeof(sch->sense_data));
ret = 0;
break;
case CCW_CMD_SENSE_ID:
{
/* According to SA22-7204-01, Sense-ID can store up to 256 bytes */
uint8_t sense_id[256];
copy_sense_id_to_guest(sense_id, &sch->id);
/* Sense ID information is device specific. */
if (check_len) {
if (ccw.count != sizeof(sense_id)) {
ret = -EINVAL;
break;
}
}
len = MIN(ccw.count, sizeof(sense_id));
/*
* Only indicate 0xff in the first sense byte if we actually
* have enough place to store at least bytes 0-3.
*/
if (len >= 4) {
sense_id[0] = 0xff;
} else {
sense_id[0] = 0;
}
ccw_dstream_write_buf(&sch->cds, sense_id, len);
sch->curr_status.scsw.count = ccw_dstream_residual_count(&sch->cds);
ret = 0;
break;
}
case CCW_CMD_TIC:
if (sch->last_cmd_valid && (sch->last_cmd.cmd_code == CCW_CMD_TIC)) {
ret = -EINVAL;
break;
}
if (ccw.flags || ccw.count) {
/* We have already sanitized these if converted from fmt 0. */
ret = -EINVAL;
break;
}
sch->channel_prog = ccw.cda;
ret = -EAGAIN;
break;
default:
if (sch->ccw_cb) {
/* Handle device specific commands. */
ret = sch->ccw_cb(sch, ccw);
} else {
ret = -ENOSYS;
}
break;
}
sch->last_cmd = ccw;
sch->last_cmd_valid = true;
if (ret == 0) {
if (ccw.flags & CCW_FLAG_CC) {
sch->channel_prog += 8;
ret = -EAGAIN;
}
}
return ret;
}
static void sch_handle_start_func_virtual(SubchDev *sch)
{
SCHIB *schib = &sch->curr_status;
int path;
int ret;
bool suspend_allowed;
/* Path management: In our simple css, we always choose the only path. */
path = 0x80;
if (!(schib->scsw.ctrl & SCSW_ACTL_SUSP)) {
/* Start Function triggered via ssch, i.e. we have an ORB */
ORB *orb = &sch->orb;
schib->scsw.cstat = 0;
schib->scsw.dstat = 0;
/* Look at the orb and try to execute the channel program. */
schib->pmcw.intparm = orb->intparm;
if (!(orb->lpm & path)) {
/* Generate a deferred cc 3 condition. */
schib->scsw.flags |= SCSW_FLAGS_MASK_CC;
schib->scsw.ctrl &= ~SCSW_CTRL_MASK_STCTL;
schib->scsw.ctrl |= (SCSW_STCTL_ALERT | SCSW_STCTL_STATUS_PEND);
return;
}
sch->ccw_fmt_1 = !!(orb->ctrl0 & ORB_CTRL0_MASK_FMT);
schib->scsw.flags |= (sch->ccw_fmt_1) ? SCSW_FLAGS_MASK_FMT : 0;
sch->ccw_no_data_cnt = 0;
suspend_allowed = !!(orb->ctrl0 & ORB_CTRL0_MASK_SPND);
} else {
/* Start Function resumed via rsch */
schib->scsw.ctrl &= ~(SCSW_ACTL_SUSP | SCSW_ACTL_RESUME_PEND);
/* The channel program had been suspended before. */
suspend_allowed = true;
}
sch->last_cmd_valid = false;
do {
ret = css_interpret_ccw(sch, sch->channel_prog, suspend_allowed);
switch (ret) {
case -EAGAIN:
/* ccw chain, continue processing */
break;
case 0:
/* success */
schib->scsw.ctrl &= ~SCSW_ACTL_START_PEND;
schib->scsw.ctrl &= ~SCSW_CTRL_MASK_STCTL;
schib->scsw.ctrl |= SCSW_STCTL_PRIMARY | SCSW_STCTL_SECONDARY |
SCSW_STCTL_STATUS_PEND;
schib->scsw.dstat = SCSW_DSTAT_CHANNEL_END | SCSW_DSTAT_DEVICE_END;
schib->scsw.cpa = sch->channel_prog + 8;
break;
case -EIO:
/* I/O errors, status depends on specific devices */
break;
case -ENOSYS:
/* unsupported command, generate unit check (command reject) */
schib->scsw.ctrl &= ~SCSW_ACTL_START_PEND;
schib->scsw.dstat = SCSW_DSTAT_UNIT_CHECK;
/* Set sense bit 0 in ecw0. */
sch->sense_data[0] = 0x80;
schib->scsw.ctrl &= ~SCSW_CTRL_MASK_STCTL;
schib->scsw.ctrl |= SCSW_STCTL_PRIMARY | SCSW_STCTL_SECONDARY |
SCSW_STCTL_ALERT | SCSW_STCTL_STATUS_PEND;
schib->scsw.cpa = sch->channel_prog + 8;
break;
case -EINPROGRESS:
/* channel program has been suspended */
schib->scsw.ctrl &= ~SCSW_ACTL_START_PEND;
schib->scsw.ctrl |= SCSW_ACTL_SUSP;
break;
default:
/* error, generate channel program check */
schib->scsw.ctrl &= ~SCSW_ACTL_START_PEND;
schib->scsw.cstat = SCSW_CSTAT_PROG_CHECK;
schib->scsw.ctrl &= ~SCSW_CTRL_MASK_STCTL;
schib->scsw.ctrl |= SCSW_STCTL_PRIMARY | SCSW_STCTL_SECONDARY |
SCSW_STCTL_ALERT | SCSW_STCTL_STATUS_PEND;
schib->scsw.cpa = sch->channel_prog + 8;
break;
}
} while (ret == -EAGAIN);
}
static void sch_handle_halt_func_passthrough(SubchDev *sch)
{
int ret;
ret = s390_ccw_halt(sch);
if (ret == -ENOSYS) {
sch_handle_halt_func(sch);
}
}
static void sch_handle_clear_func_passthrough(SubchDev *sch)
{
int ret;
ret = s390_ccw_clear(sch);
if (ret == -ENOSYS) {
sch_handle_clear_func(sch);
}
}
static IOInstEnding sch_handle_start_func_passthrough(SubchDev *sch)
{
SCHIB *schib = &sch->curr_status;
ORB *orb = &sch->orb;
if (!(schib->scsw.ctrl & SCSW_ACTL_SUSP)) {
assert(orb != NULL);
schib->pmcw.intparm = orb->intparm;
}
return s390_ccw_cmd_request(sch);
}
/*
* On real machines, this would run asynchronously to the main vcpus.
* We might want to make some parts of the ssch handling (interpreting
* read/writes) asynchronous later on if we start supporting more than
* our current very simple devices.
