qemu/target/riscv/insn_trans/trans_rvv.c.inc
LIU Zhiwei 2c9d747121 target/riscv: Add itrigger support when icount is not enabled
When icount is not enabled, there is no API in QEMU that can get the
guest instruction number.

Translate the guest code in a way that each TB only has one instruction.
After executing the instruction, decrease the count by 1 until it reaches 0
where the itrigger fires.

Note that only when priviledge matches the itrigger configuration,
the count will decrease.

Signed-off-by: LIU Zhiwei <zhiwei_liu@linux.alibaba.com>
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Message-Id: <20221013062946.7530-2-zhiwei_liu@linux.alibaba.com>
Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
2023-01-06 10:42:55 +10:00

3924 lines
140 KiB
C++

/*
*
* Copyright (c) 2020 T-Head Semiconductor Co., Ltd. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2 or later, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "tcg/tcg-op-gvec.h"
#include "tcg/tcg-gvec-desc.h"
#include "internals.h"
static inline bool is_overlapped(const int8_t astart, int8_t asize,
const int8_t bstart, int8_t bsize)
{
const int8_t aend = astart + asize;
const int8_t bend = bstart + bsize;
return MAX(aend, bend) - MIN(astart, bstart) < asize + bsize;
}
static bool require_rvv(DisasContext *s)
{
return s->mstatus_vs != 0;
}
static bool require_rvf(DisasContext *s)
{
if (s->mstatus_fs == 0) {
return false;
}
switch (s->sew) {
case MO_16:
case MO_32:
return has_ext(s, RVF);
case MO_64:
return has_ext(s, RVD);
default:
return false;
}
}
static bool require_scale_rvf(DisasContext *s)
{
if (s->mstatus_fs == 0) {
return false;
}
switch (s->sew) {
case MO_8:
case MO_16:
return has_ext(s, RVF);
case MO_32:
return has_ext(s, RVD);
default:
return false;
}
}
static bool require_zve32f(DisasContext *s)
{
/* RVV + Zve32f = RVV. */
if (has_ext(s, RVV)) {
return true;
}
/* Zve32f doesn't support FP64. (Section 18.2) */
return s->cfg_ptr->ext_zve32f ? s->sew <= MO_32 : true;
}
static bool require_scale_zve32f(DisasContext *s)
{
/* RVV + Zve32f = RVV. */
if (has_ext(s, RVV)) {
return true;
}
/* Zve32f doesn't support FP64. (Section 18.2) */
return s->cfg_ptr->ext_zve64f ? s->sew <= MO_16 : true;
}
static bool require_zve64f(DisasContext *s)
{
/* RVV + Zve64f = RVV. */
if (has_ext(s, RVV)) {
return true;
}
/* Zve64f doesn't support FP64. (Section 18.2) */
return s->cfg_ptr->ext_zve64f ? s->sew <= MO_32 : true;
}
static bool require_scale_zve64f(DisasContext *s)
{
/* RVV + Zve64f = RVV. */
if (has_ext(s, RVV)) {
return true;
}
/* Zve64f doesn't support FP64. (Section 18.2) */
return s->cfg_ptr->ext_zve64f ? s->sew <= MO_16 : true;
}
/* Destination vector register group cannot overlap source mask register. */
static bool require_vm(int vm, int vd)
{
return (vm != 0 || vd != 0);
}
static bool require_nf(int vd, int nf, int lmul)
{
int size = nf << MAX(lmul, 0);
return size <= 8 && vd + size <= 32;
}
/*
* Vector register should aligned with the passed-in LMUL (EMUL).
* If LMUL < 0, i.e. fractional LMUL, any vector register is allowed.
*/
static bool require_align(const int8_t val, const int8_t lmul)
{
return lmul <= 0 || extract32(val, 0, lmul) == 0;
}
/*
* A destination vector register group can overlap a source vector
* register group only if one of the following holds:
* 1. The destination EEW equals the source EEW.
* 2. The destination EEW is smaller than the source EEW and the overlap
* is in the lowest-numbered part of the source register group.
* 3. The destination EEW is greater than the source EEW, the source EMUL
* is at least 1, and the overlap is in the highest-numbered part of
* the destination register group.
* (Section 5.2)
*
* This function returns true if one of the following holds:
* * Destination vector register group does not overlap a source vector
* register group.
* * Rule 3 met.
* For rule 1, overlap is allowed so this function doesn't need to be called.
* For rule 2, (vd == vs). Caller has to check whether: (vd != vs) before
* calling this function.
*/
static bool require_noover(const int8_t dst, const int8_t dst_lmul,
const int8_t src, const int8_t src_lmul)
{
int8_t dst_size = dst_lmul <= 0 ? 1 : 1 << dst_lmul;
int8_t src_size = src_lmul <= 0 ? 1 : 1 << src_lmul;
/* Destination EEW is greater than the source EEW, check rule 3. */
if (dst_size > src_size) {
if (dst < src &&
src_lmul >= 0 &&
is_overlapped(dst, dst_size, src, src_size) &&
!is_overlapped(dst, dst_size, src + src_size, src_size)) {
return true;
}
}
return !is_overlapped(dst, dst_size, src, src_size);
}
static bool do_vsetvl(DisasContext *s, int rd, int rs1, TCGv s2)
{
TCGv s1, dst;
if (!require_rvv(s) ||
!(has_ext(s, RVV) || s->cfg_ptr->ext_zve32f ||
s->cfg_ptr->ext_zve64f)) {
return false;
}
dst = dest_gpr(s, rd);
if (rd == 0 && rs1 == 0) {
s1 = tcg_temp_new();
tcg_gen_mov_tl(s1, cpu_vl);
} else if (rs1 == 0) {
/* As the mask is at least one bit, RV_VLEN_MAX is >= VLMAX */
s1 = tcg_constant_tl(RV_VLEN_MAX);
} else {
s1 = get_gpr(s, rs1, EXT_ZERO);
}
gen_helper_vsetvl(dst, cpu_env, s1, s2);
gen_set_gpr(s, rd, dst);
mark_vs_dirty(s);
gen_set_pc_imm(s, s->pc_succ_insn);
lookup_and_goto_ptr(s);
s->base.is_jmp = DISAS_NORETURN;
if (rd == 0 && rs1 == 0) {
tcg_temp_free(s1);
}
return true;
}
static bool do_vsetivli(DisasContext *s, int rd, TCGv s1, TCGv s2)
{
TCGv dst;
if (!require_rvv(s) ||
!(has_ext(s, RVV) || s->cfg_ptr->ext_zve32f ||
s->cfg_ptr->ext_zve64f)) {
return false;
}
dst = dest_gpr(s, rd);
gen_helper_vsetvl(dst, cpu_env, s1, s2);
gen_set_gpr(s, rd, dst);
mark_vs_dirty(s);
gen_set_pc_imm(s, s->pc_succ_insn);
lookup_and_goto_ptr(s);
s->base.is_jmp = DISAS_NORETURN;
return true;
}
static bool trans_vsetvl(DisasContext *s, arg_vsetvl *a)
{
TCGv s2 = get_gpr(s, a->rs2, EXT_ZERO);
return do_vsetvl(s, a->rd, a->rs1, s2);
}
static bool trans_vsetvli(DisasContext *s, arg_vsetvli *a)
{
TCGv s2 = tcg_constant_tl(a->zimm);
return do_vsetvl(s, a->rd, a->rs1, s2);
}
static bool trans_vsetivli(DisasContext *s, arg_vsetivli *a)
{
TCGv s1 = tcg_const_tl(a->rs1);
TCGv s2 = tcg_const_tl(a->zimm);
return do_vsetivli(s, a->rd, s1, s2);
}
/* vector register offset from env */
static uint32_t vreg_ofs(DisasContext *s, int reg)
{
return offsetof(CPURISCVState, vreg) + reg * s->cfg_ptr->vlen / 8;
}
/* check functions */
/*
* Vector unit-stride, strided, unit-stride segment, strided segment
* store check function.
*
* Rules to be checked here:
* 1. EMUL must within the range: 1/8 <= EMUL <= 8. (Section 7.3)
* 2. Destination vector register number is multiples of EMUL.
* (Section 3.4.2, 7.3)
* 3. The EMUL setting must be such that EMUL * NFIELDS ≤ 8. (Section 7.8)
* 4. Vector register numbers accessed by the segment load or store
* cannot increment past 31. (Section 7.8)
*/
static bool vext_check_store(DisasContext *s, int vd, int nf, uint8_t eew)
{
int8_t emul = eew - s->sew + s->lmul;
return (emul >= -3 && emul <= 3) &&
require_align(vd, emul) &&
require_nf(vd, nf, emul);
}
/*
* Vector unit-stride, strided, unit-stride segment, strided segment
* load check function.
*
* Rules to be checked here:
* 1. All rules applies to store instructions are applies
* to load instructions.
* 2. Destination vector register group for a masked vector
* instruction cannot overlap the source mask register (v0).
* (Section 5.3)
*/
static bool vext_check_load(DisasContext *s, int vd, int nf, int vm,
uint8_t eew)
{
return vext_check_store(s, vd, nf, eew) && require_vm(vm, vd);
}
/*
* Vector indexed, indexed segment store check function.
*
* Rules to be checked here:
* 1. EMUL must within the range: 1/8 <= EMUL <= 8. (Section 7.3)
* 2. Index vector register number is multiples of EMUL.
* (Section 3.4.2, 7.3)
* 3. Destination vector register number is multiples of LMUL.
* (Section 3.4.2, 7.3)
* 4. The EMUL setting must be such that EMUL * NFIELDS ≤ 8. (Section 7.8)
* 5. Vector register numbers accessed by the segment load or store
* cannot increment past 31. (Section 7.8)
*/
static bool vext_check_st_index(DisasContext *s, int vd, int vs2, int nf,
uint8_t eew)
{
int8_t emul = eew - s->sew + s->lmul;
bool ret = (emul >= -3 && emul <= 3) &&
require_align(vs2, emul) &&
require_align(vd, s->lmul) &&
require_nf(vd, nf, s->lmul);
/*
* All Zve* extensions support all vector load and store instructions,
* except Zve64* extensions do not support EEW=64 for index values
* when XLEN=32. (Section 18.2)
*/
if (get_xl(s) == MXL_RV32) {
ret &= (!has_ext(s, RVV) &&
s->cfg_ptr->ext_zve64f ? eew != MO_64 : true);
}
return ret;
}
/*
* Vector indexed, indexed segment load check function.
*
* Rules to be checked here:
* 1. All rules applies to store instructions are applies
* to load instructions.
* 2. Destination vector register group for a masked vector
* instruction cannot overlap the source mask register (v0).
* (Section 5.3)
* 3. Destination vector register cannot overlap a source vector
* register (vs2) group.
* (Section 5.2)
* 4. Destination vector register groups cannot overlap
* the source vector register (vs2) group for
* indexed segment load instructions. (Section 7.8.3)
*/
static bool vext_check_ld_index(DisasContext *s, int vd, int vs2,
int nf, int vm, uint8_t eew)
{
int8_t seg_vd;
int8_t emul = eew - s->sew + s->lmul;
bool ret = vext_check_st_index(s, vd, vs2, nf, eew) &&
require_vm(vm, vd);
/* Each segment register group has to follow overlap rules. */
for (int i = 0; i < nf; ++i) {
seg_vd = vd + (1 << MAX(s->lmul, 0)) * i;
if (eew > s->sew) {
if (seg_vd != vs2) {
ret &= require_noover(seg_vd, s->lmul, vs2, emul);
}
} else if (eew < s->sew) {
ret &= require_noover(seg_vd, s->lmul, vs2, emul);
}
/*
* Destination vector register groups cannot overlap
* the source vector register (vs2) group for
* indexed segment load instructions.
*/
if (nf > 1) {
ret &= !is_overlapped(seg_vd, 1 << MAX(s->lmul, 0),
vs2, 1 << MAX(emul, 0));
}
}
return ret;
}
static bool vext_check_ss(DisasContext *s, int vd, int vs, int vm)
{
return require_vm(vm, vd) &&
require_align(vd, s->lmul) &&
require_align(vs, s->lmul);
}
/*
* Check function for vector instruction with format:
* single-width result and single-width sources (SEW = SEW op SEW)
*
* Rules to be checked here:
* 1. Destination vector register group for a masked vector
* instruction cannot overlap the source mask register (v0).
* (Section 5.3)
* 2. Destination vector register number is multiples of LMUL.
* (Section 3.4.2)
* 3. Source (vs2, vs1) vector register number are multiples of LMUL.
* (Section 3.4.2)
*/
static bool vext_check_sss(DisasContext *s, int vd, int vs1, int vs2, int vm)
{
return vext_check_ss(s, vd, vs2, vm) &&
require_align(vs1, s->lmul);
}
static bool vext_check_ms(DisasContext *s, int vd, int vs)
{
bool ret = require_align(vs, s->lmul);
if (vd != vs) {
ret &= require_noover(vd, 0, vs, s->lmul);
}
return ret;
}
/*
* Check function for maskable vector instruction with format:
* single-width result and single-width sources (SEW = SEW op SEW)
*
* Rules to be checked here:
* 1. Source (vs2, vs1) vector register number are multiples of LMUL.
* (Section 3.4.2)
* 2. Destination vector register cannot overlap a source vector
* register (vs2, vs1) group.
* (Section 5.2)
* 3. The destination vector register group for a masked vector
* instruction cannot overlap the source mask register (v0),
* unless the destination vector register is being written
* with a mask value (e.g., comparisons) or the scalar result
* of a reduction. (Section 5.3)
*/
static bool vext_check_mss(DisasContext *s, int vd, int vs1, int vs2)
{
bool ret = vext_check_ms(s, vd, vs2) &&
require_align(vs1, s->lmul);
if (vd != vs1) {
ret &= require_noover(vd, 0, vs1, s->lmul);
}
return ret;
}
/*
* Common check function for vector widening instructions
* of double-width result (2*SEW).
*
* Rules to be checked here:
* 1. The largest vector register group used by an instruction
* can not be greater than 8 vector registers (Section 5.2):
* => LMUL < 8.
* => SEW < 64.
* 2. Double-width SEW cannot greater than ELEN.
* 3. Destination vector register number is multiples of 2 * LMUL.
* (Section 3.4.2)
* 4. Destination vector register group for a masked vector
* instruction cannot overlap the source mask register (v0).
* (Section 5.3)
*/
static bool vext_wide_check_common(DisasContext *s, int vd, int vm)
{
return (s->lmul <= 2) &&
(s->sew < MO_64) &&
((s->sew + 1) <= (s->cfg_ptr->elen >> 4)) &&
require_align(vd, s->lmul + 1) &&
require_vm(vm, vd);
}
/*
* Common check function for vector narrowing instructions
* of single-width result (SEW) and double-width source (2*SEW).
*
* Rules to be checked here:
* 1. The largest vector register group used by an instruction
* can not be greater than 8 vector registers (Section 5.2):
* => LMUL < 8.
* => SEW < 64.
* 2. Double-width SEW cannot greater than ELEN.
* 3. Source vector register number is multiples of 2 * LMUL.
* (Section 3.4.2)
* 4. Destination vector register number is multiples of LMUL.
* (Section 3.4.2)
* 5. Destination vector register group for a masked vector
* instruction cannot overlap the source mask register (v0).
* (Section 5.3)
*/
static bool vext_narrow_check_common(DisasContext *s, int vd, int vs2,
int vm)
{
return (s->lmul <= 2) &&
(s->sew < MO_64) &&
((s->sew + 1) <= (s->cfg_ptr->elen >> 4)) &&
require_align(vs2, s->lmul + 1) &&
require_align(vd, s->lmul) &&
require_vm(vm, vd);
}
static bool vext_check_ds(DisasContext *s, int vd, int vs, int vm)
{
return vext_wide_check_common(s, vd, vm) &&
require_align(vs, s->lmul) &&
require_noover(vd, s->lmul + 1, vs, s->lmul);
}
static bool vext_check_dd(DisasContext *s, int vd, int vs, int vm)
{
return vext_wide_check_common(s, vd, vm) &&
require_align(vs, s->lmul + 1);
}
/*
* Check function for vector instruction with format:
* double-width result and single-width sources (2*SEW = SEW op SEW)
*
* Rules to be checked here:
* 1. All rules in defined in widen common rules are applied.
* 2. Source (vs2, vs1) vector register number are multiples of LMUL.
* (Section 3.4.2)
* 3. Destination vector register cannot overlap a source vector
* register (vs2, vs1) group.
* (Section 5.2)
*/
static bool vext_check_dss(DisasContext *s, int vd, int vs1, int vs2, int vm)
{
return vext_check_ds(s, vd, vs2, vm) &&
require_align(vs1, s->lmul) &&
require_noover(vd, s->lmul + 1, vs1, s->lmul);
}
/*
* Check function for vector instruction with format:
* double-width result and double-width source1 and single-width
* source2 (2*SEW = 2*SEW op SEW)
*
* Rules to be checked here:
* 1. All rules in defined in widen common rules are applied.
* 2. Source 1 (vs2) vector register number is multiples of 2 * LMUL.
* (Section 3.4.2)
* 3. Source 2 (vs1) vector register number is multiples of LMUL.
* (Section 3.4.2)
* 4. Destination vector register cannot overlap a source vector
* register (vs1) group.
* (Section 5.2)
*/
static bool vext_check_dds(DisasContext *s, int vd, int vs1, int vs2, int vm)
{
return vext_check_ds(s, vd, vs1, vm) &&
require_align(vs2, s->lmul + 1);
}
static bool vext_check_sd(DisasContext *s, int vd, int vs, int vm)
{
bool ret = vext_narrow_check_common(s, vd, vs, vm);
if (vd != vs) {
ret &= require_noover(vd, s->lmul, vs, s->lmul + 1);
}
return ret;
}
/*
* Check function for vector instruction with format:
* single-width result and double-width source 1 and single-width
* source 2 (SEW = 2*SEW op SEW)
*
* Rules to be checked here:
* 1. All rules in defined in narrow common rules are applied.
* 2. Destination vector register cannot overlap a source vector
* register (vs2) group.
* (Section 5.2)
* 3. Source 2 (vs1) vector register number is multiples of LMUL.
* (Section 3.4.2)
*/
static bool vext_check_sds(DisasContext *s, int vd, int vs1, int vs2, int vm)
{
return vext_check_sd(s, vd, vs2, vm) &&
require_align(vs1, s->lmul);
}
/*
* Check function for vector reduction instructions.
