qemu/hw/ppc/pnv_lpc.c
Nicholas Piggin 84416e262e ppc/pnv: Fix LPC POWER8 register sanity check
POWER8 does not have the ISA IRQ -> SERIRQ routing system of later
CPUs, instead all ISA IRQs are sent to the CPU via a single PSI
interrupt. There is a sanity check in the POWER8 case to ensure the
routing bits have not been set, because that would indicate a
programming error.

Those bits were incorrectly specified because of ppc bit numbering
fun. Coverity detected this as an always-zero expression.

Cc: qemu-stable@nongnu.org
Reported-by: Cédric Le Goater <clg@redhat.com>
Resolves: Coverity CID 1558829 (partially)
Reviewed-by: Cédric Le Goater <clg@redhat.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
2024-11-04 09:08:24 +10:00

951 lines
31 KiB
C

/*
* QEMU PowerPC PowerNV LPC controller
*
* Copyright (c) 2016, IBM Corporation.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "target/ppc/cpu.h"
#include "qapi/error.h"
#include "qemu/log.h"
#include "qemu/module.h"
#include "hw/irq.h"
#include "hw/isa/isa.h"
#include "hw/qdev-properties.h"
#include "hw/ppc/pnv.h"
#include "hw/ppc/pnv_chip.h"
#include "hw/ppc/pnv_lpc.h"
#include "hw/ppc/pnv_xscom.h"
#include "hw/ppc/fdt.h"
#include <libfdt.h>
enum {
ECCB_CTL = 0,
ECCB_RESET = 1,
ECCB_STAT = 2,
ECCB_DATA = 3,
};
/* OPB Master LS registers */
#define OPB_MASTER_LS_ROUTE0 0x8
#define OPB_MASTER_LS_ROUTE1 0xC
#define OPB_MASTER_LS_IRQ_STAT 0x50
#define OPB_MASTER_IRQ_LPC 0x00000800
#define OPB_MASTER_LS_IRQ_MASK 0x54
#define OPB_MASTER_LS_IRQ_POL 0x58
#define OPB_MASTER_LS_IRQ_INPUT 0x5c
/* LPC HC registers */
#define LPC_HC_FW_SEG_IDSEL 0x24
#define LPC_HC_FW_RD_ACC_SIZE 0x28
#define LPC_HC_FW_RD_1B 0x00000000
#define LPC_HC_FW_RD_2B 0x01000000
#define LPC_HC_FW_RD_4B 0x02000000
#define LPC_HC_FW_RD_16B 0x04000000
#define LPC_HC_FW_RD_128B 0x07000000
#define LPC_HC_IRQSER_CTRL 0x30
#define LPC_HC_IRQSER_EN 0x80000000
#define LPC_HC_IRQSER_QMODE 0x40000000
#define LPC_HC_IRQSER_START_MASK 0x03000000
#define LPC_HC_IRQSER_START_4CLK 0x00000000
#define LPC_HC_IRQSER_START_6CLK 0x01000000
#define LPC_HC_IRQSER_START_8CLK 0x02000000
#define LPC_HC_IRQSER_AUTO_CLEAR 0x00800000
#define LPC_HC_IRQMASK 0x34 /* same bit defs as LPC_HC_IRQSTAT */
#define LPC_HC_IRQSTAT 0x38
#define LPC_HC_IRQ_SERIRQ0 0x80000000 /* all bits down to ... */
#define LPC_HC_IRQ_SERIRQ16 0x00008000 /* IRQ16=IOCHK#, IRQ2=SMI# */
#define LPC_HC_IRQ_SERIRQ_ALL 0xffff8000
#define LPC_HC_IRQ_LRESET 0x00000400