*/
IOInstEnding do_subchannel_work_virtual(SubchDev *sch)
{
SCHIB *schib = &sch->curr_status;
if (schib->scsw.ctrl & SCSW_FCTL_CLEAR_FUNC) {
sch_handle_clear_func(sch);
} else if (schib->scsw.ctrl & SCSW_FCTL_HALT_FUNC) {
sch_handle_halt_func(sch);
} else if (schib->scsw.ctrl & SCSW_FCTL_START_FUNC) {
/* Triggered by both ssch and rsch. */
sch_handle_start_func_virtual(sch);
}
css_inject_io_interrupt(sch);
/* inst must succeed if this func is called */
return IOINST_CC_EXPECTED;
}
IOInstEnding do_subchannel_work_passthrough(SubchDev *sch)
{
SCHIB *schib = &sch->curr_status;
if (schib->scsw.ctrl & SCSW_FCTL_CLEAR_FUNC) {
sch_handle_clear_func_passthrough(sch);
} else if (schib->scsw.ctrl & SCSW_FCTL_HALT_FUNC) {
sch_handle_halt_func_passthrough(sch);
} else if (schib->scsw.ctrl & SCSW_FCTL_START_FUNC) {
return sch_handle_start_func_passthrough(sch);
}
return IOINST_CC_EXPECTED;
}
static IOInstEnding do_subchannel_work(SubchDev *sch)
{
if (!sch->do_subchannel_work) {
return IOINST_CC_STATUS_PRESENT;
}
g_assert(sch->curr_status.scsw.ctrl & SCSW_CTRL_MASK_FCTL);
return sch->do_subchannel_work(sch);
}
static void copy_pmcw_to_guest(PMCW *dest, const PMCW *src)
{
int i;
dest->intparm = cpu_to_be32(src->intparm);
dest->flags = cpu_to_be16(src->flags);
dest->devno = cpu_to_be16(src->devno);
dest->lpm = src->lpm;
dest->pnom = src->pnom;
dest->lpum = src->lpum;
dest->pim = src->pim;
dest->mbi = cpu_to_be16(src->mbi);
dest->pom = src->pom;
dest->pam = src->pam;
for (i = 0; i < ARRAY_SIZE(dest->chpid); i++) {
dest->chpid[i] = src->chpid[i];
}
dest->chars = cpu_to_be32(src->chars);
}
void copy_scsw_to_guest(SCSW *dest, const SCSW *src)
{
dest->flags = cpu_to_be16(src->flags);
dest->ctrl = cpu_to_be16(src->ctrl);
dest->cpa = cpu_to_be32(src->cpa);
dest->dstat = src->dstat;
dest->cstat = src->cstat;
dest->count = cpu_to_be16(src->count);
}
static void copy_schib_to_guest(SCHIB *dest, const SCHIB *src)
{
int i;
/*
* We copy the PMCW and SCSW in and out of local variables to
* avoid taking the address of members of a packed struct.
*/
PMCW src_pmcw, dest_pmcw;
SCSW src_scsw, dest_scsw;
src_pmcw = src->pmcw;
copy_pmcw_to_guest(&dest_pmcw, &src_pmcw);
dest->pmcw = dest_pmcw;
src_scsw = src->scsw;
copy_scsw_to_guest(&dest_scsw, &src_scsw);
dest->scsw = dest_scsw;
dest->mba = cpu_to_be64(src->mba);
for (i = 0; i < ARRAY_SIZE(dest->mda); i++) {
dest->mda[i] = src->mda[i];
}
}
IOInstEnding css_do_stsch(SubchDev *sch, SCHIB *schib)
{
int ret;
/*
* For some subchannels, we may want to update parts of
* the schib (e.g., update path masks from the host device
* for passthrough subchannels).
*/
ret = s390_ccw_store(sch);
/* Use current status. */
copy_schib_to_guest(schib, &sch->curr_status);
return ret;
}
static void copy_pmcw_from_guest(PMCW *dest, const PMCW *src)
{
int i;
dest->intparm = be32_to_cpu(src->intparm);
dest->flags = be16_to_cpu(src->flags);
dest->devno = be16_to_cpu(src->devno);
dest->lpm = src->lpm;
dest->pnom = src->pnom;
dest->lpum = src->lpum;
dest->pim = src->pim;
dest->mbi = be16_to_cpu(src->mbi);
dest->pom = src->pom;
dest->pam = src->pam;
for (i = 0; i < ARRAY_SIZE(dest->chpid); i++) {
dest->chpid[i] = src->chpid[i];
}
dest->chars = be32_to_cpu(src->chars);
}
static void copy_scsw_from_guest(SCSW *dest, const SCSW *src)
{
dest->flags = be16_to_cpu(src->flags);
dest->ctrl = be16_to_cpu(src->ctrl);
dest->cpa = be32_to_cpu(src->cpa);
dest->dstat = src->dstat;
dest->cstat = src->cstat;
dest->count = be16_to_cpu(src->count);
}
static void copy_schib_from_guest(SCHIB *dest, const SCHIB *src)
{
int i;
/*
* We copy the PMCW and SCSW in and out of local variables to
* avoid taking the address of members of a packed struct.
