qemu/hw/ppc/spapr_nested.c
Amit Machhiwal 6fb6f3096a spapr: nested: Add Power11 capability support for Nested PAPR guests in TCG L0
The Power11 architected and raw mode support in Linux was merged via [1]
and the corresponding support in QEMU is waiting to be added by [2]
which in V6 currently.

Add the Power11 capabilities and the required handling in TCG L0
implementation of the "Nested PAPR API".

Note: This patch is based on [2].

[1] https://lore.kernel.org/all/20240221044623.1598642-1-mpe@ellerman.id.au/
[2] https://lore.kernel.org/all/20240731055022.696051-1-adityag@linux.ibm.com/

Signed-off-by: Amit Machhiwal <amachhiw@linux.ibm.com>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
2024-11-04 09:14:02 +10:00

1917 lines
62 KiB
C

#include "qemu/osdep.h"
#include "qemu/cutils.h"
#include "exec/exec-all.h"
#include "helper_regs.h"
#include "hw/ppc/ppc.h"
#include "hw/ppc/spapr.h"
#include "hw/ppc/spapr_cpu_core.h"
#include "hw/ppc/spapr_nested.h"
#include "mmu-book3s-v3.h"
#include "cpu-models.h"
#include "qemu/log.h"
void spapr_nested_reset(SpaprMachineState *spapr)
{
if (spapr_get_cap(spapr, SPAPR_CAP_NESTED_KVM_HV)) {
spapr_unregister_nested_hv();
spapr_register_nested_hv();
} else if (spapr_get_cap(spapr, SPAPR_CAP_NESTED_PAPR)) {
spapr->nested.capabilities_set = false;
spapr_unregister_nested_papr();
spapr_register_nested_papr();
spapr_nested_gsb_init();
} else {
spapr->nested.api = 0;
}
}
uint8_t spapr_nested_api(SpaprMachineState *spapr)
{
return spapr->nested.api;
}
#ifdef CONFIG_TCG
bool spapr_get_pate_nested_hv(SpaprMachineState *spapr, PowerPCCPU *cpu,
target_ulong lpid, ppc_v3_pate_t *entry)
{
uint64_t patb, pats;
assert(lpid != 0);
patb = spapr->nested.ptcr & PTCR_PATB;
pats = spapr->nested.ptcr & PTCR_PATS;
/* Check if partition table is properly aligned */
if (patb & MAKE_64BIT_MASK(0, pats + 12)) {
return false;
}
/* Calculate number of entries */
pats = 1ull << (pats + 12 - 4);
if (pats <= lpid) {
return false;
}
/* Grab entry */
patb += 16 * lpid;
entry->dw0 = ldq_phys(CPU(cpu)->as, patb);
entry->dw1 = ldq_phys(CPU(cpu)->as, patb + 8);
return true;
}
static
SpaprMachineStateNestedGuest *spapr_get_nested_guest(SpaprMachineState *spapr,
target_ulong guestid)
{
SpaprMachineStateNestedGuest *guest;
guest = g_hash_table_lookup(spapr->nested.guests, GINT_TO_POINTER(guestid));
return guest;
}
bool spapr_get_pate_nested_papr(SpaprMachineState *spapr, PowerPCCPU *cpu,
target_ulong lpid, ppc_v3_pate_t *entry)
{
SpaprMachineStateNestedGuest *guest;
assert(lpid != 0);
guest = spapr_get_nested_guest(spapr, lpid);
if (!guest) {
return false;
}
entry->dw0 = guest->parttbl[0];
entry->dw1 = guest->parttbl[1];
return true;
}
#define PRTS_MASK 0x1f
static target_ulong h_set_ptbl(PowerPCCPU *cpu,
SpaprMachineState *spapr,
target_ulong opcode,
target_ulong *args)
{
target_ulong ptcr = args[0];
if (!spapr_get_cap(spapr, SPAPR_CAP_NESTED_KVM_HV)) {
return H_FUNCTION;
}
if ((ptcr & PRTS_MASK) + 12 - 4 > 12) {
return H_PARAMETER;
}
spapr->nested.ptcr = ptcr; /* Save new partition table */
return H_SUCCESS;
}
static target_ulong h_tlb_invalidate(PowerPCCPU *cpu,
SpaprMachineState *spapr,
target_ulong opcode,
target_ulong *args)
{
/*
* The spapr virtual hypervisor nested HV implementation retains no L2
* translation state except for TLB. And the TLB is always invalidated
* across L1<->L2 transitions, so nothing is required here.
*/
return H_SUCCESS;
}
static target_ulong h_copy_tofrom_guest(PowerPCCPU *cpu,
SpaprMachineState *spapr,
target_ulong opcode,
target_ulong *args)
{
/*
* This HCALL is not required, L1 KVM will take a slow path and walk the
* page tables manually to do the data copy.
*/
return H_FUNCTION;
}
static void nested_save_state(struct nested_ppc_state *save, PowerPCCPU *cpu)
{
CPUPPCState *env = &cpu->env;
SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
memcpy(save->gpr, env->gpr, sizeof(save->gpr));
save->lr = env->lr;
save->ctr = env->ctr;
save->cfar = env->cfar;
save->msr = env->msr;
save->nip = env->nip;
save->cr = ppc_get_cr(env);
save->xer = cpu_read_xer(env);
save->lpcr = env->spr[SPR_LPCR];
save->lpidr = env->spr[SPR_LPIDR];
save->pcr = env->spr[SPR_PCR];
save->dpdes = env->spr[SPR_DPDES];
save->hfscr = env->spr[SPR_HFSCR];
save->srr0 = env->spr[SPR_SRR0];
save->srr1 = env->spr[SPR_SRR1];
save->sprg0 = env->spr[SPR_SPRG0];
save->sprg1 = env->spr[SPR_SPRG1];
save->sprg2 = env->spr[SPR_SPRG2];
save->sprg3 = env->spr[SPR_SPRG3];
save->pidr = env->spr[SPR_BOOKS_PID];
save->ppr = env->spr[SPR_PPR];
if (spapr_nested_api(spapr) == NESTED_API_PAPR) {
save->amor = env->spr[SPR_AMOR];
save->dawr0 = env->spr[SPR_DAWR0];
save->dawrx0 = env->spr[SPR_DAWRX0];
save->ciabr = env->spr[SPR_CIABR];
save->purr = env->spr[SPR_PURR];
save->spurr = env->spr[SPR_SPURR];
save->ic = env->spr[SPR_IC];
save->vtb = env->spr[SPR_VTB];
save->hdar = env->spr[SPR_HDAR];
save->hdsisr = env->spr[SPR_HDSISR];
save->heir = env->spr[SPR_HEIR];
save->asdr = env->spr[SPR_ASDR];
save->dawr1 = env->spr[SPR_DAWR1];
save->dawrx1 = env->spr[SPR_DAWRX1];
save->dexcr = env->spr[SPR_DEXCR];
save->hdexcr = env->spr[SPR_HDEXCR];
save->hashkeyr = env->spr[SPR_HASHKEYR];
save->hashpkeyr = env->spr[SPR_HASHPKEYR];
memcpy(save->vsr, env->vsr, sizeof(save->vsr));
save->ebbhr = env->spr[SPR_EBBHR];
save->tar = env->spr[SPR_TAR];
save->ebbrr = env->spr[SPR_EBBRR];
save->bescr = env->spr[SPR_BESCR];
save->iamr = env->spr[SPR_IAMR];
save->amr = env->spr[SPR_AMR];
save->uamor = env->spr[SPR_UAMOR];
save->dscr = env->spr[SPR_DSCR];
save->fscr = env->spr[SPR_FSCR];
save->pspb = env->spr[SPR_PSPB];
save->ctrl = env->spr[SPR_CTRL];
save->vrsave = env->spr[SPR_VRSAVE];
save->dar = env->spr[SPR_DAR];
save->dsisr = env->spr[SPR_DSISR];
save->pmc1 = env->spr[SPR_POWER_PMC1];
save->pmc2 = env->spr[SPR_POWER_PMC2];
save->pmc3 = env->spr[SPR_POWER_PMC3];
save->pmc4 = env->spr[SPR_POWER_PMC4];
save->pmc5 = env->spr[SPR_POWER_PMC5];
save->pmc6 = env->spr[SPR_POWER_PMC6];
save->mmcr0 = env->spr[SPR_POWER_MMCR0];
save->mmcr1 = env->spr[SPR_POWER_MMCR1];
save->mmcr2 = env->spr[SPR_POWER_MMCR2];
save->mmcra = env->spr[SPR_POWER_MMCRA];
save->sdar = env->spr[SPR_POWER_SDAR];
save->siar = env->spr[SPR_POWER_SIAR];
save->sier = env->spr[SPR_POWER_SIER];
save->vscr = ppc_get_vscr(env);
save->fpscr = env->fpscr;
} else if (spapr_nested_api(spapr) == NESTED_API_KVM_HV) {
save->tb_offset = env->tb_env->tb_offset;
}
}
static void nested_post_load_state(CPUPPCState *env, CPUState *cs)
{
/*
* compute hflags and possible interrupts.
*/
hreg_compute_hflags(env);
ppc_maybe_interrupt(env);
/*
* Nested HV does not tag TLB entries between L1 and L2, so must
* flush on transition.
