qemu/target/s390x/tcg/crypto_helper.c
Jason A. Donenfeld 3dbc5fdacb target/s390x: support PRNO_TRNG instruction
In order for hosts running inside of TCG to initialize the kernel's
random number generator, we should support the PRNO_TRNG instruction,
backed in the usual way with the qemu_guest_getrandom helper. This is
confirmed working on Linux 5.19.

Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Message-Id: <20220921100729.2942008-2-Jason@zx2c4.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
[thuth: turn prno-trng off in avocado test to avoid breaking it]
Signed-off-by: Thomas Huth <thuth@redhat.com>
2022-09-26 17:23:11 +02:00

321 lines
9.9 KiB
C

/*
* s390x crypto helpers
*
* Copyright (C) 2022 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
* Copyright (c) 2017 Red Hat Inc
*
* Authors:
* David Hildenbrand <david@redhat.com>
* Jason A. Donenfeld <Jason@zx2c4.com>
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*/
#include "qemu/osdep.h"
#include "qemu/main-loop.h"
#include "qemu/guest-random.h"
#include "s390x-internal.h"
#include "tcg_s390x.h"
#include "exec/helper-proto.h"
#include "exec/exec-all.h"
#include "exec/cpu_ldst.h"
static uint64_t R(uint64_t x, int c)
{
return (x >> c) | (x << (64 - c));
}
static uint64_t Ch(uint64_t x, uint64_t y, uint64_t z)
{
return (x & y) ^ (~x & z);
}
static uint64_t Maj(uint64_t x, uint64_t y, uint64_t z)
{
return (x & y) ^ (x & z) ^ (y & z);
}
static uint64_t Sigma0(uint64_t x)
{
return R(x, 28) ^ R(x, 34) ^ R(x, 39);
}
static uint64_t Sigma1(uint64_t x)
{
return R(x, 14) ^ R(x, 18) ^ R(x, 41);
}
static uint64_t sigma0(uint64_t x)
{
return R(x, 1) ^ R(x, 8) ^ (x >> 7);
}
static uint64_t sigma1(uint64_t x)
{
return R(x, 19) ^ R(x, 61) ^ (x >> 6);
}
static const uint64_t K[80] = {
0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL, 0xb5c0fbcfec4d3b2fULL,
0xe9b5dba58189dbbcULL, 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL, 0xd807aa98a3030242ULL,
0x12835b0145706fbeULL, 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL, 0x9bdc06a725c71235ULL,
0xc19bf174cf692694ULL, 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL, 0x2de92c6f592b0275ULL,
0x4a7484aa6ea6e483ULL, 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL, 0xb00327c898fb213fULL,
0xbf597fc7beef0ee4ULL, 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
0x06ca6351e003826fULL, 0x142929670a0e6e70ULL, 0x27b70a8546d22ffcULL,
0x2e1b21385c26c926ULL, 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL, 0x81c2c92e47edaee6ULL,
0x92722c851482353bULL, 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL, 0xd192e819d6ef5218ULL,
0xd69906245565a910ULL, 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL, 0x2748774cdf8eeb99ULL,
0x34b0bcb5e19b48a8ULL, 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL, 0x748f82ee5defb2fcULL,
0x78a5636f43172f60ULL, 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL, 0xbef9a3f7b2c67915ULL,
0xc67178f2e372532bULL, 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL, 0x06f067aa72176fbaULL,
0x0a637dc5a2c898a6ULL, 0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
0x28db77f523047d84ULL, 0x32caab7b40c72493ULL, 0x3c9ebe0a15c9bebcULL,
0x431d67c49c100d4cULL, 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
};
/* a is icv/ocv, w is a single message block. w will get reused internally. */
static void sha512_bda(uint64_t a[8], uint64_t w[16])
{
uint64_t t, z[8], b[8];
int i, j;
memcpy(z, a, sizeof(z));
for (i = 0; i < 80; i++) {
memcpy(b, a, sizeof(b));
t = a[7] + Sigma1(a[4]) + Ch(a[4], a[5], a[6]) + K[i] + w[i % 16];
b[7] = t + Sigma0(a[0]) + Maj(a[0], a[1], a[2]);
b[3] += t;
for (j = 0; j < 8; ++j) {
a[(j + 1) % 8] = b[j];
}
if (i % 16 == 15) {
for (j = 0; j < 16; ++j) {
w[j] += w[(j + 9) % 16] + sigma0(w[(j + 1) % 16]) +
sigma1(w[(j + 14) % 16]);
}
}
}
for (i = 0; i < 8; i++) {
a[i] += z[i];
}
}
/* a is icv/ocv, w is a single message block that needs be64 conversion. */
static void sha512_bda_be64(uint64_t a[8], uint64_t w[16])
{
uint64_t t[16];
int i;
for (i = 0; i < 16; i++) {
t[i] = be64_to_cpu(w[i]);
}
sha512_bda(a, t);
}
static void sha512_read_icv(CPUS390XState *env, uint64_t addr,
uint64_t a[8], uintptr_t ra)
{
int i;
for (i = 0; i < 8; i++, addr += 8) {
addr = wrap_address(env, addr);
a[i] = cpu_ldq_be_data_ra(env, addr, ra);
}
}
static void sha512_write_ocv(CPUS390XState *env, uint64_t addr,
uint64_t a[8], uintptr_t ra)
{
int i;
