qemu/hw/pci/pci.c
Akihiko Odaki 6a31b219a5 hw/pci: Rename has_power to enabled
The renamed state will not only represent powering state of PFs, but
also represent SR-IOV VF enablement in the future.

Signed-off-by: Akihiko Odaki <akihiko.odaki@daynix.com>
Message-Id: <20240627-reuse-v10-1-7ca0b8ed3d9f@daynix.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2024-07-03 18:14:07 -04:00

2925 lines
89 KiB
C

/*
* QEMU PCI bus manager
*
* Copyright (c) 2004 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "qemu/osdep.h"
#include "qemu/datadir.h"
#include "qemu/units.h"
#include "hw/irq.h"
#include "hw/pci/pci.h"
#include "hw/pci/pci_bridge.h"
#include "hw/pci/pci_bus.h"
#include "hw/pci/pci_host.h"
#include "hw/qdev-properties.h"
#include "hw/qdev-properties-system.h"
#include "migration/qemu-file-types.h"
#include "migration/vmstate.h"
#include "net/net.h"
#include "sysemu/numa.h"
#include "sysemu/runstate.h"
#include "sysemu/sysemu.h"
#include "hw/loader.h"
#include "qemu/error-report.h"
#include "qemu/range.h"
#include "trace.h"
#include "hw/pci/msi.h"
#include "hw/pci/msix.h"
#include "hw/hotplug.h"
#include "hw/boards.h"
#include "qapi/error.h"
#include "qemu/cutils.h"
#include "pci-internal.h"
#include "hw/xen/xen.h"
#include "hw/i386/kvm/xen_evtchn.h"
//#define DEBUG_PCI
#ifdef DEBUG_PCI
# define PCI_DPRINTF(format, ...) printf(format, ## __VA_ARGS__)
#else
# define PCI_DPRINTF(format, ...) do { } while (0)
#endif
bool pci_available = true;
static char *pcibus_get_dev_path(DeviceState *dev);
static char *pcibus_get_fw_dev_path(DeviceState *dev);
static void pcibus_reset_hold(Object *obj, ResetType type);
static bool pcie_has_upstream_port(PCIDevice *dev);
static Property pci_props[] = {
DEFINE_PROP_PCI_DEVFN("addr", PCIDevice, devfn, -1),
DEFINE_PROP_STRING("romfile", PCIDevice, romfile),
DEFINE_PROP_UINT32("romsize", PCIDevice, romsize, -1),
DEFINE_PROP_UINT32("rombar", PCIDevice, rom_bar, 1),
DEFINE_PROP_BIT("multifunction", PCIDevice, cap_present,
QEMU_PCI_CAP_MULTIFUNCTION_BITNR, false),
DEFINE_PROP_BIT("x-pcie-lnksta-dllla", PCIDevice, cap_present,
QEMU_PCIE_LNKSTA_DLLLA_BITNR, true),
DEFINE_PROP_BIT("x-pcie-extcap-init", PCIDevice, cap_present,
QEMU_PCIE_EXTCAP_INIT_BITNR, true),
DEFINE_PROP_STRING("failover_pair_id", PCIDevice,
failover_pair_id),
DEFINE_PROP_UINT32("acpi-index", PCIDevice, acpi_index, 0),
DEFINE_PROP_BIT("x-pcie-err-unc-mask", PCIDevice, cap_present,
QEMU_PCIE_ERR_UNC_MASK_BITNR, true),
DEFINE_PROP_BIT("x-pcie-ari-nextfn-1", PCIDevice, cap_present,
QEMU_PCIE_ARI_NEXTFN_1_BITNR, false),
DEFINE_PROP_END_OF_LIST()
};
static const VMStateDescription vmstate_pcibus = {
.name = "PCIBUS",
.version_id = 1,
.minimum_version_id = 1,
.fields = (const VMStateField[]) {
VMSTATE_INT32_EQUAL(nirq, PCIBus, NULL),
VMSTATE_VARRAY_INT32(irq_count, PCIBus,
nirq, 0, vmstate_info_int32,
int32_t),
VMSTATE_END_OF_LIST()
}
};
static gint g_cmp_uint32(gconstpointer a, gconstpointer b, gpointer user_data)
{
return a - b;
}
static GSequence *pci_acpi_index_list(void)
{
static GSequence *used_acpi_index_list;
if (!used_acpi_index_list) {
used_acpi_index_list = g_sequence_new(NULL);
}
return used_acpi_index_list;
}
static void pci_init_bus_master(PCIDevice *pci_dev)
{
AddressSpace *dma_as = pci_device_iommu_address_space(pci_dev);
memory_region_init_alias(&pci_dev->bus_master_enable_region,
OBJECT(pci_dev), "bus master",
dma_as->root, 0, memory_region_size(dma_as->root));
memory_region_set_enabled(&pci_dev->bus_master_enable_region, false);
memory_region_add_subregion(&pci_dev->bus_master_container_region, 0,
&pci_dev->bus_master_enable_region);
}
static void pcibus_machine_done(Notifier *notifier, void *data)
{
PCIBus *bus = container_of(notifier, PCIBus, machine_done);
int i;
for (i = 0; i < ARRAY_SIZE(bus->devices); ++i) {
if (bus->devices[i]) {
pci_init_bus_master(bus->devices[i]);
}
}
}
static void pci_bus_realize(BusState *qbus, Error **errp)
{
PCIBus *bus = PCI_BUS(qbus);
bus->machine_done.notify = pcibus_machine_done;
qemu_add_machine_init_done_notifier(&bus->machine_done);
vmstate_register_any(NULL, &vmstate_pcibus, bus);
}
static void pcie_bus_realize(BusState *qbus, Error **errp)
{
PCIBus *bus = PCI_BUS(qbus);
Error *local_err = NULL;
pci_bus_realize(qbus, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
/*
* A PCI-E bus can support extended config space if it's the root
* bus, or if the bus/bridge above it does as well
*/
if (pci_bus_is_root(bus)) {
bus->flags |= PCI_BUS_EXTENDED_CONFIG_SPACE;
} else {
PCIBus *parent_bus = pci_get_bus(bus->parent_dev);
if (pci_bus_allows_extended_config_space(parent_bus)) {
bus->flags |= PCI_BUS_EXTENDED_CONFIG_SPACE;
}
}
}
static void pci_bus_unrealize(BusState *qbus)
{
PCIBus *bus = PCI_BUS(qbus);
qemu_remove_machine_init_done_notifier(&bus->machine_done);
vmstate_unregister(NULL, &vmstate_pcibus, bus);
}
static int pcibus_num(PCIBus *bus)
{
if (pci_bus_is_root(bus)) {
return 0; /* pci host bridge */
}
return bus->parent_dev->config[PCI_SECONDARY_BUS];
}
static uint16_t pcibus_numa_node(PCIBus *bus)
{
return NUMA_NODE_UNASSIGNED;
}
static void pci_bus_class_init(ObjectClass *klass, void *data)
{
BusClass *k = BUS_CLASS(klass);
PCIBusClass *pbc = PCI_BUS_CLASS(klass);
ResettableClass *rc = RESETTABLE_CLASS(klass);
k->print_dev = pcibus_dev_print;
k->get_dev_path = pcibus_get_dev_path;
k->get_fw_dev_path = pcibus_get_fw_dev_path;
k->realize = pci_bus_realize;
k->unrealize = pci_bus_unrealize;
rc->phases.hold = pcibus_reset_hold;
pbc->bus_num = pcibus_num;
pbc->numa_node = pcibus_numa_node;
}
static const TypeInfo pci_bus_info = {
.name = TYPE_PCI_BUS,
.parent = TYPE_BUS,
.instance_size = sizeof(PCIBus),
.class_size = sizeof(PCIBusClass),
.class_init = pci_bus_class_init,
};
static const TypeInfo cxl_interface_info = {
.name = INTERFACE_CXL_DEVICE,
.parent = TYPE_INTERFACE,
};
static const TypeInfo pcie_interface_info = {
.name = INTERFACE_PCIE_DEVICE,
.parent = TYPE_INTERFACE,
};
static const TypeInfo conventional_pci_interface_info = {
.name = INTERFACE_CONVENTIONAL_PCI_DEVICE,
.parent = TYPE_INTERFACE,
};
static void pcie_bus_class_init(ObjectClass *klass, void *data)
{
BusClass *k = BUS_CLASS(klass);
k->realize = pcie_bus_realize;
}
static const TypeInfo pcie_bus_info = {
.name = TYPE_PCIE_BUS,
.parent = TYPE_PCI_BUS,
.class_init = pcie_bus_class_init,
};
static const TypeInfo cxl_bus_info = {
.name = TYPE_CXL_BUS,
.parent = TYPE_PCIE_BUS,
.class_init = pcie_bus_class_init,
};
static void pci_update_mappings(PCIDevice *d);
static void pci_irq_handler(void *opaque, int irq_num, int level);
static void pci_add_option_rom(PCIDevice *pdev, bool is_default_rom, Error **);
static void pci_del_option_rom(PCIDevice *pdev);
static uint16_t pci_default_sub_vendor_id = PCI_SUBVENDOR_ID_REDHAT_QUMRANET;
static uint16_t pci_default_sub_device_id = PCI_SUBDEVICE_ID_QEMU;
PCIHostStateList pci_host_bridges;
int pci_bar(PCIDevice *d, int reg)
{
uint8_t type;
/* PCIe virtual functions do not have their own BARs */
assert(!pci_is_vf(d));
if (reg != PCI_ROM_SLOT)
return PCI_BASE_ADDRESS_0 + reg * 4;
type = d->config[PCI_HEADER_TYPE] & ~PCI_HEADER_TYPE_MULTI_FUNCTION;
return type == PCI_HEADER_TYPE_BRIDGE ? PCI_ROM_ADDRESS1 : PCI_ROM_ADDRESS;
}
static inline int pci_irq_state(PCIDevice *d, int irq_num)
{
return (d->irq_state >> irq_num) & 0x1;
}
static inline void pci_set_irq_state(PCIDevice *d, int irq_num, int level)
{
d->irq_state &= ~(0x1 << irq_num);
d->irq_state |= level << irq_num;
}
static void pci_bus_change_irq_level(PCIBus *bus, int irq_num, int change)
{
assert(irq_num >= 0);
assert(irq_num < bus->nirq);
bus->irq_count[irq_num] += change;
bus->set_irq(bus->irq_opaque, irq_num, bus->irq_count[irq_num] != 0);
}
static void pci_change_irq_level(PCIDevice *pci_dev, int irq_num, int change)
{
PCIBus *bus;
for (;;) {
int dev_irq = irq_num;
bus = pci_get_bus(pci_dev);
assert(bus->map_irq);
irq_num = bus->map_irq(pci_dev, irq_num);
trace_pci_route_irq(dev_irq, DEVICE(pci_dev)->canonical_path, irq_num,
pci_bus_is_root(bus) ? "root-complex"
: DEVICE(bus->parent_dev)->canonical_path);
if (bus->set_irq)
break;
pci_dev = bus->parent_dev;
}
pci_bus_change_irq_level(bus, irq_num, change);
}
int pci_bus_get_irq_level(PCIBus *bus, int irq_num)
{
assert(irq_num >= 0);
assert(irq_num < bus->nirq);
return !!bus->irq_count[irq_num];
}
/* Update interrupt status bit in config space on interrupt
* state change. */
static void pci_update_irq_status(PCIDevice *dev)
{
if (dev->irq_state) {
dev->config[PCI_STATUS] |= PCI_STATUS_INTERRUPT;
} else {
dev->config[PCI_STATUS] &= ~PCI_STATUS_INTERRUPT;
}
}
void pci_device_deassert_intx(PCIDevice *dev)
{
int i;
for (i = 0; i < PCI_NUM_PINS; ++i) {
pci_irq_handler(dev, i, 0);
}
}
static void pci_msi_trigger(PCIDevice *dev, MSIMessage msg)
{
MemTxAttrs attrs = {};
/*
* Xen uses the high bits of the address to contain some of the bits
* of the PIRQ#. Therefore we can't just send the write cycle and
* trust that it's caught by the APIC at 0xfee00000 because the
* target of the write might be e.g. 0x0x1000fee46000 for PIRQ#4166.
* So we intercept the delivery here instead of in kvm_send_msi().