#define LPC_HC_IRQ_SYNC_ABNORM_ERR 0x00000080
#define LPC_HC_IRQ_SYNC_NORESP_ERR 0x00000040
#define LPC_HC_IRQ_SYNC_NORM_ERR 0x00000020
#define LPC_HC_IRQ_SYNC_TIMEOUT_ERR 0x00000010
#define LPC_HC_IRQ_SYNC_TARG_TAR_ERR 0x00000008
#define LPC_HC_IRQ_SYNC_BM_TAR_ERR 0x00000004
#define LPC_HC_IRQ_SYNC_BM0_REQ 0x00000002
#define LPC_HC_IRQ_SYNC_BM1_REQ 0x00000001
#define LPC_HC_ERROR_ADDRESS 0x40
#define LPC_OPB_SIZE 0x100000000ull
#define ISA_IO_SIZE 0x00010000
#define ISA_MEM_SIZE 0x10000000
#define ISA_FW_SIZE 0x10000000
#define LPC_IO_OPB_ADDR 0xd0010000
#define LPC_IO_OPB_SIZE 0x00010000
#define LPC_MEM_OPB_ADDR 0xe0000000
#define LPC_MEM_OPB_SIZE 0x10000000
#define LPC_FW_OPB_ADDR 0xf0000000
#define LPC_FW_OPB_SIZE 0x10000000
#define LPC_OPB_REGS_OPB_ADDR 0xc0010000
#define LPC_OPB_REGS_OPB_SIZE 0x00000060
#define LPC_OPB_REGS_OPBA_ADDR 0xc0011000
#define LPC_OPB_REGS_OPBA_SIZE 0x00000008
#define LPC_HC_REGS_OPB_ADDR 0xc0012000
#define LPC_HC_REGS_OPB_SIZE 0x00000100
static int pnv_lpc_dt_xscom(PnvXScomInterface *dev, void *fdt, int xscom_offset)
{
const char compat[] = "ibm,power8-lpc\0ibm,lpc";
char *name;
int offset;
uint32_t lpc_pcba = PNV_XSCOM_LPC_BASE;
uint32_t reg[] = {
cpu_to_be32(lpc_pcba),
cpu_to_be32(PNV_XSCOM_LPC_SIZE)
};
name = g_strdup_printf("isa@%x", lpc_pcba);
offset = fdt_add_subnode(fdt, xscom_offset, name);
_FDT(offset);
g_free(name);
_FDT((fdt_setprop(fdt, offset, "reg", reg, sizeof(reg))));
_FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 2)));
_FDT((fdt_setprop_cell(fdt, offset, "#size-cells", 1)));
_FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
return 0;
}
/* POWER9 only */
int pnv_dt_lpc(PnvChip *chip, void *fdt, int root_offset, uint64_t lpcm_addr,
uint64_t lpcm_size)
{
const char compat[] = "ibm,power9-lpcm-opb\0simple-bus";
const char lpc_compat[] = "ibm,power9-lpc\0ibm,lpc";
char *name;
int offset, lpcm_offset;
uint32_t opb_ranges[8] = { 0,
cpu_to_be32(lpcm_addr >> 32),
cpu_to_be32((uint32_t)lpcm_addr),
cpu_to_be32(lpcm_size / 2),
cpu_to_be32(lpcm_size / 2),
cpu_to_be32(lpcm_addr >> 32),
cpu_to_be32(lpcm_size / 2),
cpu_to_be32(lpcm_size / 2),
};
uint32_t opb_reg[4] = { cpu_to_be32(lpcm_addr >> 32),
cpu_to_be32((uint32_t)lpcm_addr),
cpu_to_be32(lpcm_size >> 32),
cpu_to_be32((uint32_t)lpcm_size),
};
uint32_t lpc_ranges[12] = { 0, 0,
cpu_to_be32(LPC_MEM_OPB_ADDR),
cpu_to_be32(LPC_MEM_OPB_SIZE),
cpu_to_be32(1), 0,
cpu_to_be32(LPC_IO_OPB_ADDR),
cpu_to_be32(LPC_IO_OPB_SIZE),
cpu_to_be32(3), 0,
cpu_to_be32(LPC_FW_OPB_ADDR),
