qemu/hw/virtio.c
Michael S. Tsirkin 6d74ca5aa8 virtio: verify features on load
migrating between hosts which have different features
might break silently, if the migration destination
does not support some features supported by source.

Prevent this from happening by comparing acked feature
bits with the mask supported by the device.

Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2009-12-12 07:59:38 -06:00

738 lines
19 KiB
C

/*
* Virtio Support
*
* Copyright IBM, Corp. 2007
*
* Authors:
* Anthony Liguori <aliguori@us.ibm.com>
*
* This work is licensed under the terms of the GNU GPL, version 2. See
* the COPYING file in the top-level directory.
*
*/
#include <inttypes.h>
#include "virtio.h"
#include "sysemu.h"
/* The alignment to use between consumer and producer parts of vring.
* x86 pagesize again. */
#define VIRTIO_PCI_VRING_ALIGN 4096
/* QEMU doesn't strictly need write barriers since everything runs in
* lock-step. We'll leave the calls to wmb() in though to make it obvious for
* KVM or if kqemu gets SMP support.
* In any case, we must prevent the compiler from reordering the code.
* TODO: we likely need some rmb()/mb() as well.
*/
#define wmb() __asm__ __volatile__("": : :"memory")
typedef struct VRingDesc
{
uint64_t addr;
uint32_t len;
uint16_t flags;
uint16_t next;
} VRingDesc;
typedef struct VRingAvail
{
uint16_t flags;
uint16_t idx;
uint16_t ring[0];
} VRingAvail;
typedef struct VRingUsedElem
{
uint32_t id;
uint32_t len;
} VRingUsedElem;
typedef struct VRingUsed
{
uint16_t flags;
uint16_t idx;
VRingUsedElem ring[0];
} VRingUsed;
typedef struct VRing
{
unsigned int num;
target_phys_addr_t desc;
target_phys_addr_t avail;
target_phys_addr_t used;
} VRing;
struct VirtQueue
{
VRing vring;
target_phys_addr_t pa;
uint16_t last_avail_idx;
int inuse;
uint16_t vector;
void (*handle_output)(VirtIODevice *vdev, VirtQueue *vq);
};
#define VIRTIO_PCI_QUEUE_MAX 16
/* virt queue functions */
static void virtqueue_init(VirtQueue *vq)
{
target_phys_addr_t pa = vq->pa;
vq->vring.desc = pa;
vq->vring.avail = pa + vq->vring.num * sizeof(VRingDesc);
vq->vring.used = vring_align(vq->vring.avail +
offsetof(VRingAvail, ring[vq->vring.num]),
VIRTIO_PCI_VRING_ALIGN);
}
static inline uint64_t vring_desc_addr(target_phys_addr_t desc_pa, int i)
{
target_phys_addr_t pa;
pa = desc_pa + sizeof(VRingDesc) * i + offsetof(VRingDesc, addr);
return ldq_phys(pa);
}
static inline uint32_t vring_desc_len(target_phys_addr_t desc_pa, int i)
{
target_phys_addr_t pa;
pa = desc_pa + sizeof(VRingDesc) * i + offsetof(VRingDesc, len);
return ldl_phys(pa);
}
static inline uint16_t vring_desc_flags(target_phys_addr_t desc_pa, int i)
{
target_phys_addr_t pa;
pa = desc_pa + sizeof(VRingDesc) * i + offsetof(VRingDesc, flags);
return lduw_phys(pa);
}
static inline uint16_t vring_desc_next(target_phys_addr_t desc_pa, int i)
{
target_phys_addr_t pa;
pa = desc_pa + sizeof(VRingDesc) * i + offsetof(VRingDesc, next);
return lduw_phys(pa);
}
static inline uint16_t vring_avail_flags(VirtQueue *vq)
{
target_phys_addr_t pa;
pa = vq->vring.avail + offsetof(VRingAvail, flags);
return lduw_phys(pa);
}
static inline uint16_t vring_avail_idx(VirtQueue *vq)
{
target_phys_addr_t pa;
pa = vq->vring.avail + offsetof(VRingAvail, idx);
return lduw_phys(pa);
}
static inline uint16_t vring_avail_ring(VirtQueue *vq, int i)
{
target_phys_addr_t pa;