*/
if (xen_mode == XEN_EMULATE &&
xen_evtchn_deliver_pirq_msi(msg.address, msg.data)) {
return;
}
attrs.requester_id = pci_requester_id(dev);
address_space_stl_le(&dev->bus_master_as, msg.address, msg.data,
attrs, NULL);
}
static void pci_reset_regions(PCIDevice *dev)
{
int r;
if (pci_is_vf(dev)) {
return;
}
for (r = 0; r < PCI_NUM_REGIONS; ++r) {
PCIIORegion *region = &dev->io_regions[r];
if (!region->size) {
continue;
}
if (!(region->type & PCI_BASE_ADDRESS_SPACE_IO) &&
region->type & PCI_BASE_ADDRESS_MEM_TYPE_64) {
pci_set_quad(dev->config + pci_bar(dev, r), region->type);
} else {
pci_set_long(dev->config + pci_bar(dev, r), region->type);
}
}
}
static void pci_do_device_reset(PCIDevice *dev)
{
pci_device_deassert_intx(dev);
assert(dev->irq_state == 0);
/* Clear all writable bits */
pci_word_test_and_clear_mask(dev->config + PCI_COMMAND,
pci_get_word(dev->wmask + PCI_COMMAND) |
pci_get_word(dev->w1cmask + PCI_COMMAND));
pci_word_test_and_clear_mask(dev->config + PCI_STATUS,
pci_get_word(dev->wmask + PCI_STATUS) |
pci_get_word(dev->w1cmask + PCI_STATUS));
/* Some devices make bits of PCI_INTERRUPT_LINE read only */
pci_byte_test_and_clear_mask(dev->config + PCI_INTERRUPT_LINE,
pci_get_word(dev->wmask + PCI_INTERRUPT_LINE) |
pci_get_word(dev->w1cmask + PCI_INTERRUPT_LINE));
dev->config[PCI_CACHE_LINE_SIZE] = 0x0;
pci_reset_regions(dev);
pci_update_mappings(dev);
msi_reset(dev);
msix_reset(dev);
pcie_sriov_pf_reset(dev);
}
/*
* This function is called on #RST and FLR.
* FLR if PCI_EXP_DEVCTL_BCR_FLR is set
*/
void pci_device_reset(PCIDevice *dev)
{
device_cold_reset(&dev->qdev);
pci_do_device_reset(dev);
}
/*
* Trigger pci bus reset under a given bus.
* Called via bus_cold_reset on RST# assert, after the devices
* have been reset device_cold_reset-ed already.
*/
static void pcibus_reset_hold(Object *obj, ResetType type)
{
PCIBus *bus = PCI_BUS(obj);
int i;
for (i = 0; i < ARRAY_SIZE(bus->devices); ++i) {
if (bus->devices[i]) {
pci_do_device_reset(bus->devices[i]);
}
}
for (i = 0; i < bus->nirq; i++) {
assert(bus->irq_count[i] == 0);
}
}
static void pci_host_bus_register(DeviceState *host)
{
PCIHostState *host_bridge = PCI_HOST_BRIDGE(host);
QLIST_INSERT_HEAD(&pci_host_bridges, host_bridge, next);
}
static void pci_host_bus_unregister(DeviceState *host)
{
PCIHostState *host_bridge = PCI_HOST_BRIDGE(host);
QLIST_REMOVE(host_bridge, next);
}
PCIBus *pci_device_root_bus(const PCIDevice *d)
{
PCIBus *bus = pci_get_bus(d);
while (!pci_bus_is_root(bus)) {
d = bus->parent_dev;
assert(d != NULL);
bus = pci_get_bus(d);
}
return bus;
}
const char *pci_root_bus_path(PCIDevice *dev)
{
PCIBus *rootbus = pci_device_root_bus(dev);
PCIHostState *host_bridge = PCI_HOST_BRIDGE(rootbus->qbus.parent);
PCIHostBridgeClass *hc = PCI_HOST_BRIDGE_GET_CLASS(host_bridge);
assert(host_bridge->bus == rootbus);
if (hc->root_bus_path) {
return (*hc->root_bus_path)(host_bridge, rootbus);
}
return rootbus->qbus.name;
}
bool pci_bus_bypass_iommu(PCIBus *bus)
{
PCIBus *rootbus = bus;
PCIHostState *host_bridge;
if (!pci_bus_is_root(bus)) {
rootbus = pci_device_root_bus(bus->parent_dev);
}
host_bridge = PCI_HOST_BRIDGE(rootbus->qbus.parent);
assert(host_bridge->bus == rootbus);
return host_bridge->bypass_iommu;
}
static void pci_root_bus_internal_init(PCIBus *bus, DeviceState *parent,
MemoryRegion *mem, MemoryRegion *io,
uint8_t devfn_min)
{
assert(PCI_FUNC(devfn_min) == 0);
bus->devfn_min = devfn_min;
bus->slot_reserved_mask = 0x0;
bus->address_space_mem = mem;
bus->address_space_io = io;
bus->flags |= PCI_BUS_IS_ROOT;
/* host bridge */
QLIST_INIT(&bus->child);
pci_host_bus_register(parent);
}
static void pci_bus_uninit(PCIBus *bus)
{
pci_host_bus_unregister(BUS(bus)->parent);
}
bool pci_bus_is_express(const PCIBus *bus)
{
return object_dynamic_cast(OBJECT(bus), TYPE_PCIE_BUS);
}
void pci_root_bus_init(PCIBus *bus, size_t bus_size, DeviceState *parent,
const char *name,
MemoryRegion *mem, MemoryRegion *io,
uint8_t devfn_min, const char *typename)
{
qbus_init(bus, bus_size, typename, parent, name);
pci_root_bus_internal_init(bus, parent, mem, io, devfn_min);
}
PCIBus *pci_root_bus_new(DeviceState *parent, const char *name,
MemoryRegion *mem, MemoryRegion *io,
uint8_t devfn_min, const char *typename)
{
PCIBus *bus;
bus = PCI_BUS(qbus_new(typename, parent, name));
pci_root_bus_internal_init(bus, parent, mem, io, devfn_min);
return bus;
}
void pci_root_bus_cleanup(PCIBus *bus)
{
pci_bus_uninit(bus);
/* the caller of the unplug hotplug handler will delete this device */
qbus_unrealize(BUS(bus));
}
void pci_bus_irqs(PCIBus *bus, pci_set_irq_fn set_irq,
void *irq_opaque, int nirq)
{
bus->set_irq = set_irq;
bus->irq_opaque = irq_opaque;
bus->nirq = nirq;
g_free(bus->irq_count);
bus->irq_count = g_malloc0(nirq * sizeof(bus->irq_count[0]));
}
void pci_bus_map_irqs(PCIBus *bus, pci_map_irq_fn map_irq)
{
bus->map_irq = map_irq;
}
void pci_bus_irqs_cleanup(PCIBus *bus)
{
bus->set_irq = NULL;
bus->map_irq = NULL;
bus->irq_opaque = NULL;
bus->nirq = 0;
g_free(bus->irq_count);
bus->irq_count = NULL;
}
PCIBus *pci_register_root_bus(DeviceState *parent, const char *name,
pci_set_irq_fn set_irq, pci_map_irq_fn map_irq,
void *irq_opaque,
MemoryRegion *mem, MemoryRegion *io,
uint8_t devfn_min, int nirq,
const char *typename)
{
PCIBus *bus;
bus = pci_root_bus_new(parent, name, mem, io, devfn_min, typename);
pci_bus_irqs(bus, set_irq, irq_opaque, nirq);
pci_bus_map_irqs(bus, map_irq);
return bus;
}
void pci_unregister_root_bus(PCIBus *bus)
{
pci_bus_irqs_cleanup(bus);
pci_root_bus_cleanup(bus);
}
int pci_bus_num(PCIBus *s)
{
return PCI_BUS_GET_CLASS(s)->bus_num(s);
}
/* Returns the min and max bus numbers of a PCI bus hierarchy */
void pci_bus_range(PCIBus *bus, int *min_bus, int *max_bus)
{
int i;
*min_bus = *max_bus = pci_bus_num(bus);
for (i = 0; i < ARRAY_SIZE(bus->devices); ++i) {
PCIDevice *dev = bus->devices[i];
if (dev && IS_PCI_BRIDGE(dev)) {
*min_bus = MIN(*min_bus, dev->config[PCI_SECONDARY_BUS]);
*max_bus = MAX(*max_bus, dev->config[PCI_SUBORDINATE_BUS]);
}
}
}
int pci_bus_numa_node(PCIBus *bus)
{
return PCI_BUS_GET_CLASS(bus)->numa_node(bus);
}
static int get_pci_config_device(QEMUFile *f, void *pv, size_t size,
const VMStateField *field)
{
PCIDevice *s = container_of(pv, PCIDevice, config);
uint8_t *config;
int i;
assert(size == pci_config_size(s));
config = g_malloc(size);
qemu_get_buffer(f, config, size);
for (i = 0; i < size; ++i) {
if ((config[i] ^ s->config[i]) &
s->cmask[i] & ~s->wmask[i] & ~s->w1cmask[i]) {
error_report("%s: Bad config data: i=0x%x read: %x device: %x "
"cmask: %x wmask: %x w1cmask:%x", __func__,
i, config[i], s->config[i],
s->cmask[i], s->wmask[i], s->w1cmask[i]);
g_free(config);
return -EINVAL;
}
}
memcpy(s->config, config, size);
pci_update_mappings(s);
if (IS_PCI_BRIDGE(s)) {
pci_bridge_update_mappings(PCI_BRIDGE(s));
}
memory_region_set_enabled(&s->bus_master_enable_region,
pci_get_word(s->config + PCI_COMMAND)
& PCI_COMMAND_MASTER);
g_free(config);
return 0;
}
/* just put buffer */
static int put_pci_config_device(QEMUFile *f, void *pv, size_t size,
const VMStateField *field, JSONWriter *vmdesc)
{
const uint8_t **v = pv;
assert(size == pci_config_size(container_of(pv, PCIDevice, config)));
qemu_put_buffer(f, *v, size);
return 0;
}
static const VMStateInfo vmstate_info_pci_config = {
.name = "pci config",
.get = get_pci_config_device,
.put = put_pci_config_device,
};
static int get_pci_irq_state(QEMUFile *f, void *pv, size_t size,
const VMStateField *field)
{
PCIDevice *s = container_of(pv, PCIDevice, irq_state);
uint32_t irq_state[PCI_NUM_PINS];
int i;
for (i = 0; i < PCI_NUM_PINS; ++i) {
irq_state[i] = qemu_get_be32(f);
if (irq_state[i] != 0x1 && irq_state[i] != 0) {
fprintf(stderr, "irq state %d: must be 0 or 1.\n",
irq_state[i]);
return -EINVAL;
}
}
for (i = 0; i < PCI_NUM_PINS; ++i) {
pci_set_irq_state(s, i, irq_state[i]);
}
return 0;
}
static int put_pci_irq_state(QEMUFile *f, void *pv, size_t size,
const VMStateField *field, JSONWriter *vmdesc)
{
int i;
PCIDevice *s = container_of(pv, PCIDevice, irq_state);
for (i = 0; i < PCI_NUM_PINS; ++i) {
qemu_put_be32(f, pci_irq_state(s, i));
}
return 0;
}
static const VMStateInfo vmstate_info_pci_irq_state = {
.name = "pci irq state",
.get = get_pci_irq_state,
.put = put_pci_irq_state,
};
static bool migrate_is_pcie(void *opaque, int version_id)
{
return pci_is_express((PCIDevice *)opaque);
}
static bool migrate_is_not_pcie(void *opaque, int version_id)
{
return !pci_is_express((PCIDevice *)opaque);
}
const VMStateDescription vmstate_pci_device = {
.name = "PCIDevice",
.version_id = 2,
.minimum_version_id = 1,
.fields = (const VMStateField[]) {
VMSTATE_INT32_POSITIVE_LE(version_id, PCIDevice),
VMSTATE_BUFFER_UNSAFE_INFO_TEST(config, PCIDevice,
migrate_is_not_pcie,
0, vmstate_info_pci_config,
PCI_CONFIG_SPACE_SIZE),
VMSTATE_BUFFER_UNSAFE_INFO_TEST(config, PCIDevice,
migrate_is_pcie,
0, vmstate_info_pci_config,
PCIE_CONFIG_SPACE_SIZE),
VMSTATE_BUFFER_UNSAFE_INFO(irq_state, PCIDevice, 2,
vmstate_info_pci_irq_state,
PCI_NUM_PINS * sizeof(int32_t)),
VMSTATE_END_OF_LIST()
}
};
void pci_device_save(PCIDevice *s, QEMUFile *f)
{
/* Clear interrupt status bit: it is implicit
* in irq_state which we are saving.