*/
tlb_flush(cs);
env->reserve_addr = -1; /* Reset the reservation */
}
static void nested_load_state(PowerPCCPU *cpu, struct nested_ppc_state *load)
{
CPUPPCState *env = &cpu->env;
SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
memcpy(env->gpr, load->gpr, sizeof(env->gpr));
env->lr = load->lr;
env->ctr = load->ctr;
env->cfar = load->cfar;
env->msr = load->msr;
env->nip = load->nip;
ppc_set_cr(env, load->cr);
cpu_write_xer(env, load->xer);
env->spr[SPR_LPCR] = load->lpcr;
env->spr[SPR_LPIDR] = load->lpidr;
env->spr[SPR_PCR] = load->pcr;
env->spr[SPR_DPDES] = load->dpdes;
env->spr[SPR_HFSCR] = load->hfscr;
env->spr[SPR_SRR0] = load->srr0;
env->spr[SPR_SRR1] = load->srr1;
env->spr[SPR_SPRG0] = load->sprg0;
env->spr[SPR_SPRG1] = load->sprg1;
env->spr[SPR_SPRG2] = load->sprg2;
env->spr[SPR_SPRG3] = load->sprg3;
env->spr[SPR_BOOKS_PID] = load->pidr;
env->spr[SPR_PPR] = load->ppr;
if (spapr_nested_api(spapr) == NESTED_API_PAPR) {
env->spr[SPR_AMOR] = load->amor;
env->spr[SPR_DAWR0] = load->dawr0;
env->spr[SPR_DAWRX0] = load->dawrx0;
env->spr[SPR_CIABR] = load->ciabr;
env->spr[SPR_PURR] = load->purr;
env->spr[SPR_SPURR] = load->purr;
env->spr[SPR_IC] = load->ic;
env->spr[SPR_VTB] = load->vtb;
env->spr[SPR_HDAR] = load->hdar;
env->spr[SPR_HDSISR] = load->hdsisr;
env->spr[SPR_HEIR] = load->heir;
env->spr[SPR_ASDR] = load->asdr;
env->spr[SPR_DAWR1] = load->dawr1;
env->spr[SPR_DAWRX1] = load->dawrx1;
env->spr[SPR_DEXCR] = load->dexcr;
env->spr[SPR_HDEXCR] = load->hdexcr;
env->spr[SPR_HASHKEYR] = load->hashkeyr;
env->spr[SPR_HASHPKEYR] = load->hashpkeyr;
memcpy(env->vsr, load->vsr, sizeof(env->vsr));
env->spr[SPR_EBBHR] = load->ebbhr;
env->spr[SPR_TAR] = load->tar;
env->spr[SPR_EBBRR] = load->ebbrr;
env->spr[SPR_BESCR] = load->bescr;
env->spr[SPR_IAMR] = load->iamr;
env->spr[SPR_AMR] = load->amr;
env->spr[SPR_UAMOR] = load->uamor;
env->spr[SPR_DSCR] = load->dscr;
env->spr[SPR_FSCR] = load->fscr;
env->spr[SPR_PSPB] = load->pspb;
env->spr[SPR_CTRL] = load->ctrl;
env->spr[SPR_VRSAVE] = load->vrsave;
env->spr[SPR_DAR] = load->dar;
env->spr[SPR_DSISR] = load->dsisr;
env->spr[SPR_POWER_PMC1] = load->pmc1;
env->spr[SPR_POWER_PMC2] = load->pmc2;
env->spr[SPR_POWER_PMC3] = load->pmc3;
env->spr[SPR_POWER_PMC4] = load->pmc4;
env->spr[SPR_POWER_PMC5] = load->pmc5;
env->spr[SPR_POWER_PMC6] = load->pmc6;
env->spr[SPR_POWER_MMCR0] = load->mmcr0;
env->spr[SPR_POWER_MMCR1] = load->mmcr1;
env->spr[SPR_POWER_MMCR2] = load->mmcr2;
env->spr[SPR_POWER_MMCRA] = load->mmcra;
env->spr[SPR_POWER_SDAR] = load->sdar;
env->spr[SPR_POWER_SIAR] = load->siar;
env->spr[SPR_POWER_SIER] = load->sier;
ppc_store_vscr(env, load->vscr);
ppc_store_fpscr(env, load->fpscr);
} else if (spapr_nested_api(spapr) == NESTED_API_KVM_HV) {
env->tb_env->tb_offset = load->tb_offset;
}
}
/*
* When this handler returns, the environment is switched to the L2 guest
* and TCG begins running that. spapr_exit_nested() performs the switch from
* L2 back to L1 and returns from the H_ENTER_NESTED hcall.
*/
static target_ulong h_enter_nested(PowerPCCPU *cpu,
SpaprMachineState *spapr,
target_ulong opcode,
target_ulong *args)
{
PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
CPUPPCState *env = &cpu->env;
CPUState *cs = CPU(cpu);
SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
struct nested_ppc_state l2_state;
target_ulong hv_ptr = args[0];
target_ulong regs_ptr = args[1];
target_ulong hdec, now = cpu_ppc_load_tbl(env);
target_ulong lpcr, lpcr_mask;
struct kvmppc_hv_guest_state *hvstate;
struct kvmppc_hv_guest_state hv_state;
struct kvmppc_pt_regs *regs;
hwaddr len;
if (spapr->nested.ptcr == 0) {
return H_NOT_AVAILABLE;
}
len = sizeof(*hvstate);
hvstate = address_space_map(CPU(cpu)->as, hv_ptr, &len, false,
MEMTXATTRS_UNSPECIFIED);
if (len != sizeof(*hvstate)) {
address_space_unmap(CPU(cpu)->as, hvstate, len, 0, false);
return H_PARAMETER;
}
memcpy(&hv_state, hvstate, len);
address_space_unmap(CPU(cpu)->as, hvstate, len, len, false);
/*
* We accept versions 1 and 2. Version 2 fields are unused because TCG
* does not implement DAWR*.
*/
if (hv_state.version > HV_GUEST_STATE_VERSION) {
return H_PARAMETER;
}
if (hv_state.lpid == 0) {
return H_PARAMETER;
}
spapr_cpu->nested_host_state = g_try_new(struct nested_ppc_state, 1);
if (!spapr_cpu->nested_host_state) {
return H_NO_MEM;
}
assert(env->spr[SPR_LPIDR] == 0);
assert(env->spr[SPR_DPDES] == 0);
nested_save_state(spapr_cpu->nested_host_state, cpu);
len = sizeof(*regs);
regs = address_space_map(CPU(cpu)->as, regs_ptr, &len, false,
MEMTXATTRS_UNSPECIFIED);
if (!regs || len != sizeof(*regs)) {
address_space_unmap(CPU(cpu)->as, regs, len, 0, false);
g_free(spapr_cpu->nested_host_state);
return H_P2;
}
len = sizeof(l2_state.gpr);
assert(len == sizeof(regs->gpr));
memcpy(l2_state.gpr, regs->gpr, len);
l2_state.lr = regs->link;
l2_state.ctr = regs->ctr;
l2_state.xer = regs->xer;
l2_state.cr = regs->ccr;
l2_state.msr = regs->msr;
l2_state.nip = regs->nip;
address_space_unmap(CPU(cpu)->as, regs, len, len, false);
l2_state.cfar = hv_state.cfar;
l2_state.lpidr = hv_state.lpid;
lpcr_mask = LPCR_DPFD | LPCR_ILE | LPCR_AIL | LPCR_LD | LPCR_MER;
lpcr = (env->spr[SPR_LPCR] & ~lpcr_mask) | (hv_state.lpcr & lpcr_mask);
lpcr |= LPCR_HR | LPCR_UPRT | LPCR_GTSE | LPCR_HVICE | LPCR_HDICE;
lpcr &= ~LPCR_LPES0;
l2_state.lpcr = lpcr & pcc->lpcr_mask;
l2_state.pcr = hv_state.pcr;
/* hv_state.amor is not used */
l2_state.dpdes = hv_state.dpdes;
l2_state.hfscr = hv_state.hfscr;
/* TCG does not implement DAWR*, CIABR, PURR, SPURR, IC, VTB, HEIR SPRs*/
l2_state.srr0 = hv_state.srr0;
l2_state.srr1 = hv_state.srr1;
l2_state.sprg0 = hv_state.sprg[0];
l2_state.sprg1 = hv_state.sprg[1];
l2_state.sprg2 = hv_state.sprg[2];
l2_state.sprg3 = hv_state.sprg[3];
l2_state.pidr = hv_state.pidr;
l2_state.ppr = hv_state.ppr;
l2_state.tb_offset = env->tb_env->tb_offset + hv_state.tb_offset;
/*
* Switch to the nested guest environment and start the "hdec" timer.
*/
nested_load_state(cpu, &l2_state);
nested_post_load_state(env, cs);
hdec = hv_state.hdec_expiry - now;
cpu_ppc_hdecr_init(env);
cpu_ppc_store_hdecr(env, hdec);
/*
* The hv_state.vcpu_token is not needed. It is used by the KVM
* implementation to remember which L2 vCPU last ran on which physical
* CPU so as to invalidate process scope translations if it is moved
* between physical CPUs. For now TLBs are always flushed on L1<->L2
* transitions so this is not a problem.
*
* Could validate that the same vcpu_token does not attempt to run on
* different L1 vCPUs at the same time, but that would be a L1 KVM bug
* and it's not obviously worth a new data structure to do it.
*/
spapr_cpu->in_nested = true;
/*
* The spapr hcall helper sets env->gpr[3] to the return value, but at
* this point the L1 is not returning from the hcall but rather we
* start running the L2, so r3 must not be clobbered, so return env->gpr[3]
* to leave it unchanged.
*/
return env->gpr[3];
}
static void spapr_exit_nested_hv(PowerPCCPU *cpu, int excp)
{
CPUPPCState *env = &cpu->env;
CPUState *cs = CPU(cpu);
SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
struct nested_ppc_state l2_state;
target_ulong hv_ptr = spapr_cpu->nested_host_state->gpr[4];
target_ulong regs_ptr = spapr_cpu->nested_host_state->gpr[5];
target_ulong hsrr0, hsrr1, hdar, asdr, hdsisr;
struct kvmppc_hv_guest_state *hvstate;
struct kvmppc_pt_regs *regs;
hwaddr len;
nested_save_state(&l2_state, cpu);
hsrr0 = env->spr[SPR_HSRR0];
hsrr1 = env->spr[SPR_HSRR1];
hdar = env->spr[SPR_HDAR];
hdsisr = env->spr[SPR_HDSISR];
asdr = env->spr[SPR_ASDR];
/*
* Switch back to the host environment (including for any error).