cpu_to_be32(LPC_FW_OPB_SIZE),
};
uint32_t reg[2];
/*
* OPB bus
*/
name = g_strdup_printf("lpcm-opb@%"PRIx64, lpcm_addr);
lpcm_offset = fdt_add_subnode(fdt, root_offset, name);
_FDT(lpcm_offset);
g_free(name);
_FDT((fdt_setprop(fdt, lpcm_offset, "reg", opb_reg, sizeof(opb_reg))));
_FDT((fdt_setprop_cell(fdt, lpcm_offset, "#address-cells", 1)));
_FDT((fdt_setprop_cell(fdt, lpcm_offset, "#size-cells", 1)));
_FDT((fdt_setprop(fdt, lpcm_offset, "compatible", compat, sizeof(compat))));
_FDT((fdt_setprop_cell(fdt, lpcm_offset, "ibm,chip-id", chip->chip_id)));
_FDT((fdt_setprop(fdt, lpcm_offset, "ranges", opb_ranges,
sizeof(opb_ranges))));
/*
* OPB Master registers
*/
name = g_strdup_printf("opb-master@%x", LPC_OPB_REGS_OPB_ADDR);
offset = fdt_add_subnode(fdt, lpcm_offset, name);
_FDT(offset);
g_free(name);
reg[0] = cpu_to_be32(LPC_OPB_REGS_OPB_ADDR);
reg[1] = cpu_to_be32(LPC_OPB_REGS_OPB_SIZE);
_FDT((fdt_setprop(fdt, offset, "reg", reg, sizeof(reg))));
_FDT((fdt_setprop_string(fdt, offset, "compatible",
"ibm,power9-lpcm-opb-master")));
/*
* OPB arbitrer registers
*/
name = g_strdup_printf("opb-arbitrer@%x", LPC_OPB_REGS_OPBA_ADDR);
offset = fdt_add_subnode(fdt, lpcm_offset, name);
_FDT(offset);
g_free(name);
reg[0] = cpu_to_be32(LPC_OPB_REGS_OPBA_ADDR);
reg[1] = cpu_to_be32(LPC_OPB_REGS_OPBA_SIZE);
_FDT((fdt_setprop(fdt, offset, "reg", reg, sizeof(reg))));
_FDT((fdt_setprop_string(fdt, offset, "compatible",
"ibm,power9-lpcm-opb-arbiter")));
/*
* LPC Host Controller registers
*/
name = g_strdup_printf("lpc-controller@%x", LPC_HC_REGS_OPB_ADDR);
offset = fdt_add_subnode(fdt, lpcm_offset, name);
_FDT(offset);
g_free(name);
reg[0] = cpu_to_be32(LPC_HC_REGS_OPB_ADDR);
reg[1] = cpu_to_be32(LPC_HC_REGS_OPB_SIZE);
_FDT((fdt_setprop(fdt, offset, "reg", reg, sizeof(reg))));
_FDT((fdt_setprop_string(fdt, offset, "compatible",
"ibm,power9-lpc-controller")));
name = g_strdup_printf("lpc@0");
offset = fdt_add_subnode(fdt, lpcm_offset, name);
_FDT(offset);
g_free(name);
_FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 2)));
_FDT((fdt_setprop_cell(fdt, offset, "#size-cells", 1)));
_FDT((fdt_setprop(fdt, offset, "compatible", lpc_compat,
sizeof(lpc_compat))));
_FDT((fdt_setprop(fdt, offset, "ranges", lpc_ranges,
sizeof(lpc_ranges))));
return 0;
}
/*
* These read/write handlers of the OPB address space should be common
* with the P9 LPC Controller which uses direct MMIOs.
*
* TODO: rework to use address_space_stq() and address_space_ldq()
* instead.