* This makes us compatible with old devices
* which never set or clear this bit. */
s->config[PCI_STATUS] &= ~PCI_STATUS_INTERRUPT;
vmstate_save_state(f, &vmstate_pci_device, s, NULL);
/* Restore the interrupt status bit. */
pci_update_irq_status(s);
}
int pci_device_load(PCIDevice *s, QEMUFile *f)
{
int ret;
ret = vmstate_load_state(f, &vmstate_pci_device, s, s->version_id);
/* Restore the interrupt status bit. */
pci_update_irq_status(s);
return ret;
}
static void pci_set_default_subsystem_id(PCIDevice *pci_dev)
{
pci_set_word(pci_dev->config + PCI_SUBSYSTEM_VENDOR_ID,
pci_default_sub_vendor_id);
pci_set_word(pci_dev->config + PCI_SUBSYSTEM_ID,
pci_default_sub_device_id);
}
/*
* Parse [[<domain>:]<bus>:]<slot>, return -1 on error if funcp == NULL
* [[<domain>:]<bus>:]<slot>.<func>, return -1 on error
*/
static int pci_parse_devaddr(const char *addr, int *domp, int *busp,
unsigned int *slotp, unsigned int *funcp)
{
const char *p;
char *e;
unsigned long val;
unsigned long dom = 0, bus = 0;
unsigned int slot = 0;
unsigned int func = 0;
p = addr;
val = strtoul(p, &e, 16);
if (e == p)
return -1;
if (*e == ':') {
bus = val;
p = e + 1;
val = strtoul(p, &e, 16);
if (e == p)
return -1;
if (*e == ':') {
dom = bus;
bus = val;
p = e + 1;
val = strtoul(p, &e, 16);
if (e == p)
return -1;
}
}
slot = val;
if (funcp != NULL) {
if (*e != '.')
return -1;
p = e + 1;
val = strtoul(p, &e, 16);
if (e == p)
return -1;
func = val;
}
/* if funcp == NULL func is 0 */
if (dom > 0xffff || bus > 0xff || slot > 0x1f || func > 7)
return -1;
if (*e)
return -1;
*domp = dom;
*busp = bus;
*slotp = slot;
if (funcp != NULL)
*funcp = func;
return 0;
}
static void pci_init_cmask(PCIDevice *dev)
{
pci_set_word(dev->cmask + PCI_VENDOR_ID, 0xffff);
pci_set_word(dev->cmask + PCI_DEVICE_ID, 0xffff);
dev->cmask[PCI_STATUS] = PCI_STATUS_CAP_LIST;
dev->cmask[PCI_REVISION_ID] = 0xff;
dev->cmask[PCI_CLASS_PROG] = 0xff;
pci_set_word(dev->cmask + PCI_CLASS_DEVICE, 0xffff);
dev->cmask[PCI_HEADER_TYPE] = 0xff;
dev->cmask[PCI_CAPABILITY_LIST] = 0xff;
}
static void pci_init_wmask(PCIDevice *dev)
{
int config_size = pci_config_size(dev);
dev->wmask[PCI_CACHE_LINE_SIZE] = 0xff;
dev->wmask[PCI_INTERRUPT_LINE] = 0xff;
pci_set_word(dev->wmask + PCI_COMMAND,
PCI_COMMAND_IO | PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER |
PCI_COMMAND_INTX_DISABLE);
pci_word_test_and_set_mask(dev->wmask + PCI_COMMAND, PCI_COMMAND_SERR);
memset(dev->wmask + PCI_CONFIG_HEADER_SIZE, 0xff,
config_size - PCI_CONFIG_HEADER_SIZE);
}
static void pci_init_w1cmask(PCIDevice *dev)
{
/*
* Note: It's okay to set w1cmask even for readonly bits as
* long as their value is hardwired to 0.
*/
pci_set_word(dev->w1cmask + PCI_STATUS,
PCI_STATUS_PARITY | PCI_STATUS_SIG_TARGET_ABORT |
PCI_STATUS_REC_TARGET_ABORT | PCI_STATUS_REC_MASTER_ABORT |
PCI_STATUS_SIG_SYSTEM_ERROR | PCI_STATUS_DETECTED_PARITY);
}
static void pci_init_mask_bridge(PCIDevice *d)
{
/* PCI_PRIMARY_BUS, PCI_SECONDARY_BUS, PCI_SUBORDINATE_BUS and
PCI_SEC_LATENCY_TIMER */
memset(d->wmask + PCI_PRIMARY_BUS, 0xff, 4);
/* base and limit */
d->wmask[PCI_IO_BASE] = PCI_IO_RANGE_MASK & 0xff;
d->wmask[PCI_IO_LIMIT] = PCI_IO_RANGE_MASK & 0xff;
pci_set_word(d->wmask + PCI_MEMORY_BASE,
PCI_MEMORY_RANGE_MASK & 0xffff);
pci_set_word(d->wmask + PCI_MEMORY_LIMIT,
PCI_MEMORY_RANGE_MASK & 0xffff);
pci_set_word(d->wmask + PCI_PREF_MEMORY_BASE,
PCI_PREF_RANGE_MASK & 0xffff);
pci_set_word(d->wmask + PCI_PREF_MEMORY_LIMIT,
PCI_PREF_RANGE_MASK & 0xffff);
/* PCI_PREF_BASE_UPPER32 and PCI_PREF_LIMIT_UPPER32 */
memset(d->wmask + PCI_PREF_BASE_UPPER32, 0xff, 8);
/* Supported memory and i/o types */
d->config[PCI_IO_BASE] |= PCI_IO_RANGE_TYPE_16;
d->config[PCI_IO_LIMIT] |= PCI_IO_RANGE_TYPE_16;
pci_word_test_and_set_mask(d->config + PCI_PREF_MEMORY_BASE,
PCI_PREF_RANGE_TYPE_64);
pci_word_test_and_set_mask(d->config + PCI_PREF_MEMORY_LIMIT,
PCI_PREF_RANGE_TYPE_64);
/*
* TODO: Bridges default to 10-bit VGA decoding but we currently only
* implement 16-bit decoding (no alias support).
*/
pci_set_word(d->wmask + PCI_BRIDGE_CONTROL,
PCI_BRIDGE_CTL_PARITY |
PCI_BRIDGE_CTL_SERR |
PCI_BRIDGE_CTL_ISA |
PCI_BRIDGE_CTL_VGA |
PCI_BRIDGE_CTL_VGA_16BIT |
PCI_BRIDGE_CTL_MASTER_ABORT |
PCI_BRIDGE_CTL_BUS_RESET |
PCI_BRIDGE_CTL_FAST_BACK |
PCI_BRIDGE_CTL_DISCARD |
PCI_BRIDGE_CTL_SEC_DISCARD |
PCI_BRIDGE_CTL_DISCARD_SERR);
/* Below does not do anything as we never set this bit, put here for
* completeness. */
pci_set_word(d->w1cmask + PCI_BRIDGE_CONTROL,
PCI_BRIDGE_CTL_DISCARD_STATUS);
d->cmask[PCI_IO_BASE] |= PCI_IO_RANGE_TYPE_MASK;
d->cmask[PCI_IO_LIMIT] |= PCI_IO_RANGE_TYPE_MASK;
pci_word_test_and_set_mask(d->cmask + PCI_PREF_MEMORY_BASE,
PCI_PREF_RANGE_TYPE_MASK);
pci_word_test_and_set_mask(d->cmask + PCI_PREF_MEMORY_LIMIT,
PCI_PREF_RANGE_TYPE_MASK);
}
static void pci_init_multifunction(PCIBus *bus, PCIDevice *dev, Error **errp)
{
uint8_t slot = PCI_SLOT(dev->devfn);
uint8_t func;
if (dev->cap_present & QEMU_PCI_CAP_MULTIFUNCTION) {
dev->config[PCI_HEADER_TYPE] |= PCI_HEADER_TYPE_MULTI_FUNCTION;
}
/*
* With SR/IOV and ARI, a device at function 0 need not be a multifunction
* device, as it may just be a VF that ended up with function 0 in
* the legacy PCI interpretation. Avoid failing in such cases:
*/
if (pci_is_vf(dev) &&
dev->exp.sriov_vf.pf->cap_present & QEMU_PCI_CAP_MULTIFUNCTION) {
return;
}
/*
* multifunction bit is interpreted in two ways as follows.
* - all functions must set the bit to 1.
* Example: Intel X53
* - function 0 must set the bit, but the rest function (> 0)
* is allowed to leave the bit to 0.
* Example: PIIX3(also in qemu), PIIX4(also in qemu), ICH10,
*
* So OS (at least Linux) checks the bit of only function 0,
* and doesn't see the bit of function > 0.
*
* The below check allows both interpretation.
*/
if (PCI_FUNC(dev->devfn)) {
PCIDevice *f0 = bus->devices[PCI_DEVFN(slot, 0)];
if (f0 && !(f0->cap_present & QEMU_PCI_CAP_MULTIFUNCTION)) {
/* function 0 should set multifunction bit */
error_setg(errp, "PCI: single function device can't be populated "
"in function %x.%x", slot, PCI_FUNC(dev->devfn));
return;
}
return;
}
if (dev->cap_present & QEMU_PCI_CAP_MULTIFUNCTION) {
return;
}
/* function 0 indicates single function, so function > 0 must be NULL */
for (func = 1; func < PCI_FUNC_MAX; ++func) {
if (bus->devices[PCI_DEVFN(slot, func)]) {
error_setg(errp, "PCI: %x.0 indicates single function, "
"but %x.%x is already populated.",
slot, slot, func);
return;
}
}
}
static void pci_config_alloc(PCIDevice *pci_dev)
{
int config_size = pci_config_size(pci_dev);
pci_dev->config = g_malloc0(config_size);
pci_dev->cmask = g_malloc0(config_size);
pci_dev->wmask = g_malloc0(config_size);
pci_dev->w1cmask = g_malloc0(config_size);
pci_dev->used = g_malloc0(config_size);
}
static void pci_config_free(PCIDevice *pci_dev)
{
g_free(pci_dev->config);
g_free(pci_dev->cmask);
g_free(pci_dev->wmask);
g_free(pci_dev->w1cmask);
g_free(pci_dev->used);
}
static void do_pci_unregister_device(PCIDevice *pci_dev)
{
pci_get_bus(pci_dev)->devices[pci_dev->devfn] = NULL;
pci_config_free(pci_dev);
if (xen_mode == XEN_EMULATE) {
xen_evtchn_remove_pci_device(pci_dev);
}
if (memory_region_is_mapped(&pci_dev->bus_master_enable_region)) {
memory_region_del_subregion(&pci_dev->bus_master_container_region,
&pci_dev->bus_master_enable_region);
}
address_space_destroy(&pci_dev->bus_master_as);
}
/* Extract PCIReqIDCache into BDF format */
static uint16_t pci_req_id_cache_extract(PCIReqIDCache *cache)
{
uint8_t bus_n;
uint16_t result;
switch (cache->type) {
case PCI_REQ_ID_BDF:
result = pci_get_bdf(cache->dev);
break;
case PCI_REQ_ID_SECONDARY_BUS:
bus_n = pci_dev_bus_num(cache->dev);
result = PCI_BUILD_BDF(bus_n, 0);
break;
default:
error_report("Invalid PCI requester ID cache type: %d",
cache->type);
exit(1);
break;
}
return result;
}
/* Parse bridges up to the root complex and return requester ID
* cache for specific device. For full PCIe topology, the cache
* result would be exactly the same as getting BDF of the device.
* However, several tricks are required when system mixed up with
* legacy PCI devices and PCIe-to-PCI bridges.
*
* Here we cache the proxy device (and type) not requester ID since
* bus number might change from time to time.
