qemu/disas/libvixl/a64/assembler-a64.h
Peter Maydell 878a735d00 disas: Add subset of libvixl sources for A64 disassembler
Add the subset of the libvixl sources that are needed for the
A64 disassembler support. These sources come from
https://github.com/armvixl/vixl commit 578645f14e122d2b
which is VIXL release 1.1.

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
2014-02-08 14:50:48 +00:00

1785 lines
53 KiB
C++

// Copyright 2013, ARM Limited
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of ARM Limited nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef VIXL_A64_ASSEMBLER_A64_H_
#define VIXL_A64_ASSEMBLER_A64_H_
#include <list>
#include "globals.h"
#include "utils.h"
#include "a64/instructions-a64.h"
namespace vixl {
typedef uint64_t RegList;
static const int kRegListSizeInBits = sizeof(RegList) * 8;
// Registers.
// Some CPURegister methods can return Register and FPRegister types, so we
// need to declare them in advance.
class Register;
class FPRegister;
class CPURegister {
public:
enum RegisterType {
// The kInvalid value is used to detect uninitialized static instances,
// which are always zero-initialized before any constructors are called.
kInvalid = 0,
kRegister,
kFPRegister,
kNoRegister
};
CPURegister() : code_(0), size_(0), type_(kNoRegister) {
ASSERT(!IsValid());
ASSERT(IsNone());
}
CPURegister(unsigned code, unsigned size, RegisterType type)
: code_(code), size_(size), type_(type) {
ASSERT(IsValidOrNone());
}
unsigned code() const {
ASSERT(IsValid());
return code_;
}
RegisterType type() const {
ASSERT(IsValidOrNone());
return type_;
}
RegList Bit() const {
ASSERT(code_ < (sizeof(RegList) * 8));
return IsValid() ? (static_cast<RegList>(1) << code_) : 0;
}
unsigned size() const {
ASSERT(IsValid());
return size_;
}
int SizeInBytes() const {
ASSERT(IsValid());
ASSERT(size() % 8 == 0);
return size_ / 8;
}
int SizeInBits() const {
ASSERT(IsValid());
return size_;
}
bool Is32Bits() const {
ASSERT(IsValid());
return size_ == 32;
}
bool Is64Bits() const {
ASSERT(IsValid());
return size_ == 64;
}
bool IsValid() const {
if (IsValidRegister() || IsValidFPRegister()) {
ASSERT(!IsNone());
return true;
} else {
ASSERT(IsNone());
return false;
}
}
bool IsValidRegister() const {
return IsRegister() &&
((size_ == kWRegSize) || (size_ == kXRegSize)) &&
((code_ < kNumberOfRegisters) || (code_ == kSPRegInternalCode));
}
bool IsValidFPRegister() const {
return IsFPRegister() &&
((size_ == kSRegSize) || (size_ == kDRegSize)) &&
(code_ < kNumberOfFPRegisters);
}
bool IsNone() const {
// kNoRegister types should always have size 0 and code 0.
ASSERT((type_ != kNoRegister) || (code_ == 0));
ASSERT((type_ != kNoRegister) || (size_ == 0));
return type_ == kNoRegister;
}
bool Is(const CPURegister& other) const {
ASSERT(IsValidOrNone() && other.IsValidOrNone());
return (code_ == other.code_) && (size_ == other.size_) &&
(type_ == other.type_);
}
inline bool IsZero() const {
ASSERT(IsValid());
return IsRegister() && (code_ == kZeroRegCode);
}
inline bool IsSP() const {
ASSERT(IsValid());
return IsRegister() && (code_ == kSPRegInternalCode);
}
inline bool IsRegister() const {
return type_ == kRegister;
}
inline bool IsFPRegister() const {
return type_ == kFPRegister;
}
const Register& W() const;
const Register& X() const;
const FPRegister& S() const;
const FPRegister& D() const;
inline bool IsSameSizeAndType(const CPURegister& other) const {
return (size_ == other.size_) && (type_ == other.type_);
}
protected:
unsigned code_;
unsigned size_;
RegisterType type_;
private:
bool IsValidOrNone() const {
return IsValid() || IsNone();
}
};
class Register : public CPURegister {
public:
explicit Register() : CPURegister() {}
inline explicit Register(const CPURegister& other)
: CPURegister(other.code(), other.size(), other.type()) {
ASSERT(IsValidRegister());
}
explicit Register(unsigned code, unsigned size)
: CPURegister(code, size, kRegister) {}
bool IsValid() const {
ASSERT(IsRegister() || IsNone());
return IsValidRegister();
}
static const Register& WRegFromCode(unsigned code);
static const Register& XRegFromCode(unsigned code);
// V8 compatibility.
static const int kNumRegisters = kNumberOfRegisters;
static const int kNumAllocatableRegisters = kNumberOfRegisters - 1;
private:
static const Register wregisters[];
static const Register xregisters[];
};
class FPRegister : public CPURegister {
public:
inline FPRegister() : CPURegister() {}
inline explicit FPRegister(const CPURegister& other)
: CPURegister(other.code(), other.size(), other.type()) {
ASSERT(IsValidFPRegister());
}
inline FPRegister(unsigned code, unsigned size)
: CPURegister(code, size, kFPRegister) {}
bool IsValid() const {
ASSERT(IsFPRegister() || IsNone());
return IsValidFPRegister();
}
static const FPRegister& SRegFromCode(unsigned code);
static const FPRegister& DRegFromCode(unsigned code);
// V8 compatibility.
static const int kNumRegisters = kNumberOfFPRegisters;
static const int kNumAllocatableRegisters = kNumberOfFPRegisters - 1;
private:
static const FPRegister sregisters[];
static const FPRegister dregisters[];
};
// No*Reg is used to indicate an unused argument, or an error case. Note that
// these all compare equal (using the Is() method). The Register and FPRegister
// variants are provided for convenience.
const Register NoReg;
const FPRegister NoFPReg;
const CPURegister NoCPUReg;
#define DEFINE_REGISTERS(N) \
const Register w##N(N, kWRegSize); \
const Register x##N(N, kXRegSize);
REGISTER_CODE_LIST(DEFINE_REGISTERS)
#undef DEFINE_REGISTERS
const Register wsp(kSPRegInternalCode, kWRegSize);
const Register sp(kSPRegInternalCode, kXRegSize);
#define DEFINE_FPREGISTERS(N) \
const FPRegister s##N(N, kSRegSize); \
const FPRegister d##N(N, kDRegSize);
REGISTER_CODE_LIST(DEFINE_FPREGISTERS)
#undef DEFINE_FPREGISTERS
// Registers aliases.
