qemu/hw/pflash_cfi02.c
Alexander Graf 2507c12ab0 Add endianness as io mem parameter
As stated before, devices can be little, big or native endian. The
target endianness is not of their concern, so we need to push things
down a level.

This patch adds a parameter to cpu_register_io_memory that allows a
device to choose its endianness. For now, all devices simply choose
native endian, because that's the same behavior as before.

Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Blue Swirl <blauwirbel@gmail.com>
2010-12-11 15:24:25 +00:00

742 lines
21 KiB
C

/*
* CFI parallel flash with AMD command set emulation
*
* Copyright (c) 2005 Jocelyn Mayer
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
/*
* For now, this code can emulate flashes of 1, 2 or 4 bytes width.
* Supported commands/modes are:
* - flash read
* - flash write
* - flash ID read
* - sector erase
* - chip erase
* - unlock bypass command
* - CFI queries
*
* It does not support flash interleaving.
* It does not implement boot blocs with reduced size
* It does not implement software data protection as found in many real chips
* It does not implement erase suspend/resume commands
* It does not implement multiple sectors erase
*/
#include "hw.h"
#include "flash.h"
#include "qemu-timer.h"
#include "block.h"
//#define PFLASH_DEBUG
#ifdef PFLASH_DEBUG
#define DPRINTF(fmt, ...) \
do { \
printf("PFLASH: " fmt , ## __VA_ARGS__); \
} while (0)
#else
#define DPRINTF(fmt, ...) do { } while (0)
#endif
struct pflash_t {
BlockDriverState *bs;
target_phys_addr_t base;
uint32_t sector_len;
uint32_t chip_len;
int mappings;
int width;
int wcycle; /* if 0, the flash is read normally */
int bypass;
int ro;
uint8_t cmd;
uint8_t status;
uint16_t ident[4];
uint16_t unlock_addr[2];
uint8_t cfi_len;
uint8_t cfi_table[0x52];
QEMUTimer *timer;
ram_addr_t off;
int fl_mem;
int rom_mode;
void *storage;
};
static void pflash_register_memory(pflash_t *pfl, int rom_mode)
{
unsigned long phys_offset = pfl->fl_mem;
int i;
if (rom_mode)
phys_offset |= pfl->off | IO_MEM_ROMD;
pfl->rom_mode = rom_mode;
for (i = 0; i < pfl->mappings; i++)
cpu_register_physical_memory(pfl->base + i * pfl->chip_len,
pfl->chip_len, phys_offset);
}
static void pflash_timer (void *opaque)
{
pflash_t *pfl = opaque;
DPRINTF("%s: command %02x done\n", __func__, pfl->cmd);
/* Reset flash */
pfl->status ^= 0x80;
if (pfl->bypass) {
pfl->wcycle = 2;
} else {
pflash_register_memory(pfl, 1);
pfl->wcycle = 0;
}
pfl->cmd = 0;
}
static uint32_t pflash_read (pflash_t *pfl, target_phys_addr_t offset,
int width, int be)
{
target_phys_addr_t boff;
uint32_t ret;
uint8_t *p;
DPRINTF("%s: offset " TARGET_FMT_plx "\n", __func__, offset);
ret = -1;
if (pfl->rom_mode) {
/* Lazy reset of to ROMD mode */
if (pfl->wcycle == 0)
pflash_register_memory(pfl, 1);
}
offset &= pfl->chip_len - 1;
boff = offset & 0xFF;
if (pfl->width == 2)
boff = boff >> 1;
else if (pfl->width == 4)
boff = boff >> 2;
switch (pfl->cmd) {
default:
/* This should never happen : reset state & treat it as a read*/
DPRINTF("%s: unknown command state: %x\n", __func__, pfl->cmd);
pfl->wcycle = 0;
pfl->cmd = 0;
case 0x80:
/* We accept reads during second unlock sequence... */
case 0x00:
flash_read:
/* Flash area read */
p = pfl->storage;
switch (width) {
case 1:
ret = p[offset];
// DPRINTF("%s: data offset %08x %02x\n", __func__, offset, ret);
break;
case 2:
if (be) {
ret = p[offset] << 8;
ret |= p[offset + 1];
} else {
ret = p[offset];
ret |= p[offset + 1] << 8;