*/
assert(env->spr[SPR_LPIDR] != 0);
nested_load_state(cpu, spapr_cpu->nested_host_state);
nested_post_load_state(env, cs);
env->gpr[3] = env->excp_vectors[excp]; /* hcall return value */
cpu_ppc_hdecr_exit(env);
spapr_cpu->in_nested = false;
g_free(spapr_cpu->nested_host_state);
spapr_cpu->nested_host_state = NULL;
len = sizeof(*hvstate);
hvstate = address_space_map(CPU(cpu)->as, hv_ptr, &len, true,
MEMTXATTRS_UNSPECIFIED);
if (len != sizeof(*hvstate)) {
address_space_unmap(CPU(cpu)->as, hvstate, len, 0, true);
env->gpr[3] = H_PARAMETER;
return;
}
hvstate->cfar = l2_state.cfar;
hvstate->lpcr = l2_state.lpcr;
hvstate->pcr = l2_state.pcr;
hvstate->dpdes = l2_state.dpdes;
hvstate->hfscr = l2_state.hfscr;
if (excp == POWERPC_EXCP_HDSI) {
hvstate->hdar = hdar;
hvstate->hdsisr = hdsisr;
hvstate->asdr = asdr;
} else if (excp == POWERPC_EXCP_HISI) {
hvstate->asdr = asdr;
}
/* HEIR should be implemented for HV mode and saved here. */
hvstate->srr0 = l2_state.srr0;
hvstate->srr1 = l2_state.srr1;
hvstate->sprg[0] = l2_state.sprg0;
hvstate->sprg[1] = l2_state.sprg1;
hvstate->sprg[2] = l2_state.sprg2;
hvstate->sprg[3] = l2_state.sprg3;
hvstate->pidr = l2_state.pidr;
hvstate->ppr = l2_state.ppr;
/* Is it okay to specify write length larger than actual data written? */
address_space_unmap(CPU(cpu)->as, hvstate, len, len, true);
len = sizeof(*regs);
regs = address_space_map(CPU(cpu)->as, regs_ptr, &len, true,
MEMTXATTRS_UNSPECIFIED);
if (!regs || len != sizeof(*regs)) {
address_space_unmap(CPU(cpu)->as, regs, len, 0, true);
env->gpr[3] = H_P2;
return;
}
len = sizeof(env->gpr);
assert(len == sizeof(regs->gpr));
memcpy(regs->gpr, l2_state.gpr, len);
regs->link = l2_state.lr;
regs->ctr = l2_state.ctr;
regs->xer = l2_state.xer;
regs->ccr = l2_state.cr;
if (excp == POWERPC_EXCP_MCHECK ||
excp == POWERPC_EXCP_RESET ||
excp == POWERPC_EXCP_SYSCALL) {
regs->nip = l2_state.srr0;
regs->msr = l2_state.srr1 & env->msr_mask;
} else {
regs->nip = hsrr0;
regs->msr = hsrr1 & env->msr_mask;
}
/* Is it okay to specify write length larger than actual data written? */
address_space_unmap(CPU(cpu)->as, regs, len, len, true);
}
static bool spapr_nested_vcpu_check(SpaprMachineStateNestedGuest *guest,
target_ulong vcpuid, bool inoutbuf)
{
struct SpaprMachineStateNestedGuestVcpu *vcpu;
/*
* Perform sanity checks for the provided vcpuid of a guest.
* For now, ensure its valid, allocated and enabled for use.
*/
if (vcpuid >= PAPR_NESTED_GUEST_VCPU_MAX) {
return false;
}
if (!(vcpuid < guest->nr_vcpus)) {
return false;
}
vcpu = &guest->vcpus[vcpuid];
if (!vcpu->enabled) {
return false;
}
if (!inoutbuf) {
return true;
}
/* Check to see if the in/out buffers are registered */
if (vcpu->runbufin.addr && vcpu->runbufout.addr) {
return true;
}
return false;
}
static void *get_vcpu_state_ptr(SpaprMachineStateNestedGuest *guest,
target_ulong vcpuid)
{
assert(spapr_nested_vcpu_check(guest, vcpuid, false));
return &guest->vcpus[vcpuid].state;
}
static void *get_vcpu_ptr(SpaprMachineStateNestedGuest *guest,
target_ulong vcpuid)
{
assert(spapr_nested_vcpu_check(guest, vcpuid, false));
return &guest->vcpus[vcpuid];
}
static void *get_guest_ptr(SpaprMachineStateNestedGuest *guest,
target_ulong vcpuid)
{
return guest; /* for GSBE_NESTED */
}
/*
* set=1 means the L1 is trying to set some state
* set=0 means the L1 is trying to get some state
*/
static void copy_state_8to8(void *a, void *b, bool set)
{
/* set takes from the Big endian element_buf and sets internal buffer */
if (set) {
*(uint64_t *)a = be64_to_cpu(*(uint64_t *)b);
} else {
*(uint64_t *)b = cpu_to_be64(*(uint64_t *)a);
}
}
static void copy_state_4to4(void *a, void *b, bool set)
{
if (set) {
*(uint32_t *)a = be32_to_cpu(*(uint32_t *)b);
} else {
*(uint32_t *)b = cpu_to_be32(*((uint32_t *)a));
}
}
static void copy_state_16to16(void *a, void *b, bool set)
{
uint64_t *src, *dst;
if (set) {
src = b;
dst = a;
dst[1] = be64_to_cpu(src[0]);
dst[0] = be64_to_cpu(src[1]);
} else {
src = a;
dst = b;
dst[1] = cpu_to_be64(src[0]);
dst[0] = cpu_to_be64(src[1]);
}
}
static void copy_state_4to8(void *a, void *b, bool set)
{
if (set) {
*(uint64_t *)a = (uint64_t) be32_to_cpu(*(uint32_t *)b);
} else {
*(uint32_t *)b = cpu_to_be32((uint32_t) (*((uint64_t *)a)));
}
}
static void copy_state_pagetbl(void *a, void *b, bool set)
{
uint64_t *pagetbl;
uint64_t *buf; /* 3 double words */
uint64_t rts;
assert(set);
pagetbl = a;
buf = b;
*pagetbl = be64_to_cpu(buf[0]);
/* as per ISA section 6.7.6.1 */
*pagetbl |= PATE0_HR; /* Host Radix bit is 1 */
/* RTS */
rts = be64_to_cpu(buf[1]);
assert(rts == 52);
rts = rts - 31; /* since radix tree size = 2^(RTS+31) */
*pagetbl |= ((rts & 0x7) << 5); /* RTS2 is bit 56:58 */
*pagetbl |= (((rts >> 3) & 0x3) << 61); /* RTS1 is bit 1:2 */
/* RPDS {Size = 2^(RPDS+3) , RPDS >=5} */
*pagetbl |= 63 - clz64(be64_to_cpu(buf[2])) - 3;
}
static void copy_state_proctbl(void *a, void *b, bool set)
{
uint64_t *proctbl;
uint64_t *buf; /* 2 double words */
assert(set);
proctbl = a;
buf = b;
/* PRTB: Process Table Base */
*proctbl = be64_to_cpu(buf[0]);
/* PRTS: Process Table Size = 2^(12+PRTS) */
if (be64_to_cpu(buf[1]) == (1ULL << 12)) {
*proctbl |= 0;
} else if (be64_to_cpu(buf[1]) == (1ULL << 24)) {
*proctbl |= 12;
} else {
g_assert_not_reached();
}
}
static void copy_state_runbuf(void *a, void *b, bool set)
{
uint64_t *buf; /* 2 double words */
struct SpaprMachineStateNestedGuestVcpuRunBuf *runbuf;
assert(set);
runbuf = a;
buf = b;
runbuf->addr = be64_to_cpu(buf[0]);
assert(runbuf->addr);
/* per spec */
assert(be64_to_cpu(buf[1]) <= 16384);
/*
* This will also hit in the input buffer but should be fine for
* now. If not we can split this function.