*
* Rules to be checked here:
* 1. Source 1 (vs2) vector register number is multiples of LMUL.
* (Section 3.4.2)
*/
static bool vext_check_reduction(DisasContext *s, int vs2)
{
return require_align(vs2, s->lmul) && (s->vstart == 0);
}
/*
* Check function for vector slide instructions.
*
* Rules to be checked here:
* 1. Source 1 (vs2) vector register number is multiples of LMUL.
* (Section 3.4.2)
* 2. Destination vector register number is multiples of LMUL.
* (Section 3.4.2)
* 3. Destination vector register group for a masked vector
* instruction cannot overlap the source mask register (v0).
* (Section 5.3)
* 4. The destination vector register group for vslideup, vslide1up,
* vfslide1up, cannot overlap the source vector register (vs2) group.
* (Section 5.2, 16.3.1, 16.3.3)
*/
static bool vext_check_slide(DisasContext *s, int vd, int vs2,
int vm, bool is_over)
{
bool ret = require_align(vs2, s->lmul) &&
require_align(vd, s->lmul) &&
require_vm(vm, vd);
if (is_over) {
ret &= (vd != vs2);
}
return ret;
}
/*
* In cpu_get_tb_cpu_state(), set VILL if RVV was not present.
* So RVV is also be checked in this function.
*/
static bool vext_check_isa_ill(DisasContext *s)
{
return !s->vill;
}
/* common translation macro */
#define GEN_VEXT_TRANS(NAME, EEW, ARGTYPE, OP, CHECK) \
static bool trans_##NAME(DisasContext *s, arg_##ARGTYPE * a) \
{ \
if (CHECK(s, a, EEW)) { \
return OP(s, a, EEW); \
} \
return false; \
}
static uint8_t vext_get_emul(DisasContext *s, uint8_t eew)
{
int8_t emul = eew - s->sew + s->lmul;
return emul < 0 ? 0 : emul;
}
/*
*** unit stride load and store
*/
typedef void gen_helper_ldst_us(TCGv_ptr, TCGv_ptr, TCGv,
TCGv_env, TCGv_i32);
static bool ldst_us_trans(uint32_t vd, uint32_t rs1, uint32_t data,
gen_helper_ldst_us *fn, DisasContext *s,
bool is_store)
{
TCGv_ptr dest, mask;
TCGv base;
TCGv_i32 desc;
TCGLabel *over = gen_new_label();
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over);
tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over);
dest = tcg_temp_new_ptr();
mask = tcg_temp_new_ptr();
base = get_gpr(s, rs1, EXT_NONE);
/*
* As simd_desc supports at most 2048 bytes, and in this implementation,
* the max vector group length is 4096 bytes. So split it into two parts.
*
* The first part is vlen in bytes, encoded in maxsz of simd_desc.
* The second part is lmul, encoded in data of simd_desc.
*/
desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8,
s->cfg_ptr->vlen / 8, data));
tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd));
tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0));
fn(dest, mask, base, cpu_env, desc);
tcg_temp_free_ptr(dest);
tcg_temp_free_ptr(mask);
if (!is_store) {
mark_vs_dirty(s);
}
gen_set_label(over);
return true;
}
static bool ld_us_op(DisasContext *s, arg_r2nfvm *a, uint8_t eew)
{
uint32_t data = 0;
gen_helper_ldst_us *fn;
static gen_helper_ldst_us * const fns[2][4] = {
/* masked unit stride load */
{ gen_helper_vle8_v_mask, gen_helper_vle16_v_mask,
gen_helper_vle32_v_mask, gen_helper_vle64_v_mask },
/* unmasked unit stride load */
{ gen_helper_vle8_v, gen_helper_vle16_v,
gen_helper_vle32_v, gen_helper_vle64_v }
};
fn = fns[a->vm][eew];
if (fn == NULL) {
return false;
}
/*
* Vector load/store instructions have the EEW encoded
* directly in the instructions. The maximum vector size is
* calculated with EMUL rather than LMUL.
*/
uint8_t emul = vext_get_emul(s, eew);
data = FIELD_DP32(data, VDATA, VM, a->vm);
data = FIELD_DP32(data, VDATA, LMUL, emul);
data = FIELD_DP32(data, VDATA, NF, a->nf);
data = FIELD_DP32(data, VDATA, VTA, s->vta);
data = FIELD_DP32(data, VDATA, VMA, s->vma);
return ldst_us_trans(a->rd, a->rs1, data, fn, s, false);
}
static bool ld_us_check(DisasContext *s, arg_r2nfvm* a, uint8_t eew)
{
return require_rvv(s) &&
vext_check_isa_ill(s) &&
vext_check_load(s, a->rd, a->nf, a->vm, eew);
}
GEN_VEXT_TRANS(vle8_v, MO_8, r2nfvm, ld_us_op, ld_us_check)
GEN_VEXT_TRANS(vle16_v, MO_16, r2nfvm, ld_us_op, ld_us_check)
GEN_VEXT_TRANS(vle32_v, MO_32, r2nfvm, ld_us_op, ld_us_check)
GEN_VEXT_TRANS(vle64_v, MO_64, r2nfvm, ld_us_op, ld_us_check)
static bool st_us_op(DisasContext *s, arg_r2nfvm *a, uint8_t eew)
{
uint32_t data = 0;
gen_helper_ldst_us *fn;
static gen_helper_ldst_us * const fns[2][4] = {
/* masked unit stride store */
{ gen_helper_vse8_v_mask, gen_helper_vse16_v_mask,
gen_helper_vse32_v_mask, gen_helper_vse64_v_mask },
/* unmasked unit stride store */
{ gen_helper_vse8_v, gen_helper_vse16_v,
gen_helper_vse32_v, gen_helper_vse64_v }
};
fn = fns[a->vm][eew];
if (fn == NULL) {
return false;
}
uint8_t emul = vext_get_emul(s, eew);
data = FIELD_DP32(data, VDATA, VM, a->vm);
data = FIELD_DP32(data, VDATA, LMUL, emul);
data = FIELD_DP32(data, VDATA, NF, a->nf);
return ldst_us_trans(a->rd, a->rs1, data, fn, s, true);
}
static bool st_us_check(DisasContext *s, arg_r2nfvm* a, uint8_t eew)
{
return require_rvv(s) &&
vext_check_isa_ill(s) &&
vext_check_store(s, a->rd, a->nf, eew);
}
GEN_VEXT_TRANS(vse8_v, MO_8, r2nfvm, st_us_op, st_us_check)
GEN_VEXT_TRANS(vse16_v, MO_16, r2nfvm, st_us_op, st_us_check)
GEN_VEXT_TRANS(vse32_v, MO_32, r2nfvm, st_us_op, st_us_check)
GEN_VEXT_TRANS(vse64_v, MO_64, r2nfvm, st_us_op, st_us_check)
/*
*** unit stride mask load and store
*/
static bool ld_us_mask_op(DisasContext *s, arg_vlm_v *a, uint8_t eew)
{
uint32_t data = 0;
gen_helper_ldst_us *fn = gen_helper_vlm_v;
/* EMUL = 1, NFIELDS = 1 */
data = FIELD_DP32(data, VDATA, LMUL, 0);
data = FIELD_DP32(data, VDATA, NF, 1);
/* Mask destination register are always tail-agnostic */
data = FIELD_DP32(data, VDATA, VTA, s->cfg_vta_all_1s);
data = FIELD_DP32(data, VDATA, VMA, s->vma);
return ldst_us_trans(a->rd, a->rs1, data, fn, s, false);
}
static bool ld_us_mask_check(DisasContext *s, arg_vlm_v *a, uint8_t eew)
{
/* EMUL = 1, NFIELDS = 1 */
return require_rvv(s) && vext_check_isa_ill(s);
}
static bool st_us_mask_op(DisasContext *s, arg_vsm_v *a, uint8_t eew)
{
uint32_t data = 0;
gen_helper_ldst_us *fn = gen_helper_vsm_v;
/* EMUL = 1, NFIELDS = 1 */
data = FIELD_DP32(data, VDATA, LMUL, 0);
data = FIELD_DP32(data, VDATA, NF, 1);
return ldst_us_trans(a->rd, a->rs1, data, fn, s, true);
}
static bool st_us_mask_check(DisasContext *s, arg_vsm_v *a, uint8_t eew)
{
/* EMUL = 1, NFIELDS = 1 */
return require_rvv(s) && vext_check_isa_ill(s);
}
GEN_VEXT_TRANS(vlm_v, MO_8, vlm_v, ld_us_mask_op, ld_us_mask_check)
GEN_VEXT_TRANS(vsm_v, MO_8, vsm_v, st_us_mask_op, st_us_mask_check)
/*
*** stride load and store
*/
typedef void gen_helper_ldst_stride(TCGv_ptr, TCGv_ptr, TCGv,
TCGv, TCGv_env, TCGv_i32);
static bool ldst_stride_trans(uint32_t vd, uint32_t rs1, uint32_t rs2,
uint32_t data, gen_helper_ldst_stride *fn,
DisasContext *s, bool is_store)
{
TCGv_ptr dest, mask;
TCGv base, stride;
TCGv_i32 desc;
TCGLabel *over = gen_new_label();
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over);
tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over);
dest = tcg_temp_new_ptr();
mask = tcg_temp_new_ptr();
base = get_gpr(s, rs1, EXT_NONE);
stride = get_gpr(s, rs2, EXT_NONE);
desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8,
s->cfg_ptr->vlen / 8, data));
tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd));
tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0));
fn(dest, mask, base, stride, cpu_env, desc);
tcg_temp_free_ptr(dest);
tcg_temp_free_ptr(mask);
if (!is_store) {
mark_vs_dirty(s);
}
gen_set_label(over);
return true;
}
static bool ld_stride_op(DisasContext *s, arg_rnfvm *a, uint8_t eew)
{
uint32_t data = 0;
gen_helper_ldst_stride *fn;
static gen_helper_ldst_stride * const fns[4] = {
gen_helper_vlse8_v, gen_helper_vlse16_v,
gen_helper_vlse32_v, gen_helper_vlse64_v
};
fn = fns[eew];
if (fn == NULL) {
return false;
}
uint8_t emul = vext_get_emul(s, eew);
data = FIELD_DP32(data, VDATA, VM, a->vm);
data = FIELD_DP32(data, VDATA, LMUL, emul);
data = FIELD_DP32(data, VDATA, NF, a->nf);
data = FIELD_DP32(data, VDATA, VTA, s->vta);
data = FIELD_DP32(data, VDATA, VMA, s->vma);
return ldst_stride_trans(a->rd, a->rs1, a->rs2, data, fn, s, false);
}
static bool ld_stride_check(DisasContext *s, arg_rnfvm* a, uint8_t eew)
{
return require_rvv(s) &&
vext_check_isa_ill(s) &&
vext_check_load(s, a->rd, a->nf, a->vm, eew);
}
GEN_VEXT_TRANS(vlse8_v, MO_8, rnfvm, ld_stride_op, ld_stride_check)
GEN_VEXT_TRANS(vlse16_v, MO_16, rnfvm, ld_stride_op, ld_stride_check)
GEN_VEXT_TRANS(vlse32_v, MO_32, rnfvm, ld_stride_op, ld_stride_check)
GEN_VEXT_TRANS(vlse64_v, MO_64, rnfvm, ld_stride_op, ld_stride_check)
static bool st_stride_op(DisasContext *s, arg_rnfvm *a, uint8_t eew)
{
uint32_t data = 0;
gen_helper_ldst_stride *fn;
static gen_helper_ldst_stride * const fns[4] = {
/* masked stride store */
gen_helper_vsse8_v, gen_helper_vsse16_v,
gen_helper_vsse32_v, gen_helper_vsse64_v
};
uint8_t emul = vext_get_emul(s, eew);
data = FIELD_DP32(data, VDATA, VM, a->vm);
data = FIELD_DP32(data, VDATA, LMUL, emul);
data = FIELD_DP32(data, VDATA, NF, a->nf);
fn = fns[eew];
if (fn == NULL) {
return false;
}
return ldst_stride_trans(a->rd, a->rs1, a->rs2, data, fn, s, true);
}
static bool st_stride_check(DisasContext *s, arg_rnfvm* a, uint8_t eew)
{
return require_rvv(s) &&
vext_check_isa_ill(s) &&
vext_check_store(s, a->rd, a->nf, eew);
}
GEN_VEXT_TRANS(vsse8_v, MO_8, rnfvm, st_stride_op, st_stride_check)
GEN_VEXT_TRANS(vsse16_v, MO_16, rnfvm, st_stride_op, st_stride_check)
GEN_VEXT_TRANS(vsse32_v, MO_32, rnfvm, st_stride_op, st_stride_check)
GEN_VEXT_TRANS(vsse64_v, MO_64, rnfvm, st_stride_op, st_stride_check)
/*
*** index load and store
*/
typedef void gen_helper_ldst_index(TCGv_ptr, TCGv_ptr, TCGv,
TCGv_ptr, TCGv_env, TCGv_i32);
static bool ldst_index_trans(uint32_t vd, uint32_t rs1, uint32_t vs2,
uint32_t data, gen_helper_ldst_index *fn,
DisasContext *s, bool is_store)
{
TCGv_ptr dest, mask, index;
TCGv base;
TCGv_i32 desc;
TCGLabel *over = gen_new_label();
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over);
tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over);
dest = tcg_temp_new_ptr();
mask = tcg_temp_new_ptr();
index = tcg_temp_new_ptr();
base = get_gpr(s, rs1, EXT_NONE);
desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8,
s->cfg_ptr->vlen / 8, data));
tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd));
tcg_gen_addi_ptr(index, cpu_env, vreg_ofs(s, vs2));
tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0));
fn(dest, mask, base, index, cpu_env, desc);
tcg_temp_free_ptr(dest);
tcg_temp_free_ptr(mask);
tcg_temp_free_ptr(index);
if (!is_store) {
mark_vs_dirty(s);
}
gen_set_label(over);
return true;
}
static bool ld_index_op(DisasContext *s, arg_rnfvm *a, uint8_t eew)
{
uint32_t data = 0;
gen_helper_ldst_index *fn;
static gen_helper_ldst_index * const fns[4][4] = {
/*
* offset vector register group EEW = 8,
* data vector register group EEW = SEW
*/
{ gen_helper_vlxei8_8_v, gen_helper_vlxei8_16_v,
gen_helper_vlxei8_32_v, gen_helper_vlxei8_64_v },
/*
* offset vector register group EEW = 16,
* data vector register group EEW = SEW
*/
{ gen_helper_vlxei16_8_v, gen_helper_vlxei16_16_v,
gen_helper_vlxei16_32_v, gen_helper_vlxei16_64_v },
/*
* offset vector register group EEW = 32,
* data vector register group EEW = SEW
*/
{ gen_helper_vlxei32_8_v, gen_helper_vlxei32_16_v,
gen_helper_vlxei32_32_v, gen_helper_vlxei32_64_v },
/*
* offset vector register group EEW = 64,
* data vector register group EEW = SEW
*/
{ gen_helper_vlxei64_8_v, gen_helper_vlxei64_16_v,
gen_helper_vlxei64_32_v, gen_helper_vlxei64_64_v }
};
fn = fns[eew][s->sew];
uint8_t emul = vext_get_emul(s, s->sew);
data = FIELD_DP32(data, VDATA, VM, a->vm);
data = FIELD_DP32(data, VDATA, LMUL, emul);
data = FIELD_DP32(data, VDATA, NF, a->nf);
data = FIELD_DP32(data, VDATA, VTA, s->vta);
data = FIELD_DP32(data, VDATA, VMA, s->vma);
return ldst_index_trans(a->rd, a->rs1, a->rs2, data, fn, s, false);
}
static bool ld_index_check(DisasContext *s, arg_rnfvm* a, uint8_t eew)
{
return require_rvv(s) &&
vext_check_isa_ill(s) &&
vext_check_ld_index(s, a->rd, a->rs2, a->nf, a->vm, eew);
}
GEN_VEXT_TRANS(vlxei8_v, MO_8, rnfvm, ld_index_op, ld_index_check)
GEN_VEXT_TRANS(vlxei16_v, MO_16, rnfvm, ld_index_op, ld_index_check)
GEN_VEXT_TRANS(vlxei32_v, MO_32, rnfvm, ld_index_op, ld_index_check)
GEN_VEXT_TRANS(vlxei64_v, MO_64, rnfvm, ld_index_op, ld_index_check)
static bool st_index_op(DisasContext *s, arg_rnfvm *a, uint8_t eew)
{
uint32_t data = 0;
gen_helper_ldst_index *fn;
static gen_helper_ldst_index * const fns[4][4] = {
/*
* offset vector register group EEW = 8,
* data vector register group EEW = SEW
*/
{ gen_helper_vsxei8_8_v, gen_helper_vsxei8_16_v,
gen_helper_vsxei8_32_v, gen_helper_vsxei8_64_v },
/*
* offset vector register group EEW = 16,
* data vector register group EEW = SEW
*/
{ gen_helper_vsxei16_8_v, gen_helper_vsxei16_16_v,
gen_helper_vsxei16_32_v, gen_helper_vsxei16_64_v },
/*
* offset vector register group EEW = 32,
* data vector register group EEW = SEW
*/
{ gen_helper_vsxei32_8_v, gen_helper_vsxei32_16_v,
gen_helper_vsxei32_32_v, gen_helper_vsxei32_64_v },
/*
* offset vector register group EEW = 64,
* data vector register group EEW = SEW
*/
{ gen_helper_vsxei64_8_v, gen_helper_vsxei64_16_v,
gen_helper_vsxei64_32_v, gen_helper_vsxei64_64_v }
};
fn = fns[eew][s->sew];
uint8_t emul = vext_get_emul(s, s->sew);
data = FIELD_DP32(data, VDATA, VM, a->vm);
data = FIELD_DP32(data, VDATA, LMUL, emul);
data = FIELD_DP32(data, VDATA, NF, a->nf);
return ldst_index_trans(a->rd, a->rs1, a->rs2, data, fn, s, true);
}
static bool st_index_check(DisasContext *s, arg_rnfvm* a, uint8_t eew)
{
return require_rvv(s) &&
vext_check_isa_ill(s) &&
vext_check_st_index(s, a->rd, a->rs2, a->nf, eew);
}
GEN_VEXT_TRANS(vsxei8_v, MO_8, rnfvm, st_index_op, st_index_check)
GEN_VEXT_TRANS(vsxei16_v, MO_16, rnfvm, st_index_op, st_index_check)
GEN_VEXT_TRANS(vsxei32_v, MO_32, rnfvm, st_index_op, st_index_check)
GEN_VEXT_TRANS(vsxei64_v, MO_64, rnfvm, st_index_op, st_index_check)
/*
*** unit stride fault-only-first load
*/
static bool ldff_trans(uint32_t vd, uint32_t rs1, uint32_t data,
gen_helper_ldst_us *fn, DisasContext *s)
{
TCGv_ptr dest, mask;
TCGv base;
TCGv_i32 desc;
TCGLabel *over = gen_new_label();
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over);
tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over);
dest = tcg_temp_new_ptr();
mask = tcg_temp_new_ptr();
base = get_gpr(s, rs1, EXT_NONE);
desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8,
s->cfg_ptr->vlen / 8, data));
tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd));
tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0));
fn(dest, mask, base, cpu_env, desc);
tcg_temp_free_ptr(dest);
tcg_temp_free_ptr(mask);
mark_vs_dirty(s);
gen_set_label(over);
return true;
}
static bool ldff_op(DisasContext *s, arg_r2nfvm *a, uint8_t eew)
{
uint32_t data = 0;
gen_helper_ldst_us *fn;
static gen_helper_ldst_us * const fns[4] = {
gen_helper_vle8ff_v, gen_helper_vle16ff_v,
gen_helper_vle32ff_v, gen_helper_vle64ff_v
};
fn = fns[eew];
if (fn == NULL) {
return false;
}
uint8_t emul = vext_get_emul(s, eew);
data = FIELD_DP32(data, VDATA, VM, a->vm);
data = FIELD_DP32(data, VDATA, LMUL, emul);
data = FIELD_DP32(data, VDATA, NF, a->nf);
data = FIELD_DP32(data, VDATA, VTA, s->vta);
data = FIELD_DP32(data, VDATA, VMA, s->vma);
return ldff_trans(a->rd, a->rs1, data, fn, s);
}
GEN_VEXT_TRANS(vle8ff_v, MO_8, r2nfvm, ldff_op, ld_us_check)
GEN_VEXT_TRANS(vle16ff_v, MO_16, r2nfvm, ldff_op, ld_us_check)
GEN_VEXT_TRANS(vle32ff_v, MO_32, r2nfvm, ldff_op, ld_us_check)
GEN_VEXT_TRANS(vle64ff_v, MO_64, r2nfvm, ldff_op, ld_us_check)
/*
* load and store whole register instructions
*/
typedef void gen_helper_ldst_whole(TCGv_ptr, TCGv, TCGv_env, TCGv_i32);
static bool ldst_whole_trans(uint32_t vd, uint32_t rs1, uint32_t nf,
uint32_t width, gen_helper_ldst_whole *fn,
DisasContext *s, bool is_store)
{
uint32_t evl = (s->cfg_ptr->vlen / 8) * nf / width;
TCGLabel *over = gen_new_label();
tcg_gen_brcondi_tl(TCG_COND_GEU, cpu_vstart, evl, over);
TCGv_ptr dest;
TCGv base;
TCGv_i32 desc;
uint32_t data = FIELD_DP32(0, VDATA, NF, nf);
dest = tcg_temp_new_ptr();
desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8,
s->cfg_ptr->vlen / 8, data));
base = get_gpr(s, rs1, EXT_NONE);
tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd));
fn(dest, base, cpu_env, desc);
tcg_temp_free_ptr(dest);
if (!is_store) {
mark_vs_dirty(s);
}
gen_set_label(over);
return true;
}
/*
* load and store whole register instructions ignore vtype and vl setting.
