qemu/hw/riscv/sifive_u.c
Bin Meng 84fcf3c151 hw/riscv: Move sifive_plic model to hw/intc
This is an effort to clean up the hw/riscv directory. Ideally it
should only contain the RISC-V SoC / machine codes plus generic
codes. Let's move sifive_plic model to hw/intc directory.

Signed-off-by: Bin Meng <bin.meng@windriver.com>
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Message-Id: <1599129623-68957-7-git-send-email-bmeng.cn@gmail.com>
Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
2020-09-09 15:54:19 -07:00

822 lines
33 KiB
C

/*
* QEMU RISC-V Board Compatible with SiFive Freedom U SDK
*
* Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
* Copyright (c) 2017 SiFive, Inc.
* Copyright (c) 2019 Bin Meng <bmeng.cn@gmail.com>
*
* Provides a board compatible with the SiFive Freedom U SDK:
*
* 0) UART
* 1) CLINT (Core Level Interruptor)
* 2) PLIC (Platform Level Interrupt Controller)
* 3) PRCI (Power, Reset, Clock, Interrupt)
* 4) GPIO (General Purpose Input/Output Controller)
* 5) OTP (One-Time Programmable) memory with stored serial number
* 6) GEM (Gigabit Ethernet Controller) and management block
* 7) DMA (Direct Memory Access Controller)
*
* This board currently generates devicetree dynamically that indicates at least
* two harts and up to five harts.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2 or later, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "qemu/error-report.h"
#include "qapi/error.h"
#include "qapi/visitor.h"
#include "hw/boards.h"
#include "hw/irq.h"
#include "hw/loader.h"
#include "hw/sysbus.h"
#include "hw/char/serial.h"
#include "hw/cpu/cluster.h"
#include "hw/misc/unimp.h"
#include "target/riscv/cpu.h"
#include "hw/riscv/riscv_hart.h"
#include "hw/riscv/sifive_uart.h"
#include "hw/riscv/sifive_u.h"
#include "hw/riscv/boot.h"
#include "hw/intc/sifive_clint.h"
#include "hw/intc/sifive_plic.h"
#include "chardev/char.h"
#include "net/eth.h"
#include "sysemu/arch_init.h"
#include "sysemu/device_tree.h"
#include "sysemu/runstate.h"
#include "sysemu/sysemu.h"
#include <libfdt.h>
#if defined(TARGET_RISCV32)
# define BIOS_FILENAME "opensbi-riscv32-generic-fw_dynamic.bin"
#else
# define BIOS_FILENAME "opensbi-riscv64-generic-fw_dynamic.bin"
#endif
static const struct MemmapEntry {
hwaddr base;
hwaddr size;
} sifive_u_memmap[] = {
[SIFIVE_U_DEBUG] = { 0x0, 0x100 },
[SIFIVE_U_MROM] = { 0x1000, 0xf000 },
[SIFIVE_U_CLINT] = { 0x2000000, 0x10000 },
[SIFIVE_U_L2CC] = { 0x2010000, 0x1000 },
[SIFIVE_U_PDMA] = { 0x3000000, 0x100000 },
[SIFIVE_U_L2LIM] = { 0x8000000, 0x2000000 },
[SIFIVE_U_PLIC] = { 0xc000000, 0x4000000 },
[SIFIVE_U_PRCI] = { 0x10000000, 0x1000 },
[SIFIVE_U_UART0] = { 0x10010000, 0x1000 },
[SIFIVE_U_UART1] = { 0x10011000, 0x1000 },
[SIFIVE_U_GPIO] = { 0x10060000, 0x1000 },
[SIFIVE_U_OTP] = { 0x10070000, 0x1000 },
[SIFIVE_U_GEM] = { 0x10090000, 0x2000 },
[SIFIVE_U_GEM_MGMT] = { 0x100a0000, 0x1000 },
[SIFIVE_U_DMC] = { 0x100b0000, 0x10000 },
[SIFIVE_U_FLASH0] = { 0x20000000, 0x10000000 },
[SIFIVE_U_DRAM] = { 0x80000000, 0x0 },
};
#define OTP_SERIAL 1
#define GEM_REVISION 0x10070109
static void create_fdt(SiFiveUState *s, const struct MemmapEntry *memmap,
uint64_t mem_size, const char *cmdline)
{
MachineState *ms = MACHINE(qdev_get_machine());
void *fdt;
int cpu;
uint32_t *cells;
char *nodename;
char ethclk_names[] = "pclk\0hclk";
uint32_t plic_phandle, prci_phandle, gpio_phandle, phandle = 1;
uint32_t hfclk_phandle, rtcclk_phandle, phy_phandle;
fdt = s->fdt = create_device_tree(&s->fdt_size);
if (!fdt) {
error_report("create_device_tree() failed");
exit(1);
}