const Register ip0 = x16;
const Register ip1 = x17;
const Register lr = x30;
const Register xzr = x31;
const Register wzr = w31;
// AreAliased returns true if any of the named registers overlap. Arguments
// set to NoReg are ignored. The system stack pointer may be specified.
bool AreAliased(const CPURegister& reg1,
const CPURegister& reg2,
const CPURegister& reg3 = NoReg,
const CPURegister& reg4 = NoReg,
const CPURegister& reg5 = NoReg,
const CPURegister& reg6 = NoReg,
const CPURegister& reg7 = NoReg,
const CPURegister& reg8 = NoReg);
// AreSameSizeAndType returns true if all of the specified registers have the
// same size, and are of the same type. The system stack pointer may be
// specified. Arguments set to NoReg are ignored, as are any subsequent
// arguments. At least one argument (reg1) must be valid (not NoCPUReg).
bool AreSameSizeAndType(const CPURegister& reg1,
const CPURegister& reg2,
const CPURegister& reg3 = NoCPUReg,
const CPURegister& reg4 = NoCPUReg,
const CPURegister& reg5 = NoCPUReg,
const CPURegister& reg6 = NoCPUReg,
const CPURegister& reg7 = NoCPUReg,
const CPURegister& reg8 = NoCPUReg);
// Lists of registers.
class CPURegList {
public:
inline explicit CPURegList(CPURegister reg1,
CPURegister reg2 = NoCPUReg,
CPURegister reg3 = NoCPUReg,
CPURegister reg4 = NoCPUReg)
: list_(reg1.Bit() | reg2.Bit() | reg3.Bit() | reg4.Bit()),
size_(reg1.size()), type_(reg1.type()) {
ASSERT(AreSameSizeAndType(reg1, reg2, reg3, reg4));
ASSERT(IsValid());
}
inline CPURegList(CPURegister::RegisterType type, unsigned size, RegList list)
: list_(list), size_(size), type_(type) {
ASSERT(IsValid());
}
inline CPURegList(CPURegister::RegisterType type, unsigned size,
unsigned first_reg, unsigned last_reg)
: size_(size), type_(type) {
ASSERT(((type == CPURegister::kRegister) &&
(last_reg < kNumberOfRegisters)) ||
((type == CPURegister::kFPRegister) &&
(last_reg < kNumberOfFPRegisters)));
ASSERT(last_reg >= first_reg);
list_ = (1UL << (last_reg + 1)) - 1;
list_ &= ~((1UL << first_reg) - 1);
ASSERT(IsValid());
}
inline CPURegister::RegisterType type() const {
ASSERT(IsValid());
return type_;
}
// Combine another CPURegList into this one. Registers that already exist in
// this list are left unchanged. The type and size of the registers in the
// 'other' list must match those in this list.
void Combine(const CPURegList& other) {
ASSERT(IsValid());
ASSERT(other.type() == type_);
ASSERT(other.RegisterSizeInBits() == size_);
list_ |= other.list();
}
// Remove every register in the other CPURegList from this one. Registers that
// do not exist in this list are ignored. The type and size of the registers
// in the 'other' list must match those in this list.
void Remove(const CPURegList& other) {
ASSERT(IsValid());
ASSERT(other.type() == type_);
ASSERT(other.RegisterSizeInBits() == size_);
list_ &= ~other.list();
}
// Variants of Combine and Remove which take a single register.
inline void Combine(const CPURegister& other) {
ASSERT(other.type() == type_);
ASSERT(other.size() == size_);
Combine(other.code());
}
inline void Remove(const CPURegister& other) {
ASSERT(other.type() == type_);
ASSERT(other.size() == size_);
Remove(other.code());
}
// Variants of Combine and Remove which take a single register by its code;
// the type and size of the register is inferred from this list.
inline void Combine(int code) {
ASSERT(IsValid());
ASSERT(CPURegister(code, size_, type_).IsValid());
list_ |= (1UL << code);
}
inline void Remove(int code) {
ASSERT(IsValid());
ASSERT(CPURegister(code, size_, type_).IsValid());
list_ &= ~(1UL << code);
}
inline RegList list() const {
ASSERT(IsValid());
return list_;
}
// Remove all callee-saved registers from the list. This can be useful when
// preparing registers for an AAPCS64 function call, for example.
void RemoveCalleeSaved();
CPURegister PopLowestIndex();
CPURegister PopHighestIndex();
// AAPCS64 callee-saved registers.
static CPURegList GetCalleeSaved(unsigned size = kXRegSize);
static CPURegList GetCalleeSavedFP(unsigned size = kDRegSize);
// AAPCS64 caller-saved registers. Note that this includes lr.
static CPURegList GetCallerSaved(unsigned size = kXRegSize);
static CPURegList GetCallerSavedFP(unsigned size = kDRegSize);
inline bool IsEmpty() const {
ASSERT(IsValid());
return list_ == 0;
}
inline bool IncludesAliasOf(const CPURegister& other) const {
ASSERT(IsValid());
return (type_ == other.type()) && (other.Bit() & list_);
}
inline int Count() const {
ASSERT(IsValid());
return CountSetBits(list_, kRegListSizeInBits);
}
inline unsigned RegisterSizeInBits() const {
ASSERT(IsValid());
return size_;
}
inline unsigned RegisterSizeInBytes() const {
int size_in_bits = RegisterSizeInBits();
ASSERT((size_in_bits % 8) == 0);
return size_in_bits / 8;
}
private:
RegList list_;
unsigned size_;
CPURegister::RegisterType type_;
bool IsValid() const;
};
// AAPCS64 callee-saved registers.
extern const CPURegList kCalleeSaved;
extern const CPURegList kCalleeSavedFP;
// AAPCS64 caller-saved registers. Note that this includes lr.
extern const CPURegList kCallerSaved;
extern const CPURegList kCallerSavedFP;
// Operand.
class Operand {
public:
// #<immediate>
// where <immediate> is int64_t.
// This is allowed to be an implicit constructor because Operand is
// a wrapper class that doesn't normally perform any type conversion.
Operand(int64_t immediate); // NOLINT(runtime/explicit)
// rm, {<shift> #<shift_amount>}
// where <shift> is one of {LSL, LSR, ASR, ROR}.
// <shift_amount> is uint6_t.
// This is allowed to be an implicit constructor because Operand is
// a wrapper class that doesn't normally perform any type conversion.