*/
PMCW src_pmcw, dest_pmcw;
SCSW src_scsw, dest_scsw;
src_pmcw = src->pmcw;
copy_pmcw_from_guest(&dest_pmcw, &src_pmcw);
dest->pmcw = dest_pmcw;
src_scsw = src->scsw;
copy_scsw_from_guest(&dest_scsw, &src_scsw);
dest->scsw = dest_scsw;
dest->mba = be64_to_cpu(src->mba);
for (i = 0; i < ARRAY_SIZE(dest->mda); i++) {
dest->mda[i] = src->mda[i];
}
}
IOInstEnding css_do_msch(SubchDev *sch, const SCHIB *orig_schib)
{
SCHIB *schib = &sch->curr_status;
uint16_t oldflags;
SCHIB schib_copy;
if (!(schib->pmcw.flags & PMCW_FLAGS_MASK_DNV)) {
return IOINST_CC_EXPECTED;
}
if (schib->scsw.ctrl & SCSW_STCTL_STATUS_PEND) {
return IOINST_CC_STATUS_PRESENT;
}
if (schib->scsw.ctrl &
(SCSW_FCTL_START_FUNC|SCSW_FCTL_HALT_FUNC|SCSW_FCTL_CLEAR_FUNC)) {
return IOINST_CC_BUSY;
}
copy_schib_from_guest(&schib_copy, orig_schib);
/* Only update the program-modifiable fields. */
schib->pmcw.intparm = schib_copy.pmcw.intparm;
oldflags = schib->pmcw.flags;
schib->pmcw.flags &= ~(PMCW_FLAGS_MASK_ISC | PMCW_FLAGS_MASK_ENA |
PMCW_FLAGS_MASK_LM | PMCW_FLAGS_MASK_MME |
PMCW_FLAGS_MASK_MP);
schib->pmcw.flags |= schib_copy.pmcw.flags &
(PMCW_FLAGS_MASK_ISC | PMCW_FLAGS_MASK_ENA |
PMCW_FLAGS_MASK_LM | PMCW_FLAGS_MASK_MME |
PMCW_FLAGS_MASK_MP);
schib->pmcw.lpm = schib_copy.pmcw.lpm;
schib->pmcw.mbi = schib_copy.pmcw.mbi;
schib->pmcw.pom = schib_copy.pmcw.pom;
schib->pmcw.chars &= ~(PMCW_CHARS_MASK_MBFC | PMCW_CHARS_MASK_CSENSE);
schib->pmcw.chars |= schib_copy.pmcw.chars &
(PMCW_CHARS_MASK_MBFC | PMCW_CHARS_MASK_CSENSE);
schib->mba = schib_copy.mba;
/* Has the channel been disabled? */
if (sch->disable_cb && (oldflags & PMCW_FLAGS_MASK_ENA) != 0
&& (schib->pmcw.flags & PMCW_FLAGS_MASK_ENA) == 0) {
sch->disable_cb(sch);
}
return IOINST_CC_EXPECTED;
}
IOInstEnding css_do_xsch(SubchDev *sch)
{
SCHIB *schib = &sch->curr_status;
if (~(schib->pmcw.flags) & (PMCW_FLAGS_MASK_DNV | PMCW_FLAGS_MASK_ENA)) {
return IOINST_CC_NOT_OPERATIONAL;
}
if (schib->scsw.ctrl & SCSW_CTRL_MASK_STCTL) {
return IOINST_CC_STATUS_PRESENT;
}
if (!(schib->scsw.ctrl & SCSW_CTRL_MASK_FCTL) ||
((schib->scsw.ctrl & SCSW_CTRL_MASK_FCTL) != SCSW_FCTL_START_FUNC) ||
(!(schib->scsw.ctrl &
(SCSW_ACTL_RESUME_PEND | SCSW_ACTL_START_PEND | SCSW_ACTL_SUSP))) ||
(schib->scsw.ctrl & SCSW_ACTL_SUBCH_ACTIVE)) {
return IOINST_CC_BUSY;
}
/* Cancel the current operation. */
schib->scsw.ctrl &= ~(SCSW_FCTL_START_FUNC |
SCSW_ACTL_RESUME_PEND |
SCSW_ACTL_START_PEND |
SCSW_ACTL_SUSP);
sch->channel_prog = 0x0;
sch->last_cmd_valid = false;
schib->scsw.dstat = 0;
schib->scsw.cstat = 0;
return IOINST_CC_EXPECTED;
}
IOInstEnding css_do_csch(SubchDev *sch)
{
SCHIB *schib = &sch->curr_status;
if (~(schib->pmcw.flags) & (PMCW_FLAGS_MASK_DNV | PMCW_FLAGS_MASK_ENA)) {
return IOINST_CC_NOT_OPERATIONAL;
}
/* Trigger the clear function. */
schib->scsw.ctrl &= ~(SCSW_CTRL_MASK_FCTL | SCSW_CTRL_MASK_ACTL);
schib->scsw.ctrl |= SCSW_FCTL_CLEAR_FUNC | SCSW_ACTL_CLEAR_PEND;
return do_subchannel_work(sch);
}
IOInstEnding css_do_hsch(SubchDev *sch)
{
SCHIB *schib = &sch->curr_status;
if (~(schib->pmcw.flags) & (PMCW_FLAGS_MASK_DNV | PMCW_FLAGS_MASK_ENA)) {
return IOINST_CC_NOT_OPERATIONAL;
}
if (((schib->scsw.ctrl & SCSW_CTRL_MASK_STCTL) == SCSW_STCTL_STATUS_PEND) ||
(schib->scsw.ctrl & (SCSW_STCTL_PRIMARY |
SCSW_STCTL_SECONDARY |
SCSW_STCTL_ALERT))) {
return IOINST_CC_STATUS_PRESENT;
}
if (schib->scsw.ctrl & (SCSW_FCTL_HALT_FUNC | SCSW_FCTL_CLEAR_FUNC)) {
return IOINST_CC_BUSY;
}
/* Trigger the halt function. */
schib->scsw.ctrl |= SCSW_FCTL_HALT_FUNC;
schib->scsw.ctrl &= ~SCSW_FCTL_START_FUNC;
if (((schib->scsw.ctrl & SCSW_CTRL_MASK_ACTL) ==
(SCSW_ACTL_SUBCH_ACTIVE | SCSW_ACTL_DEVICE_ACTIVE)) &&
((schib->scsw.ctrl & SCSW_CTRL_MASK_STCTL) ==
SCSW_STCTL_INTERMEDIATE)) {
schib->scsw.ctrl &= ~SCSW_STCTL_STATUS_PEND;
}
schib->scsw.ctrl |= SCSW_ACTL_HALT_PEND;
return do_subchannel_work(sch);
}
static void css_update_chnmon(SubchDev *sch)
{
if (!(sch->curr_status.pmcw.flags & PMCW_FLAGS_MASK_MME)) {
/* Not active. */
return;
}
/* The counter is conveniently located at the beginning of the struct. */
if (sch->curr_status.pmcw.chars & PMCW_CHARS_MASK_MBFC) {
/* Format 1, per-subchannel area. */
uint32_t count;
count = address_space_ldl(&address_space_memory,
sch->curr_status.mba,
MEMTXATTRS_UNSPECIFIED,
NULL);
count++;
address_space_stl(&address_space_memory, sch->curr_status.mba, count,
MEMTXATTRS_UNSPECIFIED, NULL);
} else {
/* Format 0, global area. */
uint32_t offset;
uint16_t count;
offset = sch->curr_status.pmcw.mbi << 5;
count = address_space_lduw(&address_space_memory,
channel_subsys.chnmon_area + offset,
MEMTXATTRS_UNSPECIFIED,
NULL);
count++;
address_space_stw(&address_space_memory,
channel_subsys.chnmon_area + offset, count,
MEMTXATTRS_UNSPECIFIED, NULL);
}
}
IOInstEnding css_do_ssch(SubchDev *sch, ORB *orb)
{
SCHIB *schib = &sch->curr_status;
if (~(schib->pmcw.flags) & (PMCW_FLAGS_MASK_DNV | PMCW_FLAGS_MASK_ENA)) {
return IOINST_CC_NOT_OPERATIONAL;
}
if (schib->scsw.ctrl & SCSW_STCTL_STATUS_PEND) {