qemu_fdt_setprop_string(fdt, "/", "model", "SiFive HiFive Unleashed A00");
qemu_fdt_setprop_string(fdt, "/", "compatible",
"sifive,hifive-unleashed-a00");
qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
qemu_fdt_add_subnode(fdt, "/soc");
qemu_fdt_setprop(fdt, "/soc", "ranges", NULL, 0);
qemu_fdt_setprop_string(fdt, "/soc", "compatible", "simple-bus");
qemu_fdt_setprop_cell(fdt, "/soc", "#size-cells", 0x2);
qemu_fdt_setprop_cell(fdt, "/soc", "#address-cells", 0x2);
hfclk_phandle = phandle++;
nodename = g_strdup_printf("/hfclk");
qemu_fdt_add_subnode(fdt, nodename);
qemu_fdt_setprop_cell(fdt, nodename, "phandle", hfclk_phandle);
qemu_fdt_setprop_string(fdt, nodename, "clock-output-names", "hfclk");
qemu_fdt_setprop_cell(fdt, nodename, "clock-frequency",
SIFIVE_U_HFCLK_FREQ);
qemu_fdt_setprop_string(fdt, nodename, "compatible", "fixed-clock");
qemu_fdt_setprop_cell(fdt, nodename, "#clock-cells", 0x0);
g_free(nodename);
rtcclk_phandle = phandle++;
nodename = g_strdup_printf("/rtcclk");
qemu_fdt_add_subnode(fdt, nodename);
qemu_fdt_setprop_cell(fdt, nodename, "phandle", rtcclk_phandle);
qemu_fdt_setprop_string(fdt, nodename, "clock-output-names", "rtcclk");
qemu_fdt_setprop_cell(fdt, nodename, "clock-frequency",
SIFIVE_U_RTCCLK_FREQ);
qemu_fdt_setprop_string(fdt, nodename, "compatible", "fixed-clock");
qemu_fdt_setprop_cell(fdt, nodename, "#clock-cells", 0x0);
g_free(nodename);
nodename = g_strdup_printf("/memory@%lx",
(long)memmap[SIFIVE_U_DRAM].base);
qemu_fdt_add_subnode(fdt, nodename);
qemu_fdt_setprop_cells(fdt, nodename, "reg",
memmap[SIFIVE_U_DRAM].base >> 32, memmap[SIFIVE_U_DRAM].base,
mem_size >> 32, mem_size);
qemu_fdt_setprop_string(fdt, nodename, "device_type", "memory");
g_free(nodename);
qemu_fdt_add_subnode(fdt, "/cpus");
qemu_fdt_setprop_cell(fdt, "/cpus", "timebase-frequency",
SIFIVE_CLINT_TIMEBASE_FREQ);
qemu_fdt_setprop_cell(fdt, "/cpus", "#size-cells", 0x0);
qemu_fdt_setprop_cell(fdt, "/cpus", "#address-cells", 0x1);
for (cpu = ms->smp.cpus - 1; cpu >= 0; cpu--) {
int cpu_phandle = phandle++;
nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
char *intc = g_strdup_printf("/cpus/cpu@%d/interrupt-controller", cpu);
char *isa;
qemu_fdt_add_subnode(fdt, nodename);
/* cpu 0 is the management hart that does not have mmu */
if (cpu != 0) {
#if defined(TARGET_RISCV32)
qemu_fdt_setprop_string(fdt, nodename, "mmu-type", "riscv,sv32");
#else
qemu_fdt_setprop_string(fdt, nodename, "mmu-type", "riscv,sv48");
#endif
isa = riscv_isa_string(&s->soc.u_cpus.harts[cpu - 1]);
} else {
isa = riscv_isa_string(&s->soc.e_cpus.harts[0]);
}
qemu_fdt_setprop_string(fdt, nodename, "riscv,isa", isa);
qemu_fdt_setprop_string(fdt, nodename, "compatible", "riscv");
qemu_fdt_setprop_string(fdt, nodename, "status", "okay");
qemu_fdt_setprop_cell(fdt, nodename, "reg", cpu);
qemu_fdt_setprop_string(fdt, nodename, "device_type", "cpu");
qemu_fdt_add_subnode(fdt, intc);
qemu_fdt_setprop_cell(fdt, intc, "phandle", cpu_phandle);
qemu_fdt_setprop_string(fdt, intc, "compatible", "riscv,cpu-intc");
qemu_fdt_setprop(fdt, intc, "interrupt-controller", NULL, 0);
qemu_fdt_setprop_cell(fdt, intc, "#interrupt-cells", 1);
g_free(isa);
g_free(intc);
g_free(nodename);
}
cells = g_new0(uint32_t, ms->smp.cpus * 4);
for (cpu = 0; cpu < ms->smp.cpus; cpu++) {
nodename =
g_strdup_printf("/cpus/cpu@%d/interrupt-controller", cpu);
uint32_t intc_phandle = qemu_fdt_get_phandle(fdt, nodename);
cells[cpu * 4 + 0] = cpu_to_be32(intc_phandle);
cells[cpu * 4 + 1] = cpu_to_be32(IRQ_M_SOFT);
cells[cpu * 4 + 2] = cpu_to_be32(intc_phandle);
cells[cpu * 4 + 3] = cpu_to_be32(IRQ_M_TIMER);