*/
assert(be64_to_cpu(buf[1]) >= VCPU_OUT_BUF_MIN_SZ);
runbuf->size = be64_to_cpu(buf[1]);
}
/* tell the L1 how big we want the output vcpu run buffer */
static void out_buf_min_size(void *a, void *b, bool set)
{
uint64_t *buf; /* 1 double word */
assert(!set);
buf = b;
buf[0] = cpu_to_be64(VCPU_OUT_BUF_MIN_SZ);
}
static void copy_logical_pvr(void *a, void *b, bool set)
{
SpaprMachineStateNestedGuest *guest;
uint32_t *buf; /* 1 word */
uint32_t *pvr_logical_ptr;
uint32_t pvr_logical;
target_ulong pcr = 0;
pvr_logical_ptr = a;
buf = b;
if (!set) {
buf[0] = cpu_to_be32(*pvr_logical_ptr);
return;
}
pvr_logical = be32_to_cpu(buf[0]);
*pvr_logical_ptr = pvr_logical;
if (*pvr_logical_ptr) {
switch (*pvr_logical_ptr) {
case CPU_POWERPC_LOGICAL_3_10_P11:
case CPU_POWERPC_LOGICAL_3_10:
pcr = PCR_COMPAT_3_10 | PCR_COMPAT_3_00;
break;
case CPU_POWERPC_LOGICAL_3_00:
pcr = PCR_COMPAT_3_00;
break;
default:
qemu_log_mask(LOG_GUEST_ERROR,
"Could not set PCR for LPVR=0x%08x\n",
*pvr_logical_ptr);
return;
}
}
guest = container_of(pvr_logical_ptr,
struct SpaprMachineStateNestedGuest,
pvr_logical);
for (int i = 0; i < guest->nr_vcpus; i++) {
guest->vcpus[i].state.pcr = ~pcr | HVMASK_PCR;
}
}
static void copy_tb_offset(void *a, void *b, bool set)
{
SpaprMachineStateNestedGuest *guest;
uint64_t *buf; /* 1 double word */
uint64_t *tb_offset_ptr;
uint64_t tb_offset;
tb_offset_ptr = a;
buf = b;
if (!set) {
buf[0] = cpu_to_be64(*tb_offset_ptr);
return;
}
tb_offset = be64_to_cpu(buf[0]);
/* need to copy this to the individual tb_offset for each vcpu */
guest = container_of(tb_offset_ptr,
struct SpaprMachineStateNestedGuest,
tb_offset);
for (int i = 0; i < guest->nr_vcpus; i++) {
guest->vcpus[i].tb_offset = tb_offset;
}
}
static void copy_state_hdecr(void *a, void *b, bool set)
{
uint64_t *buf; /* 1 double word */
uint64_t *hdecr_expiry_tb;
hdecr_expiry_tb = a;
buf = b;
if (!set) {
buf[0] = cpu_to_be64(*hdecr_expiry_tb);
return;
}
*hdecr_expiry_tb = be64_to_cpu(buf[0]);
}
struct guest_state_element_type guest_state_element_types[] = {
GUEST_STATE_ELEMENT_NOP(GSB_HV_VCPU_IGNORED_ID, 0),
GUEST_STATE_ELEMENT_ENV_DW(GSB_VCPU_GPR0, gpr[0]),
GUEST_STATE_ELEMENT_ENV_DW(GSB_VCPU_GPR1, gpr[1]),
GUEST_STATE_ELEMENT_ENV_DW(GSB_VCPU_GPR2, gpr[2]),
GUEST_STATE_ELEMENT_ENV_DW(GSB_VCPU_GPR3, gpr[3]),
GUEST_STATE_ELEMENT_ENV_DW(GSB_VCPU_GPR4, gpr[4]),
GUEST_STATE_ELEMENT_ENV_DW(GSB_VCPU_GPR5, gpr[5]),
GUEST_STATE_ELEMENT_ENV_DW(GSB_VCPU_GPR6, gpr[6]),
GUEST_STATE_ELEMENT_ENV_DW(GSB_VCPU_GPR7, gpr[7]),
GUEST_STATE_ELEMENT_ENV_DW(GSB_VCPU_GPR8, gpr[8]),
GUEST_STATE_ELEMENT_ENV_DW(GSB_VCPU_GPR9, gpr[9]),
GUEST_STATE_ELEMENT_ENV_DW(GSB_VCPU_GPR10, gpr[10]),
GUEST_STATE_ELEMENT_ENV_DW(GSB_VCPU_GPR11, gpr[11]),
GUEST_STATE_ELEMENT_ENV_DW(GSB_VCPU_GPR12, gpr[12]),
GUEST_STATE_ELEMENT_ENV_DW(GSB_VCPU_GPR13, gpr[13]),
GUEST_STATE_ELEMENT_ENV_DW(GSB_VCPU_GPR14, gpr[14]),
GUEST_STATE_ELEMENT_ENV_DW(GSB_VCPU_GPR15, gpr[15]),
GUEST_STATE_ELEMENT_ENV_DW(GSB_VCPU_GPR16, gpr[16]),
GUEST_STATE_ELEMENT_ENV_DW(GSB_VCPU_GPR17, gpr[17]),
GUEST_STATE_ELEMENT_ENV_DW(GSB_VCPU_GPR18, gpr[18]),
GUEST_STATE_ELEMENT_ENV_DW(GSB_VCPU_GPR19, gpr[19]),
GUEST_STATE_ELEMENT_ENV_DW(GSB_VCPU_GPR20, gpr[20]),
GUEST_STATE_ELEMENT_ENV_DW(GSB_VCPU_GPR21, gpr[21]),
GUEST_STATE_ELEMENT_ENV_DW(GSB_VCPU_GPR22, gpr[22]),
GUEST_STATE_ELEMENT_ENV_DW(GSB_VCPU_GPR23, gpr[23]),
GUEST_STATE_ELEMENT_ENV_DW(GSB_VCPU_GPR24, gpr[24]),
GUEST_STATE_ELEMENT_ENV_DW(GSB_VCPU_GPR25, gpr[25]),
GUEST_STATE_ELEMENT_ENV_DW(GSB_VCPU_GPR26, gpr[26]),
GUEST_STATE_ELEMENT_ENV_DW(GSB_VCPU_GPR27, gpr[27]),
GUEST_STATE_ELEMENT_ENV_DW(GSB_VCPU_GPR28, gpr[28]),
GUEST_STATE_ELEMENT_ENV_DW(GSB_VCPU_GPR29, gpr[29]),
GUEST_STATE_ELEMENT_ENV_DW(GSB_VCPU_GPR30, gpr[30]),
GUEST_STATE_ELEMENT_ENV_DW(GSB_VCPU_GPR31, gpr[31]),
GUEST_STATE_ELEMENT_ENV_DW(GSB_VCPU_SPR_NIA, nip),
GSE_ENV_DWM(GSB_VCPU_SPR_MSR, msr, HVMASK_MSR),
GUEST_STATE_ELEMENT_ENV_DW(GSB_VCPU_SPR_CTR, ctr),
GUEST_STATE_ELEMENT_ENV_DW(GSB_VCPU_SPR_LR, lr),
GUEST_STATE_ELEMENT_ENV_DW(GSB_VCPU_SPR_XER, xer),
GUEST_STATE_ELEMENT_ENV_WW(GSB_VCPU_SPR_CR, cr),
GUEST_STATE_ELEMENT_NOP_DW(GSB_VCPU_SPR_MMCR3),
GUEST_STATE_ELEMENT_NOP_DW(GSB_VCPU_SPR_SIER2),
GUEST_STATE_ELEMENT_NOP_DW(GSB_VCPU_SPR_SIER3),
GUEST_STATE_ELEMENT_NOP_W(GSB_VCPU_SPR_WORT),
GSE_ENV_DWM(GSB_VCPU_SPR_LPCR, lpcr, HVMASK_LPCR),
GUEST_STATE_ELEMENT_ENV_DW(GSB_VCPU_SPR_AMOR, amor),
GUEST_STATE_ELEMENT_ENV_DW(GSB_VCPU_SPR_HFSCR, hfscr),
GUEST_STATE_ELEMENT_ENV_DW(GSB_VCPU_SPR_DAWR0, dawr0),
GUEST_STATE_ELEMENT_ENV_W(GSB_VCPU_SPR_DAWRX0, dawrx0),
GUEST_STATE_ELEMENT_ENV_DW(GSB_VCPU_SPR_CIABR, ciabr),
GUEST_STATE_ELEMENT_ENV_DW(GSB_VCPU_SPR_PURR, purr),
GUEST_STATE_ELEMENT_ENV_DW(GSB_VCPU_SPR_SPURR, spurr),
GUEST_STATE_ELEMENT_ENV_DW(GSB_VCPU_SPR_IC, ic),
GUEST_STATE_ELEMENT_ENV_DW(GSB_VCPU_SPR_VTB, vtb),
GUEST_STATE_ELEMENT_ENV_DW(GSB_VCPU_SPR_HDAR, hdar),
GUEST_STATE_ELEMENT_ENV_W(GSB_VCPU_SPR_HDSISR, hdsisr),
GUEST_STATE_ELEMENT_ENV_W(GSB_VCPU_SPR_HEIR, heir),
GUEST_STATE_ELEMENT_ENV_DW(GSB_VCPU_SPR_ASDR, asdr),
GUEST_STATE_ELEMENT_ENV_DW(GSB_VCPU_SPR_SRR0, srr0),
GUEST_STATE_ELEMENT_ENV_DW(GSB_VCPU_SPR_SRR1, srr1),
GUEST_STATE_ELEMENT_ENV_DW(GSB_VCPU_SPR_SPRG0, sprg0),
GUEST_STATE_ELEMENT_ENV_DW(GSB_VCPU_SPR_SPRG1, sprg1),
GUEST_STATE_ELEMENT_ENV_DW(GSB_VCPU_SPR_SPRG2, sprg2),
GUEST_STATE_ELEMENT_ENV_DW(GSB_VCPU_SPR_SPRG3, sprg3),
GUEST_STATE_ELEMENT_ENV_W(GSB_VCPU_SPR_PIDR, pidr),
GUEST_STATE_ELEMENT_ENV_DW(GSB_VCPU_SPR_CFAR, cfar),
GUEST_STATE_ELEMENT_ENV_DW(GSB_VCPU_SPR_PPR, ppr),
GUEST_STATE_ELEMENT_ENV_DW(GSB_VCPU_SPR_DAWR1, dawr1),
GUEST_STATE_ELEMENT_ENV_W(GSB_VCPU_SPR_DAWRX1, dawrx1),
GUEST_STATE_ELEMENT_ENV_DW(GSB_VCPU_SPR_DEXCR, dexcr),
GSE_ENV_DWM(GSB_VCPU_SPR_HDEXCR, hdexcr, HVMASK_HDEXCR),
GUEST_STATE_ELEMENT_ENV_DW(GSB_VCPU_SPR_HASHKEYR, hashkeyr),
GUEST_STATE_ELEMENT_ENV_DW(GSB_VCPU_SPR_HASHPKEYR, hashpkeyr),
GUEST_STATE_ELEMENT_ENV_QW(GSB_VCPU_SPR_VSR0, vsr[0]),
GUEST_STATE_ELEMENT_ENV_QW(GSB_VCPU_SPR_VSR1, vsr[1]),
GUEST_STATE_ELEMENT_ENV_QW(GSB_VCPU_SPR_VSR2, vsr[2]),
GUEST_STATE_ELEMENT_ENV_QW(GSB_VCPU_SPR_VSR3, vsr[3]),
GUEST_STATE_ELEMENT_ENV_QW(GSB_VCPU_SPR_VSR4, vsr[4]),
GUEST_STATE_ELEMENT_ENV_QW(GSB_VCPU_SPR_VSR5, vsr[5]),
GUEST_STATE_ELEMENT_ENV_QW(GSB_VCPU_SPR_VSR6, vsr[6]),
GUEST_STATE_ELEMENT_ENV_QW(GSB_VCPU_SPR_VSR7, vsr[7]),
GUEST_STATE_ELEMENT_ENV_QW(GSB_VCPU_SPR_VSR8, vsr[8]),
GUEST_STATE_ELEMENT_ENV_QW(GSB_VCPU_SPR_VSR9, vsr[9]),
GUEST_STATE_ELEMENT_ENV_QW(GSB_VCPU_SPR_VSR10, vsr[10]),
GUEST_STATE_ELEMENT_ENV_QW(GSB_VCPU_SPR_VSR11, vsr[11]),
GUEST_STATE_ELEMENT_ENV_QW(GSB_VCPU_SPR_VSR12, vsr[12]),
GUEST_STATE_ELEMENT_ENV_QW(GSB_VCPU_SPR_VSR13, vsr[13]),
GUEST_STATE_ELEMENT_ENV_QW(GSB_VCPU_SPR_VSR14, vsr[14]),
GUEST_STATE_ELEMENT_ENV_QW(GSB_VCPU_SPR_VSR15, vsr[15]),
GUEST_STATE_ELEMENT_ENV_QW(GSB_VCPU_SPR_VSR16, vsr[16]),