return IOINST_CC_STATUS_PRESENT;
}
if (schib->scsw.ctrl & (SCSW_FCTL_START_FUNC |
SCSW_FCTL_HALT_FUNC |
SCSW_FCTL_CLEAR_FUNC)) {
return IOINST_CC_BUSY;
}
/* If monitoring is active, update counter. */
if (channel_subsys.chnmon_active) {
css_update_chnmon(sch);
}
sch->orb = *orb;
sch->channel_prog = orb->cpa;
/* Trigger the start function. */
schib->scsw.ctrl |= (SCSW_FCTL_START_FUNC | SCSW_ACTL_START_PEND);
schib->scsw.flags &= ~SCSW_FLAGS_MASK_PNO;
return do_subchannel_work(sch);
}
static void copy_irb_to_guest(IRB *dest, const IRB *src, const PMCW *pmcw,
int *irb_len)
{
int i;
uint16_t stctl = src->scsw.ctrl & SCSW_CTRL_MASK_STCTL;
uint16_t actl = src->scsw.ctrl & SCSW_CTRL_MASK_ACTL;
copy_scsw_to_guest(&dest->scsw, &src->scsw);
for (i = 0; i < ARRAY_SIZE(dest->esw); i++) {
dest->esw[i] = cpu_to_be32(src->esw[i]);
}
for (i = 0; i < ARRAY_SIZE(dest->ecw); i++) {
dest->ecw[i] = cpu_to_be32(src->ecw[i]);
}
*irb_len = sizeof(*dest) - sizeof(dest->emw);
/* extended measurements enabled? */
if ((src->scsw.flags & SCSW_FLAGS_MASK_ESWF) ||
!(pmcw->flags & PMCW_FLAGS_MASK_TF) ||
!(pmcw->chars & PMCW_CHARS_MASK_XMWME)) {
return;
}
/* extended measurements pending? */
if (!(stctl & SCSW_STCTL_STATUS_PEND)) {
return;
}
if ((stctl & SCSW_STCTL_PRIMARY) ||
(stctl == SCSW_STCTL_SECONDARY) ||
((stctl & SCSW_STCTL_INTERMEDIATE) && (actl & SCSW_ACTL_SUSP))) {
for (i = 0; i < ARRAY_SIZE(dest->emw); i++) {
dest->emw[i] = cpu_to_be32(src->emw[i]);
}
}
*irb_len = sizeof(*dest);
}
int css_do_tsch_get_irb(SubchDev *sch, IRB *target_irb, int *irb_len)
{
SCHIB *schib = &sch->curr_status;
PMCW p;
uint16_t stctl;
IRB irb;
if (~(schib->pmcw.flags) & (PMCW_FLAGS_MASK_DNV | PMCW_FLAGS_MASK_ENA)) {
return 3;
}
stctl = schib->scsw.ctrl & SCSW_CTRL_MASK_STCTL;
/* Prepare the irb for the guest. */
memset(&irb, 0, sizeof(IRB));
/* Copy scsw from current status. */
irb.scsw = schib->scsw;
if (stctl & SCSW_STCTL_STATUS_PEND) {
if (schib->scsw.cstat & (SCSW_CSTAT_DATA_CHECK |
SCSW_CSTAT_CHN_CTRL_CHK |
SCSW_CSTAT_INTF_CTRL_CHK)) {
irb.scsw.flags |= SCSW_FLAGS_MASK_ESWF;
irb.esw[0] = 0x04804000;
} else {
irb.esw[0] = 0x00800000;
}
/* If a unit check is pending, copy sense data. */
if ((schib->scsw.dstat & SCSW_DSTAT_UNIT_CHECK) &&
(schib->pmcw.chars & PMCW_CHARS_MASK_CSENSE)) {
int i;
irb.scsw.flags |= SCSW_FLAGS_MASK_ESWF | SCSW_FLAGS_MASK_ECTL;
/* Attention: sense_data is already BE! */
memcpy(irb.ecw, sch->sense_data, sizeof(sch->sense_data));
for (i = 0; i < ARRAY_SIZE(irb.ecw); i++) {
irb.ecw[i] = be32_to_cpu(irb.ecw[i]);
}
irb.esw[1] = 0x01000000 | (sizeof(sch->sense_data) << 8);
}
}
/* Store the irb to the guest. */
p = schib->pmcw;
copy_irb_to_guest(target_irb, &irb, &p, irb_len);
return ((stctl & SCSW_STCTL_STATUS_PEND) == 0);
}
void css_do_tsch_update_subch(SubchDev *sch)
{
SCHIB *schib = &sch->curr_status;
uint16_t stctl;
uint16_t fctl;
uint16_t actl;
stctl = schib->scsw.ctrl & SCSW_CTRL_MASK_STCTL;
fctl = schib->scsw.ctrl & SCSW_CTRL_MASK_FCTL;
actl = schib->scsw.ctrl & SCSW_CTRL_MASK_ACTL;
/* Clear conditions on subchannel, if applicable. */
if (stctl & SCSW_STCTL_STATUS_PEND) {
schib->scsw.ctrl &= ~SCSW_CTRL_MASK_STCTL;
if ((stctl != (SCSW_STCTL_INTERMEDIATE | SCSW_STCTL_STATUS_PEND)) ||
((fctl & SCSW_FCTL_HALT_FUNC) &&
(actl & SCSW_ACTL_SUSP))) {
schib->scsw.ctrl &= ~SCSW_CTRL_MASK_FCTL;
}
if (stctl != (SCSW_STCTL_INTERMEDIATE | SCSW_STCTL_STATUS_PEND)) {
schib->scsw.flags &= ~SCSW_FLAGS_MASK_PNO;
schib->scsw.ctrl &= ~(SCSW_ACTL_RESUME_PEND |
SCSW_ACTL_START_PEND |
SCSW_ACTL_HALT_PEND |
SCSW_ACTL_CLEAR_PEND |
SCSW_ACTL_SUSP);
} else {
if ((actl & SCSW_ACTL_SUSP) &&
(fctl & SCSW_FCTL_START_FUNC)) {
schib->scsw.flags &= ~SCSW_FLAGS_MASK_PNO;
if (fctl & SCSW_FCTL_HALT_FUNC) {
schib->scsw.ctrl &= ~(SCSW_ACTL_RESUME_PEND |
SCSW_ACTL_START_PEND |
SCSW_ACTL_HALT_PEND |
SCSW_ACTL_CLEAR_PEND |
SCSW_ACTL_SUSP);
} else {
schib->scsw.ctrl &= ~SCSW_ACTL_RESUME_PEND;
}
}
}
/* Clear pending sense data. */
if (schib->pmcw.chars & PMCW_CHARS_MASK_CSENSE) {
memset(sch->sense_data, 0 , sizeof(sch->sense_data));
}
}
}
static void copy_crw_to_guest(CRW *dest, const CRW *src)
{
dest->flags = cpu_to_be16(src->flags);
dest->rsid = cpu_to_be16(src->rsid);
}
int css_do_stcrw(CRW *crw)
{
CrwContainer *crw_cont;
int ret;
crw_cont = QTAILQ_FIRST(&channel_subsys.pending_crws);
if (crw_cont) {
QTAILQ_REMOVE(&channel_subsys.pending_crws, crw_cont, sibling);
copy_crw_to_guest(crw, &crw_cont->crw);
g_free(crw_cont);
ret = 0;
} else {
/* List was empty, turn crw machine checks on again. */
memset(crw, 0, sizeof(*crw));
channel_subsys.do_crw_mchk = true;
ret = 1;
}
return ret;
}
static void copy_crw_from_guest(CRW *dest, const CRW *src)
{
dest->flags = be16_to_cpu(src->flags);
dest->rsid = be16_to_cpu(src->rsid);
}
void css_undo_stcrw(CRW *crw)
{
CrwContainer *crw_cont;
crw_cont = g_try_new0(CrwContainer, 1);
if (!crw_cont) {
channel_subsys.crws_lost = true;
return;
}
copy_crw_from_guest(&crw_cont->crw, crw);
QTAILQ_INSERT_HEAD(&channel_subsys.pending_crws, crw_cont, sibling);
}