*/
bool pnv_lpc_opb_read(PnvLpcController *lpc, uint32_t addr,
uint8_t *data, int sz)
{
/* XXX Handle access size limits and FW read caching here */
return !address_space_read(&lpc->opb_as, addr, MEMTXATTRS_UNSPECIFIED,
data, sz);
}
bool pnv_lpc_opb_write(PnvLpcController *lpc, uint32_t addr,
uint8_t *data, int sz)
{
/* XXX Handle access size limits here */
return !address_space_write(&lpc->opb_as, addr, MEMTXATTRS_UNSPECIFIED,
data, sz);
}
#define ECCB_CTL_READ PPC_BIT(15)
#define ECCB_CTL_SZ_LSH (63 - 7)
#define ECCB_CTL_SZ_MASK PPC_BITMASK(4, 7)
#define ECCB_CTL_ADDR_MASK PPC_BITMASK(32, 63)
#define ECCB_STAT_OP_DONE PPC_BIT(52)
#define ECCB_STAT_OP_ERR PPC_BIT(52)
#define ECCB_STAT_RD_DATA_LSH (63 - 37)
#define ECCB_STAT_RD_DATA_MASK (0xffffffff << ECCB_STAT_RD_DATA_LSH)
static void pnv_lpc_do_eccb(PnvLpcController *lpc, uint64_t cmd)
{
/* XXX Check for magic bits at the top, addr size etc... */
unsigned int sz = (cmd & ECCB_CTL_SZ_MASK) >> ECCB_CTL_SZ_LSH;
uint32_t opb_addr = cmd & ECCB_CTL_ADDR_MASK;
uint8_t data[8];
bool success;
if (sz > sizeof(data)) {
qemu_log_mask(LOG_GUEST_ERROR,
"ECCB: invalid operation at @0x%08x size %d\n", opb_addr, sz);
return;
}
if (cmd & ECCB_CTL_READ) {
success = pnv_lpc_opb_read(lpc, opb_addr, data, sz);
if (success) {
lpc->eccb_stat_reg = ECCB_STAT_OP_DONE |
(((uint64_t)data[0]) << 24 |
((uint64_t)data[1]) << 16 |
((uint64_t)data[2]) << 8 |
((uint64_t)data[3])) << ECCB_STAT_RD_DATA_LSH;
} else {
lpc->eccb_stat_reg = ECCB_STAT_OP_DONE |
(0xffffffffull << ECCB_STAT_RD_DATA_LSH);
}
} else {
data[0] = lpc->eccb_data_reg >> 24;
data[1] = lpc->eccb_data_reg >> 16;
data[2] = lpc->eccb_data_reg >> 8;
data[3] = lpc->eccb_data_reg;
success = pnv_lpc_opb_write(lpc, opb_addr, data, sz);
lpc->eccb_stat_reg = ECCB_STAT_OP_DONE;
}
/* XXX Which error bit (if any) to signal OPB error ? */
}
static uint64_t pnv_lpc_xscom_read(void *opaque, hwaddr addr, unsigned size)
{
PnvLpcController *lpc = PNV_LPC(opaque);
uint32_t offset = addr >> 3;
uint64_t val = 0;
switch (offset & 3) {
case ECCB_CTL:
case ECCB_RESET:
val = 0;
break;
case ECCB_STAT:
val = lpc->eccb_stat_reg;
lpc->eccb_stat_reg = 0;
break;
case ECCB_DATA:
val = ((uint64_t)lpc->eccb_data_reg) << 32;
break;
}
return val;
}
static void pnv_lpc_xscom_write(void *opaque, hwaddr addr,
uint64_t val, unsigned size)
{
PnvLpcController *lpc = PNV_LPC(opaque);
uint32_t offset = addr >> 3;
switch (offset & 3) {
case ECCB_CTL:
pnv_lpc_do_eccb(lpc, val);
break;
case ECCB_RESET:
/* XXXX */
break;
case ECCB_STAT:
break;
case ECCB_DATA:
lpc->eccb_data_reg = val >> 32;
break;
}
}
static const MemoryRegionOps pnv_lpc_xscom_ops = {
.read = pnv_lpc_xscom_read,
.write = pnv_lpc_xscom_write,
.valid.min_access_size = 8,
.valid.max_access_size = 8,
.impl.min_access_size = 8,
.impl.max_access_size = 8,
.endianness = DEVICE_BIG_ENDIAN,
};
static uint64_t pnv_lpc_mmio_read(void *opaque, hwaddr addr, unsigned size)
{
PnvLpcController *lpc = PNV_LPC(opaque);
uint64_t val = 0;
uint32_t opb_addr = addr & ECCB_CTL_ADDR_MASK;
MemTxResult result;
switch (size) {
case 4:
val = address_space_ldl(&lpc->opb_as, opb_addr, MEMTXATTRS_UNSPECIFIED,