g_free(nodename);
}
nodename = g_strdup_printf("/soc/clint@%lx",
(long)memmap[SIFIVE_U_CLINT].base);
qemu_fdt_add_subnode(fdt, nodename);
qemu_fdt_setprop_string(fdt, nodename, "compatible", "riscv,clint0");
qemu_fdt_setprop_cells(fdt, nodename, "reg",
0x0, memmap[SIFIVE_U_CLINT].base,
0x0, memmap[SIFIVE_U_CLINT].size);
qemu_fdt_setprop(fdt, nodename, "interrupts-extended",
cells, ms->smp.cpus * sizeof(uint32_t) * 4);
g_free(cells);
g_free(nodename);
nodename = g_strdup_printf("/soc/otp@%lx",
(long)memmap[SIFIVE_U_OTP].base);
qemu_fdt_add_subnode(fdt, nodename);
qemu_fdt_setprop_cell(fdt, nodename, "fuse-count", SIFIVE_U_OTP_REG_SIZE);
qemu_fdt_setprop_cells(fdt, nodename, "reg",
0x0, memmap[SIFIVE_U_OTP].base,
0x0, memmap[SIFIVE_U_OTP].size);
qemu_fdt_setprop_string(fdt, nodename, "compatible",
"sifive,fu540-c000-otp");
g_free(nodename);
prci_phandle = phandle++;
nodename = g_strdup_printf("/soc/clock-controller@%lx",
(long)memmap[SIFIVE_U_PRCI].base);
qemu_fdt_add_subnode(fdt, nodename);
qemu_fdt_setprop_cell(fdt, nodename, "phandle", prci_phandle);
qemu_fdt_setprop_cell(fdt, nodename, "#clock-cells", 0x1);
qemu_fdt_setprop_cells(fdt, nodename, "clocks",
hfclk_phandle, rtcclk_phandle);
qemu_fdt_setprop_cells(fdt, nodename, "reg",
0x0, memmap[SIFIVE_U_PRCI].base,
0x0, memmap[SIFIVE_U_PRCI].size);
qemu_fdt_setprop_string(fdt, nodename, "compatible",
"sifive,fu540-c000-prci");
g_free(nodename);
plic_phandle = phandle++;
cells = g_new0(uint32_t, ms->smp.cpus * 4 - 2);
for (cpu = 0; cpu < ms->smp.cpus; cpu++) {
nodename =
g_strdup_printf("/cpus/cpu@%d/interrupt-controller", cpu);
uint32_t intc_phandle = qemu_fdt_get_phandle(fdt, nodename);
/* cpu 0 is the management hart that does not have S-mode */
if (cpu == 0) {
cells[0] = cpu_to_be32(intc_phandle);
cells[1] = cpu_to_be32(IRQ_M_EXT);
} else {
cells[cpu * 4 - 2] = cpu_to_be32(intc_phandle);
cells[cpu * 4 - 1] = cpu_to_be32(IRQ_M_EXT);
cells[cpu * 4 + 0] = cpu_to_be32(intc_phandle);
cells[cpu * 4 + 1] = cpu_to_be32(IRQ_S_EXT);
}
g_free(nodename);
}
nodename = g_strdup_printf("/soc/interrupt-controller@%lx",
(long)memmap[SIFIVE_U_PLIC].base);
qemu_fdt_add_subnode(fdt, nodename);
qemu_fdt_setprop_cell(fdt, nodename, "#interrupt-cells", 1);
qemu_fdt_setprop_string(fdt, nodename, "compatible", "riscv,plic0");
qemu_fdt_setprop(fdt, nodename, "interrupt-controller", NULL, 0);
qemu_fdt_setprop(fdt, nodename, "interrupts-extended",
cells, (ms->smp.cpus * 4 - 2) * sizeof(uint32_t));
qemu_fdt_setprop_cells(fdt, nodename, "reg",
0x0, memmap[SIFIVE_U_PLIC].base,
0x0, memmap[SIFIVE_U_PLIC].size);
qemu_fdt_setprop_cell(fdt, nodename, "riscv,ndev", 0x35);
qemu_fdt_setprop_cell(fdt, nodename, "phandle", plic_phandle);
plic_phandle = qemu_fdt_get_phandle(fdt, nodename);
g_free(cells);
g_free(nodename);
gpio_phandle = phandle++;
nodename = g_strdup_printf("/soc/gpio@%lx",
(long)memmap[SIFIVE_U_GPIO].base);
qemu_fdt_add_subnode(fdt, nodename);
qemu_fdt_setprop_cell(fdt, nodename, "phandle", gpio_phandle);
qemu_fdt_setprop_cells(fdt, nodename, "clocks",
prci_phandle, PRCI_CLK_TLCLK);
qemu_fdt_setprop_cell(fdt, nodename, "#interrupt-cells", 2);
qemu_fdt_setprop(fdt, nodename, "interrupt-controller", NULL, 0);
qemu_fdt_setprop_cell(fdt, nodename, "#gpio-cells", 2);
qemu_fdt_setprop(fdt, nodename, "gpio-controller", NULL, 0);
qemu_fdt_setprop_cells(fdt, nodename, "reg",
0x0, memmap[SIFIVE_U_GPIO].base,
0x0, memmap[SIFIVE_U_GPIO].size);
qemu_fdt_setprop_cells(fdt, nodename, "interrupts", SIFIVE_U_GPIO_IRQ0,
SIFIVE_U_GPIO_IRQ1, SIFIVE_U_GPIO_IRQ2, SIFIVE_U_GPIO_IRQ3,
SIFIVE_U_GPIO_IRQ4, SIFIVE_U_GPIO_IRQ5, SIFIVE_U_GPIO_IRQ6,
