qemu/hw/sun4u.c
aliguori 492c30af25 Make DMA bottom-half driven (v2)
The current DMA routines are driven by a call in main_loop_wait() after every
select.

This patch converts the DMA code to be driven by a constantly rescheduled
bottom half.  The advantage of using a scheduled bottom half is that we can
stop scheduling the bottom half when there no DMA channels are runnable.  This
means we can potentially detect this case and sleep longer in the main loop.

The only two architectures implementing DMA_run() are cris and i386.  For cris,
I converted it to a simple repeating bottom half.  I've only compile tested
this as cris does not seem to work on a 64-bit host.  It should be functionally
identical to the previous implementation so I expect it to work.

For x86, I've made sure to only fire the DMA bottom half if there is a DMA
channel that is runnable.  The effect of this is that unless you're using sb16
or a floppy disk, the DMA bottom half never fires.

You probably should test this malc.  My own benchmarks actually show slight
improvement by it's possible the change in timing could affect your demos.

Since v1, I've changed the code to use a BH instead of a timer.  cris at least
seems to depend on faster than 10ms polling.

Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>



git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@5573 c046a42c-6fe2-441c-8c8c-71466251a162
2008-10-31 17:25:56 +00:00

611 lines
20 KiB
C

/*
* QEMU Sun4u/Sun4v System Emulator
*
* Copyright (c) 2005 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "hw.h"
#include "pci.h"
#include "pc.h"
#include "nvram.h"
#include "fdc.h"
#include "net.h"
#include "qemu-timer.h"
#include "sysemu.h"
#include "boards.h"
#include "firmware_abi.h"
#include "fw_cfg.h"
//#define DEBUG_IRQ
#ifdef DEBUG_IRQ
#define DPRINTF(fmt, args...) \
do { printf("CPUIRQ: " fmt , ##args); } while (0)
#else
#define DPRINTF(fmt, args...)
#endif
#define KERNEL_LOAD_ADDR 0x00404000
#define CMDLINE_ADDR 0x003ff000
#define INITRD_LOAD_ADDR 0x00300000
#define PROM_SIZE_MAX (4 * 1024 * 1024)
#define PROM_VADDR 0x000ffd00000ULL
#define APB_SPECIAL_BASE 0x1fe00000000ULL
#define APB_MEM_BASE 0x1ff00000000ULL
#define VGA_BASE (APB_MEM_BASE + 0x400000ULL)
#define PROM_FILENAME "openbios-sparc64"
#define NVRAM_SIZE 0x2000
#define MAX_IDE_BUS 2
#define BIOS_CFG_IOPORT 0x510
#define MAX_PILS 16
struct hwdef {
const char * const default_cpu_model;
uint16_t machine_id;
uint64_t prom_addr;
uint64_t console_serial_base;
};
int DMA_get_channel_mode (int nchan)
{
return 0;
}
int DMA_read_memory (int nchan, void *buf, int pos, int size)
{
return 0;
}
int DMA_write_memory (int nchan, void *buf, int pos, int size)
{
return 0;
}
void DMA_hold_DREQ (int nchan) {}
void DMA_release_DREQ (int nchan) {}
void DMA_schedule(int nchan) {}
void DMA_init (int high_page_enable) {}
void DMA_register_channel (int nchan,
DMA_transfer_handler transfer_handler,
void *opaque)
{
}
static int nvram_boot_set(void *opaque, const char *boot_device)
{
unsigned int i;
uint8_t image[sizeof(ohwcfg_v3_t)];
ohwcfg_v3_t *header = (ohwcfg_v3_t *)&image;
m48t59_t *nvram = (m48t59_t *)opaque;
for (i = 0; i < sizeof(image); i++)
image[i] = m48t59_read(nvram, i) & 0xff;
pstrcpy((char *)header->boot_devices, sizeof(header->boot_devices),
boot_device);
header->nboot_devices = strlen(boot_device) & 0xff;