int css_collect_chp_desc(int m, uint8_t cssid, uint8_t f_chpid, uint8_t l_chpid,
int rfmt, void *buf)
{
int i, desc_size;
uint32_t words[8];
uint32_t chpid_type_word;
CssImage *css;
if (!m && !cssid) {
css = channel_subsys.css[channel_subsys.default_cssid];
} else {
css = channel_subsys.css[cssid];
}
if (!css) {
return 0;
}
desc_size = 0;
for (i = f_chpid; i <= l_chpid; i++) {
if (css->chpids[i].in_use) {
chpid_type_word = 0x80000000 | (css->chpids[i].type << 8) | i;
if (rfmt == 0) {
words[0] = cpu_to_be32(chpid_type_word);
words[1] = 0;
memcpy(buf + desc_size, words, 8);
desc_size += 8;
} else if (rfmt == 1) {
words[0] = cpu_to_be32(chpid_type_word);
words[1] = 0;
words[2] = 0;
words[3] = 0;
words[4] = 0;
words[5] = 0;
words[6] = 0;
words[7] = 0;
memcpy(buf + desc_size, words, 32);
desc_size += 32;
}
}
}
return desc_size;
}
void css_do_schm(uint8_t mbk, int update, int dct, uint64_t mbo)
{
/* dct is currently ignored (not really meaningful for our devices) */
/* TODO: Don't ignore mbk. */
if (update && !channel_subsys.chnmon_active) {
/* Enable measuring. */
channel_subsys.chnmon_area = mbo;
channel_subsys.chnmon_active = true;
}
if (!update && channel_subsys.chnmon_active) {
/* Disable measuring. */
channel_subsys.chnmon_area = 0;
channel_subsys.chnmon_active = false;
}
}
IOInstEnding css_do_rsch(SubchDev *sch)
{
SCHIB *schib = &sch->curr_status;
if (~(schib->pmcw.flags) & (PMCW_FLAGS_MASK_DNV | PMCW_FLAGS_MASK_ENA)) {
return IOINST_CC_NOT_OPERATIONAL;
}
if (schib->scsw.ctrl & SCSW_STCTL_STATUS_PEND) {
return IOINST_CC_STATUS_PRESENT;
}
if (((schib->scsw.ctrl & SCSW_CTRL_MASK_FCTL) != SCSW_FCTL_START_FUNC) ||
(schib->scsw.ctrl & SCSW_ACTL_RESUME_PEND) ||
(!(schib->scsw.ctrl & SCSW_ACTL_SUSP))) {
return IOINST_CC_BUSY;
}
/* If monitoring is active, update counter. */
if (channel_subsys.chnmon_active) {
css_update_chnmon(sch);
}
schib->scsw.ctrl |= SCSW_ACTL_RESUME_PEND;
return do_subchannel_work(sch);
}
int css_do_rchp(uint8_t cssid, uint8_t chpid)
{
uint8_t real_cssid;
if (cssid > channel_subsys.max_cssid) {
return -EINVAL;
}
if (channel_subsys.max_cssid == 0) {
real_cssid = channel_subsys.default_cssid;
} else {
real_cssid = cssid;
}
if (!channel_subsys.css[real_cssid]) {
return -EINVAL;
}
if (!channel_subsys.css[real_cssid]->chpids[chpid].in_use) {
return -ENODEV;
}
if (!channel_subsys.css[real_cssid]->chpids[chpid].is_virtual) {
fprintf(stderr,
"rchp unsupported for non-virtual chpid %x.%02x!\n",
real_cssid, chpid);
return -ENODEV;
}
/* We don't really use a channel path, so we're done here. */
css_queue_crw(CRW_RSC_CHP, CRW_ERC_INIT, 1,
channel_subsys.max_cssid > 0 ? 1 : 0, chpid);
if (channel_subsys.max_cssid > 0) {
css_queue_crw(CRW_RSC_CHP, CRW_ERC_INIT, 1, 0, real_cssid << 8);
}
return 0;
}
bool css_schid_final(int m, uint8_t cssid, uint8_t ssid, uint16_t schid)
{
SubchSet *set;
uint8_t real_cssid;
real_cssid = (!m && (cssid == 0)) ? channel_subsys.default_cssid : cssid;
if (ssid > MAX_SSID ||
!channel_subsys.css[real_cssid] ||
!channel_subsys.css[real_cssid]->sch_set[ssid]) {
return true;
}
set = channel_subsys.css[real_cssid]->sch_set[ssid];
return schid > find_last_bit(set->schids_used,
(MAX_SCHID + 1) / sizeof(unsigned long));
}
unsigned int css_find_free_chpid(uint8_t cssid)
{
CssImage *css = channel_subsys.css[cssid];
unsigned int chpid;
if (!css) {
return MAX_CHPID + 1;
}
for (chpid = 0; chpid <= MAX_CHPID; chpid++) {
/* skip reserved chpid */
if (chpid == VIRTIO_CCW_CHPID) {
continue;
}
if (!css->chpids[chpid].in_use) {
return chpid;
}
}
return MAX_CHPID + 1;
}
static int css_add_chpid(uint8_t cssid, uint8_t chpid, uint8_t type,
bool is_virt)
{
CssImage *css;
trace_css_chpid_add(cssid, chpid, type);
css = channel_subsys.css[cssid];
if (!css) {
return -EINVAL;
}
if (css->chpids[chpid].in_use) {
return -EEXIST;
}
css->chpids[chpid].in_use = 1;
css->chpids[chpid].type = type;
css->chpids[chpid].is_virtual = is_virt;
css_generate_chp_crws(cssid, chpid);
return 0;
}
void css_sch_build_virtual_schib(SubchDev *sch, uint8_t chpid, uint8_t type)
{
SCHIB *schib = &sch->curr_status;
int i;
CssImage *css = channel_subsys.css[sch->cssid];
assert(css != NULL);
memset(&schib->pmcw, 0, sizeof(PMCW));
schib->pmcw.flags |= PMCW_FLAGS_MASK_DNV;
schib->pmcw.devno = sch->devno;
/* single path */
schib->pmcw.pim = 0x80;
schib->pmcw.pom = 0xff;
schib->pmcw.pam = 0x80;
schib->pmcw.chpid[0] = chpid;
if (!css->chpids[chpid].in_use) {
css_add_chpid(sch->cssid, chpid, type, true);
}
memset(&schib->scsw, 0, sizeof(SCSW));
schib->mba = 0;
for (i = 0; i < ARRAY_SIZE(schib->mda); i++) {
schib->mda[i] = 0;
}
}
SubchDev *css_find_subch(uint8_t m, uint8_t cssid, uint8_t ssid, uint16_t schid)
{
uint8_t real_cssid;
real_cssid = (!m && (cssid == 0)) ? channel_subsys.default_cssid : cssid;
if (!channel_subsys.css[real_cssid]) {
return NULL;
}
if (!channel_subsys.css[real_cssid]->sch_set[ssid]) {
return NULL;
}
return channel_subsys.css[real_cssid]->sch_set[ssid]->sch[schid];
}
/**
* Return free device number in subchannel set.