Operand(Register reg,
Shift shift = LSL,
unsigned shift_amount = 0); // NOLINT(runtime/explicit)
// rm, {<extend> {#<shift_amount>}}
// where <extend> is one of {UXTB, UXTH, UXTW, UXTX, SXTB, SXTH, SXTW, SXTX}.
// <shift_amount> is uint2_t.
explicit Operand(Register reg, Extend extend, unsigned shift_amount = 0);
bool IsImmediate() const;
bool IsShiftedRegister() const;
bool IsExtendedRegister() const;
// This returns an LSL shift (<= 4) operand as an equivalent extend operand,
// which helps in the encoding of instructions that use the stack pointer.
Operand ToExtendedRegister() const;
int64_t immediate() const {
ASSERT(IsImmediate());
return immediate_;
}
Register reg() const {
ASSERT(IsShiftedRegister() || IsExtendedRegister());
return reg_;
}
Shift shift() const {
ASSERT(IsShiftedRegister());
return shift_;
}
Extend extend() const {
ASSERT(IsExtendedRegister());
return extend_;
}
unsigned shift_amount() const {
ASSERT(IsShiftedRegister() || IsExtendedRegister());
return shift_amount_;
}
private:
int64_t immediate_;
Register reg_;
Shift shift_;
Extend extend_;
unsigned shift_amount_;
};
// MemOperand represents the addressing mode of a load or store instruction.
class MemOperand {
public:
explicit MemOperand(Register base,
ptrdiff_t offset = 0,
AddrMode addrmode = Offset);
explicit MemOperand(Register base,
Register regoffset,
Shift shift = LSL,
unsigned shift_amount = 0);
explicit MemOperand(Register base,
Register regoffset,
Extend extend,
unsigned shift_amount = 0);
explicit MemOperand(Register base,
const Operand& offset,
AddrMode addrmode = Offset);
const Register& base() const { return base_; }
const Register& regoffset() const { return regoffset_; }
ptrdiff_t offset() const { return offset_; }
AddrMode addrmode() const { return addrmode_; }
Shift shift() const { return shift_; }
Extend extend() const { return extend_; }
unsigned shift_amount() const { return shift_amount_; }
bool IsImmediateOffset() const;
bool IsRegisterOffset() const;
bool IsPreIndex() const;
bool IsPostIndex() const;
private:
Register base_;
Register regoffset_;
ptrdiff_t offset_;
AddrMode addrmode_;
Shift shift_;
Extend extend_;
unsigned shift_amount_;
};
class Label {
public:
Label() : is_bound_(false), link_(NULL), target_(NULL) {}
~Label() {
// If the label has been linked to, it needs to be bound to a target.
ASSERT(!IsLinked() || IsBound());
}
inline Instruction* link() const { return link_; }
inline Instruction* target() const { return target_; }
inline bool IsBound() const { return is_bound_; }
inline bool IsLinked() const { return link_ != NULL; }
inline void set_link(Instruction* new_link) { link_ = new_link; }
static const int kEndOfChain = 0;
private:
// Indicates if the label has been bound, ie its location is fixed.
bool is_bound_;
// Branches instructions branching to this label form a chained list, with
// their offset indicating where the next instruction is located.
// link_ points to the latest branch instruction generated branching to this
// branch.
// If link_ is not NULL, the label has been linked to.
Instruction* link_;
// The label location.
Instruction* target_;
friend class Assembler;
};
// TODO: Obtain better values for these, based on real-world data.
const int kLiteralPoolCheckInterval = 4 * KBytes;
const int kRecommendedLiteralPoolRange = 2 * kLiteralPoolCheckInterval;
// Control whether a branch over the literal pool should also be emitted. This
// is needed if the literal pool has to be emitted in the middle of the JITted
// code.
enum LiteralPoolEmitOption {
JumpRequired,
NoJumpRequired
};
// Literal pool entry.
class Literal {
public:
Literal(Instruction* pc, uint64_t imm, unsigned size)
: pc_(pc), value_(imm), size_(size) {}
private:
Instruction* pc_;
int64_t value_;
unsigned size_;
friend class Assembler;
};
// Assembler.
class Assembler {
public:
Assembler(byte* buffer, unsigned buffer_size);
// The destructor asserts that one of the following is true:
// * The Assembler object has not been used.
// * Nothing has been emitted since the last Reset() call.
// * Nothing has been emitted since the last FinalizeCode() call.
~Assembler();
// System functions.
// Start generating code from the beginning of the buffer, discarding any code
// and data that has already been emitted into the buffer.
//
// In order to avoid any accidental transfer of state, Reset ASSERTs that the
// constant pool is not blocked.
void Reset();
// Finalize a code buffer of generated instructions. This function must be
// called before executing or copying code from the buffer.
void FinalizeCode();
// Label.
// Bind a label to the current PC.
void bind(Label* label);
int UpdateAndGetByteOffsetTo(Label* label);
inline int UpdateAndGetInstructionOffsetTo(Label* label) {
ASSERT(Label::kEndOfChain == 0);
return UpdateAndGetByteOffsetTo(label) >> kInstructionSizeLog2;
}
// Instruction set functions.
// Branch / Jump instructions.
// Branch to register.
void br(const Register& xn);
// Branch with link to register.
void blr(const Register& xn);
// Branch to register with return hint.
void ret(const Register& xn = lr);
// Unconditional branch to label.
void b(Label* label);
// Conditional branch to label.
void b(Label* label, Condition cond);
// Unconditional branch to PC offset.
void b(int imm26);
// Conditional branch to PC offset.
void b(int imm19, Condition cond);
// Branch with link to label.
void bl(Label* label);
// Branch with link to PC offset.
void bl(int imm26);
// Compare and branch to label if zero.
void cbz(const Register& rt, Label* label);
// Compare and branch to PC offset if zero.
void cbz(const Register& rt, int imm19);
// Compare and branch to label if not zero.
void cbnz(const Register& rt, Label* label);
// Compare and branch to PC offset if not zero.
void cbnz(const Register& rt, int imm19);
// Test bit and branch to label if zero.
void tbz(const Register& rt, unsigned bit_pos, Label* label);
// Test bit and branch to PC offset if zero.
void tbz(const Register& rt, unsigned bit_pos, int imm14);
// Test bit and branch to label if not zero.
void tbnz(const Register& rt, unsigned bit_pos, Label* label);
// Test bit and branch to PC offset if not zero.
void tbnz(const Register& rt, unsigned bit_pos, int imm14);
// Address calculation instructions.