&result);
break;
case 1:
val = address_space_ldub(&lpc->opb_as, opb_addr, MEMTXATTRS_UNSPECIFIED,
&result);
break;
default:
qemu_log_mask(LOG_GUEST_ERROR, "OPB read failed at @0x%"
HWADDR_PRIx " invalid size %d\n", addr, size);
return 0;
}
if (result != MEMTX_OK) {
qemu_log_mask(LOG_GUEST_ERROR, "OPB read failed at @0x%"
HWADDR_PRIx "\n", addr);
}
return val;
}
static void pnv_lpc_mmio_write(void *opaque, hwaddr addr,
uint64_t val, unsigned size)
{
PnvLpcController *lpc = PNV_LPC(opaque);
uint32_t opb_addr = addr & ECCB_CTL_ADDR_MASK;
MemTxResult result;
switch (size) {
case 4:
address_space_stl(&lpc->opb_as, opb_addr, val, MEMTXATTRS_UNSPECIFIED,
&result);
break;
case 1:
address_space_stb(&lpc->opb_as, opb_addr, val, MEMTXATTRS_UNSPECIFIED,
&result);
break;
default:
qemu_log_mask(LOG_GUEST_ERROR, "OPB write failed at @0x%"
HWADDR_PRIx " invalid size %d\n", addr, size);
return;
}
if (result != MEMTX_OK) {
qemu_log_mask(LOG_GUEST_ERROR, "OPB write failed at @0x%"
HWADDR_PRIx "\n", addr);
}
}
static const MemoryRegionOps pnv_lpc_mmio_ops = {
.read = pnv_lpc_mmio_read,
.write = pnv_lpc_mmio_write,
.impl = {
.min_access_size = 1,
.max_access_size = 4,
},
.endianness = DEVICE_BIG_ENDIAN,
};
/* Program the POWER9 LPC irq to PSI serirq routing table */
static void pnv_lpc_eval_serirq_routes(PnvLpcController *lpc)
{
int irq;
if (!lpc->psi_has_serirq) {
if ((lpc->opb_irq_route0 & PPC_BITMASK32(8, 13)) ||
(lpc->opb_irq_route1 & PPC_BITMASK32(4, 31))) {
qemu_log_mask(LOG_GUEST_ERROR,
"OPB: setting serirq routing on POWER8 system, ignoring.\n");
}
return;
}
/*
* Each of the ISA irqs is routed to one of the 4 SERIRQ irqs with 2
* bits, split across 2 OPB registers.
*/
for (irq = 0; irq <= 13; irq++) {
int serirq = extract32(lpc->opb_irq_route1,
PPC_BIT32_NR(5 + irq * 2), 2);
lpc->irq_to_serirq_route[irq] = serirq;
}
for (irq = 14; irq < ISA_NUM_IRQS; irq++) {
int serirq = extract32(lpc->opb_irq_route0,
PPC_BIT32_NR(9 + (irq - 14) * 2), 2);
lpc->irq_to_serirq_route[irq] = serirq;
}
}
static void pnv_lpc_eval_irqs(PnvLpcController *lpc)
{
uint32_t active_irqs = 0;
if (lpc->lpc_hc_irqstat & PPC_BITMASK32(16, 31)) {
qemu_log_mask(LOG_UNIMP, "LPC HC Unimplemented irqs in IRQSTAT: "
"0x%08"PRIx32"\n", lpc->lpc_hc_irqstat);
}
if (lpc->lpc_hc_irqser_ctrl & LPC_HC_IRQSER_EN) {
active_irqs = lpc->lpc_hc_irqstat & lpc->lpc_hc_irqmask;
}
/* Reflect the interrupt */
if (!lpc->psi_has_serirq) {
/*
* POWER8 ORs all irqs together (also with LPCHC internal interrupt
* sources) and outputs a single line that raises the PSI LPCHC irq
* which then latches an OPB IRQ status register that sends the irq
* to PSI.
*
* We don't honor the polarity register, it's pointless and unused
* anyway
*/
if (active_irqs) {
lpc->opb_irq_input |= OPB_MASTER_IRQ_LPC;
} else {
lpc->opb_irq_input &= ~OPB_MASTER_IRQ_LPC;
}
/* Update OPB internal latch */
lpc->opb_irq_stat |= lpc->opb_irq_input & lpc->opb_irq_mask;
qemu_set_irq(lpc->psi_irq_lpchc, lpc->opb_irq_stat != 0);
} else {
/*
* POWER9 and POWER10 have routing fields in OPB master registers that
* send LPC irqs to 4 output lines that raise the PSI SERIRQ irqs.