* Thus, we don't need to check vill bit. (Section 7.9)
*/
#define GEN_LDST_WHOLE_TRANS(NAME, ARG_NF, WIDTH, IS_STORE) \
static bool trans_##NAME(DisasContext *s, arg_##NAME * a) \
{ \
if (require_rvv(s) && \
QEMU_IS_ALIGNED(a->rd, ARG_NF)) { \
return ldst_whole_trans(a->rd, a->rs1, ARG_NF, WIDTH, \
gen_helper_##NAME, s, IS_STORE); \
} \
return false; \
}
GEN_LDST_WHOLE_TRANS(vl1re8_v, 1, 1, false)
GEN_LDST_WHOLE_TRANS(vl1re16_v, 1, 2, false)
GEN_LDST_WHOLE_TRANS(vl1re32_v, 1, 4, false)
GEN_LDST_WHOLE_TRANS(vl1re64_v, 1, 8, false)
GEN_LDST_WHOLE_TRANS(vl2re8_v, 2, 1, false)
GEN_LDST_WHOLE_TRANS(vl2re16_v, 2, 2, false)
GEN_LDST_WHOLE_TRANS(vl2re32_v, 2, 4, false)
GEN_LDST_WHOLE_TRANS(vl2re64_v, 2, 8, false)
GEN_LDST_WHOLE_TRANS(vl4re8_v, 4, 1, false)
GEN_LDST_WHOLE_TRANS(vl4re16_v, 4, 2, false)
GEN_LDST_WHOLE_TRANS(vl4re32_v, 4, 4, false)
GEN_LDST_WHOLE_TRANS(vl4re64_v, 4, 8, false)
GEN_LDST_WHOLE_TRANS(vl8re8_v, 8, 1, false)
GEN_LDST_WHOLE_TRANS(vl8re16_v, 8, 2, false)
GEN_LDST_WHOLE_TRANS(vl8re32_v, 8, 4, false)
GEN_LDST_WHOLE_TRANS(vl8re64_v, 8, 8, false)
/*
* The vector whole register store instructions are encoded similar to
* unmasked unit-stride store of elements with EEW=8.
*/
GEN_LDST_WHOLE_TRANS(vs1r_v, 1, 1, true)
GEN_LDST_WHOLE_TRANS(vs2r_v, 2, 1, true)
GEN_LDST_WHOLE_TRANS(vs4r_v, 4, 1, true)
GEN_LDST_WHOLE_TRANS(vs8r_v, 8, 1, true)
/*
*** Vector Integer Arithmetic Instructions
*/
/*
* MAXSZ returns the maximum vector size can be operated in bytes,
* which is used in GVEC IR when vl_eq_vlmax flag is set to true
* to accerlate vector operation.
*/
static inline uint32_t MAXSZ(DisasContext *s)
{
int scale = s->lmul - 3;
return s->cfg_ptr->vlen >> -scale;
}
static bool opivv_check(DisasContext *s, arg_rmrr *a)
{
return require_rvv(s) &&
vext_check_isa_ill(s) &&
vext_check_sss(s, a->rd, a->rs1, a->rs2, a->vm);
}
typedef void GVecGen3Fn(unsigned, uint32_t, uint32_t,
uint32_t, uint32_t, uint32_t);
static inline bool
do_opivv_gvec(DisasContext *s, arg_rmrr *a, GVecGen3Fn *gvec_fn,
gen_helper_gvec_4_ptr *fn)
{
TCGLabel *over = gen_new_label();
if (!opivv_check(s, a)) {
return false;
}
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over);
tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over);
if (a->vm && s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) {
gvec_fn(s->sew, vreg_ofs(s, a->rd),
vreg_ofs(s, a->rs2), vreg_ofs(s, a->rs1),
MAXSZ(s), MAXSZ(s));
} else {
uint32_t data = 0;
data = FIELD_DP32(data, VDATA, VM, a->vm);
data = FIELD_DP32(data, VDATA, LMUL, s->lmul);
data = FIELD_DP32(data, VDATA, VTA, s->vta);
data = FIELD_DP32(data, VDATA, VMA, s->vma);
tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0),
vreg_ofs(s, a->rs1), vreg_ofs(s, a->rs2),
cpu_env, s->cfg_ptr->vlen / 8,
s->cfg_ptr->vlen / 8, data, fn);
}
mark_vs_dirty(s);
gen_set_label(over);
return true;
}
/* OPIVV with GVEC IR */
#define GEN_OPIVV_GVEC_TRANS(NAME, SUF) \
static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \
{ \
static gen_helper_gvec_4_ptr * const fns[4] = { \
gen_helper_##NAME##_b, gen_helper_##NAME##_h, \
gen_helper_##NAME##_w, gen_helper_##NAME##_d, \
}; \
return do_opivv_gvec(s, a, tcg_gen_gvec_##SUF, fns[s->sew]); \
}
GEN_OPIVV_GVEC_TRANS(vadd_vv, add)
GEN_OPIVV_GVEC_TRANS(vsub_vv, sub)
typedef void gen_helper_opivx(TCGv_ptr, TCGv_ptr, TCGv, TCGv_ptr,
TCGv_env, TCGv_i32);
static bool opivx_trans(uint32_t vd, uint32_t rs1, uint32_t vs2, uint32_t vm,
gen_helper_opivx *fn, DisasContext *s)
{
TCGv_ptr dest, src2, mask;
TCGv src1;
TCGv_i32 desc;
uint32_t data = 0;
TCGLabel *over = gen_new_label();
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over);
tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over);
dest = tcg_temp_new_ptr();
mask = tcg_temp_new_ptr();
src2 = tcg_temp_new_ptr();
src1 = get_gpr(s, rs1, EXT_SIGN);
data = FIELD_DP32(data, VDATA, VM, vm);
data = FIELD_DP32(data, VDATA, LMUL, s->lmul);
data = FIELD_DP32(data, VDATA, VTA, s->vta);
data = FIELD_DP32(data, VDATA, VTA_ALL_1S, s->cfg_vta_all_1s);
data = FIELD_DP32(data, VDATA, VMA, s->vma);
desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8,
s->cfg_ptr->vlen / 8, data));
tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd));
tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, vs2));
tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0));
fn(dest, mask, src1, src2, cpu_env, desc);
tcg_temp_free_ptr(dest);
tcg_temp_free_ptr(mask);
tcg_temp_free_ptr(src2);
mark_vs_dirty(s);
gen_set_label(over);
return true;
}
static bool opivx_check(DisasContext *s, arg_rmrr *a)
{
return require_rvv(s) &&
vext_check_isa_ill(s) &&
vext_check_ss(s, a->rd, a->rs2, a->vm);
}
typedef void GVecGen2sFn(unsigned, uint32_t, uint32_t, TCGv_i64,
uint32_t, uint32_t);
static inline bool
do_opivx_gvec(DisasContext *s, arg_rmrr *a, GVecGen2sFn *gvec_fn,
gen_helper_opivx *fn)
{
if (!opivx_check(s, a)) {
return false;
}
if (a->vm && s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) {
TCGv_i64 src1 = tcg_temp_new_i64();
tcg_gen_ext_tl_i64(src1, get_gpr(s, a->rs1, EXT_SIGN));
gvec_fn(s->sew, vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2),
src1, MAXSZ(s), MAXSZ(s));
tcg_temp_free_i64(src1);
mark_vs_dirty(s);
return true;
}
return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s);
}
/* OPIVX with GVEC IR */
#define GEN_OPIVX_GVEC_TRANS(NAME, SUF) \
static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \
{ \
static gen_helper_opivx * const fns[4] = { \
gen_helper_##NAME##_b, gen_helper_##NAME##_h, \
gen_helper_##NAME##_w, gen_helper_##NAME##_d, \
}; \
return do_opivx_gvec(s, a, tcg_gen_gvec_##SUF, fns[s->sew]); \
}
GEN_OPIVX_GVEC_TRANS(vadd_vx, adds)
GEN_OPIVX_GVEC_TRANS(vsub_vx, subs)
static void gen_vec_rsub8_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
{
tcg_gen_vec_sub8_i64(d, b, a);
}
static void gen_vec_rsub16_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
{
tcg_gen_vec_sub16_i64(d, b, a);
}
static void gen_rsub_i32(TCGv_i32 ret, TCGv_i32 arg1, TCGv_i32 arg2)
{
tcg_gen_sub_i32(ret, arg2, arg1);
}
static void gen_rsub_i64(TCGv_i64 ret, TCGv_i64 arg1, TCGv_i64 arg2)
{
tcg_gen_sub_i64(ret, arg2, arg1);
}
static void gen_rsub_vec(unsigned vece, TCGv_vec r, TCGv_vec a, TCGv_vec b)
{
tcg_gen_sub_vec(vece, r, b, a);
}
static void tcg_gen_gvec_rsubs(unsigned vece, uint32_t dofs, uint32_t aofs,
TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
{
static const TCGOpcode vecop_list[] = { INDEX_op_sub_vec, 0 };
static const GVecGen2s rsub_op[4] = {
{ .fni8 = gen_vec_rsub8_i64,
.fniv = gen_rsub_vec,
.fno = gen_helper_vec_rsubs8,
.opt_opc = vecop_list,
.vece = MO_8 },
{ .fni8 = gen_vec_rsub16_i64,
.fniv = gen_rsub_vec,
.fno = gen_helper_vec_rsubs16,
.opt_opc = vecop_list,
.vece = MO_16 },
{ .fni4 = gen_rsub_i32,
.fniv = gen_rsub_vec,
.fno = gen_helper_vec_rsubs32,
.opt_opc = vecop_list,
.vece = MO_32 },
{ .fni8 = gen_rsub_i64,
.fniv = gen_rsub_vec,
.fno = gen_helper_vec_rsubs64,
.opt_opc = vecop_list,
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
.vece = MO_64 },
};
tcg_debug_assert(vece <= MO_64);
tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, c, &rsub_op[vece]);
}
GEN_OPIVX_GVEC_TRANS(vrsub_vx, rsubs)
typedef enum {
IMM_ZX, /* Zero-extended */
IMM_SX, /* Sign-extended */
IMM_TRUNC_SEW, /* Truncate to log(SEW) bits */
IMM_TRUNC_2SEW, /* Truncate to log(2*SEW) bits */
} imm_mode_t;
static int64_t extract_imm(DisasContext *s, uint32_t imm, imm_mode_t imm_mode)
{
switch (imm_mode) {
case IMM_ZX:
return extract64(imm, 0, 5);
case IMM_SX:
return sextract64(imm, 0, 5);
case IMM_TRUNC_SEW:
return extract64(imm, 0, s->sew + 3);
case IMM_TRUNC_2SEW:
return extract64(imm, 0, s->sew + 4);
default:
g_assert_not_reached();
}
}
static bool opivi_trans(uint32_t vd, uint32_t imm, uint32_t vs2, uint32_t vm,
gen_helper_opivx *fn, DisasContext *s,
imm_mode_t imm_mode)
{
TCGv_ptr dest, src2, mask;
TCGv src1;
TCGv_i32 desc;
uint32_t data = 0;
TCGLabel *over = gen_new_label();
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over);
tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over);
dest = tcg_temp_new_ptr();
mask = tcg_temp_new_ptr();
src2 = tcg_temp_new_ptr();
src1 = tcg_constant_tl(extract_imm(s, imm, imm_mode));
data = FIELD_DP32(data, VDATA, VM, vm);
data = FIELD_DP32(data, VDATA, LMUL, s->lmul);
data = FIELD_DP32(data, VDATA, VTA, s->vta);
data = FIELD_DP32(data, VDATA, VTA_ALL_1S, s->cfg_vta_all_1s);
data = FIELD_DP32(data, VDATA, VMA, s->vma);
desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8,
s->cfg_ptr->vlen / 8, data));
tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd));
tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, vs2));
tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0));
fn(dest, mask, src1, src2, cpu_env, desc);
tcg_temp_free_ptr(dest);
tcg_temp_free_ptr(mask);
tcg_temp_free_ptr(src2);
mark_vs_dirty(s);
gen_set_label(over);
return true;
}
typedef void GVecGen2iFn(unsigned, uint32_t, uint32_t, int64_t,
uint32_t, uint32_t);
static inline bool
do_opivi_gvec(DisasContext *s, arg_rmrr *a, GVecGen2iFn *gvec_fn,
gen_helper_opivx *fn, imm_mode_t imm_mode)
{
if (!opivx_check(s, a)) {
return false;
}
if (a->vm && s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) {
gvec_fn(s->sew, vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2),
extract_imm(s, a->rs1, imm_mode), MAXSZ(s), MAXSZ(s));
mark_vs_dirty(s);
return true;
}
return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s, imm_mode);
}
/* OPIVI with GVEC IR */
#define GEN_OPIVI_GVEC_TRANS(NAME, IMM_MODE, OPIVX, SUF) \
static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \
{ \
static gen_helper_opivx * const fns[4] = { \
gen_helper_##OPIVX##_b, gen_helper_##OPIVX##_h, \
gen_helper_##OPIVX##_w, gen_helper_##OPIVX##_d, \
}; \
return do_opivi_gvec(s, a, tcg_gen_gvec_##SUF, \
fns[s->sew], IMM_MODE); \
}
GEN_OPIVI_GVEC_TRANS(vadd_vi, IMM_SX, vadd_vx, addi)
static void tcg_gen_gvec_rsubi(unsigned vece, uint32_t dofs, uint32_t aofs,
int64_t c, uint32_t oprsz, uint32_t maxsz)
{
TCGv_i64 tmp = tcg_constant_i64(c);
tcg_gen_gvec_rsubs(vece, dofs, aofs, tmp, oprsz, maxsz);
}
GEN_OPIVI_GVEC_TRANS(vrsub_vi, IMM_SX, vrsub_vx, rsubi)
/* Vector Widening Integer Add/Subtract */
/* OPIVV with WIDEN */
static bool opivv_widen_check(DisasContext *s, arg_rmrr *a)
{
return require_rvv(s) &&
vext_check_isa_ill(s) &&
vext_check_dss(s, a->rd, a->rs1, a->rs2, a->vm);
}
static bool do_opivv_widen(DisasContext *s, arg_rmrr *a,
gen_helper_gvec_4_ptr *fn,
bool (*checkfn)(DisasContext *, arg_rmrr *))
{
if (checkfn(s, a)) {
uint32_t data = 0;
TCGLabel *over = gen_new_label();
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over);
tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over);
data = FIELD_DP32(data, VDATA, VM, a->vm);
data = FIELD_DP32(data, VDATA, LMUL, s->lmul);
data = FIELD_DP32(data, VDATA, VTA, s->vta);
data = FIELD_DP32(data, VDATA, VMA, s->vma);
tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0),
vreg_ofs(s, a->rs1),
vreg_ofs(s, a->rs2),
cpu_env, s->cfg_ptr->vlen / 8,
s->cfg_ptr->vlen / 8,
data, fn);
mark_vs_dirty(s);
gen_set_label(over);
return true;
}
return false;
}