*/
static PCIReqIDCache pci_req_id_cache_get(PCIDevice *dev)
{
PCIDevice *parent;
PCIReqIDCache cache = {
.dev = dev,
.type = PCI_REQ_ID_BDF,
};
while (!pci_bus_is_root(pci_get_bus(dev))) {
/* We are under PCI/PCIe bridges */
parent = pci_get_bus(dev)->parent_dev;
if (pci_is_express(parent)) {
if (pcie_cap_get_type(parent) == PCI_EXP_TYPE_PCI_BRIDGE) {
/* When we pass through PCIe-to-PCI/PCIX bridges, we
* override the requester ID using secondary bus
* number of parent bridge with zeroed devfn
* (pcie-to-pci bridge spec chap 2.3). */
cache.type = PCI_REQ_ID_SECONDARY_BUS;
cache.dev = dev;
}
} else {
/* Legacy PCI, override requester ID with the bridge's
* BDF upstream. When the root complex connects to
* legacy PCI devices (including buses), it can only
* obtain requester ID info from directly attached
* devices. If devices are attached under bridges, only
* the requester ID of the bridge that is directly
* attached to the root complex can be recognized. */
cache.type = PCI_REQ_ID_BDF;
cache.dev = parent;
}
dev = parent;
}
return cache;
}
uint16_t pci_requester_id(PCIDevice *dev)
{
return pci_req_id_cache_extract(&dev->requester_id_cache);
}
static bool pci_bus_devfn_available(PCIBus *bus, int devfn)
{
return !(bus->devices[devfn]);
}
static bool pci_bus_devfn_reserved(PCIBus *bus, int devfn)
{
return bus->slot_reserved_mask & (1UL << PCI_SLOT(devfn));
}
uint32_t pci_bus_get_slot_reserved_mask(PCIBus *bus)
{
return bus->slot_reserved_mask;
}
void pci_bus_set_slot_reserved_mask(PCIBus *bus, uint32_t mask)
{
bus->slot_reserved_mask |= mask;
}
void pci_bus_clear_slot_reserved_mask(PCIBus *bus, uint32_t mask)
{
bus->slot_reserved_mask &= ~mask;
}
/* -1 for devfn means auto assign */
static PCIDevice *do_pci_register_device(PCIDevice *pci_dev,
const char *name, int devfn,
Error **errp)
{
PCIDeviceClass *pc = PCI_DEVICE_GET_CLASS(pci_dev);
PCIConfigReadFunc *config_read = pc->config_read;
PCIConfigWriteFunc *config_write = pc->config_write;
Error *local_err = NULL;
DeviceState *dev = DEVICE(pci_dev);
PCIBus *bus = pci_get_bus(pci_dev);
bool is_bridge = IS_PCI_BRIDGE(pci_dev);
/* Only pci bridges can be attached to extra PCI root buses */
if (pci_bus_is_root(bus) && bus->parent_dev && !is_bridge) {
error_setg(errp,
"PCI: Only PCI/PCIe bridges can be plugged into %s",
bus->parent_dev->name);
return NULL;
}
if (devfn < 0) {
for(devfn = bus->devfn_min ; devfn < ARRAY_SIZE(bus->devices);
devfn += PCI_FUNC_MAX) {
if (pci_bus_devfn_available(bus, devfn) &&
!pci_bus_devfn_reserved(bus, devfn)) {
goto found;
}
}
error_setg(errp, "PCI: no slot/function available for %s, all in use "
"or reserved", name);
return NULL;
found: ;
} else if (pci_bus_devfn_reserved(bus, devfn)) {
error_setg(errp, "PCI: slot %d function %d not available for %s,"
" reserved",
PCI_SLOT(devfn), PCI_FUNC(devfn), name);
return NULL;
} else if (!pci_bus_devfn_available(bus, devfn)) {
error_setg(errp, "PCI: slot %d function %d not available for %s,"
" in use by %s,id=%s",
PCI_SLOT(devfn), PCI_FUNC(devfn), name,
bus->devices[devfn]->name, bus->devices[devfn]->qdev.id);
return NULL;
} /*
* Populating function 0 triggers a scan from the guest that
* exposes other non-zero functions. Hence we need to ensure that
* function 0 wasn't added yet.
*/
else if (dev->hotplugged &&
!pci_is_vf(pci_dev) &&
pci_get_function_0(pci_dev)) {
error_setg(errp, "PCI: slot %d function 0 already occupied by %s,"
" new func %s cannot be exposed to guest.",
PCI_SLOT(pci_get_function_0(pci_dev)->devfn),
pci_get_function_0(pci_dev)->name,
name);
return NULL;
}
pci_dev->devfn = devfn;
pci_dev->requester_id_cache = pci_req_id_cache_get(pci_dev);
pstrcpy(pci_dev->name, sizeof(pci_dev->name), name);
memory_region_init(&pci_dev->bus_master_container_region, OBJECT(pci_dev),
"bus master container", UINT64_MAX);
address_space_init(&pci_dev->bus_master_as,
&pci_dev->bus_master_container_region, pci_dev->name);
if (phase_check(PHASE_MACHINE_READY)) {
pci_init_bus_master(pci_dev);
}
pci_dev->irq_state = 0;
pci_config_alloc(pci_dev);
pci_config_set_vendor_id(pci_dev->config, pc->vendor_id);
pci_config_set_device_id(pci_dev->config, pc->device_id);
pci_config_set_revision(pci_dev->config, pc->revision);
pci_config_set_class(pci_dev->config, pc->class_id);
if (!is_bridge) {
if (pc->subsystem_vendor_id || pc->subsystem_id) {
pci_set_word(pci_dev->config + PCI_SUBSYSTEM_VENDOR_ID,
pc->subsystem_vendor_id);
pci_set_word(pci_dev->config + PCI_SUBSYSTEM_ID,
pc->subsystem_id);
} else {
pci_set_default_subsystem_id(pci_dev);
}
} else {
/* subsystem_vendor_id/subsystem_id are only for header type 0 */
assert(!pc->subsystem_vendor_id);
assert(!pc->subsystem_id);
}
pci_init_cmask(pci_dev);
pci_init_wmask(pci_dev);
pci_init_w1cmask(pci_dev);
if (is_bridge) {
pci_init_mask_bridge(pci_dev);
}
pci_init_multifunction(bus, pci_dev, &local_err);
if (local_err) {
error_propagate(errp, local_err);
do_pci_unregister_device(pci_dev);
return NULL;
}
if (!config_read)
config_read = pci_default_read_config;
if (!config_write)
config_write = pci_default_write_config;
pci_dev->config_read = config_read;
pci_dev->config_write = config_write;
bus->devices[devfn] = pci_dev;
pci_dev->version_id = 2; /* Current pci device vmstate version */
return pci_dev;
}
static void pci_unregister_io_regions(PCIDevice *pci_dev)
{
PCIIORegion *r;
int i;
for(i = 0; i < PCI_NUM_REGIONS; i++) {
r = &pci_dev->io_regions[i];
if (!r->size || r->addr == PCI_BAR_UNMAPPED)
continue;
memory_region_del_subregion(r->address_space, r->memory);
}
pci_unregister_vga(pci_dev);
}
static void pci_qdev_unrealize(DeviceState *dev)
{
PCIDevice *pci_dev = PCI_DEVICE(dev);
PCIDeviceClass *pc = PCI_DEVICE_GET_CLASS(pci_dev);
pci_unregister_io_regions(pci_dev);
pci_del_option_rom(pci_dev);
if (pc->exit) {
pc->exit(pci_dev);
}
pci_device_deassert_intx(pci_dev);
do_pci_unregister_device(pci_dev);
pci_dev->msi_trigger = NULL;
/*
* clean up acpi-index so it could reused by another device
*/
if (pci_dev->acpi_index) {
GSequence *used_indexes = pci_acpi_index_list();
g_sequence_remove(g_sequence_lookup(used_indexes,
GINT_TO_POINTER(pci_dev->acpi_index),
g_cmp_uint32, NULL));
}
}
void pci_register_bar(PCIDevice *pci_dev, int region_num,
uint8_t type, MemoryRegion *memory)
{
PCIIORegion *r;
uint32_t addr; /* offset in pci config space */
uint64_t wmask;
pcibus_t size = memory_region_size(memory);
uint8_t hdr_type;
assert(!pci_is_vf(pci_dev)); /* VFs must use pcie_sriov_vf_register_bar */
assert(region_num >= 0);
assert(region_num < PCI_NUM_REGIONS);
assert(is_power_of_2(size));
/* A PCI bridge device (with Type 1 header) may only have at most 2 BARs */
hdr_type =
pci_dev->config[PCI_HEADER_TYPE] & ~PCI_HEADER_TYPE_MULTI_FUNCTION;
assert(hdr_type != PCI_HEADER_TYPE_BRIDGE || region_num < 2);
r = &pci_dev->io_regions[region_num];
r->addr = PCI_BAR_UNMAPPED;
r->size = size;
r->type = type;
r->memory = memory;
r->address_space = type & PCI_BASE_ADDRESS_SPACE_IO
? pci_get_bus(pci_dev)->address_space_io
: pci_get_bus(pci_dev)->address_space_mem;
wmask = ~(size - 1);
if (region_num == PCI_ROM_SLOT) {
/* ROM enable bit is writable */
wmask |= PCI_ROM_ADDRESS_ENABLE;
}
addr = pci_bar(pci_dev, region_num);
pci_set_long(pci_dev->config + addr, type);
if (!(r->type & PCI_BASE_ADDRESS_SPACE_IO) &&
r->type & PCI_BASE_ADDRESS_MEM_TYPE_64) {
pci_set_quad(pci_dev->wmask + addr, wmask);
pci_set_quad(pci_dev->cmask + addr, ~0ULL);
} else {
pci_set_long(pci_dev->wmask + addr, wmask & 0xffffffff);
pci_set_long(pci_dev->cmask + addr, 0xffffffff);
}
}
static void pci_update_vga(PCIDevice *pci_dev)
{
uint16_t cmd;
if (!pci_dev->has_vga) {
return;
}
cmd = pci_get_word(pci_dev->config + PCI_COMMAND);
memory_region_set_enabled(pci_dev->vga_regions[QEMU_PCI_VGA_MEM],
cmd & PCI_COMMAND_MEMORY);
memory_region_set_enabled(pci_dev->vga_regions[QEMU_PCI_VGA_IO_LO],
cmd & PCI_COMMAND_IO);
memory_region_set_enabled(pci_dev->vga_regions[QEMU_PCI_VGA_IO_HI],
cmd & PCI_COMMAND_IO);
}
void pci_register_vga(PCIDevice *pci_dev, MemoryRegion *mem,
MemoryRegion *io_lo, MemoryRegion *io_hi)
{
PCIBus *bus = pci_get_bus(pci_dev);
assert(!pci_dev->has_vga);
assert(memory_region_size(mem) == QEMU_PCI_VGA_MEM_SIZE);
pci_dev->vga_regions[QEMU_PCI_VGA_MEM] = mem;
memory_region_add_subregion_overlap(bus->address_space_mem,
QEMU_PCI_VGA_MEM_BASE, mem, 1);
assert(memory_region_size(io_lo) == QEMU_PCI_VGA_IO_LO_SIZE);
pci_dev->vga_regions[QEMU_PCI_VGA_IO_LO] = io_lo;
memory_region_add_subregion_overlap(bus->address_space_io,
QEMU_PCI_VGA_IO_LO_BASE, io_lo, 1);
assert(memory_region_size(io_hi) == QEMU_PCI_VGA_IO_HI_SIZE);
pci_dev->vga_regions[QEMU_PCI_VGA_IO_HI] = io_hi;
memory_region_add_subregion_overlap(bus->address_space_io,
QEMU_PCI_VGA_IO_HI_BASE, io_hi, 1);
pci_dev->has_vga = true;
pci_update_vga(pci_dev);
}
void pci_unregister_vga(PCIDevice *pci_dev)
{
PCIBus *bus = pci_get_bus(pci_dev);
if (!pci_dev->has_vga) {
return;
}
memory_region_del_subregion(bus->address_space_mem,
pci_dev->vga_regions[QEMU_PCI_VGA_MEM]);
memory_region_del_subregion(bus->address_space_io,
pci_dev->vga_regions[QEMU_PCI_VGA_IO_LO]);
memory_region_del_subregion(bus->address_space_io,
pci_dev->vga_regions[QEMU_PCI_VGA_IO_HI]);
pci_dev->has_vga = false;
}
pcibus_t pci_get_bar_addr(PCIDevice *pci_dev, int region_num)
{
return pci_dev->io_regions[region_num].addr;
}
static pcibus_t pci_config_get_bar_addr(PCIDevice *d, int reg,
uint8_t type, pcibus_t size)
{
pcibus_t new_addr;
if (!pci_is_vf(d)) {
int bar = pci_bar(d, reg);
if (type & PCI_BASE_ADDRESS_MEM_TYPE_64) {
new_addr = pci_get_quad(d->config + bar);
} else {
new_addr = pci_get_long(d->config + bar);
}
} else {
PCIDevice *pf = d->exp.sriov_vf.pf;
uint16_t sriov_cap = pf->exp.sriov_cap;
int bar = sriov_cap + PCI_SRIOV_BAR + reg * 4;
uint16_t vf_offset =
pci_get_word(pf->config + sriov_cap + PCI_SRIOV_VF_OFFSET);
uint16_t vf_stride =
pci_get_word(pf->config + sriov_cap + PCI_SRIOV_VF_STRIDE);
uint32_t vf_num = (d->devfn - (pf->devfn + vf_offset)) / vf_stride;
if (type & PCI_BASE_ADDRESS_MEM_TYPE_64) {
new_addr = pci_get_quad(pf->config + bar);
} else {
new_addr = pci_get_long(pf->config + bar);
}
new_addr += vf_num * size;
}
/* The ROM slot has a specific enable bit, keep it intact */
if (reg != PCI_ROM_SLOT) {
new_addr &= ~(size - 1);
}
return new_addr;
}
pcibus_t pci_bar_address(PCIDevice *d,
int reg, uint8_t type, pcibus_t size)
{
pcibus_t new_addr, last_addr;
uint16_t cmd = pci_get_word(d->config + PCI_COMMAND);
MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
bool allow_0_address = mc->pci_allow_0_address;
if (type & PCI_BASE_ADDRESS_SPACE_IO) {
if (!(cmd & PCI_COMMAND_IO)) {
return PCI_BAR_UNMAPPED;
}
new_addr = pci_config_get_bar_addr(d, reg, type, size);
last_addr = new_addr + size - 1;
/* Check if 32 bit BAR wraps around explicitly.