// Calculate a PC-relative address. Unlike for branches the offset in adr is
// unscaled (i.e. the result can be unaligned).
// Calculate the address of a label.
void adr(const Register& rd, Label* label);
// Calculate the address of a PC offset.
void adr(const Register& rd, int imm21);
// Data Processing instructions.
// Add.
void add(const Register& rd,
const Register& rn,
const Operand& operand,
FlagsUpdate S = LeaveFlags);
// Compare negative.
void cmn(const Register& rn, const Operand& operand);
// Subtract.
void sub(const Register& rd,
const Register& rn,
const Operand& operand,
FlagsUpdate S = LeaveFlags);
// Compare.
void cmp(const Register& rn, const Operand& operand);
// Negate.
void neg(const Register& rd,
const Operand& operand,
FlagsUpdate S = LeaveFlags);
// Add with carry bit.
void adc(const Register& rd,
const Register& rn,
const Operand& operand,
FlagsUpdate S = LeaveFlags);
// Subtract with carry bit.
void sbc(const Register& rd,
const Register& rn,
const Operand& operand,
FlagsUpdate S = LeaveFlags);
// Negate with carry bit.
void ngc(const Register& rd,
const Operand& operand,
FlagsUpdate S = LeaveFlags);
// Logical instructions.
// Bitwise and (A & B).
void and_(const Register& rd,
const Register& rn,
const Operand& operand,
FlagsUpdate S = LeaveFlags);
// Bit test and set flags.
void tst(const Register& rn, const Operand& operand);
// Bit clear (A & ~B).
void bic(const Register& rd,
const Register& rn,
const Operand& operand,
FlagsUpdate S = LeaveFlags);
// Bitwise or (A | B).
void orr(const Register& rd, const Register& rn, const Operand& operand);
// Bitwise nor (A | ~B).
void orn(const Register& rd, const Register& rn, const Operand& operand);
// Bitwise eor/xor (A ^ B).
void eor(const Register& rd, const Register& rn, const Operand& operand);
// Bitwise enor/xnor (A ^ ~B).
void eon(const Register& rd, const Register& rn, const Operand& operand);
// Logical shift left by variable.
void lslv(const Register& rd, const Register& rn, const Register& rm);
// Logical shift right by variable.
void lsrv(const Register& rd, const Register& rn, const Register& rm);
// Arithmetic shift right by variable.
void asrv(const Register& rd, const Register& rn, const Register& rm);
// Rotate right by variable.
void rorv(const Register& rd, const Register& rn, const Register& rm);
// Bitfield instructions.
// Bitfield move.
void bfm(const Register& rd,
const Register& rn,
unsigned immr,
unsigned imms);
// Signed bitfield move.
void sbfm(const Register& rd,
const Register& rn,
unsigned immr,
unsigned imms);
// Unsigned bitfield move.
void ubfm(const Register& rd,
const Register& rn,
unsigned immr,
unsigned imms);
// Bfm aliases.
// Bitfield insert.
inline void bfi(const Register& rd,
const Register& rn,
unsigned lsb,
unsigned width) {
ASSERT(width >= 1);
ASSERT(lsb + width <= rn.size());
bfm(rd, rn, (rd.size() - lsb) & (rd.size() - 1), width - 1);
}
// Bitfield extract and insert low.
inline void bfxil(const Register& rd,
const Register& rn,
unsigned lsb,
unsigned width) {
ASSERT(width >= 1);
ASSERT(lsb + width <= rn.size());
bfm(rd, rn, lsb, lsb + width - 1);
}
// Sbfm aliases.
// Arithmetic shift right.
inline void asr(const Register& rd, const Register& rn, unsigned shift) {
ASSERT(shift < rd.size());
sbfm(rd, rn, shift, rd.size() - 1);
}
// Signed bitfield insert with zero at right.
inline void sbfiz(const Register& rd,
const Register& rn,
unsigned lsb,
unsigned width) {
ASSERT(width >= 1);
ASSERT(lsb + width <= rn.size());
sbfm(rd, rn, (rd.size() - lsb) & (rd.size() - 1), width - 1);
}
// Signed bitfield extract.
inline void sbfx(const Register& rd,
const Register& rn,
unsigned lsb,
unsigned width) {
ASSERT(width >= 1);
ASSERT(lsb + width <= rn.size());
sbfm(rd, rn, lsb, lsb + width - 1);
}
// Signed extend byte.
inline void sxtb(const Register& rd, const Register& rn) {
sbfm(rd, rn, 0, 7);
}
// Signed extend halfword.
inline void sxth(const Register& rd, const Register& rn) {
sbfm(rd, rn, 0, 15);
}
// Signed extend word.
inline void sxtw(const Register& rd, const Register& rn) {
sbfm(rd, rn, 0, 31);
}
// Ubfm aliases.
// Logical shift left.
inline void lsl(const Register& rd, const Register& rn, unsigned shift) {
unsigned reg_size = rd.size();
ASSERT(shift < reg_size);
ubfm(rd, rn, (reg_size - shift) % reg_size, reg_size - shift - 1);
}
// Logical shift right.
inline void lsr(const Register& rd, const Register& rn, unsigned shift) {
ASSERT(shift < rd.size());
ubfm(rd, rn, shift, rd.size() - 1);
}
// Unsigned bitfield insert with zero at right.
inline void ubfiz(const Register& rd,
const Register& rn,
unsigned lsb,
unsigned width) {
ASSERT(width >= 1);
ASSERT(lsb + width <= rn.size());
ubfm(rd, rn, (rd.size() - lsb) & (rd.size() - 1), width - 1);
}
// Unsigned bitfield extract.
inline void ubfx(const Register& rd,
const Register& rn,
unsigned lsb,
unsigned width) {
ASSERT(width >= 1);
ASSERT(lsb + width <= rn.size());
ubfm(rd, rn, lsb, lsb + width - 1);
}
// Unsigned extend byte.
inline void uxtb(const Register& rd, const Register& rn) {
ubfm(rd, rn, 0, 7);
}
// Unsigned extend halfword.
inline void uxth(const Register& rd, const Register& rn) {
ubfm(rd, rn, 0, 15);
}
// Unsigned extend word.
inline void uxtw(const Register& rd, const Register& rn) {
ubfm(rd, rn, 0, 31);
}
// Extract.
void extr(const Register& rd,
const Register& rn,
const Register& rm,
unsigned lsb);
// Conditional select: rd = cond ? rn : rm.
void csel(const Register& rd,
const Register& rn,
const Register& rm,
Condition cond);
// Conditional select increment: rd = cond ? rn : rm + 1.