#define GEN_OPIVV_WIDEN_TRANS(NAME, CHECK) \
static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \
{ \
static gen_helper_gvec_4_ptr * const fns[3] = { \
gen_helper_##NAME##_b, \
gen_helper_##NAME##_h, \
gen_helper_##NAME##_w \
}; \
return do_opivv_widen(s, a, fns[s->sew], CHECK); \
}
GEN_OPIVV_WIDEN_TRANS(vwaddu_vv, opivv_widen_check)
GEN_OPIVV_WIDEN_TRANS(vwadd_vv, opivv_widen_check)
GEN_OPIVV_WIDEN_TRANS(vwsubu_vv, opivv_widen_check)
GEN_OPIVV_WIDEN_TRANS(vwsub_vv, opivv_widen_check)
/* OPIVX with WIDEN */
static bool opivx_widen_check(DisasContext *s, arg_rmrr *a)
{
return require_rvv(s) &&
vext_check_isa_ill(s) &&
vext_check_ds(s, a->rd, a->rs2, a->vm);
}
static bool do_opivx_widen(DisasContext *s, arg_rmrr *a,
gen_helper_opivx *fn)
{
if (opivx_widen_check(s, a)) {
return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s);
}
return false;
}
#define GEN_OPIVX_WIDEN_TRANS(NAME) \
static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \
{ \
static gen_helper_opivx * const fns[3] = { \
gen_helper_##NAME##_b, \
gen_helper_##NAME##_h, \
gen_helper_##NAME##_w \
}; \
return do_opivx_widen(s, a, fns[s->sew]); \
}
GEN_OPIVX_WIDEN_TRANS(vwaddu_vx)
GEN_OPIVX_WIDEN_TRANS(vwadd_vx)
GEN_OPIVX_WIDEN_TRANS(vwsubu_vx)
GEN_OPIVX_WIDEN_TRANS(vwsub_vx)
/* WIDEN OPIVV with WIDEN */
static bool opiwv_widen_check(DisasContext *s, arg_rmrr *a)
{
return require_rvv(s) &&
vext_check_isa_ill(s) &&
vext_check_dds(s, a->rd, a->rs1, a->rs2, a->vm);
}
static bool do_opiwv_widen(DisasContext *s, arg_rmrr *a,
gen_helper_gvec_4_ptr *fn)
{
if (opiwv_widen_check(s, a)) {
uint32_t data = 0;
TCGLabel *over = gen_new_label();
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over);
tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over);
data = FIELD_DP32(data, VDATA, VM, a->vm);
data = FIELD_DP32(data, VDATA, LMUL, s->lmul);
data = FIELD_DP32(data, VDATA, VTA, s->vta);
data = FIELD_DP32(data, VDATA, VMA, s->vma);
tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0),
vreg_ofs(s, a->rs1),
vreg_ofs(s, a->rs2),
cpu_env, s->cfg_ptr->vlen / 8,
s->cfg_ptr->vlen / 8, data, fn);
mark_vs_dirty(s);
gen_set_label(over);
return true;
}
return false;
}
#define GEN_OPIWV_WIDEN_TRANS(NAME) \
static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \
{ \
static gen_helper_gvec_4_ptr * const fns[3] = { \
gen_helper_##NAME##_b, \
gen_helper_##NAME##_h, \
gen_helper_##NAME##_w \
}; \
return do_opiwv_widen(s, a, fns[s->sew]); \
}
GEN_OPIWV_WIDEN_TRANS(vwaddu_wv)
GEN_OPIWV_WIDEN_TRANS(vwadd_wv)
GEN_OPIWV_WIDEN_TRANS(vwsubu_wv)
GEN_OPIWV_WIDEN_TRANS(vwsub_wv)
/* WIDEN OPIVX with WIDEN */
static bool opiwx_widen_check(DisasContext *s, arg_rmrr *a)
{
return require_rvv(s) &&
vext_check_isa_ill(s) &&
vext_check_dd(s, a->rd, a->rs2, a->vm);
}
static bool do_opiwx_widen(DisasContext *s, arg_rmrr *a,
gen_helper_opivx *fn)
{
if (opiwx_widen_check(s, a)) {
return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s);
}
return false;
}
#define GEN_OPIWX_WIDEN_TRANS(NAME) \
static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \
{ \
static gen_helper_opivx * const fns[3] = { \
gen_helper_##NAME##_b, \
gen_helper_##NAME##_h, \
gen_helper_##NAME##_w \
}; \
return do_opiwx_widen(s, a, fns[s->sew]); \
}
GEN_OPIWX_WIDEN_TRANS(vwaddu_wx)
GEN_OPIWX_WIDEN_TRANS(vwadd_wx)
GEN_OPIWX_WIDEN_TRANS(vwsubu_wx)
GEN_OPIWX_WIDEN_TRANS(vwsub_wx)
/* Vector Integer Add-with-Carry / Subtract-with-Borrow Instructions */
/* OPIVV without GVEC IR */
#define GEN_OPIVV_TRANS(NAME, CHECK) \
static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \
{ \
if (CHECK(s, a)) { \
uint32_t data = 0; \
static gen_helper_gvec_4_ptr * const fns[4] = { \
gen_helper_##NAME##_b, gen_helper_##NAME##_h, \
gen_helper_##NAME##_w, gen_helper_##NAME##_d, \
}; \
TCGLabel *over = gen_new_label(); \
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \
tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \
\
data = FIELD_DP32(data, VDATA, VM, a->vm); \
data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \
data = FIELD_DP32(data, VDATA, VTA, s->vta); \
data = \
FIELD_DP32(data, VDATA, VTA_ALL_1S, s->cfg_vta_all_1s);\
data = FIELD_DP32(data, VDATA, VMA, s->vma); \
tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \
vreg_ofs(s, a->rs1), \
vreg_ofs(s, a->rs2), cpu_env, \
s->cfg_ptr->vlen / 8, \
s->cfg_ptr->vlen / 8, data, \
fns[s->sew]); \
mark_vs_dirty(s); \
gen_set_label(over); \
return true; \
} \
return false; \
}
/*
* For vadc and vsbc, an illegal instruction exception is raised if the
* destination vector register is v0 and LMUL > 1. (Section 11.4)
*/
static bool opivv_vadc_check(DisasContext *s, arg_rmrr *a)
{
return require_rvv(s) &&
vext_check_isa_ill(s) &&
(a->rd != 0) &&
vext_check_sss(s, a->rd, a->rs1, a->rs2, a->vm);
}
GEN_OPIVV_TRANS(vadc_vvm, opivv_vadc_check)
GEN_OPIVV_TRANS(vsbc_vvm, opivv_vadc_check)
/*
* For vmadc and vmsbc, an illegal instruction exception is raised if the
* destination vector register overlaps a source vector register group.
*/
static bool opivv_vmadc_check(DisasContext *s, arg_rmrr *a)
{
return require_rvv(s) &&
vext_check_isa_ill(s) &&
vext_check_mss(s, a->rd, a->rs1, a->rs2);
}
GEN_OPIVV_TRANS(vmadc_vvm, opivv_vmadc_check)
GEN_OPIVV_TRANS(vmsbc_vvm, opivv_vmadc_check)
static bool opivx_vadc_check(DisasContext *s, arg_rmrr *a)
{
return require_rvv(s) &&
vext_check_isa_ill(s) &&
(a->rd != 0) &&
vext_check_ss(s, a->rd, a->rs2, a->vm);
}
/* OPIVX without GVEC IR */
#define GEN_OPIVX_TRANS(NAME, CHECK) \
static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \
{ \
if (CHECK(s, a)) { \
static gen_helper_opivx * const fns[4] = { \
gen_helper_##NAME##_b, gen_helper_##NAME##_h, \
gen_helper_##NAME##_w, gen_helper_##NAME##_d, \
}; \
\
return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], s);\
} \
return false; \
}
GEN_OPIVX_TRANS(vadc_vxm, opivx_vadc_check)
GEN_OPIVX_TRANS(vsbc_vxm, opivx_vadc_check)
static bool opivx_vmadc_check(DisasContext *s, arg_rmrr *a)
{
return require_rvv(s) &&
vext_check_isa_ill(s) &&
vext_check_ms(s, a->rd, a->rs2);
}
GEN_OPIVX_TRANS(vmadc_vxm, opivx_vmadc_check)
GEN_OPIVX_TRANS(vmsbc_vxm, opivx_vmadc_check)
/* OPIVI without GVEC IR */
#define GEN_OPIVI_TRANS(NAME, IMM_MODE, OPIVX, CHECK) \
static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \
{ \
if (CHECK(s, a)) { \
static gen_helper_opivx * const fns[4] = { \
gen_helper_##OPIVX##_b, gen_helper_##OPIVX##_h, \
gen_helper_##OPIVX##_w, gen_helper_##OPIVX##_d, \
}; \
return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, \
fns[s->sew], s, IMM_MODE); \
} \
return false; \
}
GEN_OPIVI_TRANS(vadc_vim, IMM_SX, vadc_vxm, opivx_vadc_check)
GEN_OPIVI_TRANS(vmadc_vim, IMM_SX, vmadc_vxm, opivx_vmadc_check)
/* Vector Bitwise Logical Instructions */
GEN_OPIVV_GVEC_TRANS(vand_vv, and)
GEN_OPIVV_GVEC_TRANS(vor_vv, or)
GEN_OPIVV_GVEC_TRANS(vxor_vv, xor)
GEN_OPIVX_GVEC_TRANS(vand_vx, ands)
GEN_OPIVX_GVEC_TRANS(vor_vx, ors)
GEN_OPIVX_GVEC_TRANS(vxor_vx, xors)
GEN_OPIVI_GVEC_TRANS(vand_vi, IMM_SX, vand_vx, andi)
GEN_OPIVI_GVEC_TRANS(vor_vi, IMM_SX, vor_vx, ori)
GEN_OPIVI_GVEC_TRANS(vxor_vi, IMM_SX, vxor_vx, xori)
/* Vector Single-Width Bit Shift Instructions */
GEN_OPIVV_GVEC_TRANS(vsll_vv, shlv)
GEN_OPIVV_GVEC_TRANS(vsrl_vv, shrv)
GEN_OPIVV_GVEC_TRANS(vsra_vv, sarv)
typedef void GVecGen2sFn32(unsigned, uint32_t, uint32_t, TCGv_i32,
uint32_t, uint32_t);
static inline bool
do_opivx_gvec_shift(DisasContext *s, arg_rmrr *a, GVecGen2sFn32 *gvec_fn,
gen_helper_opivx *fn)
{
if (!opivx_check(s, a)) {
return false;
}
if (a->vm && s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) {
TCGv_i32 src1 = tcg_temp_new_i32();
tcg_gen_trunc_tl_i32(src1, get_gpr(s, a->rs1, EXT_NONE));
tcg_gen_extract_i32(src1, src1, 0, s->sew + 3);
gvec_fn(s->sew, vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2),
src1, MAXSZ(s), MAXSZ(s));
tcg_temp_free_i32(src1);
mark_vs_dirty(s);
return true;
}
return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s);
}
#define GEN_OPIVX_GVEC_SHIFT_TRANS(NAME, SUF) \
static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \
{ \
static gen_helper_opivx * const fns[4] = { \
gen_helper_##NAME##_b, gen_helper_##NAME##_h, \
gen_helper_##NAME##_w, gen_helper_##NAME##_d, \
}; \
\
return do_opivx_gvec_shift(s, a, tcg_gen_gvec_##SUF, fns[s->sew]); \
}
GEN_OPIVX_GVEC_SHIFT_TRANS(vsll_vx, shls)
GEN_OPIVX_GVEC_SHIFT_TRANS(vsrl_vx, shrs)
GEN_OPIVX_GVEC_SHIFT_TRANS(vsra_vx, sars)
GEN_OPIVI_GVEC_TRANS(vsll_vi, IMM_TRUNC_SEW, vsll_vx, shli)
GEN_OPIVI_GVEC_TRANS(vsrl_vi, IMM_TRUNC_SEW, vsrl_vx, shri)
GEN_OPIVI_GVEC_TRANS(vsra_vi, IMM_TRUNC_SEW, vsra_vx, sari)
/* Vector Narrowing Integer Right Shift Instructions */
static bool opiwv_narrow_check(DisasContext *s, arg_rmrr *a)
{
return require_rvv(s) &&
vext_check_isa_ill(s) &&
vext_check_sds(s, a->rd, a->rs1, a->rs2, a->vm);
}
/* OPIVV with NARROW */
#define GEN_OPIWV_NARROW_TRANS(NAME) \
static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \
{ \
if (opiwv_narrow_check(s, a)) { \
uint32_t data = 0; \
static gen_helper_gvec_4_ptr * const fns[3] = { \
gen_helper_##NAME##_b, \
gen_helper_##NAME##_h, \
gen_helper_##NAME##_w, \
}; \
TCGLabel *over = gen_new_label(); \
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \
tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \
\
data = FIELD_DP32(data, VDATA, VM, a->vm); \
data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \
data = FIELD_DP32(data, VDATA, VTA, s->vta); \
data = FIELD_DP32(data, VDATA, VMA, s->vma); \
tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \
vreg_ofs(s, a->rs1), \
vreg_ofs(s, a->rs2), cpu_env, \
s->cfg_ptr->vlen / 8, \
s->cfg_ptr->vlen / 8, data, \
fns[s->sew]); \
mark_vs_dirty(s); \
gen_set_label(over); \
return true; \
} \
return false; \
}
GEN_OPIWV_NARROW_TRANS(vnsra_wv)
GEN_OPIWV_NARROW_TRANS(vnsrl_wv)
static bool opiwx_narrow_check(DisasContext *s, arg_rmrr *a)
{
return require_rvv(s) &&
vext_check_isa_ill(s) &&
vext_check_sd(s, a->rd, a->rs2, a->vm);
}
/* OPIVX with NARROW */
#define GEN_OPIWX_NARROW_TRANS(NAME) \
static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \
{ \
if (opiwx_narrow_check(s, a)) { \
static gen_helper_opivx * const fns[3] = { \
gen_helper_##NAME##_b, \
gen_helper_##NAME##_h, \
gen_helper_##NAME##_w, \
}; \
return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], s);\
} \
return false; \
}
GEN_OPIWX_NARROW_TRANS(vnsra_wx)
GEN_OPIWX_NARROW_TRANS(vnsrl_wx)
/* OPIWI with NARROW */
#define GEN_OPIWI_NARROW_TRANS(NAME, IMM_MODE, OPIVX) \
static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \
{ \
if (opiwx_narrow_check(s, a)) { \
static gen_helper_opivx * const fns[3] = { \
gen_helper_##OPIVX##_b, \
gen_helper_##OPIVX##_h, \
gen_helper_##OPIVX##_w, \
}; \
return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, \
fns[s->sew], s, IMM_MODE); \
} \
return false; \
}
GEN_OPIWI_NARROW_TRANS(vnsra_wi, IMM_ZX, vnsra_wx)
GEN_OPIWI_NARROW_TRANS(vnsrl_wi, IMM_ZX, vnsrl_wx)
/* Vector Integer Comparison Instructions */
/*
* For all comparison instructions, an illegal instruction exception is raised
* if the destination vector register overlaps a source vector register group
* and LMUL > 1.