SIFIVE_U_GPIO_IRQ7, SIFIVE_U_GPIO_IRQ8, SIFIVE_U_GPIO_IRQ9,
SIFIVE_U_GPIO_IRQ10, SIFIVE_U_GPIO_IRQ11, SIFIVE_U_GPIO_IRQ12,
SIFIVE_U_GPIO_IRQ13, SIFIVE_U_GPIO_IRQ14, SIFIVE_U_GPIO_IRQ15);
qemu_fdt_setprop_cell(fdt, nodename, "interrupt-parent", plic_phandle);
qemu_fdt_setprop_string(fdt, nodename, "compatible", "sifive,gpio0");
g_free(nodename);
nodename = g_strdup_printf("/gpio-restart");
qemu_fdt_add_subnode(fdt, nodename);
qemu_fdt_setprop_cells(fdt, nodename, "gpios", gpio_phandle, 10, 1);
qemu_fdt_setprop_string(fdt, nodename, "compatible", "gpio-restart");
g_free(nodename);
nodename = g_strdup_printf("/soc/dma@%lx",
(long)memmap[SIFIVE_U_PDMA].base);
qemu_fdt_add_subnode(fdt, nodename);
qemu_fdt_setprop_cell(fdt, nodename, "#dma-cells", 1);
qemu_fdt_setprop_cells(fdt, nodename, "interrupts",
SIFIVE_U_PDMA_IRQ0, SIFIVE_U_PDMA_IRQ1, SIFIVE_U_PDMA_IRQ2,
SIFIVE_U_PDMA_IRQ3, SIFIVE_U_PDMA_IRQ4, SIFIVE_U_PDMA_IRQ5,
SIFIVE_U_PDMA_IRQ6, SIFIVE_U_PDMA_IRQ7);
qemu_fdt_setprop_cell(fdt, nodename, "interrupt-parent", plic_phandle);
qemu_fdt_setprop_cells(fdt, nodename, "reg",
0x0, memmap[SIFIVE_U_PDMA].base,
0x0, memmap[SIFIVE_U_PDMA].size);
qemu_fdt_setprop_string(fdt, nodename, "compatible",
"sifive,fu540-c000-pdma");
g_free(nodename);
nodename = g_strdup_printf("/soc/cache-controller@%lx",
(long)memmap[SIFIVE_U_L2CC].base);
qemu_fdt_add_subnode(fdt, nodename);
qemu_fdt_setprop_cells(fdt, nodename, "reg",
0x0, memmap[SIFIVE_U_L2CC].base,
0x0, memmap[SIFIVE_U_L2CC].size);
qemu_fdt_setprop_cells(fdt, nodename, "interrupts",
SIFIVE_U_L2CC_IRQ0, SIFIVE_U_L2CC_IRQ1, SIFIVE_U_L2CC_IRQ2);
qemu_fdt_setprop_cell(fdt, nodename, "interrupt-parent", plic_phandle);
qemu_fdt_setprop(fdt, nodename, "cache-unified", NULL, 0);
qemu_fdt_setprop_cell(fdt, nodename, "cache-size", 2097152);
qemu_fdt_setprop_cell(fdt, nodename, "cache-sets", 1024);
qemu_fdt_setprop_cell(fdt, nodename, "cache-level", 2);
qemu_fdt_setprop_cell(fdt, nodename, "cache-block-size", 64);
qemu_fdt_setprop_string(fdt, nodename, "compatible",
"sifive,fu540-c000-ccache");
g_free(nodename);
phy_phandle = phandle++;
nodename = g_strdup_printf("/soc/ethernet@%lx",
(long)memmap[SIFIVE_U_GEM].base);
qemu_fdt_add_subnode(fdt, nodename);
qemu_fdt_setprop_string(fdt, nodename, "compatible",
"sifive,fu540-c000-gem");
qemu_fdt_setprop_cells(fdt, nodename, "reg",
0x0, memmap[SIFIVE_U_GEM].base,
0x0, memmap[SIFIVE_U_GEM].size,
0x0, memmap[SIFIVE_U_GEM_MGMT].base,
0x0, memmap[SIFIVE_U_GEM_MGMT].size);
qemu_fdt_setprop_string(fdt, nodename, "reg-names", "control");
qemu_fdt_setprop_string(fdt, nodename, "phy-mode", "gmii");
qemu_fdt_setprop_cell(fdt, nodename, "phy-handle", phy_phandle);
qemu_fdt_setprop_cell(fdt, nodename, "interrupt-parent", plic_phandle);
qemu_fdt_setprop_cell(fdt, nodename, "interrupts", SIFIVE_U_GEM_IRQ);
qemu_fdt_setprop_cells(fdt, nodename, "clocks",
prci_phandle, PRCI_CLK_GEMGXLPLL, prci_phandle, PRCI_CLK_GEMGXLPLL);
qemu_fdt_setprop(fdt, nodename, "clock-names", ethclk_names,
sizeof(ethclk_names));
qemu_fdt_setprop(fdt, nodename, "local-mac-address",
s->soc.gem.conf.macaddr.a, ETH_ALEN);
qemu_fdt_setprop_cell(fdt, nodename, "#address-cells", 1);
qemu_fdt_setprop_cell(fdt, nodename, "#size-cells", 0);
qemu_fdt_add_subnode(fdt, "/aliases");
qemu_fdt_setprop_string(fdt, "/aliases", "ethernet0", nodename);
g_free(nodename);
nodename = g_strdup_printf("/soc/ethernet@%lx/ethernet-phy@0",
(long)memmap[SIFIVE_U_GEM].base);
qemu_fdt_add_subnode(fdt, nodename);
qemu_fdt_setprop_cell(fdt, nodename, "phandle", phy_phandle);
qemu_fdt_setprop_cell(fdt, nodename, "reg", 0x0);