void csinc(const Register& rd,
const Register& rn,
const Register& rm,
Condition cond);
// Conditional select inversion: rd = cond ? rn : ~rm.
void csinv(const Register& rd,
const Register& rn,
const Register& rm,
Condition cond);
// Conditional select negation: rd = cond ? rn : -rm.
void csneg(const Register& rd,
const Register& rn,
const Register& rm,
Condition cond);
// Conditional set: rd = cond ? 1 : 0.
void cset(const Register& rd, Condition cond);
// Conditional set mask: rd = cond ? -1 : 0.
void csetm(const Register& rd, Condition cond);
// Conditional increment: rd = cond ? rn + 1 : rn.
void cinc(const Register& rd, const Register& rn, Condition cond);
// Conditional invert: rd = cond ? ~rn : rn.
void cinv(const Register& rd, const Register& rn, Condition cond);
// Conditional negate: rd = cond ? -rn : rn.
void cneg(const Register& rd, const Register& rn, Condition cond);
// Rotate right.
inline void ror(const Register& rd, const Register& rs, unsigned shift) {
extr(rd, rs, rs, shift);
}
// Conditional comparison.
// Conditional compare negative.
void ccmn(const Register& rn,
const Operand& operand,
StatusFlags nzcv,
Condition cond);
// Conditional compare.
void ccmp(const Register& rn,
const Operand& operand,
StatusFlags nzcv,
Condition cond);
// Multiply.
void mul(const Register& rd, const Register& rn, const Register& rm);
// Negated multiply.
void mneg(const Register& rd, const Register& rn, const Register& rm);
// Signed long multiply: 32 x 32 -> 64-bit.
void smull(const Register& rd, const Register& rn, const Register& rm);
// Signed multiply high: 64 x 64 -> 64-bit <127:64>.
void smulh(const Register& xd, const Register& xn, const Register& xm);
// Multiply and accumulate.
void madd(const Register& rd,
const Register& rn,
const Register& rm,
const Register& ra);
// Multiply and subtract.
void msub(const Register& rd,
const Register& rn,
const Register& rm,
const Register& ra);
// Signed long multiply and accumulate: 32 x 32 + 64 -> 64-bit.
void smaddl(const Register& rd,
const Register& rn,
const Register& rm,
const Register& ra);
// Unsigned long multiply and accumulate: 32 x 32 + 64 -> 64-bit.
void umaddl(const Register& rd,
const Register& rn,
const Register& rm,
const Register& ra);
// Signed long multiply and subtract: 64 - (32 x 32) -> 64-bit.
void smsubl(const Register& rd,
const Register& rn,
const Register& rm,
const Register& ra);
// Unsigned long multiply and subtract: 64 - (32 x 32) -> 64-bit.
void umsubl(const Register& rd,
const Register& rn,
const Register& rm,
const Register& ra);
// Signed integer divide.
void sdiv(const Register& rd, const Register& rn, const Register& rm);
// Unsigned integer divide.
void udiv(const Register& rd, const Register& rn, const Register& rm);
// Bit reverse.
void rbit(const Register& rd, const Register& rn);
// Reverse bytes in 16-bit half words.
void rev16(const Register& rd, const Register& rn);
// Reverse bytes in 32-bit words.
void rev32(const Register& rd, const Register& rn);
// Reverse bytes.
void rev(const Register& rd, const Register& rn);
// Count leading zeroes.
void clz(const Register& rd, const Register& rn);
// Count leading sign bits.
void cls(const Register& rd, const Register& rn);
// Memory instructions.
// Load integer or FP register.
void ldr(const CPURegister& rt, const MemOperand& src);
// Store integer or FP register.
void str(const CPURegister& rt, const MemOperand& dst);
// Load word with sign extension.
void ldrsw(const Register& rt, const MemOperand& src);
// Load byte.
void ldrb(const Register& rt, const MemOperand& src);
// Store byte.
void strb(const Register& rt, const MemOperand& dst);
// Load byte with sign extension.
void ldrsb(const Register& rt, const MemOperand& src);
// Load half-word.
void ldrh(const Register& rt, const MemOperand& src);
// Store half-word.
void strh(const Register& rt, const MemOperand& dst);
// Load half-word with sign extension.
void ldrsh(const Register& rt, const MemOperand& src);
// Load integer or FP register pair.
void ldp(const CPURegister& rt, const CPURegister& rt2,
const MemOperand& src);
// Store integer or FP register pair.
void stp(const CPURegister& rt, const CPURegister& rt2,
const MemOperand& dst);
// Load word pair with sign extension.
void ldpsw(const Register& rt, const Register& rt2, const MemOperand& src);
// Load integer or FP register pair, non-temporal.
void ldnp(const CPURegister& rt, const CPURegister& rt2,
const MemOperand& src);
// Store integer or FP register pair, non-temporal.
void stnp(const CPURegister& rt, const CPURegister& rt2,
const MemOperand& dst);
// Load literal to register.
void ldr(const Register& rt, uint64_t imm);
// Load literal to FP register.
void ldr(const FPRegister& ft, double imm);
// Move instructions. The default shift of -1 indicates that the move
// instruction will calculate an appropriate 16-bit immediate and left shift
// that is equal to the 64-bit immediate argument. If an explicit left shift
// is specified (0, 16, 32 or 48), the immediate must be a 16-bit value.
//
// For movk, an explicit shift can be used to indicate which half word should
// be overwritten, eg. movk(x0, 0, 0) will overwrite the least-significant
// half word with zero, whereas movk(x0, 0, 48) will overwrite the
// most-significant.
// Move immediate and keep.
void movk(const Register& rd, uint64_t imm, int shift = -1) {
MoveWide(rd, imm, shift, MOVK);
}
// Move inverted immediate.
void movn(const Register& rd, uint64_t imm, int shift = -1) {
MoveWide(rd, imm, shift, MOVN);
}
// Move immediate.
void movz(const Register& rd, uint64_t imm, int shift = -1) {
MoveWide(rd, imm, shift, MOVZ);
}
// Misc instructions.
// Monitor debug-mode breakpoint.
void brk(int code);
// Halting debug-mode breakpoint.
void hlt(int code);
// Move register to register.
void mov(const Register& rd, const Register& rn);
// Move inverted operand to register.
void mvn(const Register& rd, const Operand& operand);
// System instructions.
// Move to register from system register.
void mrs(const Register& rt, SystemRegister sysreg);
// Move from register to system register.
void msr(SystemRegister sysreg, const Register& rt);
// System hint.
void hint(SystemHint code);
// Alias for system instructions.