*/
static bool opivv_cmp_check(DisasContext *s, arg_rmrr *a)
{
return require_rvv(s) &&
vext_check_isa_ill(s) &&
vext_check_mss(s, a->rd, a->rs1, a->rs2);
}
GEN_OPIVV_TRANS(vmseq_vv, opivv_cmp_check)
GEN_OPIVV_TRANS(vmsne_vv, opivv_cmp_check)
GEN_OPIVV_TRANS(vmsltu_vv, opivv_cmp_check)
GEN_OPIVV_TRANS(vmslt_vv, opivv_cmp_check)
GEN_OPIVV_TRANS(vmsleu_vv, opivv_cmp_check)
GEN_OPIVV_TRANS(vmsle_vv, opivv_cmp_check)
static bool opivx_cmp_check(DisasContext *s, arg_rmrr *a)
{
return require_rvv(s) &&
vext_check_isa_ill(s) &&
vext_check_ms(s, a->rd, a->rs2);
}
GEN_OPIVX_TRANS(vmseq_vx, opivx_cmp_check)
GEN_OPIVX_TRANS(vmsne_vx, opivx_cmp_check)
GEN_OPIVX_TRANS(vmsltu_vx, opivx_cmp_check)
GEN_OPIVX_TRANS(vmslt_vx, opivx_cmp_check)
GEN_OPIVX_TRANS(vmsleu_vx, opivx_cmp_check)
GEN_OPIVX_TRANS(vmsle_vx, opivx_cmp_check)
GEN_OPIVX_TRANS(vmsgtu_vx, opivx_cmp_check)
GEN_OPIVX_TRANS(vmsgt_vx, opivx_cmp_check)
GEN_OPIVI_TRANS(vmseq_vi, IMM_SX, vmseq_vx, opivx_cmp_check)
GEN_OPIVI_TRANS(vmsne_vi, IMM_SX, vmsne_vx, opivx_cmp_check)
GEN_OPIVI_TRANS(vmsleu_vi, IMM_SX, vmsleu_vx, opivx_cmp_check)
GEN_OPIVI_TRANS(vmsle_vi, IMM_SX, vmsle_vx, opivx_cmp_check)
GEN_OPIVI_TRANS(vmsgtu_vi, IMM_SX, vmsgtu_vx, opivx_cmp_check)
GEN_OPIVI_TRANS(vmsgt_vi, IMM_SX, vmsgt_vx, opivx_cmp_check)
/* Vector Integer Min/Max Instructions */
GEN_OPIVV_GVEC_TRANS(vminu_vv, umin)
GEN_OPIVV_GVEC_TRANS(vmin_vv, smin)
GEN_OPIVV_GVEC_TRANS(vmaxu_vv, umax)
GEN_OPIVV_GVEC_TRANS(vmax_vv, smax)
GEN_OPIVX_TRANS(vminu_vx, opivx_check)
GEN_OPIVX_TRANS(vmin_vx, opivx_check)
GEN_OPIVX_TRANS(vmaxu_vx, opivx_check)
GEN_OPIVX_TRANS(vmax_vx, opivx_check)
/* Vector Single-Width Integer Multiply Instructions */
static bool vmulh_vv_check(DisasContext *s, arg_rmrr *a)
{
/*
* All Zve* extensions support all vector integer instructions,
* except that the vmulh integer multiply variants
* that return the high word of the product
* (vmulh.vv, vmulh.vx, vmulhu.vv, vmulhu.vx, vmulhsu.vv, vmulhsu.vx)
* are not included for EEW=64 in Zve64*. (Section 18.2)
*/
return opivv_check(s, a) &&
(!has_ext(s, RVV) &&
s->cfg_ptr->ext_zve64f ? s->sew != MO_64 : true);
}
static bool vmulh_vx_check(DisasContext *s, arg_rmrr *a)
{
/*
* All Zve* extensions support all vector integer instructions,
* except that the vmulh integer multiply variants
* that return the high word of the product
* (vmulh.vv, vmulh.vx, vmulhu.vv, vmulhu.vx, vmulhsu.vv, vmulhsu.vx)
* are not included for EEW=64 in Zve64*. (Section 18.2)
*/
return opivx_check(s, a) &&
(!has_ext(s, RVV) &&
s->cfg_ptr->ext_zve64f ? s->sew != MO_64 : true);
}
GEN_OPIVV_GVEC_TRANS(vmul_vv, mul)
GEN_OPIVV_TRANS(vmulh_vv, vmulh_vv_check)
GEN_OPIVV_TRANS(vmulhu_vv, vmulh_vv_check)
GEN_OPIVV_TRANS(vmulhsu_vv, vmulh_vv_check)
GEN_OPIVX_GVEC_TRANS(vmul_vx, muls)
GEN_OPIVX_TRANS(vmulh_vx, vmulh_vx_check)
GEN_OPIVX_TRANS(vmulhu_vx, vmulh_vx_check)
GEN_OPIVX_TRANS(vmulhsu_vx, vmulh_vx_check)
/* Vector Integer Divide Instructions */
GEN_OPIVV_TRANS(vdivu_vv, opivv_check)
GEN_OPIVV_TRANS(vdiv_vv, opivv_check)
GEN_OPIVV_TRANS(vremu_vv, opivv_check)
GEN_OPIVV_TRANS(vrem_vv, opivv_check)
GEN_OPIVX_TRANS(vdivu_vx, opivx_check)
GEN_OPIVX_TRANS(vdiv_vx, opivx_check)
GEN_OPIVX_TRANS(vremu_vx, opivx_check)
GEN_OPIVX_TRANS(vrem_vx, opivx_check)
/* Vector Widening Integer Multiply Instructions */
GEN_OPIVV_WIDEN_TRANS(vwmul_vv, opivv_widen_check)
GEN_OPIVV_WIDEN_TRANS(vwmulu_vv, opivv_widen_check)
GEN_OPIVV_WIDEN_TRANS(vwmulsu_vv, opivv_widen_check)
GEN_OPIVX_WIDEN_TRANS(vwmul_vx)
GEN_OPIVX_WIDEN_TRANS(vwmulu_vx)
GEN_OPIVX_WIDEN_TRANS(vwmulsu_vx)
/* Vector Single-Width Integer Multiply-Add Instructions */
GEN_OPIVV_TRANS(vmacc_vv, opivv_check)
GEN_OPIVV_TRANS(vnmsac_vv, opivv_check)
GEN_OPIVV_TRANS(vmadd_vv, opivv_check)
GEN_OPIVV_TRANS(vnmsub_vv, opivv_check)
GEN_OPIVX_TRANS(vmacc_vx, opivx_check)
GEN_OPIVX_TRANS(vnmsac_vx, opivx_check)
GEN_OPIVX_TRANS(vmadd_vx, opivx_check)
GEN_OPIVX_TRANS(vnmsub_vx, opivx_check)
/* Vector Widening Integer Multiply-Add Instructions */
GEN_OPIVV_WIDEN_TRANS(vwmaccu_vv, opivv_widen_check)
GEN_OPIVV_WIDEN_TRANS(vwmacc_vv, opivv_widen_check)
GEN_OPIVV_WIDEN_TRANS(vwmaccsu_vv, opivv_widen_check)
GEN_OPIVX_WIDEN_TRANS(vwmaccu_vx)
GEN_OPIVX_WIDEN_TRANS(vwmacc_vx)
GEN_OPIVX_WIDEN_TRANS(vwmaccsu_vx)
GEN_OPIVX_WIDEN_TRANS(vwmaccus_vx)
/* Vector Integer Merge and Move Instructions */
static bool trans_vmv_v_v(DisasContext *s, arg_vmv_v_v *a)
{
if (require_rvv(s) &&
vext_check_isa_ill(s) &&
/* vmv.v.v has rs2 = 0 and vm = 1 */
vext_check_sss(s, a->rd, a->rs1, 0, 1)) {
if (s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) {
tcg_gen_gvec_mov(s->sew, vreg_ofs(s, a->rd),
vreg_ofs(s, a->rs1),
MAXSZ(s), MAXSZ(s));
} else {
uint32_t data = FIELD_DP32(0, VDATA, LMUL, s->lmul);
data = FIELD_DP32(data, VDATA, VTA, s->vta);
static gen_helper_gvec_2_ptr * const fns[4] = {
gen_helper_vmv_v_v_b, gen_helper_vmv_v_v_h,
gen_helper_vmv_v_v_w, gen_helper_vmv_v_v_d,
};
TCGLabel *over = gen_new_label();
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over);
tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over);
tcg_gen_gvec_2_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, a->rs1),
cpu_env, s->cfg_ptr->vlen / 8,
s->cfg_ptr->vlen / 8, data,
fns[s->sew]);
gen_set_label(over);
}
mark_vs_dirty(s);
return true;
}
return false;
}
typedef void gen_helper_vmv_vx(TCGv_ptr, TCGv_i64, TCGv_env, TCGv_i32);
static bool trans_vmv_v_x(DisasContext *s, arg_vmv_v_x *a)
{
if (require_rvv(s) &&
vext_check_isa_ill(s) &&
/* vmv.v.x has rs2 = 0 and vm = 1 */
vext_check_ss(s, a->rd, 0, 1)) {
TCGv s1;
TCGLabel *over = gen_new_label();
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over);
tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over);
s1 = get_gpr(s, a->rs1, EXT_SIGN);
if (s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) {
if (get_xl(s) == MXL_RV32 && s->sew == MO_64) {
TCGv_i64 s1_i64 = tcg_temp_new_i64();
tcg_gen_ext_tl_i64(s1_i64, s1);
tcg_gen_gvec_dup_i64(s->sew, vreg_ofs(s, a->rd),
MAXSZ(s), MAXSZ(s), s1_i64);
tcg_temp_free_i64(s1_i64);
} else {
tcg_gen_gvec_dup_tl(s->sew, vreg_ofs(s, a->rd),
MAXSZ(s), MAXSZ(s), s1);
}
} else {
TCGv_i32 desc;
TCGv_i64 s1_i64 = tcg_temp_new_i64();
TCGv_ptr dest = tcg_temp_new_ptr();
uint32_t data = FIELD_DP32(0, VDATA, LMUL, s->lmul);
data = FIELD_DP32(data, VDATA, VTA, s->vta);
static gen_helper_vmv_vx * const fns[4] = {
gen_helper_vmv_v_x_b, gen_helper_vmv_v_x_h,
gen_helper_vmv_v_x_w, gen_helper_vmv_v_x_d,
};
tcg_gen_ext_tl_i64(s1_i64, s1);
desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8,
s->cfg_ptr->vlen / 8, data));
tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, a->rd));
fns[s->sew](dest, s1_i64, cpu_env, desc);
tcg_temp_free_ptr(dest);
tcg_temp_free_i64(s1_i64);
}
mark_vs_dirty(s);
gen_set_label(over);
return true;
}
return false;
}
static bool trans_vmv_v_i(DisasContext *s, arg_vmv_v_i *a)
{
if (require_rvv(s) &&
vext_check_isa_ill(s) &&
/* vmv.v.i has rs2 = 0 and vm = 1 */
vext_check_ss(s, a->rd, 0, 1)) {
int64_t simm = sextract64(a->rs1, 0, 5);
if (s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) {
tcg_gen_gvec_dup_imm(s->sew, vreg_ofs(s, a->rd),
MAXSZ(s), MAXSZ(s), simm);
mark_vs_dirty(s);
} else {
TCGv_i32 desc;
TCGv_i64 s1;
TCGv_ptr dest;
uint32_t data = FIELD_DP32(0, VDATA, LMUL, s->lmul);
data = FIELD_DP32(data, VDATA, VTA, s->vta);
static gen_helper_vmv_vx * const fns[4] = {
gen_helper_vmv_v_x_b, gen_helper_vmv_v_x_h,
gen_helper_vmv_v_x_w, gen_helper_vmv_v_x_d,
};
TCGLabel *over = gen_new_label();
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over);
tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over);
s1 = tcg_constant_i64(simm);
dest = tcg_temp_new_ptr();
desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8,
s->cfg_ptr->vlen / 8, data));
tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, a->rd));
fns[s->sew](dest, s1, cpu_env, desc);
tcg_temp_free_ptr(dest);
mark_vs_dirty(s);
gen_set_label(over);
}
return true;
}
return false;
}
GEN_OPIVV_TRANS(vmerge_vvm, opivv_vadc_check)
GEN_OPIVX_TRANS(vmerge_vxm, opivx_vadc_check)
GEN_OPIVI_TRANS(vmerge_vim, IMM_SX, vmerge_vxm, opivx_vadc_check)
/*
*** Vector Fixed-Point Arithmetic Instructions
*/
/* Vector Single-Width Saturating Add and Subtract */
GEN_OPIVV_TRANS(vsaddu_vv, opivv_check)
GEN_OPIVV_TRANS(vsadd_vv, opivv_check)
GEN_OPIVV_TRANS(vssubu_vv, opivv_check)
GEN_OPIVV_TRANS(vssub_vv, opivv_check)
GEN_OPIVX_TRANS(vsaddu_vx, opivx_check)
GEN_OPIVX_TRANS(vsadd_vx, opivx_check)
GEN_OPIVX_TRANS(vssubu_vx, opivx_check)
GEN_OPIVX_TRANS(vssub_vx, opivx_check)
GEN_OPIVI_TRANS(vsaddu_vi, IMM_SX, vsaddu_vx, opivx_check)
GEN_OPIVI_TRANS(vsadd_vi, IMM_SX, vsadd_vx, opivx_check)
/* Vector Single-Width Averaging Add and Subtract */
GEN_OPIVV_TRANS(vaadd_vv, opivv_check)
GEN_OPIVV_TRANS(vaaddu_vv, opivv_check)
GEN_OPIVV_TRANS(vasub_vv, opivv_check)
GEN_OPIVV_TRANS(vasubu_vv, opivv_check)
GEN_OPIVX_TRANS(vaadd_vx, opivx_check)
GEN_OPIVX_TRANS(vaaddu_vx, opivx_check)
GEN_OPIVX_TRANS(vasub_vx, opivx_check)
GEN_OPIVX_TRANS(vasubu_vx, opivx_check)
/* Vector Single-Width Fractional Multiply with Rounding and Saturation */
static bool vsmul_vv_check(DisasContext *s, arg_rmrr *a)
{
/*
* All Zve* extensions support all vector fixed-point arithmetic
* instructions, except that vsmul.vv and vsmul.vx are not supported
* for EEW=64 in Zve64*. (Section 18.2)
*/
return opivv_check(s, a) &&
(!has_ext(s, RVV) &&
s->cfg_ptr->ext_zve64f ? s->sew != MO_64 : true);
}
static bool vsmul_vx_check(DisasContext *s, arg_rmrr *a)
{
/*
* All Zve* extensions support all vector fixed-point arithmetic
* instructions, except that vsmul.vv and vsmul.vx are not supported
* for EEW=64 in Zve64*. (Section 18.2)
*/
return opivx_check(s, a) &&
(!has_ext(s, RVV) &&
s->cfg_ptr->ext_zve64f ? s->sew != MO_64 : true);
}
GEN_OPIVV_TRANS(vsmul_vv, vsmul_vv_check)
GEN_OPIVX_TRANS(vsmul_vx, vsmul_vx_check)
/* Vector Single-Width Scaling Shift Instructions */
GEN_OPIVV_TRANS(vssrl_vv, opivv_check)
GEN_OPIVV_TRANS(vssra_vv, opivv_check)
GEN_OPIVX_TRANS(vssrl_vx, opivx_check)
GEN_OPIVX_TRANS(vssra_vx, opivx_check)
GEN_OPIVI_TRANS(vssrl_vi, IMM_TRUNC_SEW, vssrl_vx, opivx_check)
GEN_OPIVI_TRANS(vssra_vi, IMM_TRUNC_SEW, vssra_vx, opivx_check)
/* Vector Narrowing Fixed-Point Clip Instructions */
GEN_OPIWV_NARROW_TRANS(vnclipu_wv)
GEN_OPIWV_NARROW_TRANS(vnclip_wv)
GEN_OPIWX_NARROW_TRANS(vnclipu_wx)
GEN_OPIWX_NARROW_TRANS(vnclip_wx)
GEN_OPIWI_NARROW_TRANS(vnclipu_wi, IMM_ZX, vnclipu_wx)
GEN_OPIWI_NARROW_TRANS(vnclip_wi, IMM_ZX, vnclip_wx)
/*
*** Vector Float Point Arithmetic Instructions
*/
/*
* As RVF-only cpus always have values NaN-boxed to 64-bits,
* RVF and RVD can be treated equally.
* We don't have to deal with the cases of: SEW > FLEN.
*
* If SEW < FLEN, check whether input fp register is a valid
* NaN-boxed value, in which case the least-significant SEW bits
* of the f regsiter are used, else the canonical NaN value is used.
*/
static void do_nanbox(DisasContext *s, TCGv_i64 out, TCGv_i64 in)
{
switch (s->sew) {
case 1:
gen_check_nanbox_h(out, in);
break;
case 2:
gen_check_nanbox_s(out, in);
break;
case 3:
tcg_gen_mov_i64(out, in);
break;
default:
g_assert_not_reached();
}
}
/* Vector Single-Width Floating-Point Add/Subtract Instructions */
/*
* If the current SEW does not correspond to a supported IEEE floating-point
* type, an illegal instruction exception is raised.
