qemu/hw/timer/cmsdk-apb-dualtimer.c
Peter Maydell 38867d0b7e arm: Remove frq properties on CMSDK timer, dualtimer, watchdog, ARMSSE
Now no users are setting the frq properties on the CMSDK timer,
dualtimer, watchdog or ARMSSE SoC devices, we can remove the
properties and the struct fields that back them.

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Reviewed-by: Luc Michel <luc@lmichel.fr>
Tested-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Message-id: 20210128114145.20536-25-peter.maydell@linaro.org
Message-id: 20210121190622.22000-25-peter.maydell@linaro.org
2021-01-29 15:54:44 +00:00

559 lines
17 KiB
C

/*
* ARM CMSDK APB dual-timer emulation
*
* Copyright (c) 2018 Linaro Limited
* Written by Peter Maydell
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 or
* (at your option) any later version.
*/
/*
* This is a model of the "APB dual-input timer" which is part of the Cortex-M
* System Design Kit (CMSDK) and documented in the Cortex-M System
* Design Kit Technical Reference Manual (ARM DDI0479C):
* https://developer.arm.com/products/system-design/system-design-kits/cortex-m-system-design-kit
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "trace.h"
#include "qapi/error.h"
#include "qemu/module.h"
#include "hw/sysbus.h"
#include "hw/irq.h"
#include "hw/qdev-properties.h"
#include "hw/registerfields.h"
#include "hw/qdev-clock.h"
#include "hw/timer/cmsdk-apb-dualtimer.h"
#include "migration/vmstate.h"
REG32(TIMER1LOAD, 0x0)
REG32(TIMER1VALUE, 0x4)
REG32(TIMER1CONTROL, 0x8)
FIELD(CONTROL, ONESHOT, 0, 1)
FIELD(CONTROL, SIZE, 1, 1)
FIELD(CONTROL, PRESCALE, 2, 2)
FIELD(CONTROL, INTEN, 5, 1)
FIELD(CONTROL, MODE, 6, 1)
FIELD(CONTROL, ENABLE, 7, 1)
#define R_CONTROL_VALID_MASK (R_CONTROL_ONESHOT_MASK | R_CONTROL_SIZE_MASK | \
R_CONTROL_PRESCALE_MASK | R_CONTROL_INTEN_MASK | \
R_CONTROL_MODE_MASK | R_CONTROL_ENABLE_MASK)
REG32(TIMER1INTCLR, 0xc)
REG32(TIMER1RIS, 0x10)
REG32(TIMER1MIS, 0x14)
REG32(TIMER1BGLOAD, 0x18)
REG32(TIMER2LOAD, 0x20)
REG32(TIMER2VALUE, 0x24)
REG32(TIMER2CONTROL, 0x28)
REG32(TIMER2INTCLR, 0x2c)
REG32(TIMER2RIS, 0x30)
REG32(TIMER2MIS, 0x34)
REG32(TIMER2BGLOAD, 0x38)
REG32(TIMERITCR, 0xf00)
FIELD(TIMERITCR, ENABLE, 0, 1)
#define R_TIMERITCR_VALID_MASK R_TIMERITCR_ENABLE_MASK
REG32(TIMERITOP, 0xf04)
FIELD(TIMERITOP, TIMINT1, 0, 1)
FIELD(TIMERITOP, TIMINT2, 1, 1)
#define R_TIMERITOP_VALID_MASK (R_TIMERITOP_TIMINT1_MASK | \
R_TIMERITOP_TIMINT2_MASK)
REG32(PID4, 0xfd0)
REG32(PID5, 0xfd4)
REG32(PID6, 0xfd8)
REG32(PID7, 0xfdc)
REG32(PID0, 0xfe0)
REG32(PID1, 0xfe4)
REG32(PID2, 0xfe8)
REG32(PID3, 0xfec)
REG32(CID0, 0xff0)
REG32(CID1, 0xff4)
REG32(CID2, 0xff8)
REG32(CID3, 0xffc)
/* PID/CID values */
static const int timer_id[] = {
0x04, 0x00, 0x00, 0x00, /* PID4..PID7 */
0x23, 0xb8, 0x1b, 0x00, /* PID0..PID3 */
0x0d, 0xf0, 0x05, 0xb1, /* CID0..CID3 */
};
static bool cmsdk_dualtimermod_intstatus(CMSDKAPBDualTimerModule *m)
{
/* Return masked interrupt status for the timer module */
return m->intstatus && (m->control & R_CONTROL_INTEN_MASK);
}
static void cmsdk_apb_dualtimer_update(CMSDKAPBDualTimer *s)
{
bool timint1, timint2, timintc;