* These don't appear to get latched into an OPB register like the
* LPCHC irqs.
*
* POWER9 LPC controller internal irqs still go via the OPB
* and LPCHC PSI irqs like P8, but we have no such internal sources
* modelled yet.
*/
bool serirq_out[4] = { false, false, false, false };
int irq;
for (irq = 0; irq < ISA_NUM_IRQS; irq++) {
if (active_irqs & (LPC_HC_IRQ_SERIRQ0 >> irq)) {
serirq_out[lpc->irq_to_serirq_route[irq]] = true;
}
}
qemu_set_irq(lpc->psi_irq_serirq[0], serirq_out[0]);
qemu_set_irq(lpc->psi_irq_serirq[1], serirq_out[1]);
qemu_set_irq(lpc->psi_irq_serirq[2], serirq_out[2]);
qemu_set_irq(lpc->psi_irq_serirq[3], serirq_out[3]);
}
}
static uint64_t lpc_hc_read(void *opaque, hwaddr addr, unsigned size)
{
PnvLpcController *lpc = opaque;
uint64_t val = 0xfffffffffffffffful;
switch (addr) {
case LPC_HC_FW_SEG_IDSEL:
val = lpc->lpc_hc_fw_seg_idsel;
break;
case LPC_HC_FW_RD_ACC_SIZE:
val = lpc->lpc_hc_fw_rd_acc_size;
break;
case LPC_HC_IRQSER_CTRL:
val = lpc->lpc_hc_irqser_ctrl;
break;
case LPC_HC_IRQMASK:
val = lpc->lpc_hc_irqmask;
break;
case LPC_HC_IRQSTAT:
val = lpc->lpc_hc_irqstat;
break;
case LPC_HC_ERROR_ADDRESS:
val = lpc->lpc_hc_error_addr;
break;
default:
qemu_log_mask(LOG_UNIMP, "LPC HC Unimplemented register: 0x%"
HWADDR_PRIx "\n", addr);
}
return val;
}
static void lpc_hc_write(void *opaque, hwaddr addr, uint64_t val,
unsigned size)
{
PnvLpcController *lpc = opaque;
/* XXX Filter out reserved bits */
switch (addr) {
case LPC_HC_FW_SEG_IDSEL:
/* XXX Actually figure out how that works as this impact
* memory regions/aliases
*/
lpc->lpc_hc_fw_seg_idsel = val;
break;
case LPC_HC_FW_RD_ACC_SIZE:
lpc->lpc_hc_fw_rd_acc_size = val;
break;
case LPC_HC_IRQSER_CTRL:
lpc->lpc_hc_irqser_ctrl = val;
pnv_lpc_eval_irqs(lpc);
break;
case LPC_HC_IRQMASK:
lpc->lpc_hc_irqmask = val;
pnv_lpc_eval_irqs(lpc);
break;
case LPC_HC_IRQSTAT:
/*
* This register is write-to-clear for the IRQSER (LPC device IRQ)
* status. However if the device has not de-asserted its interrupt
* that will just raise this IRQ status bit again. Model this by
* keeping track of the inputs and only clearing if the inputs are
* deasserted.