*
* Return index of the first free device number in the subchannel set
* identified by @p cssid and @p ssid, beginning the search at @p
* start and wrapping around at MAX_DEVNO. Return a value exceeding
* MAX_SCHID if there are no free device numbers in the subchannel
* set.
*/
static uint32_t css_find_free_devno(uint8_t cssid, uint8_t ssid,
uint16_t start)
{
uint32_t round;
for (round = 0; round <= MAX_DEVNO; round++) {
uint16_t devno = (start + round) % MAX_DEVNO;
if (!css_devno_used(cssid, ssid, devno)) {
return devno;
}
}
return MAX_DEVNO + 1;
}
/**
* Return first free subchannel (id) in subchannel set.
*
* Return index of the first free subchannel in the subchannel set
* identified by @p cssid and @p ssid, if there is any. Return a value
* exceeding MAX_SCHID if there are no free subchannels in the
* subchannel set.
*/
static uint32_t css_find_free_subch(uint8_t cssid, uint8_t ssid)
{
uint32_t schid;
for (schid = 0; schid <= MAX_SCHID; schid++) {
if (!css_find_subch(1, cssid, ssid, schid)) {
return schid;
}
}
return MAX_SCHID + 1;
}
/**
* Return first free subchannel (id) in subchannel set for a device number
*
* Verify the device number @p devno is not used yet in the subchannel
* set identified by @p cssid and @p ssid. Set @p schid to the index
* of the first free subchannel in the subchannel set, if there is
* any. Return true if everything succeeded and false otherwise.
*/
static bool css_find_free_subch_for_devno(uint8_t cssid, uint8_t ssid,
uint16_t devno, uint16_t *schid,
Error **errp)
{
uint32_t free_schid;
assert(schid);
if (css_devno_used(cssid, ssid, devno)) {
error_setg(errp, "Device %x.%x.%04x already exists",
cssid, ssid, devno);
return false;
}
free_schid = css_find_free_subch(cssid, ssid);
if (free_schid > MAX_SCHID) {
error_setg(errp, "No free subchannel found for %x.%x.%04x",
cssid, ssid, devno);
return false;
}
*schid = free_schid;
return true;
}
/**
* Return first free subchannel (id) and device number
*
* Locate the first free subchannel and first free device number in
* any of the subchannel sets of the channel subsystem identified by
* @p cssid. Return false if no free subchannel / device number could
* be found. Otherwise set @p ssid, @p devno and @p schid to identify
* the available subchannel and device number and return true.
*
* May modify @p ssid, @p devno and / or @p schid even if no free
* subchannel / device number could be found.
*/
static bool css_find_free_subch_and_devno(uint8_t cssid, uint8_t *ssid,
uint16_t *devno, uint16_t *schid,
Error **errp)
{
uint32_t free_schid, free_devno;
assert(ssid && devno && schid);
for (*ssid = 0; *ssid <= MAX_SSID; (*ssid)++) {
free_schid = css_find_free_subch(cssid, *ssid);
if (free_schid > MAX_SCHID) {
continue;
}
free_devno = css_find_free_devno(cssid, *ssid, free_schid);
if (free_devno > MAX_DEVNO) {
continue;
}
*schid = free_schid;
*devno = free_devno;
return true;
}
error_setg(errp, "Virtual channel subsystem is full!");
return false;
}
bool css_subch_visible(SubchDev *sch)
{
if (sch->ssid > channel_subsys.max_ssid) {
return false;
}
if (sch->cssid != channel_subsys.default_cssid) {
return (channel_subsys.max_cssid > 0);
}
return true;
}
bool css_present(uint8_t cssid)
{
return (channel_subsys.css[cssid] != NULL);
}
bool css_devno_used(uint8_t cssid, uint8_t ssid, uint16_t devno)
{
if (!channel_subsys.css[cssid]) {
return false;
}
if (!channel_subsys.css[cssid]->sch_set[ssid]) {
return false;
}
return !!test_bit(devno,
channel_subsys.css[cssid]->sch_set[ssid]->devnos_used);
}
void css_subch_assign(uint8_t cssid, uint8_t ssid, uint16_t schid,
uint16_t devno, SubchDev *sch)
{
CssImage *css;
SubchSet *s_set;
trace_css_assign_subch(sch ? "assign" : "deassign", cssid, ssid, schid,
devno);
if (!channel_subsys.css[cssid]) {
fprintf(stderr,
"Suspicious call to %s (%x.%x.%04x) for non-existing css!\n",
__func__, cssid, ssid, schid);
return;
}
css = channel_subsys.css[cssid];
if (!css->sch_set[ssid]) {
css->sch_set[ssid] = g_new0(SubchSet, 1);
}
s_set = css->sch_set[ssid];
s_set->sch[schid] = sch;
if (sch) {
set_bit(schid, s_set->schids_used);
set_bit(devno, s_set->devnos_used);
} else {
clear_bit(schid, s_set->schids_used);
clear_bit(devno, s_set->devnos_used);
}
}
void css_crw_add_to_queue(CRW crw)
{
CrwContainer *crw_cont;
trace_css_crw((crw.flags & CRW_FLAGS_MASK_RSC) >> 8,
crw.flags & CRW_FLAGS_MASK_ERC,
crw.rsid,
(crw.flags & CRW_FLAGS_MASK_C) ? "(chained)" : "");
/* TODO: Maybe use a static crw pool? */
crw_cont = g_try_new0(CrwContainer, 1);
if (!crw_cont) {
channel_subsys.crws_lost = true;
return;
}
crw_cont->crw = crw;
QTAILQ_INSERT_TAIL(&channel_subsys.pending_crws, crw_cont, sibling);
if (channel_subsys.do_crw_mchk) {
channel_subsys.do_crw_mchk = false;
/* Inject crw pending machine check. */
s390_crw_mchk();
}
}
void css_queue_crw(uint8_t rsc, uint8_t erc, int solicited,
int chain, uint16_t rsid)
{
CRW crw;
crw.flags = (rsc << 8) | erc;
if (solicited) {
crw.flags |= CRW_FLAGS_MASK_S;
}
if (chain) {
crw.flags |= CRW_FLAGS_MASK_C;
}
crw.rsid = rsid;
if (channel_subsys.crws_lost) {
crw.flags |= CRW_FLAGS_MASK_R;
channel_subsys.crws_lost = false;
}
css_crw_add_to_queue(crw);
}
void css_generate_sch_crws(uint8_t cssid, uint8_t ssid, uint16_t schid,
int hotplugged, int add)
{
uint8_t guest_cssid;
bool chain_crw;
if (add && !hotplugged) {
return;
}
if (channel_subsys.max_cssid == 0) {
/* Default cssid shows up as 0. */
guest_cssid = (cssid == channel_subsys.default_cssid) ? 0 : cssid;
} else {
/* Show real cssid to the guest. */
guest_cssid = cssid;
}
/*
* Only notify for higher subchannel sets/channel subsystems if the
* guest has enabled it.