g_free(nodename);
nodename = g_strdup_printf("/soc/serial@%lx",
(long)memmap[SIFIVE_U_UART0].base);
qemu_fdt_add_subnode(fdt, nodename);
qemu_fdt_setprop_string(fdt, nodename, "compatible", "sifive,uart0");
qemu_fdt_setprop_cells(fdt, nodename, "reg",
0x0, memmap[SIFIVE_U_UART0].base,
0x0, memmap[SIFIVE_U_UART0].size);
qemu_fdt_setprop_cells(fdt, nodename, "clocks",
prci_phandle, PRCI_CLK_TLCLK);
qemu_fdt_setprop_cell(fdt, nodename, "interrupt-parent", plic_phandle);
qemu_fdt_setprop_cell(fdt, nodename, "interrupts", SIFIVE_U_UART0_IRQ);
qemu_fdt_add_subnode(fdt, "/chosen");
qemu_fdt_setprop_string(fdt, "/chosen", "stdout-path", nodename);
if (cmdline) {
qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", cmdline);
}
qemu_fdt_setprop_string(fdt, "/aliases", "serial0", nodename);
g_free(nodename);
}
static void sifive_u_machine_reset(void *opaque, int n, int level)
{
/* gpio pin active low triggers reset */
if (!level) {
qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
}
}
static void sifive_u_machine_init(MachineState *machine)
{
const struct MemmapEntry *memmap = sifive_u_memmap;
SiFiveUState *s = RISCV_U_MACHINE(machine);
MemoryRegion *system_memory = get_system_memory();
MemoryRegion *main_mem = g_new(MemoryRegion, 1);
MemoryRegion *flash0 = g_new(MemoryRegion, 1);
target_ulong start_addr = memmap[SIFIVE_U_DRAM].base;
uint32_t start_addr_hi32 = 0x00000000;
int i;
uint32_t fdt_load_addr;
uint64_t kernel_entry;
/* Initialize SoC */
object_initialize_child(OBJECT(machine), "soc", &s->soc, TYPE_RISCV_U_SOC);
object_property_set_uint(OBJECT(&s->soc), "serial", s->serial,
&error_abort);
qdev_realize(DEVICE(&s->soc), NULL, &error_abort);
/* register RAM */
memory_region_init_ram(main_mem, NULL, "riscv.sifive.u.ram",
machine->ram_size, &error_fatal);
memory_region_add_subregion(system_memory, memmap[SIFIVE_U_DRAM].base,
main_mem);
/* register QSPI0 Flash */
memory_region_init_ram(flash0, NULL, "riscv.sifive.u.flash0",
memmap[SIFIVE_U_FLASH0].size, &error_fatal);
memory_region_add_subregion(system_memory, memmap[SIFIVE_U_FLASH0].base,
flash0);
/* register gpio-restart */
qdev_connect_gpio_out(DEVICE(&(s->soc.gpio)), 10,
qemu_allocate_irq(sifive_u_machine_reset, NULL, 0));
/* create device tree */
create_fdt(s, memmap, machine->ram_size, machine->kernel_cmdline);
if (s->start_in_flash) {
/*
* If start_in_flash property is given, assign s->msel to a value
* that representing booting from QSPI0 memory-mapped flash.
*
* This also means that when both start_in_flash and msel properties
* are given, start_in_flash takes the precedence over msel.
*
* Note this is to keep backward compatibility not to break existing
* users that use start_in_flash property.
*/
s->msel = MSEL_MEMMAP_QSPI0_FLASH;
}
switch (s->msel) {
case MSEL_MEMMAP_QSPI0_FLASH:
start_addr = memmap[SIFIVE_U_FLASH0].base;
break;
case MSEL_L2LIM_QSPI0_FLASH:
case MSEL_L2LIM_QSPI2_SD:
start_addr = memmap[SIFIVE_U_L2LIM].base;
break;
default:
start_addr = memmap[SIFIVE_U_DRAM].base;
break;
}
riscv_find_and_load_firmware(machine, BIOS_FILENAME, start_addr, NULL);
if (machine->kernel_filename) {
kernel_entry = riscv_load_kernel(machine->kernel_filename, NULL);
if (machine->initrd_filename) {
hwaddr start;
hwaddr end = riscv_load_initrd(machine->initrd_filename,
machine->ram_size, kernel_entry,
&start);
qemu_fdt_setprop_cell(s->fdt, "/chosen",
"linux,initrd-start", start);
qemu_fdt_setprop_cell(s->fdt, "/chosen", "linux,initrd-end",
end);
}
} else {
/*
* If dynamic firmware is used, it doesn't know where is the next mode
* if kernel argument is not set.