if (s->timeritcr) {
/* Integration test mode: outputs driven directly from TIMERITOP bits */
timint1 = s->timeritop & R_TIMERITOP_TIMINT1_MASK;
timint2 = s->timeritop & R_TIMERITOP_TIMINT2_MASK;
} else {
timint1 = cmsdk_dualtimermod_intstatus(&s->timermod[0]);
timint2 = cmsdk_dualtimermod_intstatus(&s->timermod[1]);
}
timintc = timint1 || timint2;
qemu_set_irq(s->timermod[0].timerint, timint1);
qemu_set_irq(s->timermod[1].timerint, timint2);
qemu_set_irq(s->timerintc, timintc);
}
static int cmsdk_dualtimermod_divisor(CMSDKAPBDualTimerModule *m)
{
/* Return the divisor set by the current CONTROL.PRESCALE value */
switch (FIELD_EX32(m->control, CONTROL, PRESCALE)) {
case 0:
return 1;
case 1:
return 16;
case 2:
case 3: /* UNDEFINED, we treat like 2 (and complained when it was set) */
return 256;
default:
g_assert_not_reached();
}
}
static void cmsdk_dualtimermod_write_control(CMSDKAPBDualTimerModule *m,
uint32_t newctrl)
{
/* Handle a write to the CONTROL register */
uint32_t changed;
ptimer_transaction_begin(m->timer);
newctrl &= R_CONTROL_VALID_MASK;
changed = m->control ^ newctrl;
if (changed & ~newctrl & R_CONTROL_ENABLE_MASK) {
/* ENABLE cleared, stop timer before any further changes */
ptimer_stop(m->timer);
}
if (changed & R_CONTROL_PRESCALE_MASK) {
int divisor;
switch (FIELD_EX32(newctrl, CONTROL, PRESCALE)) {
case 0:
divisor = 1;
break;
case 1:
divisor = 16;
break;
case 2:
divisor = 256;
break;
case 3:
/* UNDEFINED; complain, and arbitrarily treat like 2 */
qemu_log_mask(LOG_GUEST_ERROR,
"CMSDK APB dual-timer: CONTROL.PRESCALE==0b11"
" is undefined behaviour\n");
divisor = 256;
break;
default:
g_assert_not_reached();
}
ptimer_set_period_from_clock(m->timer, m->parent->timclk, divisor);
}
if (changed & R_CONTROL_MODE_MASK) {
uint32_t load;
if (newctrl & R_CONTROL_MODE_MASK) {
/* Periodic: the limit is the LOAD register value */
load = m->load;
} else {
/* Free-running: counter wraps around */
load = ptimer_get_limit(m->timer);
if (!(m->control & R_CONTROL_SIZE_MASK)) {
load = deposit32(m->load, 0, 16, load);
}
m->load = load;
load = 0xffffffff;
}
if (!(m->control & R_CONTROL_SIZE_MASK)) {
load &= 0xffff;
}
ptimer_set_limit(m->timer, load, 0);
}
if (changed & R_CONTROL_SIZE_MASK) {
/* Timer switched between 16 and 32 bit count */
uint32_t value, load;
value = ptimer_get_count(m->timer);
load = ptimer_get_limit(m->timer);
if (newctrl & R_CONTROL_SIZE_MASK) {
/* 16 -> 32, top half of VALUE is in struct field */
value = deposit32(m->value, 0, 16, value);
} else {
/* 32 -> 16: save top half to struct field and truncate */
m->value = value;
value &= 0xffff;
}
if (newctrl & R_CONTROL_MODE_MASK) {
/* Periodic, timer limit has LOAD value */
if (newctrl & R_CONTROL_SIZE_MASK) {
load = deposit32(m->load, 0, 16, load);
} else {
m->load = load;
load &= 0xffff;
}
} else {
/* Free-running, timer limit is set to give wraparound */
if (newctrl & R_CONTROL_SIZE_MASK) {
load = 0xffffffff;
} else {
load = 0xffff;
}
}
ptimer_set_count(m->timer, value);
ptimer_set_limit(m->timer, load, 0);
}
if (newctrl & R_CONTROL_ENABLE_MASK) {
/*
* ENABLE is set; start the timer after all other changes.