*/
if ((ssid > channel_subsys.max_ssid) ||
(guest_cssid > channel_subsys.max_cssid) ||
((channel_subsys.max_cssid == 0) &&
(cssid != channel_subsys.default_cssid))) {
return;
}
chain_crw = (channel_subsys.max_ssid > 0) ||
(channel_subsys.max_cssid > 0);
css_queue_crw(CRW_RSC_SUBCH, CRW_ERC_IPI, 0, chain_crw ? 1 : 0, schid);
if (chain_crw) {
css_queue_crw(CRW_RSC_SUBCH, CRW_ERC_IPI, 0, 0,
(guest_cssid << 8) | (ssid << 4));
}
/* RW_ERC_IPI --> clear pending interrupts */
css_clear_io_interrupt(css_do_build_subchannel_id(cssid, ssid), schid);
}
void css_generate_chp_crws(uint8_t cssid, uint8_t chpid)
{
/* TODO */
}
void css_generate_css_crws(uint8_t cssid)
{
if (!channel_subsys.sei_pending) {
css_queue_crw(CRW_RSC_CSS, CRW_ERC_EVENT, 0, 0, cssid);
}
channel_subsys.sei_pending = true;
}
void css_clear_sei_pending(void)
{
channel_subsys.sei_pending = false;
}
int css_enable_mcsse(void)
{
trace_css_enable_facility("mcsse");
channel_subsys.max_cssid = MAX_CSSID;
return 0;
}
int css_enable_mss(void)
{
trace_css_enable_facility("mss");
channel_subsys.max_ssid = MAX_SSID;
return 0;
}
void css_reset_sch(SubchDev *sch)
{
SCHIB *schib = &sch->curr_status;
if ((schib->pmcw.flags & PMCW_FLAGS_MASK_ENA) != 0 && sch->disable_cb) {
sch->disable_cb(sch);
}
schib->pmcw.intparm = 0;
schib->pmcw.flags &= ~(PMCW_FLAGS_MASK_ISC | PMCW_FLAGS_MASK_ENA |
PMCW_FLAGS_MASK_LM | PMCW_FLAGS_MASK_MME |
PMCW_FLAGS_MASK_MP | PMCW_FLAGS_MASK_TF);
schib->pmcw.flags |= PMCW_FLAGS_MASK_DNV;
schib->pmcw.devno = sch->devno;
schib->pmcw.pim = 0x80;
schib->pmcw.lpm = schib->pmcw.pim;
schib->pmcw.pnom = 0;
schib->pmcw.lpum = 0;
schib->pmcw.mbi = 0;
schib->pmcw.pom = 0xff;
schib->pmcw.pam = 0x80;
schib->pmcw.chars &= ~(PMCW_CHARS_MASK_MBFC | PMCW_CHARS_MASK_XMWME |
PMCW_CHARS_MASK_CSENSE);
memset(&schib->scsw, 0, sizeof(schib->scsw));
schib->mba = 0;
sch->channel_prog = 0x0;
sch->last_cmd_valid = false;
sch->thinint_active = false;
}
void css_reset(void)
{
CrwContainer *crw_cont;
/* Clean up monitoring. */
channel_subsys.chnmon_active = false;
channel_subsys.chnmon_area = 0;
/* Clear pending CRWs. */
while ((crw_cont = QTAILQ_FIRST(&channel_subsys.pending_crws))) {
QTAILQ_REMOVE(&channel_subsys.pending_crws, crw_cont, sibling);
g_free(crw_cont);
}
channel_subsys.sei_pending = false;
channel_subsys.do_crw_mchk = true;
channel_subsys.crws_lost = false;
/* Reset maximum ids. */
channel_subsys.max_cssid = 0;
channel_subsys.max_ssid = 0;
}
static void get_css_devid(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
DeviceState *dev = DEVICE(obj);
Property *prop = opaque;
CssDevId *dev_id = qdev_get_prop_ptr(dev, prop);
char buffer[] = "xx.x.xxxx";
char *p = buffer;
int r;
if (dev_id->valid) {
r = snprintf(buffer, sizeof(buffer), "%02x.%1x.%04x", dev_id->cssid,
dev_id->ssid, dev_id->devid);
assert(r == sizeof(buffer) - 1);
/* drop leading zero */
if (dev_id->cssid <= 0xf) {
p++;
}
} else {
snprintf(buffer, sizeof(buffer), "<unset>");
}
visit_type_str(v, name, &p, errp);
}
/*
* parse <cssid>.<ssid>.<devid> and assert valid range for cssid/ssid
*/
static void set_css_devid(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
DeviceState *dev = DEVICE(obj);
Property *prop = opaque;
CssDevId *dev_id = qdev_get_prop_ptr(dev, prop);
char *str;
int num, n1, n2;
unsigned int cssid, ssid, devid;
if (dev->realized) {
qdev_prop_set_after_realize(dev, name, errp);
return;
}
if (!visit_type_str(v, name, &str, errp)) {
return;
}
num = sscanf(str, "%2x.%1x%n.%4x%n", &cssid, &ssid, &n1, &devid, &n2);
if (num != 3 || (n2 - n1) != 5 || strlen(str) != n2) {
error_set_from_qdev_prop_error(errp, EINVAL, dev, prop, str);
goto out;
}
if ((cssid > MAX_CSSID) || (ssid > MAX_SSID)) {
error_setg(errp, "Invalid cssid or ssid: cssid %x, ssid %x",
cssid, ssid);
goto out;
}
dev_id->cssid = cssid;
dev_id->ssid = ssid;
dev_id->devid = devid;
dev_id->valid = true;
out:
g_free(str);
}
const PropertyInfo css_devid_propinfo = {
.name = "str",
.description = "Identifier of an I/O device in the channel "
"subsystem, example: fe.1.23ab",
.get = get_css_devid,
.set = set_css_devid,
};
const PropertyInfo css_devid_ro_propinfo = {