GUEST_STATE_ELEMENT_ENV_QW(GSB_VCPU_SPR_VSR17, vsr[17]),
GUEST_STATE_ELEMENT_ENV_QW(GSB_VCPU_SPR_VSR18, vsr[18]),
GUEST_STATE_ELEMENT_ENV_QW(GSB_VCPU_SPR_VSR19, vsr[19]),
GUEST_STATE_ELEMENT_ENV_QW(GSB_VCPU_SPR_VSR20, vsr[20]),
GUEST_STATE_ELEMENT_ENV_QW(GSB_VCPU_SPR_VSR21, vsr[21]),
GUEST_STATE_ELEMENT_ENV_QW(GSB_VCPU_SPR_VSR22, vsr[22]),
GUEST_STATE_ELEMENT_ENV_QW(GSB_VCPU_SPR_VSR23, vsr[23]),
GUEST_STATE_ELEMENT_ENV_QW(GSB_VCPU_SPR_VSR24, vsr[24]),
GUEST_STATE_ELEMENT_ENV_QW(GSB_VCPU_SPR_VSR25, vsr[25]),
GUEST_STATE_ELEMENT_ENV_QW(GSB_VCPU_SPR_VSR26, vsr[26]),
GUEST_STATE_ELEMENT_ENV_QW(GSB_VCPU_SPR_VSR27, vsr[27]),
GUEST_STATE_ELEMENT_ENV_QW(GSB_VCPU_SPR_VSR28, vsr[28]),
GUEST_STATE_ELEMENT_ENV_QW(GSB_VCPU_SPR_VSR29, vsr[29]),
GUEST_STATE_ELEMENT_ENV_QW(GSB_VCPU_SPR_VSR30, vsr[30]),
GUEST_STATE_ELEMENT_ENV_QW(GSB_VCPU_SPR_VSR31, vsr[31]),
GUEST_STATE_ELEMENT_ENV_QW(GSB_VCPU_SPR_VSR32, vsr[32]),
GUEST_STATE_ELEMENT_ENV_QW(GSB_VCPU_SPR_VSR33, vsr[33]),
GUEST_STATE_ELEMENT_ENV_QW(GSB_VCPU_SPR_VSR34, vsr[34]),
GUEST_STATE_ELEMENT_ENV_QW(GSB_VCPU_SPR_VSR35, vsr[35]),
GUEST_STATE_ELEMENT_ENV_QW(GSB_VCPU_SPR_VSR36, vsr[36]),
GUEST_STATE_ELEMENT_ENV_QW(GSB_VCPU_SPR_VSR37, vsr[37]),
GUEST_STATE_ELEMENT_ENV_QW(GSB_VCPU_SPR_VSR38, vsr[38]),
GUEST_STATE_ELEMENT_ENV_QW(GSB_VCPU_SPR_VSR39, vsr[39]),
GUEST_STATE_ELEMENT_ENV_QW(GSB_VCPU_SPR_VSR40, vsr[40]),
GUEST_STATE_ELEMENT_ENV_QW(GSB_VCPU_SPR_VSR41, vsr[41]),
GUEST_STATE_ELEMENT_ENV_QW(GSB_VCPU_SPR_VSR42, vsr[42]),
GUEST_STATE_ELEMENT_ENV_QW(GSB_VCPU_SPR_VSR43, vsr[43]),
GUEST_STATE_ELEMENT_ENV_QW(GSB_VCPU_SPR_VSR44, vsr[44]),
GUEST_STATE_ELEMENT_ENV_QW(GSB_VCPU_SPR_VSR45, vsr[45]),
GUEST_STATE_ELEMENT_ENV_QW(GSB_VCPU_SPR_VSR46, vsr[46]),
GUEST_STATE_ELEMENT_ENV_QW(GSB_VCPU_SPR_VSR47, vsr[47]),
GUEST_STATE_ELEMENT_ENV_QW(GSB_VCPU_SPR_VSR48, vsr[48]),
GUEST_STATE_ELEMENT_ENV_QW(GSB_VCPU_SPR_VSR49, vsr[49]),
GUEST_STATE_ELEMENT_ENV_QW(GSB_VCPU_SPR_VSR50, vsr[50]),
GUEST_STATE_ELEMENT_ENV_QW(GSB_VCPU_SPR_VSR51, vsr[51]),
GUEST_STATE_ELEMENT_ENV_QW(GSB_VCPU_SPR_VSR52, vsr[52]),
GUEST_STATE_ELEMENT_ENV_QW(GSB_VCPU_SPR_VSR53, vsr[53]),
GUEST_STATE_ELEMENT_ENV_QW(GSB_VCPU_SPR_VSR54, vsr[54]),
GUEST_STATE_ELEMENT_ENV_QW(GSB_VCPU_SPR_VSR55, vsr[55]),
GUEST_STATE_ELEMENT_ENV_QW(GSB_VCPU_SPR_VSR56, vsr[56]),
GUEST_STATE_ELEMENT_ENV_QW(GSB_VCPU_SPR_VSR57, vsr[57]),
GUEST_STATE_ELEMENT_ENV_QW(GSB_VCPU_SPR_VSR58, vsr[58]),
GUEST_STATE_ELEMENT_ENV_QW(GSB_VCPU_SPR_VSR59, vsr[59]),
GUEST_STATE_ELEMENT_ENV_QW(GSB_VCPU_SPR_VSR60, vsr[60]),
GUEST_STATE_ELEMENT_ENV_QW(GSB_VCPU_SPR_VSR61, vsr[61]),
GUEST_STATE_ELEMENT_ENV_QW(GSB_VCPU_SPR_VSR62, vsr[62]),
GUEST_STATE_ELEMENT_ENV_QW(GSB_VCPU_SPR_VSR63, vsr[63]),
GUEST_STATE_ELEMENT_ENV_DW(GSB_VCPU_SPR_EBBHR, ebbhr),
GUEST_STATE_ELEMENT_ENV_DW(GSB_VCPU_SPR_TAR, tar),
GUEST_STATE_ELEMENT_ENV_DW(GSB_VCPU_SPR_EBBRR, ebbrr),
GUEST_STATE_ELEMENT_ENV_DW(GSB_VCPU_SPR_BESCR, bescr),
GUEST_STATE_ELEMENT_ENV_DW(GSB_VCPU_SPR_IAMR, iamr),
GUEST_STATE_ELEMENT_ENV_DW(GSB_VCPU_SPR_AMR, amr),
GUEST_STATE_ELEMENT_ENV_DW(GSB_VCPU_SPR_UAMOR, uamor),
GUEST_STATE_ELEMENT_ENV_DW(GSB_VCPU_SPR_DSCR, dscr),
GUEST_STATE_ELEMENT_ENV_DW(GSB_VCPU_SPR_FSCR, fscr),
GUEST_STATE_ELEMENT_ENV_W(GSB_VCPU_SPR_PSPB, pspb),
GUEST_STATE_ELEMENT_ENV_DW(GSB_VCPU_SPR_CTRL, ctrl),
GUEST_STATE_ELEMENT_ENV_DW(GSB_VCPU_SPR_DPDES, dpdes),
GUEST_STATE_ELEMENT_ENV_W(GSB_VCPU_SPR_VRSAVE, vrsave),
GUEST_STATE_ELEMENT_ENV_DW(GSB_VCPU_SPR_DAR, dar),
GUEST_STATE_ELEMENT_ENV_W(GSB_VCPU_SPR_DSISR, dsisr),
GUEST_STATE_ELEMENT_ENV_W(GSB_VCPU_SPR_PMC1, pmc1),
GUEST_STATE_ELEMENT_ENV_W(GSB_VCPU_SPR_PMC2, pmc2),
GUEST_STATE_ELEMENT_ENV_W(GSB_VCPU_SPR_PMC3, pmc3),
GUEST_STATE_ELEMENT_ENV_W(GSB_VCPU_SPR_PMC4, pmc4),
GUEST_STATE_ELEMENT_ENV_W(GSB_VCPU_SPR_PMC5, pmc5),
GUEST_STATE_ELEMENT_ENV_W(GSB_VCPU_SPR_PMC6, pmc6),
GUEST_STATE_ELEMENT_ENV_DW(GSB_VCPU_SPR_MMCR0, mmcr0),
GUEST_STATE_ELEMENT_ENV_DW(GSB_VCPU_SPR_MMCR1, mmcr1),
GUEST_STATE_ELEMENT_ENV_DW(GSB_VCPU_SPR_MMCR2, mmcr2),
GUEST_STATE_ELEMENT_ENV_DW(GSB_VCPU_SPR_MMCRA, mmcra),
GUEST_STATE_ELEMENT_ENV_DW(GSB_VCPU_SPR_SDAR , sdar),
GUEST_STATE_ELEMENT_ENV_DW(GSB_VCPU_SPR_SIAR , siar),
GUEST_STATE_ELEMENT_ENV_DW(GSB_VCPU_SPR_SIER , sier),
GUEST_STATE_ELEMENT_ENV_WW(GSB_VCPU_SPR_VSCR, vscr),
GUEST_STATE_ELEMENT_ENV_DW(GSB_VCPU_SPR_FPSCR, fpscr),
GUEST_STATE_ELEMENT_ENV_DW(GSB_VCPU_DEC_EXPIRE_TB, dec_expiry_tb),
GSBE_NESTED(GSB_PART_SCOPED_PAGETBL, 0x18, parttbl[0], copy_state_pagetbl),
GSBE_NESTED(GSB_PROCESS_TBL, 0x10, parttbl[1], copy_state_proctbl),
GSBE_NESTED(GSB_VCPU_LPVR, 0x4, pvr_logical, copy_logical_pvr),
GSBE_NESTED_MSK(GSB_TB_OFFSET, 0x8, tb_offset, copy_tb_offset,
HVMASK_TB_OFFSET),
GSBE_NESTED_VCPU(GSB_VCPU_IN_BUFFER, 0x10, runbufin, copy_state_runbuf),
GSBE_NESTED_VCPU(GSB_VCPU_OUT_BUFFER, 0x10, runbufout, copy_state_runbuf),
GSBE_NESTED_VCPU(GSB_VCPU_OUT_BUF_MIN_SZ, 0x8, runbufout, out_buf_min_size),
GSBE_NESTED_VCPU(GSB_VCPU_HDEC_EXPIRY_TB, 0x8, hdecr_expiry_tb,
copy_state_hdecr)
};
void spapr_nested_gsb_init(void)
{
struct guest_state_element_type *type;
/* Init the guest state elements lookup table, flags for now */
for (int i = 0; i < ARRAY_SIZE(guest_state_element_types); i++) {
type = &guest_state_element_types[i];
assert(type->id <= GSB_LAST);
if (type->id >= GSB_VCPU_SPR_HDAR)
/* 0xf000 - 0xf005 Thread + RO */
type->flags = GUEST_STATE_ELEMENT_TYPE_FLAG_READ_ONLY;
else if (type->id >= GSB_VCPU_IN_BUFFER)
/* 0x0c00 - 0xf000 Thread + RW */
type->flags = 0;
else if (type->id >= GSB_VCPU_LPVR)
/* 0x0003 - 0x0bff Guest + RW */
type->flags = GUEST_STATE_ELEMENT_TYPE_FLAG_GUEST_WIDE;
else if (type->id >= GSB_HV_VCPU_STATE_SIZE)
/* 0x0001 - 0x0002 Guest + RO */
type->flags = GUEST_STATE_ELEMENT_TYPE_FLAG_READ_ONLY |
GUEST_STATE_ELEMENT_TYPE_FLAG_GUEST_WIDE;
}
}
static struct guest_state_element *guest_state_element_next(
struct guest_state_element *element,
int64_t *len,
int64_t *num_elements)
{
uint16_t size;
/* size is of element->value[] only. Not whole guest_state_element */
size = be16_to_cpu(element->size);
if (len) {
*len -= size + offsetof(struct guest_state_element, value);
}
if (num_elements) {
*num_elements -= 1;
}
return (struct guest_state_element *)(element->value + size);
}
static
struct guest_state_element_type *guest_state_element_type_find(uint16_t id)
{
int i;
for (i = 0; i < ARRAY_SIZE(guest_state_element_types); i++)
if (id == guest_state_element_types[i].id) {
return &guest_state_element_types[i];
}
return NULL;
}
static void log_element(struct guest_state_element *element,
struct guest_state_request *gsr)
{
qemu_log_mask(LOG_GUEST_ERROR, "h_guest_%s_state id:0x%04x size:0x%04x",
gsr->flags & GUEST_STATE_REQUEST_SET ? "set" : "get",
be16_to_cpu(element->id), be16_to_cpu(element->size));
qemu_log_mask(LOG_GUEST_ERROR, "buf:0x%016"PRIx64" ...\n",
be64_to_cpu(*(uint64_t *)element->value));