header->crc = cpu_to_be16(OHW_compute_crc(header, 0x00, 0xF8));
for (i = 0; i < sizeof(image); i++)
m48t59_write(nvram, i, image[i]);
return 0;
}
static int sun4u_NVRAM_set_params (m48t59_t *nvram, uint16_t NVRAM_size,
const char *arch,
ram_addr_t RAM_size,
const char *boot_devices,
uint32_t kernel_image, uint32_t kernel_size,
const char *cmdline,
uint32_t initrd_image, uint32_t initrd_size,
uint32_t NVRAM_image,
int width, int height, int depth,
const uint8_t *macaddr)
{
unsigned int i;
uint32_t start, end;
uint8_t image[0x1ff0];
ohwcfg_v3_t *header = (ohwcfg_v3_t *)&image;
struct sparc_arch_cfg *sparc_header;
struct OpenBIOS_nvpart_v1 *part_header;
memset(image, '\0', sizeof(image));
// Try to match PPC NVRAM
pstrcpy((char *)header->struct_ident, sizeof(header->struct_ident),
"QEMU_BIOS");
header->struct_version = cpu_to_be32(3); /* structure v3 */
header->nvram_size = cpu_to_be16(NVRAM_size);
header->nvram_arch_ptr = cpu_to_be16(sizeof(ohwcfg_v3_t));
header->nvram_arch_size = cpu_to_be16(sizeof(struct sparc_arch_cfg));
pstrcpy((char *)header->arch, sizeof(header->arch), arch);
header->nb_cpus = smp_cpus & 0xff;
header->RAM0_base = 0;
header->RAM0_size = cpu_to_be64((uint64_t)RAM_size);
pstrcpy((char *)header->boot_devices, sizeof(header->boot_devices),
boot_devices);
header->nboot_devices = strlen(boot_devices) & 0xff;
header->kernel_image = cpu_to_be64((uint64_t)kernel_image);
header->kernel_size = cpu_to_be64((uint64_t)kernel_size);
if (cmdline) {
pstrcpy_targphys(CMDLINE_ADDR, TARGET_PAGE_SIZE, cmdline);
header->cmdline = cpu_to_be64((uint64_t)CMDLINE_ADDR);
header->cmdline_size = cpu_to_be64((uint64_t)strlen(cmdline));
}
header->initrd_image = cpu_to_be64((uint64_t)initrd_image);
header->initrd_size = cpu_to_be64((uint64_t)initrd_size);
header->NVRAM_image = cpu_to_be64((uint64_t)NVRAM_image);
header->width = cpu_to_be16(width);
header->height = cpu_to_be16(height);
header->depth = cpu_to_be16(depth);
if (nographic)
header->graphic_flags = cpu_to_be16(OHW_GF_NOGRAPHICS);
header->crc = cpu_to_be16(OHW_compute_crc(header, 0x00, 0xF8));
// Architecture specific header
start = sizeof(ohwcfg_v3_t);
sparc_header = (struct sparc_arch_cfg *)&image[start];
sparc_header->valid = 0;
start += sizeof(struct sparc_arch_cfg);
// OpenBIOS nvram variables
// Variable partition
part_header = (struct OpenBIOS_nvpart_v1 *)&image[start];
part_header->signature = OPENBIOS_PART_SYSTEM;
pstrcpy(part_header->name, sizeof(part_header->name), "system");
end = start + sizeof(struct OpenBIOS_nvpart_v1);
for (i = 0; i < nb_prom_envs; i++)
end = OpenBIOS_set_var(image, end, prom_envs[i]);
// End marker
image[end++] = '\0';
end = start + ((end - start + 15) & ~15);
OpenBIOS_finish_partition(part_header, end - start);
// free partition
start = end;
part_header = (struct OpenBIOS_nvpart_v1 *)&image[start];
part_header->signature = OPENBIOS_PART_FREE;
pstrcpy(part_header->name, sizeof(part_header->name), "free");
end = 0x1fd0;
OpenBIOS_finish_partition(part_header, end - start);
Sun_init_header((struct Sun_nvram *)&image[0x1fd8], macaddr, 0x80);
for (i = 0; i < sizeof(image); i++)
m48t59_write(nvram, i, image[i]);
qemu_register_boot_set(nvram_boot_set, nvram);
return 0;
}
void pic_info(void)
{
}
void irq_info(void)
{
}
void cpu_check_irqs(CPUState *env)
{
uint32_t pil = env->pil_in | (env->softint & ~SOFTINT_TIMER) |