.name = "str",
.description = "Read-only identifier of an I/O device in the channel "
"subsystem, example: fe.1.23ab",
.get = get_css_devid,
};
SubchDev *css_create_sch(CssDevId bus_id, Error **errp)
{
uint16_t schid = 0;
SubchDev *sch;
if (bus_id.valid) {
if (!channel_subsys.css[bus_id.cssid]) {
css_create_css_image(bus_id.cssid, false);
}
if (!css_find_free_subch_for_devno(bus_id.cssid, bus_id.ssid,
bus_id.devid, &schid, errp)) {
return NULL;
}
} else {
for (bus_id.cssid = channel_subsys.default_cssid;;) {
if (!channel_subsys.css[bus_id.cssid]) {
css_create_css_image(bus_id.cssid, false);
}
if (css_find_free_subch_and_devno(bus_id.cssid, &bus_id.ssid,
&bus_id.devid, &schid,
NULL)) {
break;
}
bus_id.cssid = (bus_id.cssid + 1) % MAX_CSSID;
if (bus_id.cssid == channel_subsys.default_cssid) {
error_setg(errp, "Virtual channel subsystem is full!");
return NULL;
}
}
}
sch = g_new0(SubchDev, 1);
sch->cssid = bus_id.cssid;
sch->ssid = bus_id.ssid;
sch->devno = bus_id.devid;
sch->schid = schid;
css_subch_assign(sch->cssid, sch->ssid, schid, sch->devno, sch);
return sch;
}
static int css_sch_get_chpids(SubchDev *sch, CssDevId *dev_id)
{
char *fid_path;
FILE *fd;
uint32_t chpid[8];
int i;
SCHIB *schib = &sch->curr_status;
fid_path = g_strdup_printf("/sys/bus/css/devices/%x.%x.%04x/chpids",
dev_id->cssid, dev_id->ssid, dev_id->devid);
fd = fopen(fid_path, "r");
if (fd == NULL) {
error_report("%s: open %s failed", __func__, fid_path);
g_free(fid_path);
return -EINVAL;
}
if (fscanf(fd, "%x %x %x %x %x %x %x %x",
&chpid[0], &chpid[1], &chpid[2], &chpid[3],
&chpid[4], &chpid[5], &chpid[6], &chpid[7]) != 8) {
fclose(fd);
g_free(fid_path);
return -EINVAL;
}
for (i = 0; i < ARRAY_SIZE(schib->pmcw.chpid); i++) {
schib->pmcw.chpid[i] = chpid[i];
}
fclose(fd);
g_free(fid_path);
return 0;
}
static int css_sch_get_path_masks(SubchDev *sch, CssDevId *dev_id)
{
char *fid_path;
FILE *fd;
uint32_t pim, pam, pom;
SCHIB *schib = &sch->curr_status;
fid_path = g_strdup_printf("/sys/bus/css/devices/%x.%x.%04x/pimpampom",
dev_id->cssid, dev_id->ssid, dev_id->devid);
fd = fopen(fid_path, "r");
if (fd == NULL) {
error_report("%s: open %s failed", __func__, fid_path);
g_free(fid_path);
return -EINVAL;
}
if (fscanf(fd, "%x %x %x", &pim, &pam, &pom) != 3) {
fclose(fd);
g_free(fid_path);
return -EINVAL;
}
schib->pmcw.pim = pim;
schib->pmcw.pam = pam;
schib->pmcw.pom = pom;
fclose(fd);
g_free(fid_path);
return 0;
}
static int css_sch_get_chpid_type(uint8_t chpid, uint32_t *type,
CssDevId *dev_id)
{
char *fid_path;
FILE *fd;
fid_path = g_strdup_printf("/sys/devices/css%x/chp0.%02x/type",
dev_id->cssid, chpid);
fd = fopen(fid_path, "r");
if (fd == NULL) {
error_report("%s: open %s failed", __func__, fid_path);
g_free(fid_path);
return -EINVAL;
}
if (fscanf(fd, "%x", type) != 1) {
fclose(fd);
g_free(fid_path);
return -EINVAL;
}
fclose(fd);
g_free(fid_path);
return 0;
}
/*
* We currently retrieve the real device information from sysfs to build the
* guest subchannel information block without considering the migration feature.
* We need to revisit this problem when we want to add migration support.
*/
int css_sch_build_schib(SubchDev *sch, CssDevId *dev_id)
{
CssImage *css = channel_subsys.css[sch->cssid];
SCHIB *schib = &sch->curr_status;
uint32_t type;
int i, ret;
assert(css != NULL);
memset(&schib->pmcw, 0, sizeof(PMCW));
schib->pmcw.flags |= PMCW_FLAGS_MASK_DNV;
/* We are dealing with I/O subchannels only. */
schib->pmcw.devno = sch->devno;
/* Grab path mask from sysfs. */
ret = css_sch_get_path_masks(sch, dev_id);
if (ret) {
return ret;
}
/* Grab chpids from sysfs. */
ret = css_sch_get_chpids(sch, dev_id);
if (ret) {
return ret;
}
/* Build chpid type. */
for (i = 0; i < ARRAY_SIZE(schib->pmcw.chpid); i++) {
if (schib->pmcw.chpid[i] && !css->chpids[schib->pmcw.chpid[i]].in_use) {
ret = css_sch_get_chpid_type(schib->pmcw.chpid[i], &type, dev_id);
if (ret) {
return ret;
}
css_add_chpid(sch->cssid, schib->pmcw.chpid[i], type, false);
}
}
memset(&schib->scsw, 0, sizeof(SCSW));
schib->mba = 0;
for (i = 0; i < ARRAY_SIZE(schib->mda); i++) {
schib->mda[i] = 0;
}
return 0;
}