*/
static bool opfvv_check(DisasContext *s, arg_rmrr *a)
{
return require_rvv(s) &&
require_rvf(s) &&
vext_check_isa_ill(s) &&
vext_check_sss(s, a->rd, a->rs1, a->rs2, a->vm) &&
require_zve32f(s) &&
require_zve64f(s);
}
/* OPFVV without GVEC IR */
#define GEN_OPFVV_TRANS(NAME, CHECK) \
static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \
{ \
if (CHECK(s, a)) { \
uint32_t data = 0; \
static gen_helper_gvec_4_ptr * const fns[3] = { \
gen_helper_##NAME##_h, \
gen_helper_##NAME##_w, \
gen_helper_##NAME##_d, \
}; \
TCGLabel *over = gen_new_label(); \
gen_set_rm(s, RISCV_FRM_DYN); \
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \
tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \
\
data = FIELD_DP32(data, VDATA, VM, a->vm); \
data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \
data = FIELD_DP32(data, VDATA, VTA, s->vta); \
data = \
FIELD_DP32(data, VDATA, VTA_ALL_1S, s->cfg_vta_all_1s);\
data = FIELD_DP32(data, VDATA, VMA, s->vma); \
tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \
vreg_ofs(s, a->rs1), \
vreg_ofs(s, a->rs2), cpu_env, \
s->cfg_ptr->vlen / 8, \
s->cfg_ptr->vlen / 8, data, \
fns[s->sew - 1]); \
mark_vs_dirty(s); \
gen_set_label(over); \
return true; \
} \
return false; \
}
GEN_OPFVV_TRANS(vfadd_vv, opfvv_check)
GEN_OPFVV_TRANS(vfsub_vv, opfvv_check)
typedef void gen_helper_opfvf(TCGv_ptr, TCGv_ptr, TCGv_i64, TCGv_ptr,
TCGv_env, TCGv_i32);
static bool opfvf_trans(uint32_t vd, uint32_t rs1, uint32_t vs2,
uint32_t data, gen_helper_opfvf *fn, DisasContext *s)
{
TCGv_ptr dest, src2, mask;
TCGv_i32 desc;
TCGv_i64 t1;
TCGLabel *over = gen_new_label();
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over);
tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over);
dest = tcg_temp_new_ptr();
mask = tcg_temp_new_ptr();
src2 = tcg_temp_new_ptr();
desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8,
s->cfg_ptr->vlen / 8, data));
tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd));
tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, vs2));
tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0));
/* NaN-box f[rs1] */
t1 = tcg_temp_new_i64();
do_nanbox(s, t1, cpu_fpr[rs1]);
fn(dest, mask, t1, src2, cpu_env, desc);
tcg_temp_free_ptr(dest);
tcg_temp_free_ptr(mask);
tcg_temp_free_ptr(src2);
tcg_temp_free_i64(t1);
mark_vs_dirty(s);
gen_set_label(over);
return true;
}
/*
* If the current SEW does not correspond to a supported IEEE floating-point
* type, an illegal instruction exception is raised
*/
static bool opfvf_check(DisasContext *s, arg_rmrr *a)
{
return require_rvv(s) &&
require_rvf(s) &&
vext_check_isa_ill(s) &&
vext_check_ss(s, a->rd, a->rs2, a->vm) &&
require_zve32f(s) &&
require_zve64f(s);
}
/* OPFVF without GVEC IR */
#define GEN_OPFVF_TRANS(NAME, CHECK) \
static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \
{ \
if (CHECK(s, a)) { \
uint32_t data = 0; \
static gen_helper_opfvf *const fns[3] = { \
gen_helper_##NAME##_h, \
gen_helper_##NAME##_w, \
gen_helper_##NAME##_d, \
}; \
gen_set_rm(s, RISCV_FRM_DYN); \
data = FIELD_DP32(data, VDATA, VM, a->vm); \
data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \
data = FIELD_DP32(data, VDATA, VTA, s->vta); \
data = FIELD_DP32(data, VDATA, VTA_ALL_1S, \
s->cfg_vta_all_1s); \
data = FIELD_DP32(data, VDATA, VMA, s->vma); \
return opfvf_trans(a->rd, a->rs1, a->rs2, data, \
fns[s->sew - 1], s); \
} \
return false; \
}
GEN_OPFVF_TRANS(vfadd_vf, opfvf_check)
GEN_OPFVF_TRANS(vfsub_vf, opfvf_check)
GEN_OPFVF_TRANS(vfrsub_vf, opfvf_check)
/* Vector Widening Floating-Point Add/Subtract Instructions */
static bool opfvv_widen_check(DisasContext *s, arg_rmrr *a)
{
return require_rvv(s) &&
require_scale_rvf(s) &&
(s->sew != MO_8) &&
vext_check_isa_ill(s) &&
vext_check_dss(s, a->rd, a->rs1, a->rs2, a->vm) &&
require_scale_zve32f(s) &&
require_scale_zve64f(s);
}
/* OPFVV with WIDEN */
#define GEN_OPFVV_WIDEN_TRANS(NAME, CHECK) \
static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \
{ \
if (CHECK(s, a)) { \
uint32_t data = 0; \
static gen_helper_gvec_4_ptr * const fns[2] = { \
gen_helper_##NAME##_h, gen_helper_##NAME##_w, \
}; \
TCGLabel *over = gen_new_label(); \
gen_set_rm(s, RISCV_FRM_DYN); \
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \
tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over);\
\
data = FIELD_DP32(data, VDATA, VM, a->vm); \
data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \
data = FIELD_DP32(data, VDATA, VTA, s->vta); \
data = FIELD_DP32(data, VDATA, VMA, s->vma); \
tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \
vreg_ofs(s, a->rs1), \
vreg_ofs(s, a->rs2), cpu_env, \
s->cfg_ptr->vlen / 8, \
s->cfg_ptr->vlen / 8, data, \
fns[s->sew - 1]); \
mark_vs_dirty(s); \
gen_set_label(over); \
return true; \
} \
return false; \
}
GEN_OPFVV_WIDEN_TRANS(vfwadd_vv, opfvv_widen_check)
GEN_OPFVV_WIDEN_TRANS(vfwsub_vv, opfvv_widen_check)
static bool opfvf_widen_check(DisasContext *s, arg_rmrr *a)
{
return require_rvv(s) &&
require_scale_rvf(s) &&
(s->sew != MO_8) &&
vext_check_isa_ill(s) &&
vext_check_ds(s, a->rd, a->rs2, a->vm) &&
require_scale_zve32f(s) &&
require_scale_zve64f(s);
}
/* OPFVF with WIDEN */
#define GEN_OPFVF_WIDEN_TRANS(NAME) \
static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \
{ \
if (opfvf_widen_check(s, a)) { \
uint32_t data = 0; \
static gen_helper_opfvf *const fns[2] = { \
gen_helper_##NAME##_h, gen_helper_##NAME##_w, \
}; \
gen_set_rm(s, RISCV_FRM_DYN); \
data = FIELD_DP32(data, VDATA, VM, a->vm); \
data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \
data = FIELD_DP32(data, VDATA, VTA, s->vta); \
data = FIELD_DP32(data, VDATA, VMA, s->vma); \
return opfvf_trans(a->rd, a->rs1, a->rs2, data, \
fns[s->sew - 1], s); \
} \
return false; \
}
GEN_OPFVF_WIDEN_TRANS(vfwadd_vf)
GEN_OPFVF_WIDEN_TRANS(vfwsub_vf)
static bool opfwv_widen_check(DisasContext *s, arg_rmrr *a)
{
return require_rvv(s) &&
require_scale_rvf(s) &&
(s->sew != MO_8) &&
vext_check_isa_ill(s) &&
vext_check_dds(s, a->rd, a->rs1, a->rs2, a->vm) &&
require_scale_zve32f(s) &&
require_scale_zve64f(s);
}
/* WIDEN OPFVV with WIDEN */
#define GEN_OPFWV_WIDEN_TRANS(NAME) \
static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \
{ \
if (opfwv_widen_check(s, a)) { \
uint32_t data = 0; \
static gen_helper_gvec_4_ptr * const fns[2] = { \
gen_helper_##NAME##_h, gen_helper_##NAME##_w, \
}; \
TCGLabel *over = gen_new_label(); \
gen_set_rm(s, RISCV_FRM_DYN); \
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \
tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \
\
data = FIELD_DP32(data, VDATA, VM, a->vm); \
data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \
data = FIELD_DP32(data, VDATA, VTA, s->vta); \
data = FIELD_DP32(data, VDATA, VMA, s->vma); \
tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \
vreg_ofs(s, a->rs1), \
vreg_ofs(s, a->rs2), cpu_env, \
s->cfg_ptr->vlen / 8, \
s->cfg_ptr->vlen / 8, data, \
fns[s->sew - 1]); \
mark_vs_dirty(s); \
gen_set_label(over); \
return true; \
} \
return false; \
}
GEN_OPFWV_WIDEN_TRANS(vfwadd_wv)
GEN_OPFWV_WIDEN_TRANS(vfwsub_wv)
static bool opfwf_widen_check(DisasContext *s, arg_rmrr *a)
{
return require_rvv(s) &&
require_scale_rvf(s) &&
(s->sew != MO_8) &&
vext_check_isa_ill(s) &&
vext_check_dd(s, a->rd, a->rs2, a->vm) &&
require_scale_zve32f(s) &&
require_scale_zve64f(s);
}
/* WIDEN OPFVF with WIDEN */
#define GEN_OPFWF_WIDEN_TRANS(NAME) \
static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \
{ \
if (opfwf_widen_check(s, a)) { \
uint32_t data = 0; \
static gen_helper_opfvf *const fns[2] = { \
gen_helper_##NAME##_h, gen_helper_##NAME##_w, \
}; \
gen_set_rm(s, RISCV_FRM_DYN); \
data = FIELD_DP32(data, VDATA, VM, a->vm); \
data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \
data = FIELD_DP32(data, VDATA, VTA, s->vta); \
data = FIELD_DP32(data, VDATA, VMA, s->vma); \
return opfvf_trans(a->rd, a->rs1, a->rs2, data, \
fns[s->sew - 1], s); \
} \
return false; \
}
GEN_OPFWF_WIDEN_TRANS(vfwadd_wf)
GEN_OPFWF_WIDEN_TRANS(vfwsub_wf)
/* Vector Single-Width Floating-Point Multiply/Divide Instructions */
GEN_OPFVV_TRANS(vfmul_vv, opfvv_check)
GEN_OPFVV_TRANS(vfdiv_vv, opfvv_check)
GEN_OPFVF_TRANS(vfmul_vf, opfvf_check)
GEN_OPFVF_TRANS(vfdiv_vf, opfvf_check)
GEN_OPFVF_TRANS(vfrdiv_vf, opfvf_check)
/* Vector Widening Floating-Point Multiply */
GEN_OPFVV_WIDEN_TRANS(vfwmul_vv, opfvv_widen_check)
GEN_OPFVF_WIDEN_TRANS(vfwmul_vf)
/* Vector Single-Width Floating-Point Fused Multiply-Add Instructions */
GEN_OPFVV_TRANS(vfmacc_vv, opfvv_check)
GEN_OPFVV_TRANS(vfnmacc_vv, opfvv_check)
GEN_OPFVV_TRANS(vfmsac_vv, opfvv_check)
GEN_OPFVV_TRANS(vfnmsac_vv, opfvv_check)
GEN_OPFVV_TRANS(vfmadd_vv, opfvv_check)
GEN_OPFVV_TRANS(vfnmadd_vv, opfvv_check)
GEN_OPFVV_TRANS(vfmsub_vv, opfvv_check)
GEN_OPFVV_TRANS(vfnmsub_vv, opfvv_check)
GEN_OPFVF_TRANS(vfmacc_vf, opfvf_check)
GEN_OPFVF_TRANS(vfnmacc_vf, opfvf_check)
GEN_OPFVF_TRANS(vfmsac_vf, opfvf_check)
GEN_OPFVF_TRANS(vfnmsac_vf, opfvf_check)
GEN_OPFVF_TRANS(vfmadd_vf, opfvf_check)
GEN_OPFVF_TRANS(vfnmadd_vf, opfvf_check)
GEN_OPFVF_TRANS(vfmsub_vf, opfvf_check)
GEN_OPFVF_TRANS(vfnmsub_vf, opfvf_check)
/* Vector Widening Floating-Point Fused Multiply-Add Instructions */
GEN_OPFVV_WIDEN_TRANS(vfwmacc_vv, opfvv_widen_check)
GEN_OPFVV_WIDEN_TRANS(vfwnmacc_vv, opfvv_widen_check)
GEN_OPFVV_WIDEN_TRANS(vfwmsac_vv, opfvv_widen_check)
GEN_OPFVV_WIDEN_TRANS(vfwnmsac_vv, opfvv_widen_check)
GEN_OPFVF_WIDEN_TRANS(vfwmacc_vf)
GEN_OPFVF_WIDEN_TRANS(vfwnmacc_vf)
GEN_OPFVF_WIDEN_TRANS(vfwmsac_vf)
GEN_OPFVF_WIDEN_TRANS(vfwnmsac_vf)
/* Vector Floating-Point Square-Root Instruction */
/*
* If the current SEW does not correspond to a supported IEEE floating-point
* type, an illegal instruction exception is raised
*/
static bool opfv_check(DisasContext *s, arg_rmr *a)
{
return require_rvv(s) &&
require_rvf(s) &&
vext_check_isa_ill(s) &&
/* OPFV instructions ignore vs1 check */
vext_check_ss(s, a->rd, a->rs2, a->vm) &&
require_zve32f(s) &&
require_zve64f(s);
}
static bool do_opfv(DisasContext *s, arg_rmr *a,
gen_helper_gvec_3_ptr *fn,
bool (*checkfn)(DisasContext *, arg_rmr *),
int rm)
{
if (checkfn(s, a)) {
if (rm != RISCV_FRM_DYN) {
gen_set_rm(s, RISCV_FRM_DYN);
}
uint32_t data = 0;
TCGLabel *over = gen_new_label();
gen_set_rm(s, rm);
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over);
tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over);
data = FIELD_DP32(data, VDATA, VM, a->vm);
data = FIELD_DP32(data, VDATA, LMUL, s->lmul);
data = FIELD_DP32(data, VDATA, VTA, s->vta);
data = FIELD_DP32(data, VDATA, VMA, s->vma);
tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0),
vreg_ofs(s, a->rs2), cpu_env,
s->cfg_ptr->vlen / 8,
s->cfg_ptr->vlen / 8, data, fn);
mark_vs_dirty(s);
gen_set_label(over);
return true;
}
return false;
}
#define GEN_OPFV_TRANS(NAME, CHECK, FRM) \
static bool trans_##NAME(DisasContext *s, arg_rmr *a) \
{ \
static gen_helper_gvec_3_ptr * const fns[3] = { \
gen_helper_##NAME##_h, \
gen_helper_##NAME##_w, \
gen_helper_##NAME##_d \
}; \
return do_opfv(s, a, fns[s->sew - 1], CHECK, FRM); \
}
GEN_OPFV_TRANS(vfsqrt_v, opfv_check, RISCV_FRM_DYN)
GEN_OPFV_TRANS(vfrsqrt7_v, opfv_check, RISCV_FRM_DYN)
GEN_OPFV_TRANS(vfrec7_v, opfv_check, RISCV_FRM_DYN)
/* Vector Floating-Point MIN/MAX Instructions */
GEN_OPFVV_TRANS(vfmin_vv, opfvv_check)
GEN_OPFVV_TRANS(vfmax_vv, opfvv_check)
GEN_OPFVF_TRANS(vfmin_vf, opfvf_check)
GEN_OPFVF_TRANS(vfmax_vf, opfvf_check)
/* Vector Floating-Point Sign-Injection Instructions */
GEN_OPFVV_TRANS(vfsgnj_vv, opfvv_check)
GEN_OPFVV_TRANS(vfsgnjn_vv, opfvv_check)
GEN_OPFVV_TRANS(vfsgnjx_vv, opfvv_check)
GEN_OPFVF_TRANS(vfsgnj_vf, opfvf_check)
GEN_OPFVF_TRANS(vfsgnjn_vf, opfvf_check)
GEN_OPFVF_TRANS(vfsgnjx_vf, opfvf_check)
/* Vector Floating-Point Compare Instructions */
static bool opfvv_cmp_check(DisasContext *s, arg_rmrr *a)
{
return require_rvv(s) &&
require_rvf(s) &&
vext_check_isa_ill(s) &&
vext_check_mss(s, a->rd, a->rs1, a->rs2) &&
require_zve32f(s) &&
require_zve64f(s);
}
GEN_OPFVV_TRANS(vmfeq_vv, opfvv_cmp_check)
GEN_OPFVV_TRANS(vmfne_vv, opfvv_cmp_check)
GEN_OPFVV_TRANS(vmflt_vv, opfvv_cmp_check)
GEN_OPFVV_TRANS(vmfle_vv, opfvv_cmp_check)
static bool opfvf_cmp_check(DisasContext *s, arg_rmrr *a)
{
return require_rvv(s) &&
require_rvf(s) &&
vext_check_isa_ill(s) &&
vext_check_ms(s, a->rd, a->rs2) &&
require_zve32f(s) &&
require_zve64f(s);
}
GEN_OPFVF_TRANS(vmfeq_vf, opfvf_cmp_check)
GEN_OPFVF_TRANS(vmfne_vf, opfvf_cmp_check)
GEN_OPFVF_TRANS(vmflt_vf, opfvf_cmp_check)
GEN_OPFVF_TRANS(vmfle_vf, opfvf_cmp_check)
GEN_OPFVF_TRANS(vmfgt_vf, opfvf_cmp_check)
GEN_OPFVF_TRANS(vmfge_vf, opfvf_cmp_check)
/* Vector Floating-Point Classify Instruction */
GEN_OPFV_TRANS(vfclass_v, opfv_check, RISCV_FRM_DYN)
/* Vector Floating-Point Merge Instruction */
GEN_OPFVF_TRANS(vfmerge_vfm, opfvf_check)
static bool trans_vfmv_v_f(DisasContext *s, arg_vfmv_v_f *a)
{
if (require_rvv(s) &&
require_rvf(s) &&
vext_check_isa_ill(s) &&
require_align(a->rd, s->lmul) &&
require_zve32f(s) &&
require_zve64f(s)) {
gen_set_rm(s, RISCV_FRM_DYN);
TCGv_i64 t1;
if (s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) {
t1 = tcg_temp_new_i64();
/* NaN-box f[rs1] */
do_nanbox(s, t1, cpu_fpr[a->rs1]);
tcg_gen_gvec_dup_i64(s->sew, vreg_ofs(s, a->rd),
MAXSZ(s), MAXSZ(s), t1);
mark_vs_dirty(s);
} else {
TCGv_ptr dest;
TCGv_i32 desc;
uint32_t data = FIELD_DP32(0, VDATA, LMUL, s->lmul);
data = FIELD_DP32(data, VDATA, VTA, s->vta);
data = FIELD_DP32(data, VDATA, VMA, s->vma);
static gen_helper_vmv_vx * const fns[3] = {
gen_helper_vmv_v_x_h,
gen_helper_vmv_v_x_w,
gen_helper_vmv_v_x_d,
};
TCGLabel *over = gen_new_label();
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over);
tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over);
t1 = tcg_temp_new_i64();
/* NaN-box f[rs1] */
do_nanbox(s, t1, cpu_fpr[a->rs1]);
dest = tcg_temp_new_ptr();
desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8,
s->cfg_ptr->vlen / 8, data));
tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, a->rd));
fns[s->sew - 1](dest, t1, cpu_env, desc);
tcg_temp_free_ptr(dest);
mark_vs_dirty(s);
gen_set_label(over);
}
tcg_temp_free_i64(t1);
return true;
}
return false;
}
/* Single-Width Floating-Point/Integer Type-Convert Instructions */
#define GEN_OPFV_CVT_TRANS(NAME, HELPER, FRM) \
static bool trans_##NAME(DisasContext *s, arg_rmr *a) \
{ \
static gen_helper_gvec_3_ptr * const fns[3] = { \
gen_helper_##HELPER##_h, \
gen_helper_##HELPER##_w, \
gen_helper_##HELPER##_d \
}; \
return do_opfv(s, a, fns[s->sew - 1], opfv_check, FRM); \
}
GEN_OPFV_CVT_TRANS(vfcvt_xu_f_v, vfcvt_xu_f_v, RISCV_FRM_DYN)
GEN_OPFV_CVT_TRANS(vfcvt_x_f_v, vfcvt_x_f_v, RISCV_FRM_DYN)
GEN_OPFV_CVT_TRANS(vfcvt_f_xu_v, vfcvt_f_xu_v, RISCV_FRM_DYN)
GEN_OPFV_CVT_TRANS(vfcvt_f_x_v, vfcvt_f_x_v, RISCV_FRM_DYN)
/* Reuse the helper functions from vfcvt.xu.f.v and vfcvt.x.f.v */
GEN_OPFV_CVT_TRANS(vfcvt_rtz_xu_f_v, vfcvt_xu_f_v, RISCV_FRM_RTZ)
GEN_OPFV_CVT_TRANS(vfcvt_rtz_x_f_v, vfcvt_x_f_v, RISCV_FRM_RTZ)
/* Widening Floating-Point/Integer Type-Convert Instructions */
/*
* If the current SEW does not correspond to a supported IEEE floating-point
* type, an illegal instruction exception is raised
*/
static bool opfv_widen_check(DisasContext *s, arg_rmr *a)
{
return require_rvv(s) &&
vext_check_isa_ill(s) &&
vext_check_ds(s, a->rd, a->rs2, a->vm);
}
static bool opxfv_widen_check(DisasContext *s, arg_rmr *a)