((env->softint & SOFTINT_TIMER) << 14);
if (pil && (env->interrupt_index == 0 ||
(env->interrupt_index & ~15) == TT_EXTINT)) {
unsigned int i;
for (i = 15; i > 0; i--) {
if (pil & (1 << i)) {
int old_interrupt = env->interrupt_index;
env->interrupt_index = TT_EXTINT | i;
if (old_interrupt != env->interrupt_index) {
DPRINTF("Set CPU IRQ %d\n", i);
cpu_interrupt(env, CPU_INTERRUPT_HARD);
}
break;
}
}
} else if (!pil && (env->interrupt_index & ~15) == TT_EXTINT) {
DPRINTF("Reset CPU IRQ %d\n", env->interrupt_index & 15);
env->interrupt_index = 0;
cpu_reset_interrupt(env, CPU_INTERRUPT_HARD);
}
}
static void cpu_set_irq(void *opaque, int irq, int level)
{
CPUState *env = opaque;
if (level) {
DPRINTF("Raise CPU IRQ %d\n", irq);
env->halted = 0;
env->pil_in |= 1 << irq;
cpu_check_irqs(env);
} else {
DPRINTF("Lower CPU IRQ %d\n", irq);
env->pil_in &= ~(1 << irq);
cpu_check_irqs(env);
}
}
void qemu_system_powerdown(void)
{
}
typedef struct ResetData {
CPUState *env;
uint64_t reset_addr;
} ResetData;
static void main_cpu_reset(void *opaque)
{
ResetData *s = (ResetData *)opaque;
CPUState *env = s->env;
cpu_reset(env);
ptimer_set_limit(env->tick, 0x7fffffffffffffffULL, 1);
ptimer_run(env->tick, 0);
ptimer_set_limit(env->stick, 0x7fffffffffffffffULL, 1);
ptimer_run(env->stick, 0);
ptimer_set_limit(env->hstick, 0x7fffffffffffffffULL, 1);
ptimer_run(env->hstick, 0);
env->gregs[1] = 0; // Memory start
env->gregs[2] = ram_size; // Memory size
env->gregs[3] = 0; // Machine description XXX
env->pc = s->reset_addr;
env->npc = env->pc + 4;
}
static void tick_irq(void *opaque)
{
CPUState *env = opaque;
env->softint |= SOFTINT_TIMER;
cpu_interrupt(env, CPU_INTERRUPT_TIMER);
}
static void stick_irq(void *opaque)
{
CPUState *env = opaque;
env->softint |= SOFTINT_TIMER;
cpu_interrupt(env, CPU_INTERRUPT_TIMER);
}
static void hstick_irq(void *opaque)
{
CPUState *env = opaque;
env->softint |= SOFTINT_TIMER;
cpu_interrupt(env, CPU_INTERRUPT_TIMER);
}
void cpu_tick_set_count(void *opaque, uint64_t count)
{
ptimer_set_count(opaque, -count);
}
uint64_t cpu_tick_get_count(void *opaque)
{
return -ptimer_get_count(opaque);
}
void cpu_tick_set_limit(void *opaque, uint64_t limit)
{
ptimer_set_limit(opaque, -limit, 0);
}
static const int ide_iobase[2] = { 0x1f0, 0x170 };
static const int ide_iobase2[2] = { 0x3f6, 0x376 };
static const int ide_irq[2] = { 14, 15 };
static const int serial_io[MAX_SERIAL_PORTS] = { 0x3f8, 0x2f8, 0x3e8, 0x2e8 };
static const int serial_irq[MAX_SERIAL_PORTS] = { 4, 3, 4, 3 };
static const int parallel_io[MAX_PARALLEL_PORTS] = { 0x378, 0x278, 0x3bc };
static const int parallel_irq[MAX_PARALLEL_PORTS] = { 7, 7, 7 };
static fdctrl_t *floppy_controller;
static void sun4uv_init(ram_addr_t RAM_size, int vga_ram_size,
const char *boot_devices, DisplayState *ds,
const char *kernel_filename, const char *kernel_cmdline,
const char *initrd_filename, const char *cpu_model,
const struct hwdef *hwdef)
{
CPUState *env;
char buf[1024];
m48t59_t *nvram;
int ret, linux_boot;
unsigned int i;
long prom_offset, initrd_size, kernel_size;
PCIBus *pci_bus;
QEMUBH *bh;
qemu_irq *irq;
int drive_index;
BlockDriverState *hd[MAX_IDE_BUS * MAX_IDE_DEVS];
BlockDriverState *fd[MAX_FD];
void *fw_cfg;
ResetData *reset_info;
linux_boot = (kernel_filename != NULL);
/* init CPUs */
if (!cpu_model)
cpu_model = hwdef->default_cpu_model;