// No-op.
void nop() {
hint(NOP);
}
// FP instructions.
// Move immediate to FP register.
void fmov(FPRegister fd, double imm);
// Move FP register to register.
void fmov(Register rd, FPRegister fn);
// Move register to FP register.
void fmov(FPRegister fd, Register rn);
// Move FP register to FP register.
void fmov(FPRegister fd, FPRegister fn);
// FP add.
void fadd(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm);
// FP subtract.
void fsub(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm);
// FP multiply.
void fmul(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm);
// FP multiply and subtract.
void fmsub(const FPRegister& fd,
const FPRegister& fn,
const FPRegister& fm,
const FPRegister& fa);
// FP divide.
void fdiv(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm);
// FP maximum.
void fmax(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm);
// FP minimum.
void fmin(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm);
// FP absolute.
void fabs(const FPRegister& fd, const FPRegister& fn);
// FP negate.
void fneg(const FPRegister& fd, const FPRegister& fn);
// FP square root.
void fsqrt(const FPRegister& fd, const FPRegister& fn);
// FP round to integer (nearest with ties to even).
void frintn(const FPRegister& fd, const FPRegister& fn);
// FP round to integer (towards zero).
void frintz(const FPRegister& fd, const FPRegister& fn);
// FP compare registers.
void fcmp(const FPRegister& fn, const FPRegister& fm);
// FP compare immediate.
void fcmp(const FPRegister& fn, double value);
// FP conditional compare.
void fccmp(const FPRegister& fn,
const FPRegister& fm,
StatusFlags nzcv,
Condition cond);
// FP conditional select.
void fcsel(const FPRegister& fd,
const FPRegister& fn,
const FPRegister& fm,
Condition cond);
// Common FP Convert function.
void FPConvertToInt(const Register& rd,
const FPRegister& fn,
FPIntegerConvertOp op);
// FP convert between single and double precision.
void fcvt(const FPRegister& fd, const FPRegister& fn);
// Convert FP to unsigned integer (round towards -infinity).
void fcvtmu(const Register& rd, const FPRegister& fn);
// Convert FP to signed integer (round towards -infinity).
void fcvtms(const Register& rd, const FPRegister& fn);
// Convert FP to unsigned integer (nearest with ties to even).
void fcvtnu(const Register& rd, const FPRegister& fn);
// Convert FP to signed integer (nearest with ties to even).
void fcvtns(const Register& rd, const FPRegister& fn);
// Convert FP to unsigned integer (round towards zero).
void fcvtzu(const Register& rd, const FPRegister& fn);
// Convert FP to signed integer (round towards zero).
void fcvtzs(const Register& rd, const FPRegister& fn);
// Convert signed integer or fixed point to FP.
void scvtf(const FPRegister& fd, const Register& rn, unsigned fbits = 0);
// Convert unsigned integer or fixed point to FP.
void ucvtf(const FPRegister& fd, const Register& rn, unsigned fbits = 0);
// Emit generic instructions.
// Emit raw instructions into the instruction stream.
inline void dci(Instr raw_inst) { Emit(raw_inst); }
// Emit 32 bits of data into the instruction stream.
inline void dc32(uint32_t data) { EmitData(&data, sizeof(data)); }
// Emit 64 bits of data into the instruction stream.
inline void dc64(uint64_t data) { EmitData(&data, sizeof(data)); }
// Copy a string into the instruction stream, including the terminating NULL
// character. The instruction pointer (pc_) is then aligned correctly for
// subsequent instructions.
void EmitStringData(const char * string) {
ASSERT(string != NULL);
size_t len = strlen(string) + 1;
EmitData(string, len);
// Pad with NULL characters until pc_ is aligned.
const char pad[] = {'\0', '\0', '\0', '\0'};
ASSERT(sizeof(pad) == kInstructionSize);
Instruction* next_pc = AlignUp(pc_, kInstructionSize);
EmitData(&pad, next_pc - pc_);
}
// Code generation helpers.
// Register encoding.
static Instr Rd(CPURegister rd) {
ASSERT(rd.code() != kSPRegInternalCode);
return rd.code() << Rd_offset;
}
static Instr Rn(CPURegister rn) {
ASSERT(rn.code() != kSPRegInternalCode);
return rn.code() << Rn_offset;
}
static Instr Rm(CPURegister rm) {
ASSERT(rm.code() != kSPRegInternalCode);
return rm.code() << Rm_offset;
}
static Instr Ra(CPURegister ra) {
ASSERT(ra.code() != kSPRegInternalCode);
return ra.code() << Ra_offset;
}
static Instr Rt(CPURegister rt) {
ASSERT(rt.code() != kSPRegInternalCode);
return rt.code() << Rt_offset;
}
static Instr Rt2(CPURegister rt2) {
ASSERT(rt2.code() != kSPRegInternalCode);
return rt2.code() << Rt2_offset;
}
// These encoding functions allow the stack pointer to be encoded, and
// disallow the zero register.
static Instr RdSP(Register rd) {
ASSERT(!rd.IsZero());
return (rd.code() & kRegCodeMask) << Rd_offset;
}
static Instr RnSP(Register rn) {
ASSERT(!rn.IsZero());
return (rn.code() & kRegCodeMask) << Rn_offset;
}
// Flags encoding.
static Instr Flags(FlagsUpdate S) {
if (S == SetFlags) {
return 1 << FlagsUpdate_offset;
} else if (S == LeaveFlags) {
return 0 << FlagsUpdate_offset;
}
UNREACHABLE();
return 0;
}
static Instr Cond(Condition cond) {
return cond << Condition_offset;
}
// PC-relative address encoding.
static Instr ImmPCRelAddress(int imm21) {
ASSERT(is_int21(imm21));
Instr imm = static_cast<Instr>(truncate_to_int21(imm21));
Instr immhi = (imm >> ImmPCRelLo_width) << ImmPCRelHi_offset;
Instr immlo = imm << ImmPCRelLo_offset;
return (immhi & ImmPCRelHi_mask) | (immlo & ImmPCRelLo_mask);
}
// Branch encoding.