* We start it even if the ENABLE bit didn't actually change,
* in case the timer was an expired one-shot timer that has
* now been changed into a free-running or periodic timer.
*/
ptimer_run(m->timer, !!(newctrl & R_CONTROL_ONESHOT_MASK));
}
m->control = newctrl;
ptimer_transaction_commit(m->timer);
}
static uint64_t cmsdk_apb_dualtimer_read(void *opaque, hwaddr offset,
unsigned size)
{
CMSDKAPBDualTimer *s = CMSDK_APB_DUALTIMER(opaque);
uint64_t r;
if (offset >= A_TIMERITCR) {
switch (offset) {
case A_TIMERITCR:
r = s->timeritcr;
break;
case A_PID4 ... A_CID3:
r = timer_id[(offset - A_PID4) / 4];
break;
default:
bad_offset:
qemu_log_mask(LOG_GUEST_ERROR,
"CMSDK APB dual-timer read: bad offset %x\n",
(int) offset);
r = 0;
break;
}
} else {
int timer = offset >> 5;
CMSDKAPBDualTimerModule *m;
if (timer >= ARRAY_SIZE(s->timermod)) {
goto bad_offset;
}
m = &s->timermod[timer];
switch (offset & 0x1F) {
case A_TIMER1LOAD:
case A_TIMER1BGLOAD:
if (m->control & R_CONTROL_MODE_MASK) {
/*
* Periodic: the ptimer limit is the LOAD register value, (or
* just the low 16 bits of it if the timer is in 16-bit mode)
*/
r = ptimer_get_limit(m->timer);
if (!(m->control & R_CONTROL_SIZE_MASK)) {
r = deposit32(m->load, 0, 16, r);
}
} else {
/* Free-running: LOAD register value is just in m->load */
r = m->load;
}
break;
case A_TIMER1VALUE:
r = ptimer_get_count(m->timer);
if (!(m->control & R_CONTROL_SIZE_MASK)) {
r = deposit32(m->value, 0, 16, r);
}
break;
case A_TIMER1CONTROL:
r = m->control;
break;
case A_TIMER1RIS:
r = m->intstatus;
break;
case A_TIMER1MIS:
r = cmsdk_dualtimermod_intstatus(m);
break;
default:
goto bad_offset;
}
}
trace_cmsdk_apb_dualtimer_read(offset, r, size);
return r;
}
static void cmsdk_apb_dualtimer_write(void *opaque, hwaddr offset,
uint64_t value, unsigned size)
{
CMSDKAPBDualTimer *s = CMSDK_APB_DUALTIMER(opaque);
trace_cmsdk_apb_dualtimer_write(offset, value, size);
if (offset >= A_TIMERITCR) {
switch (offset) {
case A_TIMERITCR:
s->timeritcr = value & R_TIMERITCR_VALID_MASK;
cmsdk_apb_dualtimer_update(s);
break;
case A_TIMERITOP:
s->timeritop = value & R_TIMERITOP_VALID_MASK;
cmsdk_apb_dualtimer_update(s);
break;
default:
bad_offset:
qemu_log_mask(LOG_GUEST_ERROR,
"CMSDK APB dual-timer write: bad offset %x\n",
(int) offset);
break;
}
} else {
int timer = offset >> 5;
CMSDKAPBDualTimerModule *m;
if (timer >= ARRAY_SIZE(s->timermod)) {
goto bad_offset;
}
m = &s->timermod[timer];
switch (offset & 0x1F) {
case A_TIMER1LOAD:
/* Set the limit, and immediately reload the count from it */
m->load = value;
m->value = value;
if (!(m->control & R_CONTROL_SIZE_MASK)) {
value &= 0xffff;
}
ptimer_transaction_begin(m->timer);
if (!(m->control & R_CONTROL_MODE_MASK)) {
/*
* In free-running mode this won't set the limit but will
* still change the current count value.