}
static bool guest_state_request_check(struct guest_state_request *gsr)
{
int64_t num_elements, len = gsr->len;
struct guest_state_buffer *gsb = gsr->gsb;
struct guest_state_element *element;
struct guest_state_element_type *type;
uint16_t id, size;
/* gsb->num_elements = 0 == 32 bits long */
assert(len >= 4);
num_elements = be32_to_cpu(gsb->num_elements);
element = gsb->elements;
len -= sizeof(gsb->num_elements);
/* Walk the buffer to validate the length */
while (num_elements) {
id = be16_to_cpu(element->id);
size = be16_to_cpu(element->size);
if (false) {
log_element(element, gsr);
}
/* buffer size too small */
if (len < 0) {
return false;
}
type = guest_state_element_type_find(id);
if (!type) {
qemu_log_mask(LOG_GUEST_ERROR, "Element ID %04x unknown\n", id);
log_element(element, gsr);
return false;
}
if (id == GSB_HV_VCPU_IGNORED_ID) {
goto next_element;
}
if (size != type->size) {
qemu_log_mask(LOG_GUEST_ERROR, "Size mismatch. Element ID:%04x."
"Size Exp:%i Got:%i\n", id, type->size, size);
log_element(element, gsr);
return false;
}
if ((type->flags & GUEST_STATE_ELEMENT_TYPE_FLAG_READ_ONLY) &&
(gsr->flags & GUEST_STATE_REQUEST_SET)) {
qemu_log_mask(LOG_GUEST_ERROR, "Trying to set a read-only Element "
"ID:%04x.\n", id);
return false;
}
if (type->flags & GUEST_STATE_ELEMENT_TYPE_FLAG_GUEST_WIDE) {
/* guest wide element type */
if (!(gsr->flags & GUEST_STATE_REQUEST_GUEST_WIDE)) {
qemu_log_mask(LOG_GUEST_ERROR, "trying to set a guest wide "
"Element ID:%04x.\n", id);
return false;
}
} else {
/* thread wide element type */
if (gsr->flags & GUEST_STATE_REQUEST_GUEST_WIDE) {
qemu_log_mask(LOG_GUEST_ERROR, "trying to set a thread wide "
"Element ID:%04x.\n", id);
return false;
}
}
next_element:
element = guest_state_element_next(element, &len, &num_elements);
}
return true;
}
static bool is_gsr_invalid(struct guest_state_request *gsr,
struct guest_state_element *element,
struct guest_state_element_type *type)
{
if ((gsr->flags & GUEST_STATE_REQUEST_SET) &&
(*(uint64_t *)(element->value) & ~(type->mask))) {
log_element(element, gsr);
qemu_log_mask(LOG_GUEST_ERROR, "L1 can't set reserved bits "
"(allowed mask: 0x%08"PRIx64")\n", type->mask);
return true;
}
return false;
}
static target_ulong h_guest_get_capabilities(PowerPCCPU *cpu,
SpaprMachineState *spapr,
target_ulong opcode,
target_ulong *args)
{
CPUPPCState *env = &cpu->env;
target_ulong flags = args[0];
if (flags) { /* don't handle any flags capabilities for now */
return H_PARAMETER;
}
/* P11 capabilities */
if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_10_P11, 0,
spapr->max_compat_pvr)) {
env->gpr[4] |= H_GUEST_CAPABILITIES_P11_MODE;
}
/* P10 capabilities */
if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_10, 0,
spapr->max_compat_pvr)) {
env->gpr[4] |= H_GUEST_CAPABILITIES_P10_MODE;
}
/* P9 capabilities */
if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0,
spapr->max_compat_pvr)) {
env->gpr[4] |= H_GUEST_CAPABILITIES_P9_MODE;
}
return H_SUCCESS;
}
static target_ulong h_guest_set_capabilities(PowerPCCPU *cpu,
SpaprMachineState *spapr,
target_ulong opcode,
target_ulong *args)
{
CPUPPCState *env = &cpu->env;
target_ulong flags = args[0];
target_ulong capabilities = args[1];
env->gpr[4] = 0;
if (flags) { /* don't handle any flags capabilities for now */
return H_PARAMETER;
}
if (capabilities & H_GUEST_CAPABILITIES_COPY_MEM) {
env->gpr[4] = 1;
return H_P2; /* isn't supported */
}
/*
* If there are no capabilities configured, set the R5 to the index of
* the first supported Power Processor Mode
*/
if (!capabilities) {
env->gpr[4] = 1;
/* set R5 to the first supported Power Processor Mode */
if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_10_P11, 0,
spapr->max_compat_pvr)) {
env->gpr[5] = H_GUEST_CAP_P11_MODE_BMAP;
} else if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_10, 0,
spapr->max_compat_pvr)) {
env->gpr[5] = H_GUEST_CAP_P10_MODE_BMAP;
} else if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0,
spapr->max_compat_pvr)) {
env->gpr[5] = H_GUEST_CAP_P9_MODE_BMAP;
}
return H_P2;
}
/*
* If an invalid capability is set, R5 should contain the index of the
* invalid capability bit
*/
if (capabilities & ~H_GUEST_CAP_VALID_MASK) {
env->gpr[4] = 1;
/* Set R5 to the index of the invalid capability */
env->gpr[5] = 63 - ctz64(capabilities);
return H_P2;
}
if (!spapr->nested.capabilities_set) {
spapr->nested.capabilities_set = true;
spapr->nested.pvr_base = env->spr[SPR_PVR];
return H_SUCCESS;
} else {
return H_STATE;
}
}
static void
destroy_guest_helper(gpointer value)
{
struct SpaprMachineStateNestedGuest *guest = value;
g_free(guest->vcpus);
g_free(guest);
}
static target_ulong h_guest_create(PowerPCCPU *cpu,
SpaprMachineState *spapr,
target_ulong opcode,
target_ulong *args)
{
CPUPPCState *env = &cpu->env;
target_ulong flags = args[0];
target_ulong continue_token = args[1];
uint64_t guestid;
int nguests = 0;
struct SpaprMachineStateNestedGuest *guest;
if (flags) { /* don't handle any flags for now */
return H_UNSUPPORTED_FLAG;
}
if (continue_token != -1) {
return H_P2;
}
if (!spapr->nested.capabilities_set) {
return H_STATE;
}
if (!spapr->nested.guests) {
spapr->nested.guests = g_hash_table_new_full(NULL,
NULL,
NULL,
destroy_guest_helper);
}
nguests = g_hash_table_size(spapr->nested.guests);
if (nguests == PAPR_NESTED_GUEST_MAX) {
return H_NO_MEM;
}
/* Lookup for available guestid */
for (guestid = 1; guestid < PAPR_NESTED_GUEST_MAX; guestid++) {
if (!(g_hash_table_lookup(spapr->nested.guests,
GINT_TO_POINTER(guestid)))) {
break;
}
}
if (guestid == PAPR_NESTED_GUEST_MAX) {
return H_NO_MEM;
}
guest = g_try_new0(struct SpaprMachineStateNestedGuest, 1);
if (!guest) {
return H_NO_MEM;
}
guest->pvr_logical = spapr->nested.pvr_base;
g_hash_table_insert(spapr->nested.guests, GINT_TO_POINTER(guestid), guest);
env->gpr[4] = guestid;
return H_SUCCESS;
}
static target_ulong h_guest_delete(PowerPCCPU *cpu,
SpaprMachineState *spapr,
target_ulong opcode,
target_ulong *args)
{
target_ulong flags = args[0];
target_ulong guestid = args[1];
struct SpaprMachineStateNestedGuest *guest;
/*
* handle flag deleteAllGuests, if set:
* guestid is ignored and all guests are deleted
*
*/
if (flags & ~H_GUEST_DELETE_ALL_FLAG) {
return H_UNSUPPORTED_FLAG; /* other flag bits reserved */
} else if (flags & H_GUEST_DELETE_ALL_FLAG) {
g_hash_table_destroy(spapr->nested.guests);
return H_SUCCESS;
}
guest = g_hash_table_lookup(spapr->nested.guests, GINT_TO_POINTER(guestid));
if (!guest) {
return H_P2;
}
g_hash_table_remove(spapr->nested.guests, GINT_TO_POINTER(guestid));
return H_SUCCESS;
}
static target_ulong h_guest_create_vcpu(PowerPCCPU *cpu,
SpaprMachineState *spapr,
target_ulong opcode,
target_ulong *args)
{
target_ulong flags = args[0];
target_ulong guestid = args[1];