static Instr ImmUncondBranch(int imm26) {
ASSERT(is_int26(imm26));
return truncate_to_int26(imm26) << ImmUncondBranch_offset;
}
static Instr ImmCondBranch(int imm19) {
ASSERT(is_int19(imm19));
return truncate_to_int19(imm19) << ImmCondBranch_offset;
}
static Instr ImmCmpBranch(int imm19) {
ASSERT(is_int19(imm19));
return truncate_to_int19(imm19) << ImmCmpBranch_offset;
}
static Instr ImmTestBranch(int imm14) {
ASSERT(is_int14(imm14));
return truncate_to_int14(imm14) << ImmTestBranch_offset;
}
static Instr ImmTestBranchBit(unsigned bit_pos) {
ASSERT(is_uint6(bit_pos));
// Subtract five from the shift offset, as we need bit 5 from bit_pos.
unsigned b5 = bit_pos << (ImmTestBranchBit5_offset - 5);
unsigned b40 = bit_pos << ImmTestBranchBit40_offset;
b5 &= ImmTestBranchBit5_mask;
b40 &= ImmTestBranchBit40_mask;
return b5 | b40;
}
// Data Processing encoding.
static Instr SF(Register rd) {
return rd.Is64Bits() ? SixtyFourBits : ThirtyTwoBits;
}
static Instr ImmAddSub(int64_t imm) {
ASSERT(IsImmAddSub(imm));
if (is_uint12(imm)) { // No shift required.
return imm << ImmAddSub_offset;
} else {
return ((imm >> 12) << ImmAddSub_offset) | (1 << ShiftAddSub_offset);
}
}
static inline Instr ImmS(unsigned imms, unsigned reg_size) {
ASSERT(((reg_size == kXRegSize) && is_uint6(imms)) ||
((reg_size == kWRegSize) && is_uint5(imms)));
USE(reg_size);
return imms << ImmS_offset;
}
static inline Instr ImmR(unsigned immr, unsigned reg_size) {
ASSERT(((reg_size == kXRegSize) && is_uint6(immr)) ||
((reg_size == kWRegSize) && is_uint5(immr)));
USE(reg_size);
ASSERT(is_uint6(immr));
return immr << ImmR_offset;
}
static inline Instr ImmSetBits(unsigned imms, unsigned reg_size) {
ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize));
ASSERT(is_uint6(imms));
ASSERT((reg_size == kXRegSize) || is_uint6(imms + 3));
USE(reg_size);
return imms << ImmSetBits_offset;
}
static inline Instr ImmRotate(unsigned immr, unsigned reg_size) {
ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize));
ASSERT(((reg_size == kXRegSize) && is_uint6(immr)) ||
((reg_size == kWRegSize) && is_uint5(immr)));
USE(reg_size);
return immr << ImmRotate_offset;
}
static inline Instr ImmLLiteral(int imm19) {
ASSERT(is_int19(imm19));
return truncate_to_int19(imm19) << ImmLLiteral_offset;
}
static inline Instr BitN(unsigned bitn, unsigned reg_size) {
ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize));
ASSERT((reg_size == kXRegSize) || (bitn == 0));
USE(reg_size);
return bitn << BitN_offset;
}
static Instr ShiftDP(Shift shift) {
ASSERT(shift == LSL || shift == LSR || shift == ASR || shift == ROR);
return shift << ShiftDP_offset;
}
static Instr ImmDPShift(unsigned amount) {
ASSERT(is_uint6(amount));
return amount << ImmDPShift_offset;
}
static Instr ExtendMode(Extend extend) {
return extend << ExtendMode_offset;
}
static Instr ImmExtendShift(unsigned left_shift) {
ASSERT(left_shift <= 4);
return left_shift << ImmExtendShift_offset;
}
static Instr ImmCondCmp(unsigned imm) {
ASSERT(is_uint5(imm));
return imm << ImmCondCmp_offset;
}
static Instr Nzcv(StatusFlags nzcv) {
return ((nzcv >> Flags_offset) & 0xf) << Nzcv_offset;
}
// MemOperand offset encoding.
static Instr ImmLSUnsigned(int imm12) {
ASSERT(is_uint12(imm12));
return imm12 << ImmLSUnsigned_offset;
}
static Instr ImmLS(int imm9) {
ASSERT(is_int9(imm9));
return truncate_to_int9(imm9) << ImmLS_offset;
}
static Instr ImmLSPair(int imm7, LSDataSize size) {
ASSERT(((imm7 >> size) << size) == imm7);
int scaled_imm7 = imm7 >> size;
ASSERT(is_int7(scaled_imm7));
return truncate_to_int7(scaled_imm7) << ImmLSPair_offset;
}
static Instr ImmShiftLS(unsigned shift_amount) {
ASSERT(is_uint1(shift_amount));
return shift_amount << ImmShiftLS_offset;
}
static Instr ImmException(int imm16) {
ASSERT(is_uint16(imm16));
return imm16 << ImmException_offset;
}
static Instr ImmSystemRegister(int imm15) {
ASSERT(is_uint15(imm15));
return imm15 << ImmSystemRegister_offset;
}
static Instr ImmHint(int imm7) {
ASSERT(is_uint7(imm7));
return imm7 << ImmHint_offset;
}
static LSDataSize CalcLSDataSize(LoadStoreOp op) {
ASSERT((SizeLS_offset + SizeLS_width) == (kInstructionSize * 8));
return static_cast<LSDataSize>(op >> SizeLS_offset);
}
// Move immediates encoding.
static Instr ImmMoveWide(uint64_t imm) {
ASSERT(is_uint16(imm));
return imm << ImmMoveWide_offset;
}
static Instr ShiftMoveWide(int64_t shift) {
ASSERT(is_uint2(shift));
return shift << ShiftMoveWide_offset;
}
// FP Immediates.
static Instr ImmFP32(float imm);
static Instr ImmFP64(double imm);
// FP register type.
static Instr FPType(FPRegister fd) {
return fd.Is64Bits() ? FP64 : FP32;
}
static Instr FPScale(unsigned scale) {
ASSERT(is_uint6(scale));
return scale << FPScale_offset;
}
// Size of the code generated in bytes
uint64_t SizeOfCodeGenerated() const {
ASSERT((pc_ >= buffer_) && (pc_ < (buffer_ + buffer_size_)));
return pc_ - buffer_;
}
// Size of the code generated since label to the current position.
uint64_t SizeOfCodeGeneratedSince(Label* label) const {
ASSERT(label->IsBound());
ASSERT((pc_ >= label->target()) && (pc_ < (buffer_ + buffer_size_)));
return pc_ - label->target();
}
inline void BlockLiteralPool() {
literal_pool_monitor_++;
}
inline void ReleaseLiteralPool() {
if (--literal_pool_monitor_ == 0) {
// Has the literal pool been blocked for too long?