pa = vq->vring.avail + offsetof(VRingAvail, ring[i]);
return lduw_phys(pa);
}
static inline void vring_used_ring_id(VirtQueue *vq, int i, uint32_t val)
{
target_phys_addr_t pa;
pa = vq->vring.used + offsetof(VRingUsed, ring[i].id);
stl_phys(pa, val);
}
static inline void vring_used_ring_len(VirtQueue *vq, int i, uint32_t val)
{
target_phys_addr_t pa;
pa = vq->vring.used + offsetof(VRingUsed, ring[i].len);
stl_phys(pa, val);
}
static uint16_t vring_used_idx(VirtQueue *vq)
{
target_phys_addr_t pa;
pa = vq->vring.used + offsetof(VRingUsed, idx);
return lduw_phys(pa);
}
static inline void vring_used_idx_increment(VirtQueue *vq, uint16_t val)
{
target_phys_addr_t pa;
pa = vq->vring.used + offsetof(VRingUsed, idx);
stw_phys(pa, vring_used_idx(vq) + val);
}
static inline void vring_used_flags_set_bit(VirtQueue *vq, int mask)
{
target_phys_addr_t pa;
pa = vq->vring.used + offsetof(VRingUsed, flags);
stw_phys(pa, lduw_phys(pa) | mask);
}
static inline void vring_used_flags_unset_bit(VirtQueue *vq, int mask)
{
target_phys_addr_t pa;
pa = vq->vring.used + offsetof(VRingUsed, flags);
stw_phys(pa, lduw_phys(pa) & ~mask);
}
void virtio_queue_set_notification(VirtQueue *vq, int enable)
{
if (enable)
vring_used_flags_unset_bit(vq, VRING_USED_F_NO_NOTIFY);
else
vring_used_flags_set_bit(vq, VRING_USED_F_NO_NOTIFY);
}
int virtio_queue_ready(VirtQueue *vq)
{
return vq->vring.avail != 0;
}
int virtio_queue_empty(VirtQueue *vq)
{
return vring_avail_idx(vq) == vq->last_avail_idx;
}
void virtqueue_fill(VirtQueue *vq, const VirtQueueElement *elem,
unsigned int len, unsigned int idx)
{
unsigned int offset;
int i;
offset = 0;
for (i = 0; i < elem->in_num; i++) {
size_t size = MIN(len - offset, elem->in_sg[i].iov_len);
cpu_physical_memory_unmap(elem->in_sg[i].iov_base,
elem->in_sg[i].iov_len,
1, size);
offset += elem->in_sg[i].iov_len;
}
for (i = 0; i < elem->out_num; i++)
cpu_physical_memory_unmap(elem->out_sg[i].iov_base,
elem->out_sg[i].iov_len,
0, elem->out_sg[i].iov_len);
idx = (idx + vring_used_idx(vq)) % vq->vring.num;
/* Get a pointer to the next entry in the used ring. */
vring_used_ring_id(vq, idx, elem->index);
vring_used_ring_len(vq, idx, len);
}
void virtqueue_flush(VirtQueue *vq, unsigned int count)
{
/* Make sure buffer is written before we update index. */
wmb();
vring_used_idx_increment(vq, count);
vq->inuse -= count;
}
void virtqueue_push(VirtQueue *vq, const VirtQueueElement *elem,
unsigned int len)
{
virtqueue_fill(vq, elem, len, 0);
virtqueue_flush(vq, 1);
}
static int virtqueue_num_heads(VirtQueue *vq, unsigned int idx)
{
uint16_t num_heads = vring_avail_idx(vq) - idx;
/* Check it isn't doing very strange things with descriptor numbers. */
if (num_heads > vq->vring.num) {
fprintf(stderr, "Guest moved used index from %u to %u",
idx, vring_avail_idx(vq));
exit(1);
}
return num_heads;
}
static unsigned int virtqueue_get_head(VirtQueue *vq, unsigned int idx)
{
unsigned int head;
/* Grab the next descriptor number they're advertising, and increment
* the index we've seen. */
head = vring_avail_ring(vq, idx % vq->vring.num);
/* If their number is silly, that's a fatal mistake. */
if (head >= vq->vring.num) {
fprintf(stderr, "Guest says index %u is available", head);
exit(1);
}
return head;
}
static unsigned virtqueue_next_desc(target_phys_addr_t desc_pa,
unsigned int i, unsigned int max)
{
unsigned int next;