* TODO: make priorities correct and remove this work around.
*/
if (last_addr <= new_addr || last_addr >= UINT32_MAX ||
(!allow_0_address && new_addr == 0)) {
return PCI_BAR_UNMAPPED;
}
return new_addr;
}
if (!(cmd & PCI_COMMAND_MEMORY)) {
return PCI_BAR_UNMAPPED;
}
new_addr = pci_config_get_bar_addr(d, reg, type, size);
/* the ROM slot has a specific enable bit */
if (reg == PCI_ROM_SLOT && !(new_addr & PCI_ROM_ADDRESS_ENABLE)) {
return PCI_BAR_UNMAPPED;
}
new_addr &= ~(size - 1);
last_addr = new_addr + size - 1;
/* NOTE: we do not support wrapping */
/* XXX: as we cannot support really dynamic
mappings, we handle specific values as invalid
mappings. */
if (last_addr <= new_addr || last_addr == PCI_BAR_UNMAPPED ||
(!allow_0_address && new_addr == 0)) {
return PCI_BAR_UNMAPPED;
}
/* Now pcibus_t is 64bit.
* Check if 32 bit BAR wraps around explicitly.
* Without this, PC ide doesn't work well.
* TODO: remove this work around.
*/
if (!(type & PCI_BASE_ADDRESS_MEM_TYPE_64) && last_addr >= UINT32_MAX) {
return PCI_BAR_UNMAPPED;
}
/*
* OS is allowed to set BAR beyond its addressable
* bits. For example, 32 bit OS can set 64bit bar
* to >4G. Check it. TODO: we might need to support
* it in the future for e.g. PAE.
*/
if (last_addr >= HWADDR_MAX) {
return PCI_BAR_UNMAPPED;
}
return new_addr;
}
static void pci_update_mappings(PCIDevice *d)
{
PCIIORegion *r;
int i;
pcibus_t new_addr;
for(i = 0; i < PCI_NUM_REGIONS; i++) {
r = &d->io_regions[i];
/* this region isn't registered */
if (!r->size)
continue;
new_addr = pci_bar_address(d, i, r->type, r->size);
if (!d->enabled) {
new_addr = PCI_BAR_UNMAPPED;
}
/* This bar isn't changed */
if (new_addr == r->addr)
continue;
/* now do the real mapping */
if (r->addr != PCI_BAR_UNMAPPED) {
trace_pci_update_mappings_del(d->name, pci_dev_bus_num(d),
PCI_SLOT(d->devfn),
PCI_FUNC(d->devfn),
i, r->addr, r->size);
memory_region_del_subregion(r->address_space, r->memory);
}
r->addr = new_addr;
if (r->addr != PCI_BAR_UNMAPPED) {
trace_pci_update_mappings_add(d->name, pci_dev_bus_num(d),
PCI_SLOT(d->devfn),
PCI_FUNC(d->devfn),
i, r->addr, r->size);
memory_region_add_subregion_overlap(r->address_space,
r->addr, r->memory, 1);
}
}
pci_update_vga(d);
}
static inline int pci_irq_disabled(PCIDevice *d)
{
return pci_get_word(d->config + PCI_COMMAND) & PCI_COMMAND_INTX_DISABLE;
}
/* Called after interrupt disabled field update in config space,
* assert/deassert interrupts if necessary.
* Gets original interrupt disable bit value (before update). */
static void pci_update_irq_disabled(PCIDevice *d, int was_irq_disabled)
{
int i, disabled = pci_irq_disabled(d);
if (disabled == was_irq_disabled)
return;
for (i = 0; i < PCI_NUM_PINS; ++i) {
int state = pci_irq_state(d, i);
pci_change_irq_level(d, i, disabled ? -state : state);
}
}
uint32_t pci_default_read_config(PCIDevice *d,
uint32_t address, int len)
{
uint32_t val = 0;
assert(address + len <= pci_config_size(d));
if (pci_is_express_downstream_port(d) &&
ranges_overlap(address, len, d->exp.exp_cap + PCI_EXP_LNKSTA, 2)) {
pcie_sync_bridge_lnk(d);
}
memcpy(&val, d->config + address, len);
return le32_to_cpu(val);
}
void pci_default_write_config(PCIDevice *d, uint32_t addr, uint32_t val_in, int l)
{
int i, was_irq_disabled = pci_irq_disabled(d);
uint32_t val = val_in;
assert(addr + l <= pci_config_size(d));
for (i = 0; i < l; val >>= 8, ++i) {
uint8_t wmask = d->wmask[addr + i];
uint8_t w1cmask = d->w1cmask[addr + i];
assert(!(wmask & w1cmask));
d->config[addr + i] = (d->config[addr + i] & ~wmask) | (val & wmask);
d->config[addr + i] &= ~(val & w1cmask); /* W1C: Write 1 to Clear */
}
if (ranges_overlap(addr, l, PCI_BASE_ADDRESS_0, 24) ||
ranges_overlap(addr, l, PCI_ROM_ADDRESS, 4) ||
ranges_overlap(addr, l, PCI_ROM_ADDRESS1, 4) ||
range_covers_byte(addr, l, PCI_COMMAND))
pci_update_mappings(d);
if (ranges_overlap(addr, l, PCI_COMMAND, 2)) {
pci_update_irq_disabled(d, was_irq_disabled);
memory_region_set_enabled(&d->bus_master_enable_region,
(pci_get_word(d->config + PCI_COMMAND)
& PCI_COMMAND_MASTER) && d->enabled);
}
msi_write_config(d, addr, val_in, l);
msix_write_config(d, addr, val_in, l);
pcie_sriov_config_write(d, addr, val_in, l);
}
/***********************************************************/
/* generic PCI irq support */
/* 0 <= irq_num <= 3. level must be 0 or 1 */
static void pci_irq_handler(void *opaque, int irq_num, int level)
{
PCIDevice *pci_dev = opaque;
int change;
assert(0 <= irq_num && irq_num < PCI_NUM_PINS);
assert(level == 0 || level == 1);
change = level - pci_irq_state(pci_dev, irq_num);
if (!change)
return;
pci_set_irq_state(pci_dev, irq_num, level);
pci_update_irq_status(pci_dev);
if (pci_irq_disabled(pci_dev))
return;
pci_change_irq_level(pci_dev, irq_num, change);
}
qemu_irq pci_allocate_irq(PCIDevice *pci_dev)
{
int intx = pci_intx(pci_dev);
assert(0 <= intx && intx < PCI_NUM_PINS);
return qemu_allocate_irq(pci_irq_handler, pci_dev, intx);
}
void pci_set_irq(PCIDevice *pci_dev, int level)
{
int intx = pci_intx(pci_dev);
pci_irq_handler(pci_dev, intx, level);
}
/* Special hooks used by device assignment */
void pci_bus_set_route_irq_fn(PCIBus *bus, pci_route_irq_fn route_intx_to_irq)
{
assert(pci_bus_is_root(bus));
bus->route_intx_to_irq = route_intx_to_irq;
}
PCIINTxRoute pci_device_route_intx_to_irq(PCIDevice *dev, int pin)
{
PCIBus *bus;
do {
int dev_irq = pin;
bus = pci_get_bus(dev);
pin = bus->map_irq(dev, pin);
trace_pci_route_irq(dev_irq, DEVICE(dev)->canonical_path, pin,
pci_bus_is_root(bus) ? "root-complex"
: DEVICE(bus->parent_dev)->canonical_path);
dev = bus->parent_dev;
} while (dev);
if (!bus->route_intx_to_irq) {
error_report("PCI: Bug - unimplemented PCI INTx routing (%s)",
object_get_typename(OBJECT(bus->qbus.parent)));
return (PCIINTxRoute) { PCI_INTX_DISABLED, -1 };
}
return bus->route_intx_to_irq(bus->irq_opaque, pin);
}
bool pci_intx_route_changed(PCIINTxRoute *old, PCIINTxRoute *new)
{
return old->mode != new->mode || old->irq != new->irq;
}
void pci_bus_fire_intx_routing_notifier(PCIBus *bus)
{
PCIDevice *dev;
PCIBus *sec;
int i;
for (i = 0; i < ARRAY_SIZE(bus->devices); ++i) {
dev = bus->devices[i];
if (dev && dev->intx_routing_notifier) {
dev->intx_routing_notifier(dev);
}
}
QLIST_FOREACH(sec, &bus->child, sibling) {
pci_bus_fire_intx_routing_notifier(sec);
}
}
void pci_device_set_intx_routing_notifier(PCIDevice *dev,
PCIINTxRoutingNotifier notifier)
{
dev->intx_routing_notifier = notifier;
}
/*
* PCI-to-PCI bridge specification
* 9.1: Interrupt routing. Table 9-1
*
* the PCI Express Base Specification, Revision 2.1
* 2.2.8.1: INTx interrupt signaling - Rules
* the Implementation Note
* Table 2-20
*/
/*
* 0 <= pin <= 3 0 = INTA, 1 = INTB, 2 = INTC, 3 = INTD
* 0-origin unlike PCI interrupt pin register.