*/
ptimer_set_count(m->timer, value);
} else {
if (!value) {
ptimer_stop(m->timer);
}
ptimer_set_limit(m->timer, value, 1);
if (value && (m->control & R_CONTROL_ENABLE_MASK)) {
/* Force possibly-expired oneshot timer to restart */
ptimer_run(m->timer, 1);
}
}
ptimer_transaction_commit(m->timer);
break;
case A_TIMER1BGLOAD:
/* Set the limit, but not the current count */
m->load = value;
if (!(m->control & R_CONTROL_MODE_MASK)) {
/* In free-running mode there is no limit */
break;
}
if (!(m->control & R_CONTROL_SIZE_MASK)) {
value &= 0xffff;
}
ptimer_transaction_begin(m->timer);
ptimer_set_limit(m->timer, value, 0);
ptimer_transaction_commit(m->timer);
break;
case A_TIMER1CONTROL:
cmsdk_dualtimermod_write_control(m, value);
cmsdk_apb_dualtimer_update(s);
break;
case A_TIMER1INTCLR:
m->intstatus = 0;
cmsdk_apb_dualtimer_update(s);
break;
default:
goto bad_offset;
}
}
}
static const MemoryRegionOps cmsdk_apb_dualtimer_ops = {
.read = cmsdk_apb_dualtimer_read,
.write = cmsdk_apb_dualtimer_write,
.endianness = DEVICE_LITTLE_ENDIAN,
/* byte/halfword accesses are just zero-padded on reads and writes */
.impl.min_access_size = 4,
.impl.max_access_size = 4,
.valid.min_access_size = 1,
.valid.max_access_size = 4,
};
static void cmsdk_dualtimermod_tick(void *opaque)
{
CMSDKAPBDualTimerModule *m = opaque;
m->intstatus = 1;
cmsdk_apb_dualtimer_update(m->parent);
}
static void cmsdk_dualtimermod_reset(CMSDKAPBDualTimerModule *m)
{
m->control = R_CONTROL_INTEN_MASK;
m->intstatus = 0;
m->load = 0;
m->value = 0xffffffff;
ptimer_transaction_begin(m->timer);
ptimer_stop(m->timer);
/*
* We start in free-running mode, with VALUE at 0xffffffff, and
* in 16-bit counter mode. This means that the ptimer count and
* limit must both be set to 0xffff, so we wrap at 16 bits.