*/
kernel_entry = 0;
}
/* Compute the fdt load address in dram */
fdt_load_addr = riscv_load_fdt(memmap[SIFIVE_U_DRAM].base,
machine->ram_size, s->fdt);
#if defined(TARGET_RISCV64)
start_addr_hi32 = start_addr >> 32;
#endif
/* reset vector */
uint32_t reset_vec[11] = {
s->msel, /* MSEL pin state */
0x00000297, /* 1: auipc t0, %pcrel_hi(fw_dyn) */
0x02828613, /* addi a2, t0, %pcrel_lo(1b) */
0xf1402573, /* csrr a0, mhartid */
#if defined(TARGET_RISCV32)
0x0202a583, /* lw a1, 32(t0) */
0x0182a283, /* lw t0, 24(t0) */
#elif defined(TARGET_RISCV64)
0x0202b583, /* ld a1, 32(t0) */
0x0182b283, /* ld t0, 24(t0) */
#endif
0x00028067, /* jr t0 */
start_addr, /* start: .dword */
start_addr_hi32,
fdt_load_addr, /* fdt_laddr: .dword */
0x00000000,
/* fw_dyn: */
};
/* copy in the reset vector in little_endian byte order */
for (i = 0; i < ARRAY_SIZE(reset_vec); i++) {
reset_vec[i] = cpu_to_le32(reset_vec[i]);
}
rom_add_blob_fixed_as("mrom.reset", reset_vec, sizeof(reset_vec),
memmap[SIFIVE_U_MROM].base, &address_space_memory);
riscv_rom_copy_firmware_info(memmap[SIFIVE_U_MROM].base,
memmap[SIFIVE_U_MROM].size,
sizeof(reset_vec), kernel_entry);
}
static bool sifive_u_machine_get_start_in_flash(Object *obj, Error **errp)
{
SiFiveUState *s = RISCV_U_MACHINE(obj);
return s->start_in_flash;
}
static void sifive_u_machine_set_start_in_flash(Object *obj, bool value, Error **errp)
{
SiFiveUState *s = RISCV_U_MACHINE(obj);
s->start_in_flash = value;
}
static void sifive_u_machine_get_uint32_prop(Object *obj, Visitor *v,
const char *name, void *opaque,
Error **errp)
{
visit_type_uint32(v, name, (uint32_t *)opaque, errp);
}
static void sifive_u_machine_set_uint32_prop(Object *obj, Visitor *v,
const char *name, void *opaque,
Error **errp)
{
visit_type_uint32(v, name, (uint32_t *)opaque, errp);
}
static void sifive_u_machine_instance_init(Object *obj)
{
SiFiveUState *s = RISCV_U_MACHINE(obj);
s->start_in_flash = false;
object_property_add_bool(obj, "start-in-flash",
sifive_u_machine_get_start_in_flash,
sifive_u_machine_set_start_in_flash);
object_property_set_description(obj, "start-in-flash",
"Set on to tell QEMU's ROM to jump to "
"flash. Otherwise QEMU will jump to DRAM "
"or L2LIM depending on the msel value");
s->msel = 0;
object_property_add(obj, "msel", "uint32",
sifive_u_machine_get_uint32_prop,
sifive_u_machine_set_uint32_prop, NULL, &s->msel);
object_property_set_description(obj, "msel",
"Mode Select (MSEL[3:0]) pin state");
s->serial = OTP_SERIAL;
object_property_add(obj, "serial", "uint32",
sifive_u_machine_get_uint32_prop,
sifive_u_machine_set_uint32_prop, NULL, &s->serial);
object_property_set_description(obj, "serial", "Board serial number");
}
static void sifive_u_machine_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
mc->desc = "RISC-V Board compatible with SiFive U SDK";
mc->init = sifive_u_machine_init;
mc->max_cpus = SIFIVE_U_MANAGEMENT_CPU_COUNT + SIFIVE_U_COMPUTE_CPU_COUNT;
mc->min_cpus = SIFIVE_U_MANAGEMENT_CPU_COUNT + 1;
mc->default_cpus = mc->min_cpus;
}
static const TypeInfo sifive_u_machine_typeinfo = {
.name = MACHINE_TYPE_NAME("sifive_u"),
.parent = TYPE_MACHINE,
.class_init = sifive_u_machine_class_init,
.instance_init = sifive_u_machine_instance_init,