{
return opfv_widen_check(s, a) &&
require_rvf(s) &&
require_zve32f(s) &&
require_zve64f(s);
}
static bool opffv_widen_check(DisasContext *s, arg_rmr *a)
{
return opfv_widen_check(s, a) &&
require_scale_rvf(s) &&
(s->sew != MO_8) &&
require_scale_zve32f(s) &&
require_scale_zve64f(s);
}
#define GEN_OPFV_WIDEN_TRANS(NAME, CHECK, HELPER, FRM) \
static bool trans_##NAME(DisasContext *s, arg_rmr *a) \
{ \
if (CHECK(s, a)) { \
if (FRM != RISCV_FRM_DYN) { \
gen_set_rm(s, RISCV_FRM_DYN); \
} \
\
uint32_t data = 0; \
static gen_helper_gvec_3_ptr * const fns[2] = { \
gen_helper_##HELPER##_h, \
gen_helper_##HELPER##_w, \
}; \
TCGLabel *over = gen_new_label(); \
gen_set_rm(s, FRM); \
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \
tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \
\
data = FIELD_DP32(data, VDATA, VM, a->vm); \
data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \
data = FIELD_DP32(data, VDATA, VTA, s->vta); \
data = FIELD_DP32(data, VDATA, VMA, s->vma); \
tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \
vreg_ofs(s, a->rs2), cpu_env, \
s->cfg_ptr->vlen / 8, \
s->cfg_ptr->vlen / 8, data, \
fns[s->sew - 1]); \
mark_vs_dirty(s); \
gen_set_label(over); \
return true; \
} \
return false; \
}
GEN_OPFV_WIDEN_TRANS(vfwcvt_xu_f_v, opxfv_widen_check, vfwcvt_xu_f_v,
RISCV_FRM_DYN)
GEN_OPFV_WIDEN_TRANS(vfwcvt_x_f_v, opxfv_widen_check, vfwcvt_x_f_v,
RISCV_FRM_DYN)
GEN_OPFV_WIDEN_TRANS(vfwcvt_f_f_v, opffv_widen_check, vfwcvt_f_f_v,
RISCV_FRM_DYN)
/* Reuse the helper functions from vfwcvt.xu.f.v and vfwcvt.x.f.v */
GEN_OPFV_WIDEN_TRANS(vfwcvt_rtz_xu_f_v, opxfv_widen_check, vfwcvt_xu_f_v,
RISCV_FRM_RTZ)
GEN_OPFV_WIDEN_TRANS(vfwcvt_rtz_x_f_v, opxfv_widen_check, vfwcvt_x_f_v,
RISCV_FRM_RTZ)
static bool opfxv_widen_check(DisasContext *s, arg_rmr *a)
{
return require_rvv(s) &&
require_scale_rvf(s) &&
vext_check_isa_ill(s) &&
/* OPFV widening instructions ignore vs1 check */
vext_check_ds(s, a->rd, a->rs2, a->vm) &&
require_scale_zve32f(s) &&
require_scale_zve64f(s);
}
#define GEN_OPFXV_WIDEN_TRANS(NAME) \
static bool trans_##NAME(DisasContext *s, arg_rmr *a) \
{ \
if (opfxv_widen_check(s, a)) { \
uint32_t data = 0; \
static gen_helper_gvec_3_ptr * const fns[3] = { \
gen_helper_##NAME##_b, \
gen_helper_##NAME##_h, \
gen_helper_##NAME##_w, \
}; \
TCGLabel *over = gen_new_label(); \
gen_set_rm(s, RISCV_FRM_DYN); \
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \
tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \
\
data = FIELD_DP32(data, VDATA, VM, a->vm); \
data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \
data = FIELD_DP32(data, VDATA, VTA, s->vta); \
data = FIELD_DP32(data, VDATA, VMA, s->vma); \
tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \
vreg_ofs(s, a->rs2), cpu_env, \
s->cfg_ptr->vlen / 8, \
s->cfg_ptr->vlen / 8, data, \
fns[s->sew]); \
mark_vs_dirty(s); \
gen_set_label(over); \
return true; \
} \
return false; \
}
GEN_OPFXV_WIDEN_TRANS(vfwcvt_f_xu_v)
GEN_OPFXV_WIDEN_TRANS(vfwcvt_f_x_v)
/* Narrowing Floating-Point/Integer Type-Convert Instructions */
/*
* If the current SEW does not correspond to a supported IEEE floating-point
* type, an illegal instruction exception is raised
*/
static bool opfv_narrow_check(DisasContext *s, arg_rmr *a)
{
return require_rvv(s) &&
vext_check_isa_ill(s) &&
/* OPFV narrowing instructions ignore vs1 check */
vext_check_sd(s, a->rd, a->rs2, a->vm);
}
static bool opfxv_narrow_check(DisasContext *s, arg_rmr *a)
{
return opfv_narrow_check(s, a) &&
require_rvf(s) &&
(s->sew != MO_64) &&
require_zve32f(s) &&
require_zve64f(s);
}
static bool opffv_narrow_check(DisasContext *s, arg_rmr *a)
{
return opfv_narrow_check(s, a) &&
require_scale_rvf(s) &&
(s->sew != MO_8) &&
require_scale_zve32f(s) &&
require_scale_zve64f(s);
}
#define GEN_OPFV_NARROW_TRANS(NAME, CHECK, HELPER, FRM) \
static bool trans_##NAME(DisasContext *s, arg_rmr *a) \
{ \
if (CHECK(s, a)) { \
if (FRM != RISCV_FRM_DYN) { \
gen_set_rm(s, RISCV_FRM_DYN); \
} \
\
uint32_t data = 0; \
static gen_helper_gvec_3_ptr * const fns[2] = { \
gen_helper_##HELPER##_h, \
gen_helper_##HELPER##_w, \
}; \
TCGLabel *over = gen_new_label(); \
gen_set_rm(s, FRM); \
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \
tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \
\
data = FIELD_DP32(data, VDATA, VM, a->vm); \
data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \
data = FIELD_DP32(data, VDATA, VTA, s->vta); \
data = FIELD_DP32(data, VDATA, VMA, s->vma); \
tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \
vreg_ofs(s, a->rs2), cpu_env, \
s->cfg_ptr->vlen / 8, \
s->cfg_ptr->vlen / 8, data, \
fns[s->sew - 1]); \
mark_vs_dirty(s); \
gen_set_label(over); \
return true; \
} \
return false; \
}
GEN_OPFV_NARROW_TRANS(vfncvt_f_xu_w, opfxv_narrow_check, vfncvt_f_xu_w,
RISCV_FRM_DYN)
GEN_OPFV_NARROW_TRANS(vfncvt_f_x_w, opfxv_narrow_check, vfncvt_f_x_w,
RISCV_FRM_DYN)
GEN_OPFV_NARROW_TRANS(vfncvt_f_f_w, opffv_narrow_check, vfncvt_f_f_w,
RISCV_FRM_DYN)
/* Reuse the helper function from vfncvt.f.f.w */
GEN_OPFV_NARROW_TRANS(vfncvt_rod_f_f_w, opffv_narrow_check, vfncvt_f_f_w,
RISCV_FRM_ROD)
static bool opxfv_narrow_check(DisasContext *s, arg_rmr *a)
{
return require_rvv(s) &&
require_scale_rvf(s) &&
vext_check_isa_ill(s) &&
/* OPFV narrowing instructions ignore vs1 check */
vext_check_sd(s, a->rd, a->rs2, a->vm) &&
require_scale_zve32f(s) &&
require_scale_zve64f(s);
}
#define GEN_OPXFV_NARROW_TRANS(NAME, HELPER, FRM) \
static bool trans_##NAME(DisasContext *s, arg_rmr *a) \
{ \
if (opxfv_narrow_check(s, a)) { \
if (FRM != RISCV_FRM_DYN) { \
gen_set_rm(s, RISCV_FRM_DYN); \
} \
\
uint32_t data = 0; \
static gen_helper_gvec_3_ptr * const fns[3] = { \
gen_helper_##HELPER##_b, \
gen_helper_##HELPER##_h, \
gen_helper_##HELPER##_w, \
}; \
TCGLabel *over = gen_new_label(); \
gen_set_rm(s, FRM); \
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \
tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \
\
data = FIELD_DP32(data, VDATA, VM, a->vm); \
data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \
data = FIELD_DP32(data, VDATA, VTA, s->vta); \
data = FIELD_DP32(data, VDATA, VMA, s->vma); \
tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \
vreg_ofs(s, a->rs2), cpu_env, \
s->cfg_ptr->vlen / 8, \
s->cfg_ptr->vlen / 8, data, \
fns[s->sew]); \
mark_vs_dirty(s); \
gen_set_label(over); \
return true; \
} \
return false; \
}
GEN_OPXFV_NARROW_TRANS(vfncvt_xu_f_w, vfncvt_xu_f_w, RISCV_FRM_DYN)
GEN_OPXFV_NARROW_TRANS(vfncvt_x_f_w, vfncvt_x_f_w, RISCV_FRM_DYN)
/* Reuse the helper functions from vfncvt.xu.f.w and vfncvt.x.f.w */
GEN_OPXFV_NARROW_TRANS(vfncvt_rtz_xu_f_w, vfncvt_xu_f_w, RISCV_FRM_RTZ)
GEN_OPXFV_NARROW_TRANS(vfncvt_rtz_x_f_w, vfncvt_x_f_w, RISCV_FRM_RTZ)
/*
*** Vector Reduction Operations
*/
/* Vector Single-Width Integer Reduction Instructions */
static bool reduction_check(DisasContext *s, arg_rmrr *a)
{
return require_rvv(s) &&
vext_check_isa_ill(s) &&
vext_check_reduction(s, a->rs2);
}
GEN_OPIVV_TRANS(vredsum_vs, reduction_check)
GEN_OPIVV_TRANS(vredmaxu_vs, reduction_check)
GEN_OPIVV_TRANS(vredmax_vs, reduction_check)
GEN_OPIVV_TRANS(vredminu_vs, reduction_check)
GEN_OPIVV_TRANS(vredmin_vs, reduction_check)
GEN_OPIVV_TRANS(vredand_vs, reduction_check)
GEN_OPIVV_TRANS(vredor_vs, reduction_check)
GEN_OPIVV_TRANS(vredxor_vs, reduction_check)
/* Vector Widening Integer Reduction Instructions */
static bool reduction_widen_check(DisasContext *s, arg_rmrr *a)
{
return reduction_check(s, a) && (s->sew < MO_64) &&
((s->sew + 1) <= (s->cfg_ptr->elen >> 4));
}
GEN_OPIVV_WIDEN_TRANS(vwredsum_vs, reduction_widen_check)
GEN_OPIVV_WIDEN_TRANS(vwredsumu_vs, reduction_widen_check)
/* Vector Single-Width Floating-Point Reduction Instructions */
static bool freduction_check(DisasContext *s, arg_rmrr *a)
{
return reduction_check(s, a) &&
require_rvf(s) &&
require_zve32f(s) &&
require_zve64f(s);
}
GEN_OPFVV_TRANS(vfredusum_vs, freduction_check)
GEN_OPFVV_TRANS(vfredosum_vs, freduction_check)
GEN_OPFVV_TRANS(vfredmax_vs, freduction_check)
GEN_OPFVV_TRANS(vfredmin_vs, freduction_check)
/* Vector Widening Floating-Point Reduction Instructions */
static bool freduction_widen_check(DisasContext *s, arg_rmrr *a)
{
return reduction_widen_check(s, a) &&
require_scale_rvf(s) &&
(s->sew != MO_8);
}
GEN_OPFVV_WIDEN_TRANS(vfwredusum_vs, freduction_widen_check)
GEN_OPFVV_WIDEN_TRANS(vfwredosum_vs, freduction_widen_check)
/*
*** Vector Mask Operations
*/
/* Vector Mask-Register Logical Instructions */
#define GEN_MM_TRANS(NAME) \
static bool trans_##NAME(DisasContext *s, arg_r *a) \
{ \
if (require_rvv(s) && \
vext_check_isa_ill(s)) { \
uint32_t data = 0; \
gen_helper_gvec_4_ptr *fn = gen_helper_##NAME; \
TCGLabel *over = gen_new_label(); \
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \
tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \
\
data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \
data = \
FIELD_DP32(data, VDATA, VTA_ALL_1S, s->cfg_vta_all_1s);\
tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \
vreg_ofs(s, a->rs1), \
vreg_ofs(s, a->rs2), cpu_env, \
s->cfg_ptr->vlen / 8, \
s->cfg_ptr->vlen / 8, data, fn); \
mark_vs_dirty(s); \
gen_set_label(over); \
return true; \
} \
return false; \
}
GEN_MM_TRANS(vmand_mm)
GEN_MM_TRANS(vmnand_mm)
GEN_MM_TRANS(vmandn_mm)
GEN_MM_TRANS(vmxor_mm)
GEN_MM_TRANS(vmor_mm)
GEN_MM_TRANS(vmnor_mm)
GEN_MM_TRANS(vmorn_mm)
GEN_MM_TRANS(vmxnor_mm)
/* Vector count population in mask vcpop */
static bool trans_vcpop_m(DisasContext *s, arg_rmr *a)
{
if (require_rvv(s) &&
vext_check_isa_ill(s) &&
s->vstart == 0) {
TCGv_ptr src2, mask;
TCGv dst;
TCGv_i32 desc;
uint32_t data = 0;
data = FIELD_DP32(data, VDATA, VM, a->vm);
data = FIELD_DP32(data, VDATA, LMUL, s->lmul);
mask = tcg_temp_new_ptr();
src2 = tcg_temp_new_ptr();
dst = dest_gpr(s, a->rd);
desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8,
s->cfg_ptr->vlen / 8, data));
tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, a->rs2));
tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0));
gen_helper_vcpop_m(dst, mask, src2, cpu_env, desc);
gen_set_gpr(s, a->rd, dst);
tcg_temp_free_ptr(mask);
tcg_temp_free_ptr(src2);
return true;
}
return false;
}
/* vmfirst find-first-set mask bit */
static bool trans_vfirst_m(DisasContext *s, arg_rmr *a)
{
if (require_rvv(s) &&
vext_check_isa_ill(s) &&
s->vstart == 0) {
TCGv_ptr src2, mask;
TCGv dst;
TCGv_i32 desc;
uint32_t data = 0;
data = FIELD_DP32(data, VDATA, VM, a->vm);
data = FIELD_DP32(data, VDATA, LMUL, s->lmul);
mask = tcg_temp_new_ptr();
src2 = tcg_temp_new_ptr();
dst = dest_gpr(s, a->rd);
desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8,
s->cfg_ptr->vlen / 8, data));
tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, a->rs2));
tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0));
gen_helper_vfirst_m(dst, mask, src2, cpu_env, desc);
gen_set_gpr(s, a->rd, dst);
tcg_temp_free_ptr(mask);
tcg_temp_free_ptr(src2);
return true;
}
return false;
}
/* vmsbf.m set-before-first mask bit */
/* vmsif.m set-includ-first mask bit */
/* vmsof.m set-only-first mask bit */
#define GEN_M_TRANS(NAME) \
static bool trans_##NAME(DisasContext *s, arg_rmr *a) \
{ \
if (require_rvv(s) && \
vext_check_isa_ill(s) && \
require_vm(a->vm, a->rd) && \
(a->rd != a->rs2) && \
(s->vstart == 0)) { \
uint32_t data = 0; \
gen_helper_gvec_3_ptr *fn = gen_helper_##NAME; \
TCGLabel *over = gen_new_label(); \
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \
\
data = FIELD_DP32(data, VDATA, VM, a->vm); \
data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \
data = \
FIELD_DP32(data, VDATA, VTA_ALL_1S, s->cfg_vta_all_1s);\
data = FIELD_DP32(data, VDATA, VMA, s->vma); \
tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), \
vreg_ofs(s, 0), vreg_ofs(s, a->rs2), \
cpu_env, s->cfg_ptr->vlen / 8, \
s->cfg_ptr->vlen / 8, \
data, fn); \
mark_vs_dirty(s); \
gen_set_label(over); \
return true; \
} \
return false; \
}
GEN_M_TRANS(vmsbf_m)
GEN_M_TRANS(vmsif_m)
GEN_M_TRANS(vmsof_m)
/*
* Vector Iota Instruction
*
* 1. The destination register cannot overlap the source register.
* 2. If masked, cannot overlap the mask register ('v0').
* 3. An illegal instruction exception is raised if vstart is non-zero.
*/
static bool trans_viota_m(DisasContext *s, arg_viota_m *a)
{
if (require_rvv(s) &&
vext_check_isa_ill(s) &&
!is_overlapped(a->rd, 1 << MAX(s->lmul, 0), a->rs2, 1) &&
require_vm(a->vm, a->rd) &&
require_align(a->rd, s->lmul) &&
(s->vstart == 0)) {
uint32_t data = 0;
TCGLabel *over = gen_new_label();
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over);
data = FIELD_DP32(data, VDATA, VM, a->vm);
data = FIELD_DP32(data, VDATA, LMUL, s->lmul);
data = FIELD_DP32(data, VDATA, VTA, s->vta);
data = FIELD_DP32(data, VDATA, VMA, s->vma);
static gen_helper_gvec_3_ptr * const fns[4] = {
gen_helper_viota_m_b, gen_helper_viota_m_h,
gen_helper_viota_m_w, gen_helper_viota_m_d,
};
tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0),
vreg_ofs(s, a->rs2), cpu_env,
s->cfg_ptr->vlen / 8,
s->cfg_ptr->vlen / 8, data, fns[s->sew]);
mark_vs_dirty(s);
gen_set_label(over);
return true;
}
return false;
}
/* Vector Element Index Instruction */
static bool trans_vid_v(DisasContext *s, arg_vid_v *a)
{
if (require_rvv(s) &&
vext_check_isa_ill(s) &&
require_align(a->rd, s->lmul) &&
require_vm(a->vm, a->rd)) {
uint32_t data = 0;
TCGLabel *over = gen_new_label();
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over);
tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over);
data = FIELD_DP32(data, VDATA, VM, a->vm);
data = FIELD_DP32(data, VDATA, LMUL, s->lmul);
data = FIELD_DP32(data, VDATA, VTA, s->vta);
data = FIELD_DP32(data, VDATA, VMA, s->vma);
static gen_helper_gvec_2_ptr * const fns[4] = {
gen_helper_vid_v_b, gen_helper_vid_v_h,
gen_helper_vid_v_w, gen_helper_vid_v_d,
};
tcg_gen_gvec_2_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0),
cpu_env, s->cfg_ptr->vlen / 8,
s->cfg_ptr->vlen / 8,
data, fns[s->sew]);
mark_vs_dirty(s);
gen_set_label(over);
return true;
}
return false;
}
/*
*** Vector Permutation Instructions
*/
static void load_element(TCGv_i64 dest, TCGv_ptr base,
int ofs, int sew, bool sign)
{
switch (sew) {
case MO_8:
if (!sign) {
tcg_gen_ld8u_i64(dest, base, ofs);
} else {
tcg_gen_ld8s_i64(dest, base, ofs);
}
break;
case MO_16:
if (!sign) {
tcg_gen_ld16u_i64(dest, base, ofs);
} else {
tcg_gen_ld16s_i64(dest, base, ofs);
}
break;
case MO_32:
if (!sign) {
tcg_gen_ld32u_i64(dest, base, ofs);
} else {
tcg_gen_ld32s_i64(dest, base, ofs);
}
break;
case MO_64:
tcg_gen_ld_i64(dest, base, ofs);
break;
default:
g_assert_not_reached();
break;
}
}
/* offset of the idx element with base regsiter r */
static uint32_t endian_ofs(DisasContext *s, int r, int idx)
{
#if HOST_BIG_ENDIAN
return vreg_ofs(s, r) + ((idx ^ (7 >> s->sew)) << s->sew);
#else
return vreg_ofs(s, r) + (idx << s->sew);
#endif
}
/* adjust the index according to the endian */
static void endian_adjust(TCGv_i32 ofs, int sew)
{
#if HOST_BIG_ENDIAN
tcg_gen_xori_i32(ofs, ofs, 7 >> sew);
#endif
}
/* Load idx >= VLMAX ? 0 : vreg[idx] */
static void vec_element_loadx(DisasContext *s, TCGv_i64 dest,
int vreg, TCGv idx, int vlmax)
{
TCGv_i32 ofs = tcg_temp_new_i32();
TCGv_ptr base = tcg_temp_new_ptr();
TCGv_i64 t_idx = tcg_temp_new_i64();
TCGv_i64 t_vlmax, t_zero;
/*
* Mask the index to the length so that we do
* not produce an out-of-range load.