*/
ptimer_set_limit(m->timer, 0xffff, 1);
ptimer_set_period_from_clock(m->timer, m->parent->timclk,
cmsdk_dualtimermod_divisor(m));
ptimer_transaction_commit(m->timer);
}
static void cmsdk_apb_dualtimer_reset(DeviceState *dev)
{
CMSDKAPBDualTimer *s = CMSDK_APB_DUALTIMER(dev);
int i;
trace_cmsdk_apb_dualtimer_reset();
for (i = 0; i < ARRAY_SIZE(s->timermod); i++) {
cmsdk_dualtimermod_reset(&s->timermod[i]);
}
s->timeritcr = 0;
s->timeritop = 0;
}
static void cmsdk_apb_dualtimer_clk_update(void *opaque)
{
CMSDKAPBDualTimer *s = CMSDK_APB_DUALTIMER(opaque);
int i;
for (i = 0; i < ARRAY_SIZE(s->timermod); i++) {
CMSDKAPBDualTimerModule *m = &s->timermod[i];
ptimer_transaction_begin(m->timer);
ptimer_set_period_from_clock(m->timer, m->parent->timclk,
cmsdk_dualtimermod_divisor(m));
ptimer_transaction_commit(m->timer);
}
}
static void cmsdk_apb_dualtimer_init(Object *obj)
{
SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
CMSDKAPBDualTimer *s = CMSDK_APB_DUALTIMER(obj);
int i;
memory_region_init_io(&s->iomem, obj, &cmsdk_apb_dualtimer_ops,
s, "cmsdk-apb-dualtimer", 0x1000);
sysbus_init_mmio(sbd, &s->iomem);
sysbus_init_irq(sbd, &s->timerintc);
for (i = 0; i < ARRAY_SIZE(s->timermod); i++) {
sysbus_init_irq(sbd, &s->timermod[i].timerint);
}
s->timclk = qdev_init_clock_in(DEVICE(s), "TIMCLK",
cmsdk_apb_dualtimer_clk_update, s);
}
static void cmsdk_apb_dualtimer_realize(DeviceState *dev, Error **errp)
{
CMSDKAPBDualTimer *s = CMSDK_APB_DUALTIMER(dev);
int i;
if (!clock_has_source(s->timclk)) {
error_setg(errp, "CMSDK APB dualtimer: TIMCLK clock must be connected");
return;
}
for (i = 0; i < ARRAY_SIZE(s->timermod); i++) {
CMSDKAPBDualTimerModule *m = &s->timermod[i];
m->parent = s;
m->timer = ptimer_init(cmsdk_dualtimermod_tick, m,
PTIMER_POLICY_WRAP_AFTER_ONE_PERIOD |
PTIMER_POLICY_TRIGGER_ONLY_ON_DECREMENT |
PTIMER_POLICY_NO_IMMEDIATE_RELOAD |
PTIMER_POLICY_NO_COUNTER_ROUND_DOWN);
}
}
static const VMStateDescription cmsdk_dualtimermod_vmstate = {
.name = "cmsdk-apb-dualtimer-module",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_PTIMER(timer, CMSDKAPBDualTimerModule),
VMSTATE_UINT32(load, CMSDKAPBDualTimerModule),
VMSTATE_UINT32(value, CMSDKAPBDualTimerModule),
VMSTATE_UINT32(control, CMSDKAPBDualTimerModule),
VMSTATE_UINT32(intstatus, CMSDKAPBDualTimerModule),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription cmsdk_apb_dualtimer_vmstate = {
.name = "cmsdk-apb-dualtimer",
.version_id = 2,
.minimum_version_id = 2,
.fields = (VMStateField[]) {
VMSTATE_CLOCK(timclk, CMSDKAPBDualTimer),
VMSTATE_STRUCT_ARRAY(timermod, CMSDKAPBDualTimer,
CMSDK_APB_DUALTIMER_NUM_MODULES,
1, cmsdk_dualtimermod_vmstate,
CMSDKAPBDualTimerModule),
VMSTATE_UINT32(timeritcr, CMSDKAPBDualTimer),
VMSTATE_UINT32(timeritop, CMSDKAPBDualTimer),
VMSTATE_END_OF_LIST()
}
};
static void cmsdk_apb_dualtimer_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->realize = cmsdk_apb_dualtimer_realize;
dc->vmsd = &cmsdk_apb_dualtimer_vmstate;
dc->reset = cmsdk_apb_dualtimer_reset;
}
static const TypeInfo cmsdk_apb_dualtimer_info = {
.name = TYPE_CMSDK_APB_DUALTIMER,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(CMSDKAPBDualTimer),
.instance_init = cmsdk_apb_dualtimer_init,
.class_init = cmsdk_apb_dualtimer_class_init,
};
static void cmsdk_apb_dualtimer_register_types(void)
{
type_register_static(&cmsdk_apb_dualtimer_info);
}
type_init(cmsdk_apb_dualtimer_register_types);