target_ulong vcpuid = args[2];
SpaprMachineStateNestedGuest *guest;
if (flags) { /* don't handle any flags for now */
return H_UNSUPPORTED_FLAG;
}
guest = spapr_get_nested_guest(spapr, guestid);
if (!guest) {
return H_P2;
}
if (vcpuid < guest->nr_vcpus) {
qemu_log_mask(LOG_UNIMP, "vcpuid " TARGET_FMT_ld " already in use.",
vcpuid);
return H_IN_USE;
}
/* linear vcpuid allocation only */
assert(vcpuid == guest->nr_vcpus);
if (guest->nr_vcpus >= PAPR_NESTED_GUEST_VCPU_MAX) {
return H_P3;
}
SpaprMachineStateNestedGuestVcpu *vcpus, *curr_vcpu;
vcpus = g_try_renew(struct SpaprMachineStateNestedGuestVcpu,
guest->vcpus,
guest->nr_vcpus + 1);
if (!vcpus) {
return H_NO_MEM;
}
guest->vcpus = vcpus;
curr_vcpu = &vcpus[guest->nr_vcpus];
memset(curr_vcpu, 0, sizeof(SpaprMachineStateNestedGuestVcpu));
curr_vcpu->enabled = true;
guest->nr_vcpus++;
return H_SUCCESS;
}
static target_ulong getset_state(SpaprMachineStateNestedGuest *guest,
uint64_t vcpuid,
struct guest_state_request *gsr)
{
void *ptr;
uint16_t id;
struct guest_state_element *element;
struct guest_state_element_type *type;
int64_t lenleft, num_elements;
lenleft = gsr->len;
if (!guest_state_request_check(gsr)) {
return H_P3;
}
num_elements = be32_to_cpu(gsr->gsb->num_elements);
element = gsr->gsb->elements;
/* Process the elements */
while (num_elements) {
type = NULL;
/* log_element(element, gsr); */
id = be16_to_cpu(element->id);
if (id == GSB_HV_VCPU_IGNORED_ID) {
goto next_element;
}
type = guest_state_element_type_find(id);
assert(type);
/* Get pointer to guest data to get/set */
if (type->location && type->copy) {
ptr = type->location(guest, vcpuid);
assert(ptr);
if (!~(type->mask) && is_gsr_invalid(gsr, element, type)) {
return H_INVALID_ELEMENT_VALUE;
}
type->copy(ptr + type->offset, element->value,
gsr->flags & GUEST_STATE_REQUEST_SET ? true : false);
}
next_element:
element = guest_state_element_next(element, &lenleft, &num_elements);
}
return H_SUCCESS;
}
static target_ulong map_and_getset_state(PowerPCCPU *cpu,
SpaprMachineStateNestedGuest *guest,
uint64_t vcpuid,
struct guest_state_request *gsr)
{
target_ulong rc;
int64_t len;
bool is_write;
len = gsr->len;
/* only get_state would require write access to the provided buffer */
is_write = (gsr->flags & GUEST_STATE_REQUEST_SET) ? false : true;
gsr->gsb = address_space_map(CPU(cpu)->as, gsr->buf, (uint64_t *)&len,
is_write, MEMTXATTRS_UNSPECIFIED);
if (!gsr->gsb) {
rc = H_P3;
goto out1;
}
if (len != gsr->len) {
rc = H_P3;
goto out1;
}
rc = getset_state(guest, vcpuid, gsr);
out1:
address_space_unmap(CPU(cpu)->as, gsr->gsb, len, is_write, len);
return rc;
}
static target_ulong h_guest_getset_state(PowerPCCPU *cpu,
SpaprMachineState *spapr,
target_ulong *args,
bool set)
{
target_ulong flags = args[0];
target_ulong lpid = args[1];
target_ulong vcpuid = args[2];
target_ulong buf = args[3];
target_ulong buflen = args[4];
struct guest_state_request gsr;
SpaprMachineStateNestedGuest *guest;
guest = spapr_get_nested_guest(spapr, lpid);
if (!guest) {
return H_P2;
}
gsr.buf = buf;
assert(buflen <= GSB_MAX_BUF_SIZE);
gsr.len = buflen;
gsr.flags = 0;
if (flags & H_GUEST_GETSET_STATE_FLAG_GUEST_WIDE) {
gsr.flags |= GUEST_STATE_REQUEST_GUEST_WIDE;
}
if (flags & ~H_GUEST_GETSET_STATE_FLAG_GUEST_WIDE) {
return H_PARAMETER; /* flag not supported yet */
}
if (set) {
gsr.flags |= GUEST_STATE_REQUEST_SET;
}
return map_and_getset_state(cpu, guest, vcpuid, &gsr);
}
static target_ulong h_guest_set_state(PowerPCCPU *cpu,
SpaprMachineState *spapr,
target_ulong opcode,
target_ulong *args)
{
return h_guest_getset_state(cpu, spapr, args, true);
}
static target_ulong h_guest_get_state(PowerPCCPU *cpu,
SpaprMachineState *spapr,
target_ulong opcode,
target_ulong *args)
{
return h_guest_getset_state(cpu, spapr, args, false);
}
static void exit_nested_store_l2(PowerPCCPU *cpu, int excp,
SpaprMachineStateNestedGuestVcpu *vcpu)
{
CPUPPCState *env = &cpu->env;
SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
target_ulong now, hdar, hdsisr, asdr;
assert(sizeof(env->gpr) == sizeof(vcpu->state.gpr)); /* sanity check */
now = cpu_ppc_load_tbl(env); /* L2 timebase */
now -= vcpu->tb_offset; /* L1 timebase */
vcpu->state.dec_expiry_tb = now - cpu_ppc_load_decr(env);
cpu_ppc_store_decr(env, spapr_cpu->nested_host_state->dec_expiry_tb - now);
/* backup hdar, hdsisr, asdr if reqd later below */
hdar = vcpu->state.hdar;
hdsisr = vcpu->state.hdsisr;
asdr = vcpu->state.asdr;
nested_save_state(&vcpu->state, cpu);
if (excp == POWERPC_EXCP_MCHECK ||
excp == POWERPC_EXCP_RESET ||
excp == POWERPC_EXCP_SYSCALL) {
vcpu->state.nip = env->spr[SPR_SRR0];
vcpu->state.msr = env->spr[SPR_SRR1] & env->msr_mask;
} else {
vcpu->state.nip = env->spr[SPR_HSRR0];
vcpu->state.msr = env->spr[SPR_HSRR1] & env->msr_mask;
}
/* hdar, hdsisr, asdr should be retained unless certain exceptions */
if ((excp != POWERPC_EXCP_HDSI) && (excp != POWERPC_EXCP_HISI)) {
vcpu->state.asdr = asdr;
} else if (excp != POWERPC_EXCP_HDSI) {
vcpu->state.hdar = hdar;
vcpu->state.hdsisr = hdsisr;
}
}
static int get_exit_ids(uint64_t srr0, uint16_t ids[16])
{
int nr;
switch (srr0) {
case 0xc00:
nr = 10;
ids[0] = GSB_VCPU_GPR3;
ids[1] = GSB_VCPU_GPR4;
ids[2] = GSB_VCPU_GPR5;
ids[3] = GSB_VCPU_GPR6;
ids[4] = GSB_VCPU_GPR7;
ids[5] = GSB_VCPU_GPR8;
ids[6] = GSB_VCPU_GPR9;
ids[7] = GSB_VCPU_GPR10;
ids[8] = GSB_VCPU_GPR11;
ids[9] = GSB_VCPU_GPR12;
break;
case 0xe00:
nr = 5;
ids[0] = GSB_VCPU_SPR_HDAR;
ids[1] = GSB_VCPU_SPR_HDSISR;
ids[2] = GSB_VCPU_SPR_ASDR;
ids[3] = GSB_VCPU_SPR_NIA;
ids[4] = GSB_VCPU_SPR_MSR;
break;
case 0xe20:
nr = 4;
ids[0] = GSB_VCPU_SPR_HDAR;
ids[1] = GSB_VCPU_SPR_ASDR;
ids[2] = GSB_VCPU_SPR_NIA;
ids[3] = GSB_VCPU_SPR_MSR;
break;
case 0xe40:
nr = 3;
ids[0] = GSB_VCPU_SPR_HEIR;
ids[1] = GSB_VCPU_SPR_NIA;
ids[2] = GSB_VCPU_SPR_MSR;
break;
case 0xf80:
nr = 3;
ids[0] = GSB_VCPU_SPR_HFSCR;
ids[1] = GSB_VCPU_SPR_NIA;
ids[2] = GSB_VCPU_SPR_MSR;
break;
default:
nr = 0;
break;
}
return nr;
}
static void exit_process_output_buffer(PowerPCCPU *cpu,
SpaprMachineStateNestedGuest *guest,
target_ulong vcpuid,
target_ulong *r3)
{
SpaprMachineStateNestedGuestVcpu *vcpu = &guest->vcpus[vcpuid];
struct guest_state_request gsr;
struct guest_state_buffer *gsb;
struct guest_state_element *element;
struct guest_state_element_type *type;
int exit_id_count = 0;
uint16_t exit_cause_ids[16];
hwaddr len;
len = vcpu->runbufout.size;
gsb = address_space_map(CPU(cpu)->as, vcpu->runbufout.addr, &len, true,
MEMTXATTRS_UNSPECIFIED);
if (!gsb || len != vcpu->runbufout.size) {
address_space_unmap(CPU(cpu)->as, gsb, len, true, len);
*r3 = H_P2;
return;
}
exit_id_count = get_exit_ids(*r3, exit_cause_ids);
/* Create a buffer of elements to send back */
gsb->num_elements = cpu_to_be32(exit_id_count);
element = gsb->elements;
for (int i = 0; i < exit_id_count; i++) {