*/
tcg_gen_trunc_tl_i32(ofs, idx);
tcg_gen_andi_i32(ofs, ofs, vlmax - 1);
/* Convert the index to an offset. */
endian_adjust(ofs, s->sew);
tcg_gen_shli_i32(ofs, ofs, s->sew);
/* Convert the index to a pointer. */
tcg_gen_ext_i32_ptr(base, ofs);
tcg_gen_add_ptr(base, base, cpu_env);
/* Perform the load. */
load_element(dest, base,
vreg_ofs(s, vreg), s->sew, false);
tcg_temp_free_ptr(base);
tcg_temp_free_i32(ofs);
/* Flush out-of-range indexing to zero. */
t_vlmax = tcg_constant_i64(vlmax);
t_zero = tcg_constant_i64(0);
tcg_gen_extu_tl_i64(t_idx, idx);
tcg_gen_movcond_i64(TCG_COND_LTU, dest, t_idx,
t_vlmax, dest, t_zero);
tcg_temp_free_i64(t_idx);
}
static void vec_element_loadi(DisasContext *s, TCGv_i64 dest,
int vreg, int idx, bool sign)
{
load_element(dest, cpu_env, endian_ofs(s, vreg, idx), s->sew, sign);
}
/* Integer Scalar Move Instruction */
static void store_element(TCGv_i64 val, TCGv_ptr base,
int ofs, int sew)
{
switch (sew) {
case MO_8:
tcg_gen_st8_i64(val, base, ofs);
break;
case MO_16:
tcg_gen_st16_i64(val, base, ofs);
break;
case MO_32:
tcg_gen_st32_i64(val, base, ofs);
break;
case MO_64:
tcg_gen_st_i64(val, base, ofs);
break;
default:
g_assert_not_reached();
break;
}
}
/*
* Store vreg[idx] = val.
* The index must be in range of VLMAX.
*/
static void vec_element_storei(DisasContext *s, int vreg,
int idx, TCGv_i64 val)
{
store_element(val, cpu_env, endian_ofs(s, vreg, idx), s->sew);
}
/* vmv.x.s rd, vs2 # x[rd] = vs2[0] */
static bool trans_vmv_x_s(DisasContext *s, arg_vmv_x_s *a)
{
if (require_rvv(s) &&
vext_check_isa_ill(s)) {
TCGv_i64 t1;
TCGv dest;
t1 = tcg_temp_new_i64();
dest = tcg_temp_new();
/*
* load vreg and sign-extend to 64 bits,
* then truncate to XLEN bits before storing to gpr.
*/
vec_element_loadi(s, t1, a->rs2, 0, true);
tcg_gen_trunc_i64_tl(dest, t1);
gen_set_gpr(s, a->rd, dest);
tcg_temp_free_i64(t1);
tcg_temp_free(dest);
return true;
}
return false;
}
/* vmv.s.x vd, rs1 # vd[0] = rs1 */
static bool trans_vmv_s_x(DisasContext *s, arg_vmv_s_x *a)
{
if (require_rvv(s) &&
vext_check_isa_ill(s)) {
/* This instruction ignores LMUL and vector register groups */
TCGv_i64 t1;
TCGv s1;
TCGLabel *over = gen_new_label();
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over);
tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over);
t1 = tcg_temp_new_i64();
/*
* load gpr and sign-extend to 64 bits,
* then truncate to SEW bits when storing to vreg.
*/
s1 = get_gpr(s, a->rs1, EXT_NONE);
tcg_gen_ext_tl_i64(t1, s1);
vec_element_storei(s, a->rd, 0, t1);
tcg_temp_free_i64(t1);
mark_vs_dirty(s);
gen_set_label(over);
return true;
}
return false;
}
/* Floating-Point Scalar Move Instructions */
static bool trans_vfmv_f_s(DisasContext *s, arg_vfmv_f_s *a)
{
if (require_rvv(s) &&
require_rvf(s) &&
vext_check_isa_ill(s) &&
require_zve32f(s) &&
require_zve64f(s)) {
gen_set_rm(s, RISCV_FRM_DYN);
unsigned int ofs = (8 << s->sew);
unsigned int len = 64 - ofs;
TCGv_i64 t_nan;
vec_element_loadi(s, cpu_fpr[a->rd], a->rs2, 0, false);
/* NaN-box f[rd] as necessary for SEW */
if (len) {
t_nan = tcg_constant_i64(UINT64_MAX);
tcg_gen_deposit_i64(cpu_fpr[a->rd], cpu_fpr[a->rd],
t_nan, ofs, len);
}
mark_fs_dirty(s);
return true;
}
return false;
}
/* vfmv.s.f vd, rs1 # vd[0] = rs1 (vs2=0) */
static bool trans_vfmv_s_f(DisasContext *s, arg_vfmv_s_f *a)
{
if (require_rvv(s) &&
require_rvf(s) &&
vext_check_isa_ill(s) &&
require_zve32f(s) &&
require_zve64f(s)) {
gen_set_rm(s, RISCV_FRM_DYN);
/* The instructions ignore LMUL and vector register group. */
TCGv_i64 t1;
TCGLabel *over = gen_new_label();
/* if vl == 0 or vstart >= vl, skip vector register write back */
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over);
tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over);
/* NaN-box f[rs1] */
t1 = tcg_temp_new_i64();
do_nanbox(s, t1, cpu_fpr[a->rs1]);
vec_element_storei(s, a->rd, 0, t1);
tcg_temp_free_i64(t1);
mark_vs_dirty(s);
gen_set_label(over);
return true;
}
return false;
}
/* Vector Slide Instructions */
static bool slideup_check(DisasContext *s, arg_rmrr *a)
{
return require_rvv(s) &&
vext_check_isa_ill(s) &&
vext_check_slide(s, a->rd, a->rs2, a->vm, true);
}
GEN_OPIVX_TRANS(vslideup_vx, slideup_check)
GEN_OPIVX_TRANS(vslide1up_vx, slideup_check)
GEN_OPIVI_TRANS(vslideup_vi, IMM_ZX, vslideup_vx, slideup_check)
static bool slidedown_check(DisasContext *s, arg_rmrr *a)
{
return require_rvv(s) &&
vext_check_isa_ill(s) &&
vext_check_slide(s, a->rd, a->rs2, a->vm, false);
}
GEN_OPIVX_TRANS(vslidedown_vx, slidedown_check)
GEN_OPIVX_TRANS(vslide1down_vx, slidedown_check)
GEN_OPIVI_TRANS(vslidedown_vi, IMM_ZX, vslidedown_vx, slidedown_check)
/* Vector Floating-Point Slide Instructions */
static bool fslideup_check(DisasContext *s, arg_rmrr *a)
{
return slideup_check(s, a) &&
require_rvf(s) &&
require_zve32f(s) &&
require_zve64f(s);
}
static bool fslidedown_check(DisasContext *s, arg_rmrr *a)
{
return slidedown_check(s, a) &&
require_rvf(s) &&
require_zve32f(s) &&
require_zve64f(s);
}
GEN_OPFVF_TRANS(vfslide1up_vf, fslideup_check)
GEN_OPFVF_TRANS(vfslide1down_vf, fslidedown_check)
/* Vector Register Gather Instruction */
static bool vrgather_vv_check(DisasContext *s, arg_rmrr *a)
{
return require_rvv(s) &&
vext_check_isa_ill(s) &&
require_align(a->rd, s->lmul) &&
require_align(a->rs1, s->lmul) &&
require_align(a->rs2, s->lmul) &&
(a->rd != a->rs2 && a->rd != a->rs1) &&
require_vm(a->vm, a->rd);
}
static bool vrgatherei16_vv_check(DisasContext *s, arg_rmrr *a)
{
int8_t emul = MO_16 - s->sew + s->lmul;
return require_rvv(s) &&
vext_check_isa_ill(s) &&
(emul >= -3 && emul <= 3) &&
require_align(a->rd, s->lmul) &&
require_align(a->rs1, emul) &&
require_align(a->rs2, s->lmul) &&
(a->rd != a->rs2 && a->rd != a->rs1) &&
!is_overlapped(a->rd, 1 << MAX(s->lmul, 0),
a->rs1, 1 << MAX(emul, 0)) &&
!is_overlapped(a->rd, 1 << MAX(s->lmul, 0),
a->rs2, 1 << MAX(s->lmul, 0)) &&
require_vm(a->vm, a->rd);
}
GEN_OPIVV_TRANS(vrgather_vv, vrgather_vv_check)
GEN_OPIVV_TRANS(vrgatherei16_vv, vrgatherei16_vv_check)
static bool vrgather_vx_check(DisasContext *s, arg_rmrr *a)
{
return require_rvv(s) &&
vext_check_isa_ill(s) &&
require_align(a->rd, s->lmul) &&
require_align(a->rs2, s->lmul) &&
(a->rd != a->rs2) &&
require_vm(a->vm, a->rd);
}
/* vrgather.vx vd, vs2, rs1, vm # vd[i] = (x[rs1] >= VLMAX) ? 0 : vs2[rs1] */
static bool trans_vrgather_vx(DisasContext *s, arg_rmrr *a)
{
if (!vrgather_vx_check(s, a)) {
return false;
}
if (a->vm && s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) {
int scale = s->lmul - (s->sew + 3);
int vlmax = s->cfg_ptr->vlen >> -scale;
TCGv_i64 dest = tcg_temp_new_i64();
if (a->rs1 == 0) {
vec_element_loadi(s, dest, a->rs2, 0, false);
} else {
vec_element_loadx(s, dest, a->rs2, cpu_gpr[a->rs1], vlmax);
}
tcg_gen_gvec_dup_i64(s->sew, vreg_ofs(s, a->rd),
MAXSZ(s), MAXSZ(s), dest);
tcg_temp_free_i64(dest);
mark_vs_dirty(s);
} else {
static gen_helper_opivx * const fns[4] = {
gen_helper_vrgather_vx_b, gen_helper_vrgather_vx_h,
gen_helper_vrgather_vx_w, gen_helper_vrgather_vx_d
};
return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], s);
}
return true;
}
/* vrgather.vi vd, vs2, imm, vm # vd[i] = (imm >= VLMAX) ? 0 : vs2[imm] */
static bool trans_vrgather_vi(DisasContext *s, arg_rmrr *a)
{
if (!vrgather_vx_check(s, a)) {
return false;
}
if (a->vm && s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) {
int scale = s->lmul - (s->sew + 3);
int vlmax = s->cfg_ptr->vlen >> -scale;
if (a->rs1 >= vlmax) {
tcg_gen_gvec_dup_imm(MO_64, vreg_ofs(s, a->rd),
MAXSZ(s), MAXSZ(s), 0);
} else {
tcg_gen_gvec_dup_mem(s->sew, vreg_ofs(s, a->rd),
endian_ofs(s, a->rs2, a->rs1),
MAXSZ(s), MAXSZ(s));
}
mark_vs_dirty(s);
} else {
static gen_helper_opivx * const fns[4] = {
gen_helper_vrgather_vx_b, gen_helper_vrgather_vx_h,
gen_helper_vrgather_vx_w, gen_helper_vrgather_vx_d
};
return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew],
s, IMM_ZX);
}
return true;
}
/*
* Vector Compress Instruction
*
* The destination vector register group cannot overlap the
* source vector register group or the source mask register.
*/
static bool vcompress_vm_check(DisasContext *s, arg_r *a)
{
return require_rvv(s) &&
vext_check_isa_ill(s) &&
require_align(a->rd, s->lmul) &&
require_align(a->rs2, s->lmul) &&
(a->rd != a->rs2) &&
!is_overlapped(a->rd, 1 << MAX(s->lmul, 0), a->rs1, 1) &&
(s->vstart == 0);
}
static bool trans_vcompress_vm(DisasContext *s, arg_r *a)
{
if (vcompress_vm_check(s, a)) {
uint32_t data = 0;
static gen_helper_gvec_4_ptr * const fns[4] = {
gen_helper_vcompress_vm_b, gen_helper_vcompress_vm_h,
gen_helper_vcompress_vm_w, gen_helper_vcompress_vm_d,
};
TCGLabel *over = gen_new_label();
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over);
data = FIELD_DP32(data, VDATA, LMUL, s->lmul);
data = FIELD_DP32(data, VDATA, VTA, s->vta);
tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0),
vreg_ofs(s, a->rs1), vreg_ofs(s, a->rs2),
cpu_env, s->cfg_ptr->vlen / 8,
s->cfg_ptr->vlen / 8, data,
fns[s->sew]);
mark_vs_dirty(s);
gen_set_label(over);
return true;
}
return false;
}
/*
* Whole Vector Register Move Instructions ignore vtype and vl setting.
* Thus, we don't need to check vill bit. (Section 16.6)
*/
#define GEN_VMV_WHOLE_TRANS(NAME, LEN) \
static bool trans_##NAME(DisasContext *s, arg_##NAME * a) \
{ \
if (require_rvv(s) && \
QEMU_IS_ALIGNED(a->rd, LEN) && \
QEMU_IS_ALIGNED(a->rs2, LEN)) { \
uint32_t maxsz = (s->cfg_ptr->vlen >> 3) * LEN; \
if (s->vstart == 0) { \
/* EEW = 8 */ \
tcg_gen_gvec_mov(MO_8, vreg_ofs(s, a->rd), \
vreg_ofs(s, a->rs2), maxsz, maxsz); \
mark_vs_dirty(s); \
} else { \
TCGLabel *over = gen_new_label(); \
tcg_gen_brcondi_tl(TCG_COND_GEU, cpu_vstart, maxsz, over); \
tcg_gen_gvec_2_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2), \
cpu_env, maxsz, maxsz, 0, gen_helper_vmvr_v); \
mark_vs_dirty(s); \
gen_set_label(over); \
} \
return true; \
} \
return false; \
}
GEN_VMV_WHOLE_TRANS(vmv1r_v, 1)
GEN_VMV_WHOLE_TRANS(vmv2r_v, 2)
GEN_VMV_WHOLE_TRANS(vmv4r_v, 4)
GEN_VMV_WHOLE_TRANS(vmv8r_v, 8)
static bool int_ext_check(DisasContext *s, arg_rmr *a, uint8_t div)
{
uint8_t from = (s->sew + 3) - div;
bool ret = require_rvv(s) &&
(from >= 3 && from <= 8) &&
(a->rd != a->rs2) &&
require_align(a->rd, s->lmul) &&
require_align(a->rs2, s->lmul - div) &&
require_vm(a->vm, a->rd) &&
require_noover(a->rd, s->lmul, a->rs2, s->lmul - div);
return ret;
}
static bool int_ext_op(DisasContext *s, arg_rmr *a, uint8_t seq)
{
uint32_t data = 0;
gen_helper_gvec_3_ptr *fn;
TCGLabel *over = gen_new_label();
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over);
tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over);
static gen_helper_gvec_3_ptr * const fns[6][4] = {
{
NULL, gen_helper_vzext_vf2_h,
gen_helper_vzext_vf2_w, gen_helper_vzext_vf2_d
},
{
NULL, NULL,
gen_helper_vzext_vf4_w, gen_helper_vzext_vf4_d,
},
{
NULL, NULL,
NULL, gen_helper_vzext_vf8_d
},
{
NULL, gen_helper_vsext_vf2_h,
gen_helper_vsext_vf2_w, gen_helper_vsext_vf2_d
},
{
NULL, NULL,
gen_helper_vsext_vf4_w, gen_helper_vsext_vf4_d,
},
{
NULL, NULL,
NULL, gen_helper_vsext_vf8_d
}
};
fn = fns[seq][s->sew];
if (fn == NULL) {
return false;
}
data = FIELD_DP32(data, VDATA, VM, a->vm);
data = FIELD_DP32(data, VDATA, LMUL, s->lmul);
data = FIELD_DP32(data, VDATA, VTA, s->vta);
data = FIELD_DP32(data, VDATA, VMA, s->vma);
tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0),
vreg_ofs(s, a->rs2), cpu_env,
s->cfg_ptr->vlen / 8,
s->cfg_ptr->vlen / 8, data, fn);
mark_vs_dirty(s);
gen_set_label(over);
return true;
}
/* Vector Integer Extension */
#define GEN_INT_EXT_TRANS(NAME, DIV, SEQ) \
static bool trans_##NAME(DisasContext *s, arg_rmr *a) \
{ \
if (int_ext_check(s, a, DIV)) { \
return int_ext_op(s, a, SEQ); \
} \
return false; \
}
GEN_INT_EXT_TRANS(vzext_vf2, 1, 0)
GEN_INT_EXT_TRANS(vzext_vf4, 2, 1)
GEN_INT_EXT_TRANS(vzext_vf8, 3, 2)
GEN_INT_EXT_TRANS(vsext_vf2, 1, 3)
GEN_INT_EXT_TRANS(vsext_vf4, 2, 4)
GEN_INT_EXT_TRANS(vsext_vf8, 3, 5)