*/
int pci_swizzle_map_irq_fn(PCIDevice *pci_dev, int pin)
{
return pci_swizzle(PCI_SLOT(pci_dev->devfn), pin);
}
/***********************************************************/
/* monitor info on PCI */
static const pci_class_desc pci_class_descriptions[] =
{
{ 0x0001, "VGA controller", "display"},
{ 0x0100, "SCSI controller", "scsi"},
{ 0x0101, "IDE controller", "ide"},
{ 0x0102, "Floppy controller", "fdc"},
{ 0x0103, "IPI controller", "ipi"},
{ 0x0104, "RAID controller", "raid"},
{ 0x0106, "SATA controller"},
{ 0x0107, "SAS controller"},
{ 0x0180, "Storage controller"},
{ 0x0200, "Ethernet controller", "ethernet"},
{ 0x0201, "Token Ring controller", "token-ring"},
{ 0x0202, "FDDI controller", "fddi"},
{ 0x0203, "ATM controller", "atm"},
{ 0x0280, "Network controller"},
{ 0x0300, "VGA controller", "display", 0x00ff},
{ 0x0301, "XGA controller"},
{ 0x0302, "3D controller"},
{ 0x0380, "Display controller"},
{ 0x0400, "Video controller", "video"},
{ 0x0401, "Audio controller", "sound"},
{ 0x0402, "Phone"},
{ 0x0403, "Audio controller", "sound"},
{ 0x0480, "Multimedia controller"},
{ 0x0500, "RAM controller", "memory"},
{ 0x0501, "Flash controller", "flash"},
{ 0x0580, "Memory controller"},
{ 0x0600, "Host bridge", "host"},
{ 0x0601, "ISA bridge", "isa"},
{ 0x0602, "EISA bridge", "eisa"},
{ 0x0603, "MC bridge", "mca"},
{ 0x0604, "PCI bridge", "pci-bridge"},
{ 0x0605, "PCMCIA bridge", "pcmcia"},
{ 0x0606, "NUBUS bridge", "nubus"},
{ 0x0607, "CARDBUS bridge", "cardbus"},
{ 0x0608, "RACEWAY bridge"},
{ 0x0680, "Bridge"},
{ 0x0700, "Serial port", "serial"},
{ 0x0701, "Parallel port", "parallel"},
{ 0x0800, "Interrupt controller", "interrupt-controller"},
{ 0x0801, "DMA controller", "dma-controller"},
{ 0x0802, "Timer", "timer"},
{ 0x0803, "RTC", "rtc"},
{ 0x0900, "Keyboard", "keyboard"},
{ 0x0901, "Pen", "pen"},
{ 0x0902, "Mouse", "mouse"},
{ 0x0A00, "Dock station", "dock", 0x00ff},
{ 0x0B00, "i386 cpu", "cpu", 0x00ff},
{ 0x0c00, "Firewire controller", "firewire"},
{ 0x0c01, "Access bus controller", "access-bus"},
{ 0x0c02, "SSA controller", "ssa"},
{ 0x0c03, "USB controller", "usb"},
{ 0x0c04, "Fibre channel controller", "fibre-channel"},
{ 0x0c05, "SMBus"},
{ 0, NULL}
};
void pci_for_each_device_under_bus_reverse(PCIBus *bus,
pci_bus_dev_fn fn,
void *opaque)
{
PCIDevice *d;
int devfn;
for (devfn = 0; devfn < ARRAY_SIZE(bus->devices); devfn++) {
d = bus->devices[ARRAY_SIZE(bus->devices) - 1 - devfn];
if (d) {
fn(bus, d, opaque);
}
}
}
void pci_for_each_device_reverse(PCIBus *bus, int bus_num,
pci_bus_dev_fn fn, void *opaque)
{
bus = pci_find_bus_nr(bus, bus_num);
if (bus) {
pci_for_each_device_under_bus_reverse(bus, fn, opaque);
}
}
void pci_for_each_device_under_bus(PCIBus *bus,
pci_bus_dev_fn fn, void *opaque)
{
PCIDevice *d;
int devfn;
for(devfn = 0; devfn < ARRAY_SIZE(bus->devices); devfn++) {
d = bus->devices[devfn];
if (d) {
fn(bus, d, opaque);
}
}
}
void pci_for_each_device(PCIBus *bus, int bus_num,
pci_bus_dev_fn fn, void *opaque)
{
bus = pci_find_bus_nr(bus, bus_num);
if (bus) {
pci_for_each_device_under_bus(bus, fn, opaque);
}
}
const pci_class_desc *get_class_desc(int class)
{
const pci_class_desc *desc;
desc = pci_class_descriptions;
while (desc->desc && class != desc->class) {
desc++;
}
return desc;
}
void pci_init_nic_devices(PCIBus *bus, const char *default_model)
{
qemu_create_nic_bus_devices(&bus->qbus, TYPE_PCI_DEVICE, default_model,
"virtio", "virtio-net-pci");
}
bool pci_init_nic_in_slot(PCIBus *rootbus, const char *model,
const char *alias, const char *devaddr)
{
NICInfo *nd = qemu_find_nic_info(model, true, alias);
int dom, busnr, devfn;
PCIDevice *pci_dev;
unsigned slot;
PCIBus *bus;
if (!nd) {
return false;
}
if (!devaddr || pci_parse_devaddr(devaddr, &dom, &busnr, &slot, NULL) < 0) {
error_report("Invalid PCI device address %s for device %s",
devaddr, model);
exit(1);
}
if (dom != 0) {
error_report("No support for non-zero PCI domains");
exit(1);
}
devfn = PCI_DEVFN(slot, 0);
bus = pci_find_bus_nr(rootbus, busnr);
if (!bus) {
error_report("Invalid PCI device address %s for device %s",
devaddr, model);
exit(1);
}
pci_dev = pci_new(devfn, model);
qdev_set_nic_properties(&pci_dev->qdev, nd);
pci_realize_and_unref(pci_dev, bus, &error_fatal);
return true;
}
PCIDevice *pci_vga_init(PCIBus *bus)
{
vga_interface_created = true;
switch (vga_interface_type) {
case VGA_CIRRUS:
return pci_create_simple(bus, -1, "cirrus-vga");
case VGA_QXL:
return pci_create_simple(bus, -1, "qxl-vga");
case VGA_STD:
return pci_create_simple(bus, -1, "VGA");
case VGA_VMWARE:
return pci_create_simple(bus, -1, "vmware-svga");
case VGA_VIRTIO:
return pci_create_simple(bus, -1, "virtio-vga");
case VGA_NONE:
default: /* Other non-PCI types. Checking for unsupported types is already
done in vl.c. */
return NULL;
}
}
/* Whether a given bus number is in range of the secondary
* bus of the given bridge device. */
static bool pci_secondary_bus_in_range(PCIDevice *dev, int bus_num)
{
return !(pci_get_word(dev->config + PCI_BRIDGE_CONTROL) &
PCI_BRIDGE_CTL_BUS_RESET) /* Don't walk the bus if it's reset. */ &&
dev->config[PCI_SECONDARY_BUS] <= bus_num &&
bus_num <= dev->config[PCI_SUBORDINATE_BUS];
}
/* Whether a given bus number is in a range of a root bus */
static bool pci_root_bus_in_range(PCIBus *bus, int bus_num)
{
int i;
for (i = 0; i < ARRAY_SIZE(bus->devices); ++i) {
PCIDevice *dev = bus->devices[i];
if (dev && IS_PCI_BRIDGE(dev)) {
if (pci_secondary_bus_in_range(dev, bus_num)) {
return true;
}
}
}
return false;
}
PCIBus *pci_find_bus_nr(PCIBus *bus, int bus_num)
{
PCIBus *sec;
if (!bus) {
return NULL;
}
if (pci_bus_num(bus) == bus_num) {
return bus;
}
/* Consider all bus numbers in range for the host pci bridge. */
if (!pci_bus_is_root(bus) &&
!pci_secondary_bus_in_range(bus->parent_dev, bus_num)) {
return NULL;
}
/* try child bus */
for (; bus; bus = sec) {
QLIST_FOREACH(sec, &bus->child, sibling) {
if (pci_bus_num(sec) == bus_num) {
return sec;
}
/* PXB buses assumed to be children of bus 0 */
if (pci_bus_is_root(sec)) {
if (pci_root_bus_in_range(sec, bus_num)) {
break;
}
} else {
if (pci_secondary_bus_in_range(sec->parent_dev, bus_num)) {
break;
}
}
}
}
return NULL;
}
void pci_for_each_bus_depth_first(PCIBus *bus, pci_bus_ret_fn begin,
pci_bus_fn end, void *parent_state)
{
PCIBus *sec;
void *state;
if (!bus) {
return;
}
if (begin) {
state = begin(bus, parent_state);
} else {
state = parent_state;
}
QLIST_FOREACH(sec, &bus->child, sibling) {
pci_for_each_bus_depth_first(sec, begin, end, state);
}
if (end) {
end(bus, state);
}
}
PCIDevice *pci_find_device(PCIBus *bus, int bus_num, uint8_t devfn)
{
bus = pci_find_bus_nr(bus, bus_num);
if (!bus)
return NULL;
return bus->devices[devfn];
}
#define ONBOARD_INDEX_MAX (16 * 1024 - 1)
static void pci_qdev_realize(DeviceState *qdev, Error **errp)
{
PCIDevice *pci_dev = (PCIDevice *)qdev;
PCIDeviceClass *pc = PCI_DEVICE_GET_CLASS(pci_dev);
ObjectClass *klass = OBJECT_CLASS(pc);
Error *local_err = NULL;
bool is_default_rom;
uint16_t class_id;
/*
* capped by systemd (see: udev-builtin-net_id.c)
* as it's the only known user honor it to avoid users
* misconfigure QEMU and then wonder why acpi-index doesn't work
*/
if (pci_dev->acpi_index > ONBOARD_INDEX_MAX) {
error_setg(errp, "acpi-index should be less or equal to %u",
ONBOARD_INDEX_MAX);
return;
}
/*
* make sure that acpi-index is unique across all present PCI devices
*/
if (pci_dev->acpi_index) {
GSequence *used_indexes = pci_acpi_index_list();
if (g_sequence_lookup(used_indexes,
GINT_TO_POINTER(pci_dev->acpi_index),
g_cmp_uint32, NULL)) {
error_setg(errp, "a PCI device with acpi-index = %" PRIu32
" already exist", pci_dev->acpi_index);
return;
}
g_sequence_insert_sorted(used_indexes,
GINT_TO_POINTER(pci_dev->acpi_index),
g_cmp_uint32, NULL);
}
if (pci_dev->romsize != -1 && !is_power_of_2(pci_dev->romsize)) {
error_setg(errp, "ROM size %u is not a power of two", pci_dev->romsize);
return;
}
/* initialize cap_present for pci_is_express() and pci_config_size(),
* Note that hybrid PCIs are not set automatically and need to manage
* QEMU_PCI_CAP_EXPRESS manually */
if (object_class_dynamic_cast(klass, INTERFACE_PCIE_DEVICE) &&
!object_class_dynamic_cast(klass, INTERFACE_CONVENTIONAL_PCI_DEVICE)) {
pci_dev->cap_present |= QEMU_PCI_CAP_EXPRESS;
}
if (object_class_dynamic_cast(klass, INTERFACE_CXL_DEVICE)) {
pci_dev->cap_present |= QEMU_PCIE_CAP_CXL;
}
pci_dev = do_pci_register_device(pci_dev,
object_get_typename(OBJECT(qdev)),
pci_dev->devfn, errp);
if (pci_dev == NULL)
return;
if (pc->realize) {
pc->realize(pci_dev, &local_err);
if (local_err) {
error_propagate(errp, local_err);
do_pci_unregister_device(pci_dev);
return;
}
}
/*
* A PCIe Downstream Port that do not have ARI Forwarding enabled must
* associate only Device 0 with the device attached to the bus
* representing the Link from the Port (PCIe base spec rev 4.0 ver 0.3,
* sec 7.3.1).
* With ARI, PCI_SLOT() can return non-zero value as the traditional
* 5-bit Device Number and 3-bit Function Number fields in its associated
* Routing IDs, Requester IDs and Completer IDs are interpreted as a
* single 8-bit Function Number. Hence, ignore ARI capable devices.