env = cpu_init(cpu_model);
if (!env) {
fprintf(stderr, "Unable to find Sparc CPU definition\n");
exit(1);
}
bh = qemu_bh_new(tick_irq, env);
env->tick = ptimer_init(bh);
ptimer_set_period(env->tick, 1ULL);
bh = qemu_bh_new(stick_irq, env);
env->stick = ptimer_init(bh);
ptimer_set_period(env->stick, 1ULL);
bh = qemu_bh_new(hstick_irq, env);
env->hstick = ptimer_init(bh);
ptimer_set_period(env->hstick, 1ULL);
reset_info = qemu_mallocz(sizeof(ResetData));
reset_info->env = env;
reset_info->reset_addr = hwdef->prom_addr + 0x40ULL;
qemu_register_reset(main_cpu_reset, reset_info);
main_cpu_reset(reset_info);
// Override warm reset address with cold start address
env->pc = hwdef->prom_addr + 0x20ULL;
env->npc = env->pc + 4;
/* allocate RAM */
cpu_register_physical_memory(0, RAM_size, 0);
prom_offset = RAM_size + vga_ram_size;
cpu_register_physical_memory(hwdef->prom_addr,
(PROM_SIZE_MAX + TARGET_PAGE_SIZE) &
TARGET_PAGE_MASK,
prom_offset | IO_MEM_ROM);
if (bios_name == NULL)
bios_name = PROM_FILENAME;
snprintf(buf, sizeof(buf), "%s/%s", bios_dir, bios_name);
ret = load_elf(buf, hwdef->prom_addr - PROM_VADDR, NULL, NULL, NULL);
if (ret < 0) {
ret = load_image_targphys(buf, hwdef->prom_addr,
(PROM_SIZE_MAX + TARGET_PAGE_SIZE) &
TARGET_PAGE_MASK);
if (ret < 0) {
fprintf(stderr, "qemu: could not load prom '%s'\n",
buf);
exit(1);
}
}
kernel_size = 0;
initrd_size = 0;
if (linux_boot) {
/* XXX: put correct offset */
kernel_size = load_elf(kernel_filename, 0, NULL, NULL, NULL);
if (kernel_size < 0)
kernel_size = load_aout(kernel_filename, KERNEL_LOAD_ADDR,
ram_size - KERNEL_LOAD_ADDR);
if (kernel_size < 0)
kernel_size = load_image_targphys(kernel_filename,
KERNEL_LOAD_ADDR,
ram_size - KERNEL_LOAD_ADDR);
if (kernel_size < 0) {
fprintf(stderr, "qemu: could not load kernel '%s'\n",
kernel_filename);
exit(1);
}
/* load initrd */
if (initrd_filename) {
initrd_size = load_image_targphys(initrd_filename,
INITRD_LOAD_ADDR,
ram_size - INITRD_LOAD_ADDR);
if (initrd_size < 0) {
fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
initrd_filename);
exit(1);
}
}
if (initrd_size > 0) {
for (i = 0; i < 64 * TARGET_PAGE_SIZE; i += TARGET_PAGE_SIZE) {
if (ldl_phys(KERNEL_LOAD_ADDR + i) == 0x48647253) { // HdrS
stl_phys(KERNEL_LOAD_ADDR + i + 16, INITRD_LOAD_ADDR);
stl_phys(KERNEL_LOAD_ADDR + i + 20, initrd_size);
break;
}
}
}
}
pci_bus = pci_apb_init(APB_SPECIAL_BASE, APB_MEM_BASE, NULL);
isa_mem_base = VGA_BASE;
pci_cirrus_vga_init(pci_bus, ds, phys_ram_base + RAM_size, RAM_size,
vga_ram_size);
i = 0;
if (hwdef->console_serial_base) {
serial_mm_init(hwdef->console_serial_base, 0, NULL, 115200,
serial_hds[i], 1);
i++;
}
for(; i < MAX_SERIAL_PORTS; i++) {
if (serial_hds[i]) {
serial_init(serial_io[i], NULL/*serial_irq[i]*/, 115200,
serial_hds[i]);
}
}
for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
if (parallel_hds[i]) {
parallel_init(parallel_io[i], NULL/*parallel_irq[i]*/,
parallel_hds[i]);
}
}
for(i = 0; i < nb_nics; i++) {
if (!nd_table[i].model)
nd_table[i].model = "ne2k_pci";
pci_nic_init(pci_bus, &nd_table[i], -1);
}
irq = qemu_allocate_irqs(cpu_set_irq, env, MAX_PILS);
if (drive_get_max_bus(IF_IDE) >= MAX_IDE_BUS) {
fprintf(stderr, "qemu: too many IDE bus\n");
exit(1);
}
for(i = 0; i < MAX_IDE_BUS * MAX_IDE_DEVS; i++) {
drive_index = drive_get_index(IF_IDE, i / MAX_IDE_DEVS,