.instance_size = sizeof(SiFiveUState),
};
static void sifive_u_machine_init_register_types(void)
{
type_register_static(&sifive_u_machine_typeinfo);
}
type_init(sifive_u_machine_init_register_types)
static void sifive_u_soc_instance_init(Object *obj)
{
MachineState *ms = MACHINE(qdev_get_machine());
SiFiveUSoCState *s = RISCV_U_SOC(obj);
object_initialize_child(obj, "e-cluster", &s->e_cluster, TYPE_CPU_CLUSTER);
qdev_prop_set_uint32(DEVICE(&s->e_cluster), "cluster-id", 0);
object_initialize_child(OBJECT(&s->e_cluster), "e-cpus", &s->e_cpus,
TYPE_RISCV_HART_ARRAY);
qdev_prop_set_uint32(DEVICE(&s->e_cpus), "num-harts", 1);
qdev_prop_set_uint32(DEVICE(&s->e_cpus), "hartid-base", 0);
qdev_prop_set_string(DEVICE(&s->e_cpus), "cpu-type", SIFIVE_E_CPU);
qdev_prop_set_uint64(DEVICE(&s->e_cpus), "resetvec", 0x1004);
object_initialize_child(obj, "u-cluster", &s->u_cluster, TYPE_CPU_CLUSTER);
qdev_prop_set_uint32(DEVICE(&s->u_cluster), "cluster-id", 1);
object_initialize_child(OBJECT(&s->u_cluster), "u-cpus", &s->u_cpus,
TYPE_RISCV_HART_ARRAY);
qdev_prop_set_uint32(DEVICE(&s->u_cpus), "num-harts", ms->smp.cpus - 1);
qdev_prop_set_uint32(DEVICE(&s->u_cpus), "hartid-base", 1);
qdev_prop_set_string(DEVICE(&s->u_cpus), "cpu-type", SIFIVE_U_CPU);
qdev_prop_set_uint64(DEVICE(&s->u_cpus), "resetvec", 0x1004);
object_initialize_child(obj, "prci", &s->prci, TYPE_SIFIVE_U_PRCI);
object_initialize_child(obj, "otp", &s->otp, TYPE_SIFIVE_U_OTP);
object_initialize_child(obj, "gem", &s->gem, TYPE_CADENCE_GEM);
object_initialize_child(obj, "gpio", &s->gpio, TYPE_SIFIVE_GPIO);
object_initialize_child(obj, "pdma", &s->dma, TYPE_SIFIVE_PDMA);
}
static void sifive_u_soc_realize(DeviceState *dev, Error **errp)
{
MachineState *ms = MACHINE(qdev_get_machine());
SiFiveUSoCState *s = RISCV_U_SOC(dev);
const struct MemmapEntry *memmap = sifive_u_memmap;
MemoryRegion *system_memory = get_system_memory();
MemoryRegion *mask_rom = g_new(MemoryRegion, 1);
MemoryRegion *l2lim_mem = g_new(MemoryRegion, 1);
char *plic_hart_config;
size_t plic_hart_config_len;
int i;
NICInfo *nd = &nd_table[0];
sysbus_realize(SYS_BUS_DEVICE(&s->e_cpus), &error_abort);
sysbus_realize(SYS_BUS_DEVICE(&s->u_cpus), &error_abort);
/*
* The cluster must be realized after the RISC-V hart array container,
* as the container's CPU object is only created on realize, and the
* CPU must exist and have been parented into the cluster before the
* cluster is realized.
*/
qdev_realize(DEVICE(&s->e_cluster), NULL, &error_abort);
qdev_realize(DEVICE(&s->u_cluster), NULL, &error_abort);
/* boot rom */
memory_region_init_rom(mask_rom, OBJECT(dev), "riscv.sifive.u.mrom",
memmap[SIFIVE_U_MROM].size, &error_fatal);
memory_region_add_subregion(system_memory, memmap[SIFIVE_U_MROM].base,
mask_rom);
/*
* Add L2-LIM at reset size.
* This should be reduced in size as the L2 Cache Controller WayEnable
* register is incremented. Unfortunately I don't see a nice (or any) way
* to handle reducing or blocking out the L2 LIM while still allowing it
* be re returned to all enabled after a reset. For the time being, just
* leave it enabled all the time. This won't break anything, but will be
* too generous to misbehaving guests.