ASSERT(literals_.empty() ||
(pc_ < (literals_.back()->pc_ + kMaxLoadLiteralRange)));
}
}
inline bool IsLiteralPoolBlocked() {
return literal_pool_monitor_ != 0;
}
void CheckLiteralPool(LiteralPoolEmitOption option = JumpRequired);
void EmitLiteralPool(LiteralPoolEmitOption option = NoJumpRequired);
size_t LiteralPoolSize();
protected:
inline const Register& AppropriateZeroRegFor(const CPURegister& reg) const {
return reg.Is64Bits() ? xzr : wzr;
}
void LoadStore(const CPURegister& rt,
const MemOperand& addr,
LoadStoreOp op);
static bool IsImmLSUnscaled(ptrdiff_t offset);
static bool IsImmLSScaled(ptrdiff_t offset, LSDataSize size);
void Logical(const Register& rd,
const Register& rn,
const Operand& operand,
LogicalOp op);
void LogicalImmediate(const Register& rd,
const Register& rn,
unsigned n,
unsigned imm_s,
unsigned imm_r,
LogicalOp op);
static bool IsImmLogical(uint64_t value,
unsigned width,
unsigned* n,
unsigned* imm_s,
unsigned* imm_r);
void ConditionalCompare(const Register& rn,
const Operand& operand,
StatusFlags nzcv,
Condition cond,
ConditionalCompareOp op);
static bool IsImmConditionalCompare(int64_t immediate);
void AddSubWithCarry(const Register& rd,
const Register& rn,
const Operand& operand,
FlagsUpdate S,
AddSubWithCarryOp op);
// Functions for emulating operands not directly supported by the instruction
// set.
void EmitShift(const Register& rd,
const Register& rn,
Shift shift,
unsigned amount);
void EmitExtendShift(const Register& rd,
const Register& rn,
Extend extend,
unsigned left_shift);
void AddSub(const Register& rd,
const Register& rn,
const Operand& operand,
FlagsUpdate S,
AddSubOp op);
static bool IsImmAddSub(int64_t immediate);
// Find an appropriate LoadStoreOp or LoadStorePairOp for the specified
// registers. Only simple loads are supported; sign- and zero-extension (such
// as in LDPSW_x or LDRB_w) are not supported.
static LoadStoreOp LoadOpFor(const CPURegister& rt);
static LoadStorePairOp LoadPairOpFor(const CPURegister& rt,
const CPURegister& rt2);
static LoadStoreOp StoreOpFor(const CPURegister& rt);
static LoadStorePairOp StorePairOpFor(const CPURegister& rt,
const CPURegister& rt2);
static LoadStorePairNonTemporalOp LoadPairNonTemporalOpFor(
const CPURegister& rt, const CPURegister& rt2);
static LoadStorePairNonTemporalOp StorePairNonTemporalOpFor(
const CPURegister& rt, const CPURegister& rt2);
private:
// Instruction helpers.
void MoveWide(const Register& rd,
uint64_t imm,
int shift,
MoveWideImmediateOp mov_op);
void DataProcShiftedRegister(const Register& rd,
const Register& rn,
const Operand& operand,
FlagsUpdate S,
Instr op);
void DataProcExtendedRegister(const Register& rd,
const Register& rn,
const Operand& operand,
FlagsUpdate S,
Instr op);
void LoadStorePair(const CPURegister& rt,
const CPURegister& rt2,
const MemOperand& addr,
LoadStorePairOp op);
void LoadStorePairNonTemporal(const CPURegister& rt,
const CPURegister& rt2,
const MemOperand& addr,
LoadStorePairNonTemporalOp op);
void LoadLiteral(const CPURegister& rt, uint64_t imm, LoadLiteralOp op);
void ConditionalSelect(const Register& rd,
const Register& rn,
const Register& rm,
Condition cond,
ConditionalSelectOp op);
void DataProcessing1Source(const Register& rd,
const Register& rn,
DataProcessing1SourceOp op);
void DataProcessing3Source(const Register& rd,
const Register& rn,
const Register& rm,
const Register& ra,
DataProcessing3SourceOp op);
void FPDataProcessing1Source(const FPRegister& fd,
const FPRegister& fn,
FPDataProcessing1SourceOp op);
void FPDataProcessing2Source(const FPRegister& fd,
const FPRegister& fn,
const FPRegister& fm,
FPDataProcessing2SourceOp op);
void FPDataProcessing3Source(const FPRegister& fd,
const FPRegister& fn,
const FPRegister& fm,
const FPRegister& fa,
FPDataProcessing3SourceOp op);
// Encoding helpers.
static bool IsImmFP32(float imm);
static bool IsImmFP64(double imm);
void RecordLiteral(int64_t imm, unsigned size);
// Emit the instruction at pc_.
void Emit(Instr instruction) {
ASSERT(sizeof(*pc_) == 1);
ASSERT(sizeof(instruction) == kInstructionSize);
ASSERT((pc_ + sizeof(instruction)) <= (buffer_ + buffer_size_));
#ifdef DEBUG
finalized_ = false;
#endif
memcpy(pc_, &instruction, sizeof(instruction));
pc_ += sizeof(instruction);
CheckBufferSpace();
}
// Emit data inline in the instruction stream.
void EmitData(void const * data, unsigned size) {
ASSERT(sizeof(*pc_) == 1);
ASSERT((pc_ + size) <= (buffer_ + buffer_size_));
#ifdef DEBUG
finalized_ = false;
#endif
// TODO: Record this 'instruction' as data, so that it can be disassembled
// correctly.
memcpy(pc_, data, size);
pc_ += size;
CheckBufferSpace();
}
inline void CheckBufferSpace() {
ASSERT(pc_ < (buffer_ + buffer_size_));
if (pc_ > next_literal_pool_check_) {
CheckLiteralPool();
}
}
// The buffer into which code and relocation info are generated.
Instruction* buffer_;
// Buffer size, in bytes.
unsigned buffer_size_;
Instruction* pc_;
std::list<Literal*> literals_;
Instruction* next_literal_pool_check_;
unsigned literal_pool_monitor_;
friend class BlockLiteralPoolScope;
#ifdef DEBUG
bool finalized_;
#endif
};
class BlockLiteralPoolScope {
public:
explicit BlockLiteralPoolScope(Assembler* assm) : assm_(assm) {
assm_->BlockLiteralPool();
}
~BlockLiteralPoolScope() {
assm_->ReleaseLiteralPool();
}
private:
Assembler* assm_;
};
} // namespace vixl
#endif // VIXL_A64_ASSEMBLER_A64_H_