i % MAX_IDE_DEVS);
if (drive_index != -1)
hd[i] = drives_table[drive_index].bdrv;
else
hd[i] = NULL;
}
// XXX pci_cmd646_ide_init(pci_bus, hd, 1);
pci_piix3_ide_init(pci_bus, hd, -1, irq);
/* FIXME: wire up interrupts. */
i8042_init(NULL/*1*/, NULL/*12*/, 0x60);
for(i = 0; i < MAX_FD; i++) {
drive_index = drive_get_index(IF_FLOPPY, 0, i);
if (drive_index != -1)
fd[i] = drives_table[drive_index].bdrv;
else
fd[i] = NULL;
}
floppy_controller = fdctrl_init(NULL/*6*/, 2, 0, 0x3f0, fd);
nvram = m48t59_init(NULL/*8*/, 0, 0x0074, NVRAM_SIZE, 59);
sun4u_NVRAM_set_params(nvram, NVRAM_SIZE, "Sun4u", RAM_size, boot_devices,
KERNEL_LOAD_ADDR, kernel_size,
kernel_cmdline,
INITRD_LOAD_ADDR, initrd_size,
/* XXX: need an option to load a NVRAM image */
0,
graphic_width, graphic_height, graphic_depth,
(uint8_t *)&nd_table[0].macaddr);
fw_cfg = fw_cfg_init(BIOS_CFG_IOPORT, BIOS_CFG_IOPORT + 1, 0, 0);
fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1);
fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
fw_cfg_add_i16(fw_cfg, FW_CFG_MACHINE_ID, hwdef->machine_id);
}
enum {
sun4u_id = 0,
sun4v_id = 64,
niagara_id,
};
static const struct hwdef hwdefs[] = {
/* Sun4u generic PC-like machine */
{
.default_cpu_model = "TI UltraSparc II",
.machine_id = sun4u_id,
.prom_addr = 0x1fff0000000ULL,
.console_serial_base = 0,
},
/* Sun4v generic PC-like machine */
{
.default_cpu_model = "Sun UltraSparc T1",
.machine_id = sun4v_id,
.prom_addr = 0x1fff0000000ULL,
.console_serial_base = 0,
},
/* Sun4v generic Niagara machine */
{
.default_cpu_model = "Sun UltraSparc T1",
.machine_id = niagara_id,
.prom_addr = 0xfff0000000ULL,
.console_serial_base = 0xfff0c2c000ULL,
},
};
/* Sun4u hardware initialisation */
static void sun4u_init(ram_addr_t RAM_size, int vga_ram_size,
const char *boot_devices, DisplayState *ds,
const char *kernel_filename, const char *kernel_cmdline,
const char *initrd_filename, const char *cpu_model)
{
sun4uv_init(RAM_size, vga_ram_size, boot_devices, ds, kernel_filename,
kernel_cmdline, initrd_filename, cpu_model, &hwdefs[0]);
}
/* Sun4v hardware initialisation */
static void sun4v_init(ram_addr_t RAM_size, int vga_ram_size,
const char *boot_devices, DisplayState *ds,
const char *kernel_filename, const char *kernel_cmdline,
const char *initrd_filename, const char *cpu_model)
{
sun4uv_init(RAM_size, vga_ram_size, boot_devices, ds, kernel_filename,
kernel_cmdline, initrd_filename, cpu_model, &hwdefs[1]);
}
/* Niagara hardware initialisation */
static void niagara_init(ram_addr_t RAM_size, int vga_ram_size,
const char *boot_devices, DisplayState *ds,
const char *kernel_filename, const char *kernel_cmdline,
const char *initrd_filename, const char *cpu_model)
{
sun4uv_init(RAM_size, vga_ram_size, boot_devices, ds, kernel_filename,
kernel_cmdline, initrd_filename, cpu_model, &hwdefs[2]);
}
QEMUMachine sun4u_machine = {
.name = "sun4u",
.desc = "Sun4u platform",
.init = sun4u_init,
.ram_require = PROM_SIZE_MAX + VGA_RAM_SIZE,
.nodisk_ok = 1,
.max_cpus = 16,
};
QEMUMachine sun4v_machine = {
.name = "sun4v",
.desc = "Sun4v platform",
.init = sun4v_init,
.ram_require = PROM_SIZE_MAX + VGA_RAM_SIZE,
.nodisk_ok = 1,
.max_cpus = 16,
};
QEMUMachine niagara_machine = {
.name = "Niagara",
.desc = "Sun4v platform, Niagara",
.init = niagara_init,
.ram_require = PROM_SIZE_MAX + VGA_RAM_SIZE,
.nodisk_ok = 1,
.max_cpus = 16,
};