/* If this descriptor says it doesn't chain, we're done. */
if (!(vring_desc_flags(desc_pa, i) & VRING_DESC_F_NEXT))
return max;
/* Check they're not leading us off end of descriptors. */
next = vring_desc_next(desc_pa, i);
/* Make sure compiler knows to grab that: we don't want it changing! */
wmb();
if (next >= max) {
fprintf(stderr, "Desc next is %u", next);
exit(1);
}
return next;
}
int virtqueue_avail_bytes(VirtQueue *vq, int in_bytes, int out_bytes)
{
unsigned int idx;
int total_bufs, in_total, out_total;
idx = vq->last_avail_idx;
total_bufs = in_total = out_total = 0;
while (virtqueue_num_heads(vq, idx)) {
unsigned int max, num_bufs, indirect = 0;
target_phys_addr_t desc_pa;
int i;
max = vq->vring.num;
num_bufs = total_bufs;
i = virtqueue_get_head(vq, idx++);
desc_pa = vq->vring.desc;
if (vring_desc_flags(desc_pa, i) & VRING_DESC_F_INDIRECT) {
if (vring_desc_len(desc_pa, i) % sizeof(VRingDesc)) {
fprintf(stderr, "Invalid size for indirect buffer table\n");
exit(1);
}
/* If we've got too many, that implies a descriptor loop. */
if (num_bufs >= max) {
fprintf(stderr, "Looped descriptor");
exit(1);
}
/* loop over the indirect descriptor table */
indirect = 1;
max = vring_desc_len(desc_pa, i) / sizeof(VRingDesc);
num_bufs = i = 0;
desc_pa = vring_desc_addr(desc_pa, i);
}
do {
/* If we've got too many, that implies a descriptor loop. */
if (++num_bufs > max) {
fprintf(stderr, "Looped descriptor");
exit(1);
}
if (vring_desc_flags(desc_pa, i) & VRING_DESC_F_WRITE) {
if (in_bytes > 0 &&
(in_total += vring_desc_len(desc_pa, i)) >= in_bytes)
return 1;
} else {
if (out_bytes > 0 &&
(out_total += vring_desc_len(desc_pa, i)) >= out_bytes)
return 1;
}
} while ((i = virtqueue_next_desc(desc_pa, i, max)) != max);
if (!indirect)
total_bufs = num_bufs;
else
total_bufs++;
}
return 0;
}
int virtqueue_pop(VirtQueue *vq, VirtQueueElement *elem)
{
unsigned int i, head, max;
target_phys_addr_t desc_pa = vq->vring.desc;
target_phys_addr_t len;
if (!virtqueue_num_heads(vq, vq->last_avail_idx))
return 0;
/* When we start there are none of either input nor output. */
elem->out_num = elem->in_num = 0;
max = vq->vring.num;
i = head = virtqueue_get_head(vq, vq->last_avail_idx++);
if (vring_desc_flags(desc_pa, i) & VRING_DESC_F_INDIRECT) {
if (vring_desc_len(desc_pa, i) % sizeof(VRingDesc)) {
fprintf(stderr, "Invalid size for indirect buffer table\n");
exit(1);
}
/* loop over the indirect descriptor table */
max = vring_desc_len(desc_pa, i) / sizeof(VRingDesc);
desc_pa = vring_desc_addr(desc_pa, i);
i = 0;
}
do {
struct iovec *sg;
int is_write = 0;
if (vring_desc_flags(desc_pa, i) & VRING_DESC_F_WRITE) {
elem->in_addr[elem->in_num] = vring_desc_addr(desc_pa, i);
sg = &elem->in_sg[elem->in_num++];
is_write = 1;
} else
sg = &elem->out_sg[elem->out_num++];
/* Grab the first descriptor, and check it's OK. */
sg->iov_len = vring_desc_len(desc_pa, i);
len = sg->iov_len;
sg->iov_base = cpu_physical_memory_map(vring_desc_addr(desc_pa, i),
&len, is_write);
if (sg->iov_base == NULL || len != sg->iov_len) {
fprintf(stderr, "virtio: trying to map MMIO memory\n");
exit(1);
}
/* If we've got too many, that implies a descriptor loop. */
if ((elem->in_num + elem->out_num) > max) {
fprintf(stderr, "Looped descriptor");
exit(1);
}
} while ((i = virtqueue_next_desc(desc_pa, i, max)) != max);
elem->index = head;
vq->inuse++;
return elem->in_num + elem->out_num;