}
// DPRINTF("%s: data offset %08x %04x\n", __func__, offset, ret);
break;
case 4:
if (be) {
ret = p[offset] << 24;
ret |= p[offset + 1] << 16;
ret |= p[offset + 2] << 8;
ret |= p[offset + 3];
} else {
ret = p[offset];
ret |= p[offset + 1] << 8;
ret |= p[offset + 2] << 16;
ret |= p[offset + 3] << 24;
}
// DPRINTF("%s: data offset %08x %08x\n", __func__, offset, ret);
break;
}
break;
case 0x90:
/* flash ID read */
switch (boff) {
case 0x00:
case 0x01:
ret = pfl->ident[boff & 0x01];
break;
case 0x02:
ret = 0x00; /* Pretend all sectors are unprotected */
break;
case 0x0E:
case 0x0F:
if (pfl->ident[2 + (boff & 0x01)] == (uint8_t)-1)
goto flash_read;
ret = pfl->ident[2 + (boff & 0x01)];
break;
default:
goto flash_read;
}
DPRINTF("%s: ID " TARGET_FMT_pld " %x\n", __func__, boff, ret);
break;
case 0xA0:
case 0x10:
case 0x30:
/* Status register read */
ret = pfl->status;
DPRINTF("%s: status %x\n", __func__, ret);
/* Toggle bit 6 */
pfl->status ^= 0x40;
break;
case 0x98:
/* CFI query mode */
if (boff > pfl->cfi_len)
ret = 0;
else
ret = pfl->cfi_table[boff];
break;
}
return ret;
}
/* update flash content on disk */
static void pflash_update(pflash_t *pfl, int offset,
int size)
{
int offset_end;
if (pfl->bs) {
offset_end = offset + size;
/* round to sectors */
offset = offset >> 9;
offset_end = (offset_end + 511) >> 9;
bdrv_write(pfl->bs, offset, pfl->storage + (offset << 9),
offset_end - offset);
}
}
static void pflash_write (pflash_t *pfl, target_phys_addr_t offset,
uint32_t value, int width, int be)
{
target_phys_addr_t boff;
uint8_t *p;
uint8_t cmd;
cmd = value;
if (pfl->cmd != 0xA0 && cmd == 0xF0) {
#if 0
DPRINTF("%s: flash reset asked (%02x %02x)\n",
__func__, pfl->cmd, cmd);
#endif
goto reset_flash;
}
DPRINTF("%s: offset " TARGET_FMT_plx " %08x %d %d\n", __func__,
offset, value, width, pfl->wcycle);
offset &= pfl->chip_len - 1;
DPRINTF("%s: offset " TARGET_FMT_plx " %08x %d\n", __func__,
offset, value, width);
boff = offset & (pfl->sector_len - 1);
if (pfl->width == 2)
boff = boff >> 1;
else if (pfl->width == 4)
boff = boff >> 2;
switch (pfl->wcycle) {
case 0:
/* Set the device in I/O access mode if required */
if (pfl->rom_mode)
pflash_register_memory(pfl, 0);
/* We're in read mode */
check_unlock0:
if (boff == 0x55 && cmd == 0x98) {
enter_CFI_mode:
/* Enter CFI query mode */
pfl->wcycle = 7;
pfl->cmd = 0x98;
return;
}
if (boff != pfl->unlock_addr[0] || cmd != 0xAA) {
DPRINTF("%s: unlock0 failed " TARGET_FMT_plx " %02x %04x\n",
__func__, boff, cmd, pfl->unlock_addr[0]);
goto reset_flash;
}
DPRINTF("%s: unlock sequence started\n", __func__);
break;
case 1:
/* We started an unlock sequence */
check_unlock1:
if (boff != pfl->unlock_addr[1] || cmd != 0x55) {
DPRINTF("%s: unlock1 failed " TARGET_FMT_plx " %02x\n", __func__,
boff, cmd);
goto reset_flash;
}
DPRINTF("%s: unlock sequence done\n", __func__);
break;
case 2:
/* We finished an unlock sequence */
if (!pfl->bypass && boff != pfl->unlock_addr[0]) {
DPRINTF("%s: command failed " TARGET_FMT_plx " %02x\n", __func__,
boff, cmd);
goto reset_flash;
}
switch (cmd) {
case 0x20:
pfl->bypass = 1;
goto do_bypass;
case 0x80:
case 0x90:
case 0xA0:
pfl->cmd = cmd;
DPRINTF("%s: starting command %02x\n", __func__, cmd);
break;
default:
DPRINTF("%s: unknown command %02x\n", __func__, cmd);
goto reset_flash;
}
break;
case 3:
switch (pfl->cmd) {
case 0x80:
/* We need another unlock sequence */
goto check_unlock0;
case 0xA0:
DPRINTF("%s: write data offset " TARGET_FMT_plx " %08x %d\n",