for (i = 0; i < 8; i++, addr += 8) {
addr = wrap_address(env, addr);
cpu_stq_be_data_ra(env, addr, a[i], ra);
}
}
static void sha512_read_block(CPUS390XState *env, uint64_t addr,
uint64_t a[16], uintptr_t ra)
{
int i;
for (i = 0; i < 16; i++, addr += 8) {
addr = wrap_address(env, addr);
a[i] = cpu_ldq_be_data_ra(env, addr, ra);
}
}
static void sha512_read_mbl_be64(CPUS390XState *env, uint64_t addr,
uint8_t a[16], uintptr_t ra)
{
int i;
for (i = 0; i < 16; i++, addr += 1) {
addr = wrap_address(env, addr);
a[i] = cpu_ldub_data_ra(env, addr, ra);
}
}
static int cpacf_sha512(CPUS390XState *env, uintptr_t ra, uint64_t param_addr,
uint64_t *message_reg, uint64_t *len_reg, uint32_t type)
{
enum { MAX_BLOCKS_PER_RUN = 64 }; /* Arbitrary: keep interactivity. */
uint64_t len = *len_reg, a[8], processed = 0;
int i, message_reg_len = 64;
g_assert(type == S390_FEAT_TYPE_KIMD || type == S390_FEAT_TYPE_KLMD);
if (!(env->psw.mask & PSW_MASK_64)) {
len = (uint32_t)len;
message_reg_len = (env->psw.mask & PSW_MASK_32) ? 32 : 24;
}
/* KIMD: length has to be properly aligned. */
if (type == S390_FEAT_TYPE_KIMD && !QEMU_IS_ALIGNED(len, 128)) {
tcg_s390_program_interrupt(env, PGM_SPECIFICATION, ra);
}
sha512_read_icv(env, param_addr, a, ra);
/* Process full blocks first. */
for (; len >= 128; len -= 128, processed += 128) {
uint64_t w[16];
if (processed >= MAX_BLOCKS_PER_RUN * 128) {
break;
}
sha512_read_block(env, *message_reg + processed, w, ra);
sha512_bda(a, w);
}
/* KLMD: Process partial/empty block last. */
if (type == S390_FEAT_TYPE_KLMD && len < 128) {
uint8_t x[128];
/* Read the remainder of the message byte-per-byte. */
for (i = 0; i < len; i++) {
uint64_t addr = wrap_address(env, *message_reg + processed + i);
x[i] = cpu_ldub_data_ra(env, addr, ra);
}
/* Pad the remainder with zero and set the top bit. */
memset(x + len, 0, 128 - len);
x[len] = 128;
/*
* Place the MBL either into this block (if there is space left),
* or use an additional one.
*/
if (len < 112) {
sha512_read_mbl_be64(env, param_addr + 64, x + 112, ra);
}
sha512_bda_be64(a, (uint64_t *)x);
if (len >= 112) {
memset(x, 0, 112);
sha512_read_mbl_be64(env, param_addr + 64, x + 112, ra);
sha512_bda_be64(a, (uint64_t *)x);
}
processed += len;
len = 0;
}
/*
* Modify memory after we read all inputs and modify registers only after
* writing memory succeeded.
*
* TODO: if writing fails halfway through (e.g., when crossing page
* boundaries), we're in trouble. We'd need something like access_prepare().
*/
sha512_write_ocv(env, param_addr, a, ra);
*message_reg = deposit64(*message_reg, 0, message_reg_len,
*message_reg + processed);
*len_reg -= processed;
return !len ? 0 : 3;
}
static void fill_buf_random(CPUS390XState *env, uintptr_t ra,
uint64_t *buf_reg, uint64_t *len_reg)
{
uint8_t tmp[256];
uint64_t len = *len_reg;
int buf_reg_len = 64;
if (!(env->psw.mask & PSW_MASK_64)) {
len = (uint32_t)len;
buf_reg_len = (env->psw.mask & PSW_MASK_32) ? 32 : 24;
}
while (len) {
size_t block = MIN(len, sizeof(tmp));
qemu_guest_getrandom_nofail(tmp, block);
for (size_t i = 0; i < block; ++i) {
cpu_stb_data_ra(env, wrap_address(env, *buf_reg), tmp[i], ra);
*buf_reg = deposit64(*buf_reg, 0, buf_reg_len, *buf_reg + 1);
--*len_reg;
}
len -= block;
}
}
uint32_t HELPER(msa)(CPUS390XState *env, uint32_t r1, uint32_t r2, uint32_t r3,
uint32_t type)
{
const uintptr_t ra = GETPC();
const uint8_t mod = env->regs[0] & 0x80ULL;
const uint8_t fc = env->regs[0] & 0x7fULL;
uint8_t subfunc[16] = { 0 };
uint64_t param_addr;
int i;
switch (type) {
case S390_FEAT_TYPE_KMAC:
case S390_FEAT_TYPE_KIMD:
case S390_FEAT_TYPE_KLMD:
case S390_FEAT_TYPE_PCKMO:
case S390_FEAT_TYPE_PCC:
if (mod) {
tcg_s390_program_interrupt(env, PGM_SPECIFICATION, ra);
}
break;
}
s390_get_feat_block(type, subfunc);
if (!test_be_bit(fc, subfunc)) {
tcg_s390_program_interrupt(env, PGM_SPECIFICATION, ra);
}
switch (fc) {
case 0: /* query subfunction */
for (i = 0; i < 16; i++) {
param_addr = wrap_address(env, env->regs[1] + i);
cpu_stb_data_ra(env, param_addr, subfunc[i], ra);
}
break;
case 3: /* CPACF_*_SHA_512 */
return cpacf_sha512(env, ra, env->regs[1], &env->regs[r2],
&env->regs[r2 + 1], type);
case 114: /* CPACF_PRNO_TRNG */
fill_buf_random(env, ra, &env->regs[r1], &env->regs[r1 + 1]);
fill_buf_random(env, ra, &env->regs[r2], &env->regs[r2 + 1]);
break;
default:
/* we don't implement any other subfunction yet */
g_assert_not_reached();
}
return 0;
}