*/
if (pci_is_express(pci_dev) &&
!pcie_find_capability(pci_dev, PCI_EXT_CAP_ID_ARI) &&
pcie_has_upstream_port(pci_dev) &&
PCI_SLOT(pci_dev->devfn)) {
warn_report("PCI: slot %d is not valid for %s,"
" parent device only allows plugging into slot 0.",
PCI_SLOT(pci_dev->devfn), pci_dev->name);
}
if (pci_dev->failover_pair_id) {
if (!pci_bus_is_express(pci_get_bus(pci_dev))) {
error_setg(errp, "failover primary device must be on "
"PCIExpress bus");
pci_qdev_unrealize(DEVICE(pci_dev));
return;
}
class_id = pci_get_word(pci_dev->config + PCI_CLASS_DEVICE);
if (class_id != PCI_CLASS_NETWORK_ETHERNET) {
error_setg(errp, "failover primary device is not an "
"Ethernet device");
pci_qdev_unrealize(DEVICE(pci_dev));
return;
}
if ((pci_dev->cap_present & QEMU_PCI_CAP_MULTIFUNCTION)
|| (PCI_FUNC(pci_dev->devfn) != 0)) {
error_setg(errp, "failover: primary device must be in its own "
"PCI slot");
pci_qdev_unrealize(DEVICE(pci_dev));
return;
}
qdev->allow_unplug_during_migration = true;
}
/* rom loading */
is_default_rom = false;
if (pci_dev->romfile == NULL && pc->romfile != NULL) {
pci_dev->romfile = g_strdup(pc->romfile);
is_default_rom = true;
}
pci_add_option_rom(pci_dev, is_default_rom, &local_err);
if (local_err) {
error_propagate(errp, local_err);
pci_qdev_unrealize(DEVICE(pci_dev));
return;
}
pci_set_power(pci_dev, true);
pci_dev->msi_trigger = pci_msi_trigger;
}
static PCIDevice *pci_new_internal(int devfn, bool multifunction,
const char *name)
{
DeviceState *dev;
dev = qdev_new(name);
qdev_prop_set_int32(dev, "addr", devfn);
qdev_prop_set_bit(dev, "multifunction", multifunction);
return PCI_DEVICE(dev);
}
PCIDevice *pci_new_multifunction(int devfn, const char *name)
{
return pci_new_internal(devfn, true, name);
}
PCIDevice *pci_new(int devfn, const char *name)
{
return pci_new_internal(devfn, false, name);
}
bool pci_realize_and_unref(PCIDevice *dev, PCIBus *bus, Error **errp)
{
return qdev_realize_and_unref(&dev->qdev, &bus->qbus, errp);
}
PCIDevice *pci_create_simple_multifunction(PCIBus *bus, int devfn,
const char *name)
{
PCIDevice *dev = pci_new_multifunction(devfn, name);
pci_realize_and_unref(dev, bus, &error_fatal);
return dev;
}
PCIDevice *pci_create_simple(PCIBus *bus, int devfn, const char *name)
{
PCIDevice *dev = pci_new(devfn, name);
pci_realize_and_unref(dev, bus, &error_fatal);
return dev;
}
static uint8_t pci_find_space(PCIDevice *pdev, uint8_t size)
{
int offset = PCI_CONFIG_HEADER_SIZE;
int i;
for (i = PCI_CONFIG_HEADER_SIZE; i < PCI_CONFIG_SPACE_SIZE; ++i) {
if (pdev->used[i])
offset = i + 1;
else if (i - offset + 1 == size)
return offset;
}
return 0;
}
static uint8_t pci_find_capability_list(PCIDevice *pdev, uint8_t cap_id,
uint8_t *prev_p)
{
uint8_t next, prev;
if (!(pdev->config[PCI_STATUS] & PCI_STATUS_CAP_LIST))
return 0;
for (prev = PCI_CAPABILITY_LIST; (next = pdev->config[prev]);
prev = next + PCI_CAP_LIST_NEXT)
if (pdev->config[next + PCI_CAP_LIST_ID] == cap_id)
break;
if (prev_p)
*prev_p = prev;
return next;
}
static uint8_t pci_find_capability_at_offset(PCIDevice *pdev, uint8_t offset)
{
uint8_t next, prev, found = 0;
if (!(pdev->used[offset])) {
return 0;
}
assert(pdev->config[PCI_STATUS] & PCI_STATUS_CAP_LIST);
for (prev = PCI_CAPABILITY_LIST; (next = pdev->config[prev]);
prev = next + PCI_CAP_LIST_NEXT) {
if (next <= offset && next > found) {
found = next;
}
}
return found;
}
/* Patch the PCI vendor and device ids in a PCI rom image if necessary.
This is needed for an option rom which is used for more than one device. */
static void pci_patch_ids(PCIDevice *pdev, uint8_t *ptr, uint32_t size)
{
uint16_t vendor_id;
uint16_t device_id;
uint16_t rom_vendor_id;
uint16_t rom_device_id;
uint16_t rom_magic;
uint16_t pcir_offset;
uint8_t checksum;
/* Words in rom data are little endian (like in PCI configuration),
so they can be read / written with pci_get_word / pci_set_word. */
/* Only a valid rom will be patched. */
rom_magic = pci_get_word(ptr);
if (rom_magic != 0xaa55) {
PCI_DPRINTF("Bad ROM magic %04x\n", rom_magic);
return;
}
pcir_offset = pci_get_word(ptr + 0x18);
if (pcir_offset + 8 >= size || memcmp(ptr + pcir_offset, "PCIR", 4)) {
PCI_DPRINTF("Bad PCIR offset 0x%x or signature\n", pcir_offset);
return;
}
vendor_id = pci_get_word(pdev->config + PCI_VENDOR_ID);
device_id = pci_get_word(pdev->config + PCI_DEVICE_ID);
rom_vendor_id = pci_get_word(ptr + pcir_offset + 4);
rom_device_id = pci_get_word(ptr + pcir_offset + 6);
PCI_DPRINTF("%s: ROM id %04x%04x / PCI id %04x%04x\n", pdev->romfile,
vendor_id, device_id, rom_vendor_id, rom_device_id);
checksum = ptr[6];
if (vendor_id != rom_vendor_id) {
/* Patch vendor id and checksum (at offset 6 for etherboot roms). */
checksum += (uint8_t)rom_vendor_id + (uint8_t)(rom_vendor_id >> 8);
checksum -= (uint8_t)vendor_id + (uint8_t)(vendor_id >> 8);
PCI_DPRINTF("ROM checksum %02x / %02x\n", ptr[6], checksum);
ptr[6] = checksum;
pci_set_word(ptr + pcir_offset + 4, vendor_id);
}
if (device_id != rom_device_id) {
/* Patch device id and checksum (at offset 6 for etherboot roms). */
checksum += (uint8_t)rom_device_id + (uint8_t)(rom_device_id >> 8);
checksum -= (uint8_t)device_id + (uint8_t)(device_id >> 8);
PCI_DPRINTF("ROM checksum %02x / %02x\n", ptr[6], checksum);
ptr[6] = checksum;
pci_set_word(ptr + pcir_offset + 6, device_id);
}
}
/* Add an option rom for the device */
static void pci_add_option_rom(PCIDevice *pdev, bool is_default_rom,
Error **errp)
{
int64_t size = 0;
g_autofree char *path = NULL;
char name[32];
const VMStateDescription *vmsd;
/*
* In case of incoming migration ROM will come with migration stream, no
* reason to load the file. Neither we want to fail if local ROM file
* mismatches with specified romsize.
*/
bool load_file = !runstate_check(RUN_STATE_INMIGRATE);
if (!pdev->romfile || !strlen(pdev->romfile)) {
return;
}
if (!pdev->rom_bar) {
/*
* Load rom via fw_cfg instead of creating a rom bar,
* for 0.11 compatibility.
*/
int class = pci_get_word(pdev->config + PCI_CLASS_DEVICE);
/*
* Hot-plugged devices can't use the option ROM
* if the rom bar is disabled.
*/
if (DEVICE(pdev)->hotplugged) {
error_setg(errp, "Hot-plugged device without ROM bar"
" can't have an option ROM");
return;
}
if (class == 0x0300) {
rom_add_vga(pdev->romfile);
} else {
rom_add_option(pdev->romfile, -1);
}
return;
}
if (load_file || pdev->romsize == -1) {
path = qemu_find_file(QEMU_FILE_TYPE_BIOS, pdev->romfile);
if (path == NULL) {
path = g_strdup(pdev->romfile);
}
size = get_image_size(path);
if (size < 0) {
error_setg(errp, "failed to find romfile \"%s\"", pdev->romfile);
return;
} else if (size == 0) {
error_setg(errp, "romfile \"%s\" is empty", pdev->romfile);
return;
} else if (size > 2 * GiB) {
error_setg(errp,
"romfile \"%s\" too large (size cannot exceed 2 GiB)",
pdev->romfile);
return;
}
if (pdev->romsize != -1) {
if (size > pdev->romsize) {
error_setg(errp, "romfile \"%s\" (%u bytes) "
"is too large for ROM size %u",
pdev->romfile, (uint32_t)size, pdev->romsize);
return;
}
} else {
pdev->romsize = pow2ceil(size);
}
}
vmsd = qdev_get_vmsd(DEVICE(pdev));
snprintf(name, sizeof(name), "%s.rom",
vmsd ? vmsd->name : object_get_typename(OBJECT(pdev)));
pdev->has_rom = true;
memory_region_init_rom(&pdev->rom, OBJECT(pdev), name, pdev->romsize,
&error_fatal);
if (load_file) {
void *ptr = memory_region_get_ram_ptr(&pdev->rom);
if (load_image_size(path, ptr, size) < 0) {
error_setg(errp, "failed to load romfile \"%s\"", pdev->romfile);
return;
}
if (is_default_rom) {
/* Only the default rom images will be patched (if needed). */
pci_patch_ids(pdev, ptr, size);
}
}
pci_register_bar(pdev, PCI_ROM_SLOT, 0, &pdev->rom);
}
static void pci_del_option_rom(PCIDevice *pdev)
{
if (!pdev->has_rom)
return;
vmstate_unregister_ram(&pdev->rom, &pdev->qdev);
pdev->has_rom = false;
}
/*
* On success, pci_add_capability() returns a positive value
* that the offset of the pci capability.
* On failure, it sets an error and returns a negative error
* code.
*/
int pci_add_capability(PCIDevice *pdev, uint8_t cap_id,
uint8_t offset, uint8_t size,
Error **errp)
{
uint8_t *config;
int i, overlapping_cap;
if (!offset) {
offset = pci_find_space(pdev, size);
/* out of PCI config space is programming error */
assert(offset);
} else {
/* Verify that capabilities don't overlap. Note: device assignment
* depends on this check to verify that the device is not broken.
* Should never trigger for emulated devices, but it's helpful
* for debugging these. */
for (i = offset; i < offset + size; i++) {
overlapping_cap = pci_find_capability_at_offset(pdev, i);
if (overlapping_cap) {
error_setg(errp, "%s:%02x:%02x.%x "
"Attempt to add PCI capability %x at offset "
"%x overlaps existing capability %x at offset %x",
pci_root_bus_path(pdev), pci_dev_bus_num(pdev),
PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
cap_id, offset, overlapping_cap, i);
return -EINVAL;
}
}
}
config = pdev->config + offset;
config[PCI_CAP_LIST_ID] = cap_id;
config[PCI_CAP_LIST_NEXT] = pdev->config[PCI_CAPABILITY_LIST];
pdev->config[PCI_CAPABILITY_LIST] = offset;
pdev->config[PCI_STATUS] |= PCI_STATUS_CAP_LIST;
memset(pdev->used + offset, 0xFF, QEMU_ALIGN_UP(size, 4));
/* Make capability read-only by default */
memset(pdev->wmask + offset, 0, size);
/* Check capability by default */
memset(pdev->cmask + offset, 0xFF, size);
return offset;
}
/* Unlink capability from the pci config space. */
void pci_del_capability(PCIDevice *pdev, uint8_t cap_id, uint8_t size)
{
uint8_t prev, offset = pci_find_capability_list(pdev, cap_id, &prev);
if (!offset)
return;
pdev->config[prev] = pdev->config[offset + PCI_CAP_LIST_NEXT];
/* Make capability writable again */
memset(pdev->wmask + offset, 0xff, size);
memset(pdev->w1cmask + offset, 0, size);
/* Clear cmask as device-specific registers can't be checked */
memset(pdev->cmask + offset, 0, size);
memset(pdev->used + offset, 0, QEMU_ALIGN_UP(size, 4));
if (!pdev->config[PCI_CAPABILITY_LIST])
pdev->config[PCI_STATUS] &= ~PCI_STATUS_CAP_LIST;
}
uint8_t pci_find_capability(PCIDevice *pdev, uint8_t cap_id)
{
return pci_find_capability_list(pdev, cap_id, NULL);
}
static char *pci_dev_fw_name(DeviceState *dev, char *buf, int len)
{
PCIDevice *d = (PCIDevice *)dev;
const char *name = NULL;
const pci_class_desc *desc = pci_class_descriptions;
int class = pci_get_word(d->config + PCI_CLASS_DEVICE);
while (desc->desc &&
(class & ~desc->fw_ign_bits) !=
(desc->class & ~desc->fw_ign_bits)) {
desc++;
}
if (desc->desc) {
name = desc->fw_name;
}
if (name) {
pstrcpy(buf, len, name);
} else {
snprintf(buf, len, "pci%04x,%04x",
pci_get_word(d->config + PCI_VENDOR_ID),
pci_get_word(d->config + PCI_DEVICE_ID));
}
return buf;
}
static char *pcibus_get_fw_dev_path(DeviceState *dev)
{
PCIDevice *d = (PCIDevice *)dev;
char name[33];
int has_func = !!PCI_FUNC(d->devfn);
return g_strdup_printf("%s@%x%s%.*x",
pci_dev_fw_name(dev, name, sizeof(name)),
PCI_SLOT(d->devfn),
has_func ? "," : "",
has_func,
PCI_FUNC(d->devfn));
}
static char *pcibus_get_dev_path(DeviceState *dev)
{
PCIDevice *d = container_of(dev, PCIDevice, qdev);
PCIDevice *t;
int slot_depth;
/* Path format: Domain:00:Slot.Function:Slot.Function....:Slot.Function.
* 00 is added here to make this format compatible with
* domain:Bus:Slot.Func for systems without nested PCI bridges.