type = guest_state_element_type_find(exit_cause_ids[i]);
assert(type);
element->id = cpu_to_be16(exit_cause_ids[i]);
element->size = cpu_to_be16(type->size);
element = guest_state_element_next(element, NULL, NULL);
}
gsr.gsb = gsb;
gsr.len = VCPU_OUT_BUF_MIN_SZ;
gsr.flags = 0; /* get + never guest wide */
getset_state(guest, vcpuid, &gsr);
address_space_unmap(CPU(cpu)->as, gsb, len, true, len);
return;
}
static
void spapr_exit_nested_papr(SpaprMachineState *spapr, PowerPCCPU *cpu, int excp)
{
CPUPPCState *env = &cpu->env;
CPUState *cs = CPU(cpu);
SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
target_ulong r3_return = env->excp_vectors[excp]; /* hcall return value */
target_ulong lpid = 0, vcpuid = 0;
struct SpaprMachineStateNestedGuestVcpu *vcpu = NULL;
struct SpaprMachineStateNestedGuest *guest = NULL;
lpid = spapr_cpu->nested_host_state->gpr[5];
vcpuid = spapr_cpu->nested_host_state->gpr[6];
guest = spapr_get_nested_guest(spapr, lpid);
assert(guest);
spapr_nested_vcpu_check(guest, vcpuid, false);
vcpu = &guest->vcpus[vcpuid];
exit_nested_store_l2(cpu, excp, vcpu);
/* do the output buffer for run_vcpu*/
exit_process_output_buffer(cpu, guest, vcpuid, &r3_return);
assert(env->spr[SPR_LPIDR] != 0);
nested_load_state(cpu, spapr_cpu->nested_host_state);
cpu_ppc_decrease_tb_by_offset(env, vcpu->tb_offset);
env->gpr[3] = H_SUCCESS;
env->gpr[4] = r3_return;
nested_post_load_state(env, cs);
cpu_ppc_hdecr_exit(env);
spapr_cpu->in_nested = false;
g_free(spapr_cpu->nested_host_state);
spapr_cpu->nested_host_state = NULL;
}
void spapr_exit_nested(PowerPCCPU *cpu, int excp)
{
SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
assert(spapr_cpu->in_nested);
if (spapr_nested_api(spapr) == NESTED_API_KVM_HV) {
spapr_exit_nested_hv(cpu, excp);
} else if (spapr_nested_api(spapr) == NESTED_API_PAPR) {
spapr_exit_nested_papr(spapr, cpu, excp);
} else {
g_assert_not_reached();
}
}
static void nested_papr_load_l2(PowerPCCPU *cpu,
CPUPPCState *env,
SpaprMachineStateNestedGuestVcpu *vcpu,
target_ulong now)
{
PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
target_ulong lpcr, lpcr_mask, hdec;
lpcr_mask = LPCR_DPFD | LPCR_ILE | LPCR_AIL | LPCR_LD | LPCR_MER;
assert(vcpu);
assert(sizeof(env->gpr) == sizeof(vcpu->state.gpr));
nested_load_state(cpu, &vcpu->state);
lpcr = (env->spr[SPR_LPCR] & ~lpcr_mask) |
(vcpu->state.lpcr & lpcr_mask);
lpcr |= LPCR_HR | LPCR_UPRT | LPCR_GTSE | LPCR_HVICE | LPCR_HDICE;
lpcr &= ~LPCR_LPES0;
env->spr[SPR_LPCR] = lpcr & pcc->lpcr_mask;
hdec = vcpu->hdecr_expiry_tb - now;
cpu_ppc_store_decr(env, vcpu->state.dec_expiry_tb - now);
cpu_ppc_hdecr_init(env);
cpu_ppc_store_hdecr(env, hdec);
cpu_ppc_increase_tb_by_offset(env, vcpu->tb_offset);
}
static void nested_papr_run_vcpu(PowerPCCPU *cpu,
uint64_t lpid,
SpaprMachineStateNestedGuestVcpu *vcpu)
{
SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
CPUPPCState *env = &cpu->env;
CPUState *cs = CPU(cpu);
SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
target_ulong now = cpu_ppc_load_tbl(env);
assert(env->spr[SPR_LPIDR] == 0);
assert(spapr->nested.api); /* ensure API version is initialized */
spapr_cpu->nested_host_state = g_try_new(struct nested_ppc_state, 1);
assert(spapr_cpu->nested_host_state);
nested_save_state(spapr_cpu->nested_host_state, cpu);
spapr_cpu->nested_host_state->dec_expiry_tb = now - cpu_ppc_load_decr(env);
nested_papr_load_l2(cpu, env, vcpu, now);
env->spr[SPR_LPIDR] = lpid; /* post load l2 */
spapr_cpu->in_nested = true;
nested_post_load_state(env, cs);
}
static target_ulong h_guest_run_vcpu(PowerPCCPU *cpu,
SpaprMachineState *spapr,
target_ulong opcode,
target_ulong *args)
{
CPUPPCState *env = &cpu->env;
target_ulong flags = args[0];
target_ulong lpid = args[1];
target_ulong vcpuid = args[2];
struct SpaprMachineStateNestedGuestVcpu *vcpu;
struct guest_state_request gsr;
SpaprMachineStateNestedGuest *guest;
target_ulong rc;
if (flags) /* don't handle any flags for now */
return H_PARAMETER;
guest = spapr_get_nested_guest(spapr, lpid);
if (!guest) {
return H_P2;
}
if (!spapr_nested_vcpu_check(guest, vcpuid, true)) {
return H_P3;
}
if (guest->parttbl[0] == 0) {
/* At least need a partition scoped radix tree */
return H_NOT_AVAILABLE;
}
vcpu = &guest->vcpus[vcpuid];
/* Read run_vcpu input buffer to update state */
gsr.buf = vcpu->runbufin.addr;
gsr.len = vcpu->runbufin.size;
gsr.flags = GUEST_STATE_REQUEST_SET; /* Thread wide + writing */
rc = map_and_getset_state(cpu, guest, vcpuid, &gsr);
if (rc == H_SUCCESS) {
nested_papr_run_vcpu(cpu, lpid, vcpu);
} else {
env->gpr[3] = rc;
}
return env->gpr[3];
}
void spapr_register_nested_hv(void)
{
spapr_register_hypercall(KVMPPC_H_SET_PARTITION_TABLE, h_set_ptbl);
spapr_register_hypercall(KVMPPC_H_ENTER_NESTED, h_enter_nested);
spapr_register_hypercall(KVMPPC_H_TLB_INVALIDATE, h_tlb_invalidate);
spapr_register_hypercall(KVMPPC_H_COPY_TOFROM_GUEST, h_copy_tofrom_guest);
}
void spapr_unregister_nested_hv(void)
{
spapr_unregister_hypercall(KVMPPC_H_SET_PARTITION_TABLE);
spapr_unregister_hypercall(KVMPPC_H_ENTER_NESTED);
spapr_unregister_hypercall(KVMPPC_H_TLB_INVALIDATE);
spapr_unregister_hypercall(KVMPPC_H_COPY_TOFROM_GUEST);
}
void spapr_register_nested_papr(void)
{
spapr_register_hypercall(H_GUEST_GET_CAPABILITIES,
h_guest_get_capabilities);
spapr_register_hypercall(H_GUEST_SET_CAPABILITIES,
h_guest_set_capabilities);
spapr_register_hypercall(H_GUEST_CREATE, h_guest_create);
spapr_register_hypercall(H_GUEST_DELETE, h_guest_delete);
spapr_register_hypercall(H_GUEST_CREATE_VCPU, h_guest_create_vcpu);
spapr_register_hypercall(H_GUEST_SET_STATE, h_guest_set_state);
spapr_register_hypercall(H_GUEST_GET_STATE, h_guest_get_state);
spapr_register_hypercall(H_GUEST_RUN_VCPU, h_guest_run_vcpu);
}
void spapr_unregister_nested_papr(void)
{
spapr_unregister_hypercall(H_GUEST_GET_CAPABILITIES);
spapr_unregister_hypercall(H_GUEST_SET_CAPABILITIES);
spapr_unregister_hypercall(H_GUEST_CREATE);
spapr_unregister_hypercall(H_GUEST_DELETE);
spapr_unregister_hypercall(H_GUEST_CREATE_VCPU);
spapr_unregister_hypercall(H_GUEST_SET_STATE);
spapr_unregister_hypercall(H_GUEST_GET_STATE);
spapr_unregister_hypercall(H_GUEST_RUN_VCPU);
}
#else
void spapr_exit_nested(PowerPCCPU *cpu, int excp)
{
g_assert_not_reached();
}
void spapr_register_nested_hv(void)
{
/* DO NOTHING */
}
void spapr_unregister_nested_hv(void)
{
/* DO NOTHING */
}
bool spapr_get_pate_nested_hv(SpaprMachineState *spapr, PowerPCCPU *cpu,
target_ulong lpid, ppc_v3_pate_t *entry)
{
return false;
}
bool spapr_get_pate_nested_papr(SpaprMachineState *spapr, PowerPCCPU *cpu,
target_ulong lpid, ppc_v3_pate_t *entry)
{
return false;
}
void spapr_register_nested_papr(void)
{
/* DO NOTHING */
}
void spapr_unregister_nested_papr(void)
{
/* DO NOTHING */
}
void spapr_nested_gsb_init(void)
{
/* DO NOTHING */
}
#endif