}
/* virtio device */
static void virtio_notify_vector(VirtIODevice *vdev, uint16_t vector)
{
if (vdev->binding->notify) {
vdev->binding->notify(vdev->binding_opaque, vector);
}
}
void virtio_update_irq(VirtIODevice *vdev)
{
virtio_notify_vector(vdev, VIRTIO_NO_VECTOR);
}
void virtio_reset(void *opaque)
{
VirtIODevice *vdev = opaque;
int i;
if (vdev->reset)
vdev->reset(vdev);
vdev->features = 0;
vdev->queue_sel = 0;
vdev->status = 0;
vdev->isr = 0;
vdev->config_vector = VIRTIO_NO_VECTOR;
virtio_notify_vector(vdev, vdev->config_vector);
for(i = 0; i < VIRTIO_PCI_QUEUE_MAX; i++) {
vdev->vq[i].vring.desc = 0;
vdev->vq[i].vring.avail = 0;
vdev->vq[i].vring.used = 0;
vdev->vq[i].last_avail_idx = 0;
vdev->vq[i].pa = 0;
vdev->vq[i].vector = VIRTIO_NO_VECTOR;
}
}
uint32_t virtio_config_readb(VirtIODevice *vdev, uint32_t addr)
{
uint8_t val;
vdev->get_config(vdev, vdev->config);
if (addr > (vdev->config_len - sizeof(val)))
return (uint32_t)-1;
memcpy(&val, vdev->config + addr, sizeof(val));
return val;
}
uint32_t virtio_config_readw(VirtIODevice *vdev, uint32_t addr)
{
uint16_t val;
vdev->get_config(vdev, vdev->config);
if (addr > (vdev->config_len - sizeof(val)))
return (uint32_t)-1;
memcpy(&val, vdev->config + addr, sizeof(val));
return val;
}
uint32_t virtio_config_readl(VirtIODevice *vdev, uint32_t addr)
{
uint32_t val;
vdev->get_config(vdev, vdev->config);
if (addr > (vdev->config_len - sizeof(val)))
return (uint32_t)-1;
memcpy(&val, vdev->config + addr, sizeof(val));
return val;
}
void virtio_config_writeb(VirtIODevice *vdev, uint32_t addr, uint32_t data)
{
uint8_t val = data;
if (addr > (vdev->config_len - sizeof(val)))
return;
memcpy(vdev->config + addr, &val, sizeof(val));
if (vdev->set_config)
vdev->set_config(vdev, vdev->config);
}
void virtio_config_writew(VirtIODevice *vdev, uint32_t addr, uint32_t data)
{
uint16_t val = data;
if (addr > (vdev->config_len - sizeof(val)))
return;
memcpy(vdev->config + addr, &val, sizeof(val));
if (vdev->set_config)
vdev->set_config(vdev, vdev->config);
}
void virtio_config_writel(VirtIODevice *vdev, uint32_t addr, uint32_t data)
{
uint32_t val = data;
if (addr > (vdev->config_len - sizeof(val)))
return;
memcpy(vdev->config + addr, &val, sizeof(val));
if (vdev->set_config)
vdev->set_config(vdev, vdev->config);
}
void virtio_queue_set_addr(VirtIODevice *vdev, int n, target_phys_addr_t addr)
{
vdev->vq[n].pa = addr;
virtqueue_init(&vdev->vq[n]);
}
target_phys_addr_t virtio_queue_get_addr(VirtIODevice *vdev, int n)
{
return vdev->vq[n].pa;
}
int virtio_queue_get_num(VirtIODevice *vdev, int n)
{
return vdev->vq[n].vring.num;
}
void virtio_queue_notify(VirtIODevice *vdev, int n)
{
if (n < VIRTIO_PCI_QUEUE_MAX && vdev->vq[n].vring.desc) {
vdev->vq[n].handle_output(vdev, &vdev->vq[n]);
}
}
uint16_t virtio_queue_vector(VirtIODevice *vdev, int n)
{
return n < VIRTIO_PCI_QUEUE_MAX ? vdev->vq[n].vector :
VIRTIO_NO_VECTOR;
}
void virtio_queue_set_vector(VirtIODevice *vdev, int n, uint16_t vector)
{
if (n < VIRTIO_PCI_QUEUE_MAX)
vdev->vq[n].vector = vector;
}
VirtQueue *virtio_add_queue(VirtIODevice *vdev, int queue_size,
void (*handle_output)(VirtIODevice *, VirtQueue *))
{
int i;
for (i = 0; i < VIRTIO_PCI_QUEUE_MAX; i++) {
if (vdev->vq[i].vring.num == 0)
break;
}
if (i == VIRTIO_PCI_QUEUE_MAX || queue_size > VIRTQUEUE_MAX_SIZE)
abort();
vdev->vq[i].vring.num = queue_size;