__func__, offset, value, width);
p = pfl->storage;
switch (width) {
case 1:
p[offset] &= value;
pflash_update(pfl, offset, 1);
break;
case 2:
if (be) {
p[offset] &= value >> 8;
p[offset + 1] &= value;
} else {
p[offset] &= value;
p[offset + 1] &= value >> 8;
}
pflash_update(pfl, offset, 2);
break;
case 4:
if (be) {
p[offset] &= value >> 24;
p[offset + 1] &= value >> 16;
p[offset + 2] &= value >> 8;
p[offset + 3] &= value;
} else {
p[offset] &= value;
p[offset + 1] &= value >> 8;
p[offset + 2] &= value >> 16;
p[offset + 3] &= value >> 24;
}
pflash_update(pfl, offset, 4);
break;
}
pfl->status = 0x00 | ~(value & 0x80);
/* Let's pretend write is immediate */
if (pfl->bypass)
goto do_bypass;
goto reset_flash;
case 0x90:
if (pfl->bypass && cmd == 0x00) {
/* Unlock bypass reset */
goto reset_flash;
}
/* We can enter CFI query mode from autoselect mode */
if (boff == 0x55 && cmd == 0x98)
goto enter_CFI_mode;
/* No break here */
default:
DPRINTF("%s: invalid write for command %02x\n",
__func__, pfl->cmd);
goto reset_flash;
}
case 4:
switch (pfl->cmd) {
case 0xA0:
/* Ignore writes while flash data write is occuring */
/* As we suppose write is immediate, this should never happen */
return;
case 0x80:
goto check_unlock1;
default:
/* Should never happen */
DPRINTF("%s: invalid command state %02x (wc 4)\n",
__func__, pfl->cmd);
goto reset_flash;
}
break;
case 5:
switch (cmd) {
case 0x10:
if (boff != pfl->unlock_addr[0]) {
DPRINTF("%s: chip erase: invalid address " TARGET_FMT_plx "\n",
__func__, offset);
goto reset_flash;
}
/* Chip erase */
DPRINTF("%s: start chip erase\n", __func__);
memset(pfl->storage, 0xFF, pfl->chip_len);
pfl->status = 0x00;
pflash_update(pfl, 0, pfl->chip_len);
/* Let's wait 5 seconds before chip erase is done */
qemu_mod_timer(pfl->timer,
qemu_get_clock(vm_clock) + (get_ticks_per_sec() * 5));
break;
case 0x30:
/* Sector erase */
p = pfl->storage;
offset &= ~(pfl->sector_len - 1);
DPRINTF("%s: start sector erase at " TARGET_FMT_plx "\n", __func__,
offset);
memset(p + offset, 0xFF, pfl->sector_len);
pflash_update(pfl, offset, pfl->sector_len);
pfl->status = 0x00;
/* Let's wait 1/2 second before sector erase is done */
qemu_mod_timer(pfl->timer,
qemu_get_clock(vm_clock) + (get_ticks_per_sec() / 2));
break;
default:
DPRINTF("%s: invalid command %02x (wc 5)\n", __func__, cmd);
goto reset_flash;
}
pfl->cmd = cmd;
break;
case 6:
switch (pfl->cmd) {
case 0x10:
/* Ignore writes during chip erase */
return;
case 0x30:
/* Ignore writes during sector erase */
return;
default:
/* Should never happen */
DPRINTF("%s: invalid command state %02x (wc 6)\n",
__func__, pfl->cmd);
goto reset_flash;
}
break;
case 7: /* Special value for CFI queries */
DPRINTF("%s: invalid write in CFI query mode\n", __func__);
goto reset_flash;
default:
/* Should never happen */
DPRINTF("%s: invalid write state (wc 7)\n", __func__);
goto reset_flash;
}
pfl->wcycle++;
return;
/* Reset flash */
reset_flash:
pfl->bypass = 0;
pfl->wcycle = 0;
pfl->cmd = 0;
return;
do_bypass:
pfl->wcycle = 2;
pfl->cmd = 0;
return;
}
static uint32_t pflash_readb_be(void *opaque, target_phys_addr_t addr)
{
return pflash_read(opaque, addr, 1, 1);
}
static uint32_t pflash_readb_le(void *opaque, target_phys_addr_t addr)
{
return pflash_read(opaque, addr, 1, 0);
}
static uint32_t pflash_readw_be(void *opaque, target_phys_addr_t addr)
{
pflash_t *pfl = opaque;
return pflash_read(pfl, addr, 2, 1);
}