*/
memory_region_init_ram(l2lim_mem, NULL, "riscv.sifive.u.l2lim",
memmap[SIFIVE_U_L2LIM].size, &error_fatal);
memory_region_add_subregion(system_memory, memmap[SIFIVE_U_L2LIM].base,
l2lim_mem);
/* create PLIC hart topology configuration string */
plic_hart_config_len = (strlen(SIFIVE_U_PLIC_HART_CONFIG) + 1) *
ms->smp.cpus;
plic_hart_config = g_malloc0(plic_hart_config_len);
for (i = 0; i < ms->smp.cpus; i++) {
if (i != 0) {
strncat(plic_hart_config, "," SIFIVE_U_PLIC_HART_CONFIG,
plic_hart_config_len);
} else {
strncat(plic_hart_config, "M", plic_hart_config_len);
}
plic_hart_config_len -= (strlen(SIFIVE_U_PLIC_HART_CONFIG) + 1);
}
/* MMIO */
s->plic = sifive_plic_create(memmap[SIFIVE_U_PLIC].base,
plic_hart_config, 0,
SIFIVE_U_PLIC_NUM_SOURCES,
SIFIVE_U_PLIC_NUM_PRIORITIES,
SIFIVE_U_PLIC_PRIORITY_BASE,
SIFIVE_U_PLIC_PENDING_BASE,
SIFIVE_U_PLIC_ENABLE_BASE,
SIFIVE_U_PLIC_ENABLE_STRIDE,
SIFIVE_U_PLIC_CONTEXT_BASE,
SIFIVE_U_PLIC_CONTEXT_STRIDE,
memmap[SIFIVE_U_PLIC].size);
g_free(plic_hart_config);
sifive_uart_create(system_memory, memmap[SIFIVE_U_UART0].base,
serial_hd(0), qdev_get_gpio_in(DEVICE(s->plic), SIFIVE_U_UART0_IRQ));
sifive_uart_create(system_memory, memmap[SIFIVE_U_UART1].base,
serial_hd(1), qdev_get_gpio_in(DEVICE(s->plic), SIFIVE_U_UART1_IRQ));
sifive_clint_create(memmap[SIFIVE_U_CLINT].base,
memmap[SIFIVE_U_CLINT].size, 0, ms->smp.cpus,
SIFIVE_SIP_BASE, SIFIVE_TIMECMP_BASE, SIFIVE_TIME_BASE,
SIFIVE_CLINT_TIMEBASE_FREQ, false);
if (!sysbus_realize(SYS_BUS_DEVICE(&s->prci), errp)) {
return;
}
sysbus_mmio_map(SYS_BUS_DEVICE(&s->prci), 0, memmap[SIFIVE_U_PRCI].base);
qdev_prop_set_uint32(DEVICE(&s->gpio), "ngpio", 16);
if (!sysbus_realize(SYS_BUS_DEVICE(&s->gpio), errp)) {
return;
}
sysbus_mmio_map(SYS_BUS_DEVICE(&s->gpio), 0, memmap[SIFIVE_U_GPIO].base);
/* Pass all GPIOs to the SOC layer so they are available to the board */
qdev_pass_gpios(DEVICE(&s->gpio), dev, NULL);
/* Connect GPIO interrupts to the PLIC */
for (i = 0; i < 16; i++) {
sysbus_connect_irq(SYS_BUS_DEVICE(&s->gpio), i,
qdev_get_gpio_in(DEVICE(s->plic),
SIFIVE_U_GPIO_IRQ0 + i));
}
/* PDMA */
sysbus_realize(SYS_BUS_DEVICE(&s->dma), errp);
sysbus_mmio_map(SYS_BUS_DEVICE(&s->dma), 0, memmap[SIFIVE_U_PDMA].base);
/* Connect PDMA interrupts to the PLIC */
for (i = 0; i < SIFIVE_PDMA_IRQS; i++) {
sysbus_connect_irq(SYS_BUS_DEVICE(&s->dma), i,
qdev_get_gpio_in(DEVICE(s->plic),
SIFIVE_U_PDMA_IRQ0 + i));
}
qdev_prop_set_uint32(DEVICE(&s->otp), "serial", s->serial);
if (!sysbus_realize(SYS_BUS_DEVICE(&s->otp), errp)) {
return;
}
sysbus_mmio_map(SYS_BUS_DEVICE(&s->otp), 0, memmap[SIFIVE_U_OTP].base);
/* FIXME use qdev NIC properties instead of nd_table[] */
if (nd->used) {
qemu_check_nic_model(nd, TYPE_CADENCE_GEM);
qdev_set_nic_properties(DEVICE(&s->gem), nd);
}
object_property_set_int(OBJECT(&s->gem), "revision", GEM_REVISION,
&error_abort);
if (!sysbus_realize(SYS_BUS_DEVICE(&s->gem), errp)) {
return;
}
sysbus_mmio_map(SYS_BUS_DEVICE(&s->gem), 0, memmap[SIFIVE_U_GEM].base);
sysbus_connect_irq(SYS_BUS_DEVICE(&s->gem), 0,
qdev_get_gpio_in(DEVICE(s->plic), SIFIVE_U_GEM_IRQ));
create_unimplemented_device("riscv.sifive.u.gem-mgmt",
memmap[SIFIVE_U_GEM_MGMT].base, memmap[SIFIVE_U_GEM_MGMT].size);
create_unimplemented_device("riscv.sifive.u.dmc",
memmap[SIFIVE_U_DMC].base, memmap[SIFIVE_U_DMC].size);
create_unimplemented_device("riscv.sifive.u.l2cc",
memmap[SIFIVE_U_L2CC].base, memmap[SIFIVE_U_L2CC].size);
}
static Property sifive_u_soc_props[] = {
DEFINE_PROP_UINT32("serial", SiFiveUSoCState, serial, OTP_SERIAL),
DEFINE_PROP_END_OF_LIST()
};
static void sifive_u_soc_class_init(ObjectClass *oc, void *data)
{
DeviceClass *dc = DEVICE_CLASS(oc);
device_class_set_props(dc, sifive_u_soc_props);
dc->realize = sifive_u_soc_realize;
/* Reason: Uses serial_hds in realize function, thus can't be used twice */
dc->user_creatable = false;
}
static const TypeInfo sifive_u_soc_type_info = {
.name = TYPE_RISCV_U_SOC,
.parent = TYPE_DEVICE,
.instance_size = sizeof(SiFiveUSoCState),
.instance_init = sifive_u_soc_instance_init,
.class_init = sifive_u_soc_class_init,
};
static void sifive_u_soc_register_types(void)
{
type_register_static(&sifive_u_soc_type_info);
}
type_init(sifive_u_soc_register_types)