vdev->vq[i].handle_output = handle_output;
return &vdev->vq[i];
}
void virtio_notify(VirtIODevice *vdev, VirtQueue *vq)
{
/* Always notify when queue is empty (when feature acknowledge) */
if ((vring_avail_flags(vq) & VRING_AVAIL_F_NO_INTERRUPT) &&
(!(vdev->features & (1 << VIRTIO_F_NOTIFY_ON_EMPTY)) ||
(vq->inuse || vring_avail_idx(vq) != vq->last_avail_idx)))
return;
vdev->isr |= 0x01;
virtio_notify_vector(vdev, vq->vector);
}
void virtio_notify_config(VirtIODevice *vdev)
{
if (!(vdev->status & VIRTIO_CONFIG_S_DRIVER_OK))
return;
vdev->isr |= 0x03;
virtio_notify_vector(vdev, vdev->config_vector);
}
void virtio_save(VirtIODevice *vdev, QEMUFile *f)
{
int i;
if (vdev->binding->save_config)
vdev->binding->save_config(vdev->binding_opaque, f);
qemu_put_8s(f, &vdev->status);
qemu_put_8s(f, &vdev->isr);
qemu_put_be16s(f, &vdev->queue_sel);
qemu_put_be32s(f, &vdev->features);
qemu_put_be32(f, vdev->config_len);
qemu_put_buffer(f, vdev->config, vdev->config_len);
for (i = 0; i < VIRTIO_PCI_QUEUE_MAX; i++) {
if (vdev->vq[i].vring.num == 0)
break;
}
qemu_put_be32(f, i);
for (i = 0; i < VIRTIO_PCI_QUEUE_MAX; i++) {
if (vdev->vq[i].vring.num == 0)
break;
qemu_put_be32(f, vdev->vq[i].vring.num);
qemu_put_be64(f, vdev->vq[i].pa);
qemu_put_be16s(f, &vdev->vq[i].last_avail_idx);
if (vdev->binding->save_queue)
vdev->binding->save_queue(vdev->binding_opaque, i, f);
}
}
int virtio_load(VirtIODevice *vdev, QEMUFile *f)
{
int num, i, ret;
uint32_t features;
uint32_t supported_features = vdev->get_features(vdev) |
vdev->binding->get_features(vdev->binding_opaque);
if (vdev->binding->load_config) {
ret = vdev->binding->load_config(vdev->binding_opaque, f);
if (ret)
return ret;
}
qemu_get_8s(f, &vdev->status);
qemu_get_8s(f, &vdev->isr);
qemu_get_be16s(f, &vdev->queue_sel);
qemu_get_be32s(f, &features);
if (features & ~supported_features) {
fprintf(stderr, "Features 0x%x unsupported. Allowed features: 0x%x\n",
features, supported_features);
return -1;
}
vdev->features = features;
vdev->config_len = qemu_get_be32(f);
qemu_get_buffer(f, vdev->config, vdev->config_len);
num = qemu_get_be32(f);
for (i = 0; i < num; i++) {
vdev->vq[i].vring.num = qemu_get_be32(f);
vdev->vq[i].pa = qemu_get_be64(f);
qemu_get_be16s(f, &vdev->vq[i].last_avail_idx);
if (vdev->vq[i].pa) {
virtqueue_init(&vdev->vq[i]);
}
if (vdev->binding->load_queue) {
ret = vdev->binding->load_queue(vdev->binding_opaque, i, f);
if (ret)
return ret;
}
}
virtio_notify_vector(vdev, VIRTIO_NO_VECTOR);
return 0;
}
void virtio_cleanup(VirtIODevice *vdev)
{
if (vdev->config)
qemu_free(vdev->config);
qemu_free(vdev->vq);
}
VirtIODevice *virtio_common_init(const char *name, uint16_t device_id,
size_t config_size, size_t struct_size)
{
VirtIODevice *vdev;
int i;
vdev = qemu_mallocz(struct_size);
vdev->device_id = device_id;
vdev->status = 0;
vdev->isr = 0;
vdev->queue_sel = 0;
vdev->config_vector = VIRTIO_NO_VECTOR;
vdev->vq = qemu_mallocz(sizeof(VirtQueue) * VIRTIO_PCI_QUEUE_MAX);
for(i = 0; i < VIRTIO_PCI_QUEUE_MAX; i++)
vdev->vq[i].vector = VIRTIO_NO_VECTOR;
vdev->name = name;
vdev->config_len = config_size;
if (vdev->config_len)
vdev->config = qemu_mallocz(config_size);
else
vdev->config = NULL;
return vdev;
}
void virtio_bind_device(VirtIODevice *vdev, const VirtIOBindings *binding,
void *opaque)
{
vdev->binding = binding;
vdev->binding_opaque = opaque;
}