qemu/target/i386/hvf/x86.c
Paolo Bonzini 715f396dfb i386: hvf: remove ZERO_INIT macro
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-12-22 15:02:07 +01:00

186 lines
4.7 KiB
C

/*
* Copyright (C) 2016 Veertu Inc,
* Copyright (C) 2017 Google Inc,
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu-common.h"
#include "x86_decode.h"
#include "x86_emu.h"
#include "vmcs.h"
#include "vmx.h"
#include "x86_mmu.h"
#include "x86_descr.h"
/* static uint32_t x86_segment_access_rights(struct x86_segment_descriptor *var)
{
uint32_t ar;
if (!var->p) {
ar = 1 << 16;
return ar;
}
ar = var->type & 15;
ar |= (var->s & 1) << 4;
ar |= (var->dpl & 3) << 5;
ar |= (var->p & 1) << 7;
ar |= (var->avl & 1) << 12;
ar |= (var->l & 1) << 13;
ar |= (var->db & 1) << 14;
ar |= (var->g & 1) << 15;
return ar;
}*/
bool x86_read_segment_descriptor(struct CPUState *cpu,
struct x86_segment_descriptor *desc,
x68_segment_selector sel)
{
addr_t base;
uint32_t limit;
memset(desc, 0, sizeof(*desc));
/* valid gdt descriptors start from index 1 */
if (!sel.index && GDT_SEL == sel.ti) {
return false;
}
if (GDT_SEL == sel.ti) {
base = rvmcs(cpu->hvf_fd, VMCS_GUEST_GDTR_BASE);
limit = rvmcs(cpu->hvf_fd, VMCS_GUEST_GDTR_LIMIT);
} else {
base = rvmcs(cpu->hvf_fd, VMCS_GUEST_LDTR_BASE);
limit = rvmcs(cpu->hvf_fd, VMCS_GUEST_LDTR_LIMIT);
}
if (sel.index * 8 >= limit) {
return false;
}
vmx_read_mem(cpu, desc, base + sel.index * 8, sizeof(*desc));
return true;
}
bool x86_write_segment_descriptor(struct CPUState *cpu,
struct x86_segment_descriptor *desc,
x68_segment_selector sel)
{
addr_t base;
uint32_t limit;
if (GDT_SEL == sel.ti) {
base = rvmcs(cpu->hvf_fd, VMCS_GUEST_GDTR_BASE);
limit = rvmcs(cpu->hvf_fd, VMCS_GUEST_GDTR_LIMIT);
} else {
base = rvmcs(cpu->hvf_fd, VMCS_GUEST_LDTR_BASE);
limit = rvmcs(cpu->hvf_fd, VMCS_GUEST_LDTR_LIMIT);
}
if (sel.index * 8 >= limit) {
printf("%s: gdt limit\n", __func__);
return false;
}
vmx_write_mem(cpu, base + sel.index * 8, desc, sizeof(*desc));
return true;
}
bool x86_read_call_gate(struct CPUState *cpu, struct x86_call_gate *idt_desc,
int gate)
{
addr_t base = rvmcs(cpu->hvf_fd, VMCS_GUEST_IDTR_BASE);
uint32_t limit = rvmcs(cpu->hvf_fd, VMCS_GUEST_IDTR_LIMIT);
memset(idt_desc, 0, sizeof(*idt_desc));
if (gate * 8 >= limit) {
printf("%s: idt limit\n", __func__);
return false;
}
vmx_read_mem(cpu, idt_desc, base + gate * 8, sizeof(*idt_desc));
return true;
}
bool x86_is_protected(struct CPUState *cpu)
{
uint64_t cr0 = rvmcs(cpu->hvf_fd, VMCS_GUEST_CR0);
return cr0 & CR0_PE;
}
bool x86_is_real(struct CPUState *cpu)
{
return !x86_is_protected(cpu);
}
bool x86_is_v8086(struct CPUState *cpu)
{
X86CPU *x86_cpu = X86_CPU(cpu);
CPUX86State *env = &x86_cpu->env;
return x86_is_protected(cpu) && (RFLAGS(env) & RFLAGS_VM);
}
bool x86_is_long_mode(struct CPUState *cpu)
{
return rvmcs(cpu->hvf_fd, VMCS_GUEST_IA32_EFER) & MSR_EFER_LMA;
}
bool x86_is_long64_mode(struct CPUState *cpu)
{
struct vmx_segment desc;
vmx_read_segment_descriptor(cpu, &desc, R_CS);
return x86_is_long_mode(cpu) && ((desc.ar >> 13) & 1);
}
bool x86_is_paging_mode(struct CPUState *cpu)
{
uint64_t cr0 = rvmcs(cpu->hvf_fd, VMCS_GUEST_CR0);
return cr0 & CR0_PG;
}
bool x86_is_pae_enabled(struct CPUState *cpu)
{
uint64_t cr4 = rvmcs(cpu->hvf_fd, VMCS_GUEST_CR4);
return cr4 & CR4_PAE;
}
addr_t linear_addr(struct CPUState *cpu, addr_t addr, X86Seg seg)
{
return vmx_read_segment_base(cpu, seg) + addr;
}
addr_t linear_addr_size(struct CPUState *cpu, addr_t addr, int size,
X86Seg seg)
{
switch (size) {
case 2:
addr = (uint16_t)addr;
break;
case 4:
addr = (uint32_t)addr;
break;
default:
break;
}
return linear_addr(cpu, addr, seg);
}
addr_t linear_rip(struct CPUState *cpu, addr_t rip)
{
return linear_addr(cpu, rip, R_CS);
}