static uint32_t pflash_readw_le(void *opaque, target_phys_addr_t addr)
{
pflash_t *pfl = opaque;
return pflash_read(pfl, addr, 2, 0);
}
static uint32_t pflash_readl_be(void *opaque, target_phys_addr_t addr)
{
pflash_t *pfl = opaque;
return pflash_read(pfl, addr, 4, 1);
}
static uint32_t pflash_readl_le(void *opaque, target_phys_addr_t addr)
{
pflash_t *pfl = opaque;
return pflash_read(pfl, addr, 4, 0);
}
static void pflash_writeb_be(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
pflash_write(opaque, addr, value, 1, 1);
}
static void pflash_writeb_le(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
pflash_write(opaque, addr, value, 1, 0);
}
static void pflash_writew_be(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
pflash_t *pfl = opaque;
pflash_write(pfl, addr, value, 2, 1);
}
static void pflash_writew_le(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
pflash_t *pfl = opaque;
pflash_write(pfl, addr, value, 2, 0);
}
static void pflash_writel_be(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
pflash_t *pfl = opaque;
pflash_write(pfl, addr, value, 4, 1);
}
static void pflash_writel_le(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
pflash_t *pfl = opaque;
pflash_write(pfl, addr, value, 4, 0);
}
static CPUWriteMemoryFunc * const pflash_write_ops_be[] = {
&pflash_writeb_be,
&pflash_writew_be,
&pflash_writel_be,
};
static CPUReadMemoryFunc * const pflash_read_ops_be[] = {
&pflash_readb_be,
&pflash_readw_be,
&pflash_readl_be,
};
static CPUWriteMemoryFunc * const pflash_write_ops_le[] = {
&pflash_writeb_le,
&pflash_writew_le,
&pflash_writel_le,
};
static CPUReadMemoryFunc * const pflash_read_ops_le[] = {
&pflash_readb_le,
&pflash_readw_le,
&pflash_readl_le,
};
/* Count trailing zeroes of a 32 bits quantity */
static int ctz32 (uint32_t n)
{
int ret;
ret = 0;
if (!(n & 0xFFFF)) {
ret += 16;
n = n >> 16;
}
if (!(n & 0xFF)) {
ret += 8;
n = n >> 8;
}
if (!(n & 0xF)) {
ret += 4;
n = n >> 4;
}
if (!(n & 0x3)) {
ret += 2;
n = n >> 2;
}
if (!(n & 0x1)) {
ret++;
#if 0 /* This is not necessary as n is never 0 */
n = n >> 1;
#endif
}
#if 0 /* This is not necessary as n is never 0 */
if (!n)
ret++;
#endif
return ret;
}
pflash_t *pflash_cfi02_register(target_phys_addr_t base, ram_addr_t off,
BlockDriverState *bs, uint32_t sector_len,
int nb_blocs, int nb_mappings, int width,
uint16_t id0, uint16_t id1,
uint16_t id2, uint16_t id3,
uint16_t unlock_addr0, uint16_t unlock_addr1,
int be)
{
pflash_t *pfl;
int32_t chip_len;
int ret;
chip_len = sector_len * nb_blocs;
/* XXX: to be fixed */
#if 0
if (total_len != (8 * 1024 * 1024) && total_len != (16 * 1024 * 1024) &&
total_len != (32 * 1024 * 1024) && total_len != (64 * 1024 * 1024))
return NULL;
#endif
pfl = qemu_mallocz(sizeof(pflash_t));
/* FIXME: Allocate ram ourselves. */
pfl->storage = qemu_get_ram_ptr(off);
if (be) {
pfl->fl_mem = cpu_register_io_memory(pflash_read_ops_be,
pflash_write_ops_be,
pfl, DEVICE_NATIVE_ENDIAN);
} else {
pfl->fl_mem = cpu_register_io_memory(pflash_read_ops_le,
pflash_write_ops_le,
pfl, DEVICE_NATIVE_ENDIAN);
}
pfl->off = off;
pfl->base = base;
pfl->chip_len = chip_len;
pfl->mappings = nb_mappings;
pflash_register_memory(pfl, 1);
pfl->bs = bs;
if (pfl->bs) {
/* read the initial flash content */
ret = bdrv_read(pfl->bs, 0, pfl->storage, chip_len >> 9);
if (ret < 0) {
cpu_unregister_io_memory(pfl->fl_mem);
qemu_free(pfl);
return NULL;
}
}
#if 0 /* XXX: there should be a bit to set up read-only,
* the same way the hardware does (with WP pin).