* Slot.Function list specifies the slot and function numbers for all
* devices on the path from root to the specific device. */
const char *root_bus_path;
int root_bus_len;
char slot[] = ":SS.F";
int slot_len = sizeof slot - 1 /* For '\0' */;
int path_len;
char *path, *p;
int s;
root_bus_path = pci_root_bus_path(d);
root_bus_len = strlen(root_bus_path);
/* Calculate # of slots on path between device and root. */;
slot_depth = 0;
for (t = d; t; t = pci_get_bus(t)->parent_dev) {
++slot_depth;
}
path_len = root_bus_len + slot_len * slot_depth;
/* Allocate memory, fill in the terminating null byte. */
path = g_malloc(path_len + 1 /* For '\0' */);
path[path_len] = '\0';
memcpy(path, root_bus_path, root_bus_len);
/* Fill in slot numbers. We walk up from device to root, so need to print
* them in the reverse order, last to first. */
p = path + path_len;
for (t = d; t; t = pci_get_bus(t)->parent_dev) {
p -= slot_len;
s = snprintf(slot, sizeof slot, ":%02x.%x",
PCI_SLOT(t->devfn), PCI_FUNC(t->devfn));
assert(s == slot_len);
memcpy(p, slot, slot_len);
}
return path;
}
static int pci_qdev_find_recursive(PCIBus *bus,
const char *id, PCIDevice **pdev)
{
DeviceState *qdev = qdev_find_recursive(&bus->qbus, id);
if (!qdev) {
return -ENODEV;
}
/* roughly check if given qdev is pci device */
if (object_dynamic_cast(OBJECT(qdev), TYPE_PCI_DEVICE)) {
*pdev = PCI_DEVICE(qdev);
return 0;
}
return -EINVAL;
}
int pci_qdev_find_device(const char *id, PCIDevice **pdev)
{
PCIHostState *host_bridge;
int rc = -ENODEV;
QLIST_FOREACH(host_bridge, &pci_host_bridges, next) {
int tmp = pci_qdev_find_recursive(host_bridge->bus, id, pdev);
if (!tmp) {
rc = 0;
break;
}
if (tmp != -ENODEV) {
rc = tmp;
}
}
return rc;
}
MemoryRegion *pci_address_space(PCIDevice *dev)
{
return pci_get_bus(dev)->address_space_mem;
}
MemoryRegion *pci_address_space_io(PCIDevice *dev)
{
return pci_get_bus(dev)->address_space_io;
}
static void pci_device_class_init(ObjectClass *klass, void *data)
{
DeviceClass *k = DEVICE_CLASS(klass);
k->realize = pci_qdev_realize;
k->unrealize = pci_qdev_unrealize;
k->bus_type = TYPE_PCI_BUS;
device_class_set_props(k, pci_props);
}
static void pci_device_class_base_init(ObjectClass *klass, void *data)
{
if (!object_class_is_abstract(klass)) {
ObjectClass *conventional =
object_class_dynamic_cast(klass, INTERFACE_CONVENTIONAL_PCI_DEVICE);
ObjectClass *pcie =
object_class_dynamic_cast(klass, INTERFACE_PCIE_DEVICE);
ObjectClass *cxl =
object_class_dynamic_cast(klass, INTERFACE_CXL_DEVICE);
assert(conventional || pcie || cxl);
}
}
/*
* Get IOMMU root bus, aliased bus and devfn of a PCI device
*
* IOMMU root bus is needed by all call sites to call into iommu_ops.
* For call sites which don't need aliased BDF, passing NULL to
* aliased_[bus|devfn] is allowed.
*
* @piommu_bus: return root #PCIBus backed by an IOMMU for the PCI device.
*
* @aliased_bus: return aliased #PCIBus of the PCI device, optional.
*
* @aliased_devfn: return aliased devfn of the PCI device, optional.
*/
static void pci_device_get_iommu_bus_devfn(PCIDevice *dev,
PCIBus **piommu_bus,
PCIBus **aliased_bus,
int *aliased_devfn)
{
PCIBus *bus = pci_get_bus(dev);
PCIBus *iommu_bus = bus;
int devfn = dev->devfn;
while (iommu_bus && !iommu_bus->iommu_ops && iommu_bus->parent_dev) {
PCIBus *parent_bus = pci_get_bus(iommu_bus->parent_dev);
/*
* The requester ID of the provided device may be aliased, as seen from
* the IOMMU, due to topology limitations. The IOMMU relies on a
* requester ID to provide a unique AddressSpace for devices, but
* conventional PCI buses pre-date such concepts. Instead, the PCIe-
* to-PCI bridge creates and accepts transactions on behalf of down-
* stream devices. When doing so, all downstream devices are masked
* (aliased) behind a single requester ID. The requester ID used
* depends on the format of the bridge devices. Proper PCIe-to-PCI
* bridges, with a PCIe capability indicating such, follow the
* guidelines of chapter 2.3 of the PCIe-to-PCI/X bridge specification,
* where the bridge uses the seconary bus as the bridge portion of the
* requester ID and devfn of 00.0. For other bridges, typically those
* found on the root complex such as the dmi-to-pci-bridge, we follow
* the convention of typical bare-metal hardware, which uses the
* requester ID of the bridge itself. There are device specific
* exceptions to these rules, but these are the defaults that the
* Linux kernel uses when determining DMA aliases itself and believed
* to be true for the bare metal equivalents of the devices emulated
* in QEMU.
*/
if (!pci_bus_is_express(iommu_bus)) {
PCIDevice *parent = iommu_bus->parent_dev;
if (pci_is_express(parent) &&
pcie_cap_get_type(parent) == PCI_EXP_TYPE_PCI_BRIDGE) {
devfn = PCI_DEVFN(0, 0);
bus = iommu_bus;
} else {
devfn = parent->devfn;
bus = parent_bus;
}
}
iommu_bus = parent_bus;
}
assert(0 <= devfn && devfn < PCI_DEVFN_MAX);
assert(iommu_bus);
if (pci_bus_bypass_iommu(bus) || !iommu_bus->iommu_ops) {
iommu_bus = NULL;
}
*piommu_bus = iommu_bus;
if (aliased_bus) {
*aliased_bus = bus;
}
if (aliased_devfn) {
*aliased_devfn = devfn;
}
}
AddressSpace *pci_device_iommu_address_space(PCIDevice *dev)
{
PCIBus *bus;
PCIBus *iommu_bus;
int devfn;
pci_device_get_iommu_bus_devfn(dev, &iommu_bus, &bus, &devfn);
if (iommu_bus) {
return iommu_bus->iommu_ops->get_address_space(bus,
iommu_bus->iommu_opaque, devfn);
}
return &address_space_memory;
}
bool pci_device_set_iommu_device(PCIDevice *dev, HostIOMMUDevice *hiod,
Error **errp)
{
PCIBus *iommu_bus, *aliased_bus;
int aliased_devfn;
/* set_iommu_device requires device's direct BDF instead of aliased BDF */
pci_device_get_iommu_bus_devfn(dev, &iommu_bus,
&aliased_bus, &aliased_devfn);
if (iommu_bus && iommu_bus->iommu_ops->set_iommu_device) {
hiod->aliased_bus = aliased_bus;
hiod->aliased_devfn = aliased_devfn;
return iommu_bus->iommu_ops->set_iommu_device(pci_get_bus(dev),
iommu_bus->iommu_opaque,
dev->devfn, hiod, errp);
}
return true;
}
void pci_device_unset_iommu_device(PCIDevice *dev)
{
PCIBus *iommu_bus;
pci_device_get_iommu_bus_devfn(dev, &iommu_bus, NULL, NULL);
if (iommu_bus && iommu_bus->iommu_ops->unset_iommu_device) {
return iommu_bus->iommu_ops->unset_iommu_device(pci_get_bus(dev),
iommu_bus->iommu_opaque,
dev->devfn);
}
}
void pci_setup_iommu(PCIBus *bus, const PCIIOMMUOps *ops, void *opaque)
{
/*
* If called, pci_setup_iommu() should provide a minimum set of
* useful callbacks for the bus.
*/
assert(ops);
assert(ops->get_address_space);
bus->iommu_ops = ops;
bus->iommu_opaque = opaque;
}
static void pci_dev_get_w64(PCIBus *b, PCIDevice *dev, void *opaque)
{
Range *range = opaque;
uint16_t cmd = pci_get_word(dev->config + PCI_COMMAND);
int i;
if (!(cmd & PCI_COMMAND_MEMORY)) {
return;
}
if (IS_PCI_BRIDGE(dev)) {
pcibus_t base = pci_bridge_get_base(dev, PCI_BASE_ADDRESS_MEM_PREFETCH);
pcibus_t limit = pci_bridge_get_limit(dev, PCI_BASE_ADDRESS_MEM_PREFETCH);
base = MAX(base, 0x1ULL << 32);
if (limit >= base) {
Range pref_range;
range_set_bounds(&pref_range, base, limit);
range_extend(range, &pref_range);
}
}
for (i = 0; i < PCI_NUM_REGIONS; ++i) {
PCIIORegion *r = &dev->io_regions[i];
pcibus_t lob, upb;
Range region_range;
if (!r->size ||
(r->type & PCI_BASE_ADDRESS_SPACE_IO) ||
!(r->type & PCI_BASE_ADDRESS_MEM_TYPE_64)) {
continue;
}
lob = pci_bar_address(dev, i, r->type, r->size);
upb = lob + r->size - 1;
if (lob == PCI_BAR_UNMAPPED) {
continue;
}
lob = MAX(lob, 0x1ULL << 32);
if (upb >= lob) {
range_set_bounds(&region_range, lob, upb);
range_extend(range, &region_range);
}
}
}
void pci_bus_get_w64_range(PCIBus *bus, Range *range)
{
range_make_empty(range);
pci_for_each_device_under_bus(bus, pci_dev_get_w64, range);
}
static bool pcie_has_upstream_port(PCIDevice *dev)
{
PCIDevice *parent_dev = pci_bridge_get_device(pci_get_bus(dev));
/* Device associated with an upstream port.
* As there are several types of these, it's easier to check the
* parent device: upstream ports are always connected to
* root or downstream ports.
*/
return parent_dev &&
pci_is_express(parent_dev) &&
parent_dev->exp.exp_cap &&
(pcie_cap_get_type(parent_dev) == PCI_EXP_TYPE_ROOT_PORT ||
pcie_cap_get_type(parent_dev) == PCI_EXP_TYPE_DOWNSTREAM);
}
PCIDevice *pci_get_function_0(PCIDevice *pci_dev)
{
PCIBus *bus = pci_get_bus(pci_dev);
if(pcie_has_upstream_port(pci_dev)) {
/* With an upstream PCIe port, we only support 1 device at slot 0 */
return bus->devices[0];
} else {
/* Other bus types might support multiple devices at slots 0-31 */
return bus->devices[PCI_DEVFN(PCI_SLOT(pci_dev->devfn), 0)];
}
}
MSIMessage pci_get_msi_message(PCIDevice *dev, int vector)
{
MSIMessage msg;
if (msix_enabled(dev)) {
msg = msix_get_message(dev, vector);
} else if (msi_enabled(dev)) {
msg = msi_get_message(dev, vector);
} else {
/* Should never happen */
error_report("%s: unknown interrupt type", __func__);
abort();
}
return msg;
}
void pci_set_enabled(PCIDevice *d, bool state)
{
if (d->enabled == state) {
return;
}
d->enabled = state;
pci_update_mappings(d);
memory_region_set_enabled(&d->bus_master_enable_region,
(pci_get_word(d->config + PCI_COMMAND)
& PCI_COMMAND_MASTER) && d->enabled);
if (!d->enabled) {
pci_device_reset(d);
}
}
static const TypeInfo pci_device_type_info = {
.name = TYPE_PCI_DEVICE,
.parent = TYPE_DEVICE,
.instance_size = sizeof(PCIDevice),
.abstract = true,
.class_size = sizeof(PCIDeviceClass),
.class_init = pci_device_class_init,
.class_base_init = pci_device_class_base_init,
};
static void pci_register_types(void)
{
type_register_static(&pci_bus_info);
type_register_static(&pcie_bus_info);
type_register_static(&cxl_bus_info);
type_register_static(&conventional_pci_interface_info);
type_register_static(&cxl_interface_info);
type_register_static(&pcie_interface_info);
type_register_static(&pci_device_type_info);
}
type_init(pci_register_types)