*/
pfl->ro = 1;
#else
pfl->ro = 0;
#endif
pfl->timer = qemu_new_timer(vm_clock, pflash_timer, pfl);
pfl->sector_len = sector_len;
pfl->width = width;
pfl->wcycle = 0;
pfl->cmd = 0;
pfl->status = 0;
pfl->ident[0] = id0;
pfl->ident[1] = id1;
pfl->ident[2] = id2;
pfl->ident[3] = id3;
pfl->unlock_addr[0] = unlock_addr0;
pfl->unlock_addr[1] = unlock_addr1;
/* Hardcoded CFI table (mostly from SG29 Spansion flash) */
pfl->cfi_len = 0x52;
/* Standard "QRY" string */
pfl->cfi_table[0x10] = 'Q';
pfl->cfi_table[0x11] = 'R';
pfl->cfi_table[0x12] = 'Y';
/* Command set (AMD/Fujitsu) */
pfl->cfi_table[0x13] = 0x02;
pfl->cfi_table[0x14] = 0x00;
/* Primary extended table address */
pfl->cfi_table[0x15] = 0x31;
pfl->cfi_table[0x16] = 0x00;
/* Alternate command set (none) */
pfl->cfi_table[0x17] = 0x00;
pfl->cfi_table[0x18] = 0x00;
/* Alternate extended table (none) */
pfl->cfi_table[0x19] = 0x00;
pfl->cfi_table[0x1A] = 0x00;
/* Vcc min */
pfl->cfi_table[0x1B] = 0x27;
/* Vcc max */
pfl->cfi_table[0x1C] = 0x36;
/* Vpp min (no Vpp pin) */
pfl->cfi_table[0x1D] = 0x00;
/* Vpp max (no Vpp pin) */
pfl->cfi_table[0x1E] = 0x00;
/* Reserved */
pfl->cfi_table[0x1F] = 0x07;
/* Timeout for min size buffer write (NA) */
pfl->cfi_table[0x20] = 0x00;
/* Typical timeout for block erase (512 ms) */
pfl->cfi_table[0x21] = 0x09;
/* Typical timeout for full chip erase (4096 ms) */
pfl->cfi_table[0x22] = 0x0C;
/* Reserved */
pfl->cfi_table[0x23] = 0x01;
/* Max timeout for buffer write (NA) */
pfl->cfi_table[0x24] = 0x00;
/* Max timeout for block erase */
pfl->cfi_table[0x25] = 0x0A;
/* Max timeout for chip erase */
pfl->cfi_table[0x26] = 0x0D;
/* Device size */
pfl->cfi_table[0x27] = ctz32(chip_len);
/* Flash device interface (8 & 16 bits) */
pfl->cfi_table[0x28] = 0x02;
pfl->cfi_table[0x29] = 0x00;
/* Max number of bytes in multi-bytes write */
/* XXX: disable buffered write as it's not supported */
// pfl->cfi_table[0x2A] = 0x05;
pfl->cfi_table[0x2A] = 0x00;
pfl->cfi_table[0x2B] = 0x00;
/* Number of erase block regions (uniform) */
pfl->cfi_table[0x2C] = 0x01;
/* Erase block region 1 */
pfl->cfi_table[0x2D] = nb_blocs - 1;
pfl->cfi_table[0x2E] = (nb_blocs - 1) >> 8;
pfl->cfi_table[0x2F] = sector_len >> 8;
pfl->cfi_table[0x30] = sector_len >> 16;
/* Extended */
pfl->cfi_table[0x31] = 'P';
pfl->cfi_table[0x32] = 'R';
pfl->cfi_table[0x33] = 'I';
pfl->cfi_table[0x34] = '1';
pfl->cfi_table[0x35] = '0';
pfl->cfi_table[0x36] = 0x00;
pfl->cfi_table[0x37] = 0x00;
pfl->cfi_table[0x38] = 0x00;
pfl->cfi_table[0x39] = 0x00;
pfl->cfi_table[0x3a] = 0x00;
pfl->cfi_table[0x3b] = 0x00;
pfl->cfi_table[0x3c] = 0x00;
return pfl;
}