*/
lpc->lpc_hc_irqstat &= ~(val & ~lpc->lpc_hc_irq_inputs);
pnv_lpc_eval_irqs(lpc);
break;
case LPC_HC_ERROR_ADDRESS:
break;
default:
qemu_log_mask(LOG_UNIMP, "LPC HC Unimplemented register: 0x%"
HWADDR_PRIx "\n", addr);
}
}
static const MemoryRegionOps lpc_hc_ops = {
.read = lpc_hc_read,
.write = lpc_hc_write,
.endianness = DEVICE_BIG_ENDIAN,
.valid = {
.min_access_size = 4,
.max_access_size = 4,
},
.impl = {
.min_access_size = 4,
.max_access_size = 4,
},
};
static uint64_t opb_master_read(void *opaque, hwaddr addr, unsigned size)
{
PnvLpcController *lpc = opaque;
uint64_t val = 0xfffffffffffffffful;
switch (addr) {
case OPB_MASTER_LS_ROUTE0:
val = lpc->opb_irq_route0;
break;
case OPB_MASTER_LS_ROUTE1:
val = lpc->opb_irq_route1;
break;
case OPB_MASTER_LS_IRQ_STAT:
val = lpc->opb_irq_stat;
break;
case OPB_MASTER_LS_IRQ_MASK:
val = lpc->opb_irq_mask;
break;
case OPB_MASTER_LS_IRQ_POL:
val = lpc->opb_irq_pol;
break;
case OPB_MASTER_LS_IRQ_INPUT:
val = lpc->opb_irq_input;
break;
default:
qemu_log_mask(LOG_UNIMP, "OPBM: read on unimplemented register: 0x%"
HWADDR_PRIx "\n", addr);
}
return val;
}
static void opb_master_write(void *opaque, hwaddr addr,
uint64_t val, unsigned size)
{
PnvLpcController *lpc = opaque;
switch (addr) {
case OPB_MASTER_LS_ROUTE0:
lpc->opb_irq_route0 = val;
pnv_lpc_eval_serirq_routes(lpc);
pnv_lpc_eval_irqs(lpc);
break;
case OPB_MASTER_LS_ROUTE1:
lpc->opb_irq_route1 = val;
pnv_lpc_eval_serirq_routes(lpc);
pnv_lpc_eval_irqs(lpc);
break;
case OPB_MASTER_LS_IRQ_STAT:
lpc->opb_irq_stat &= ~val;
pnv_lpc_eval_irqs(lpc);
break;
case OPB_MASTER_LS_IRQ_MASK:
lpc->opb_irq_mask = val;
pnv_lpc_eval_irqs(lpc);
break;
case OPB_MASTER_LS_IRQ_POL:
lpc->opb_irq_pol = val;
pnv_lpc_eval_irqs(lpc);
break;
case OPB_MASTER_LS_IRQ_INPUT:
/* Read only */
break;
default:
qemu_log_mask(LOG_UNIMP, "OPBM: write on unimplemented register: 0x%"
HWADDR_PRIx " val=0x%08"PRIx64"\n", addr, val);
}
}
static const MemoryRegionOps opb_master_ops = {
.read = opb_master_read,
.write = opb_master_write,
.endianness = DEVICE_BIG_ENDIAN,
.valid = {
.min_access_size = 4,
.max_access_size = 4,
},
.impl = {
.min_access_size = 4,
.max_access_size = 4,
},
};
static void pnv_lpc_power8_realize(DeviceState *dev, Error **errp)
{
PnvLpcController *lpc = PNV_LPC(dev);
PnvLpcClass *plc = PNV_LPC_GET_CLASS(dev);
Error *local_err = NULL;
plc->parent_realize(dev, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
/* P8 uses a XSCOM region for LPC registers */
pnv_xscom_region_init(&lpc->xscom_regs, OBJECT(lpc),
&pnv_lpc_xscom_ops, lpc, "xscom-lpc",
PNV_XSCOM_LPC_SIZE);
}
static void pnv_lpc_power8_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
PnvXScomInterfaceClass *xdc = PNV_XSCOM_INTERFACE_CLASS(klass);
PnvLpcClass *plc = PNV_LPC_CLASS(klass);
dc->desc = "PowerNV LPC Controller POWER8";
xdc->dt_xscom = pnv_lpc_dt_xscom;
device_class_set_parent_realize(dc, pnv_lpc_power8_realize,
&plc->parent_realize);
}
static const TypeInfo pnv_lpc_power8_info = {
.name = TYPE_PNV8_LPC,
.parent = TYPE_PNV_LPC,
.class_init = pnv_lpc_power8_class_init,
.interfaces = (InterfaceInfo[]) {
{ TYPE_PNV_XSCOM_INTERFACE },
{ }
}
};
static void pnv_lpc_power9_realize(DeviceState *dev, Error **errp)
{
PnvLpcController *lpc = PNV_LPC(dev);
PnvLpcClass *plc = PNV_LPC_GET_CLASS(dev);
Error *local_err = NULL;
object_property_set_bool(OBJECT(lpc), "psi-serirq", true, &error_abort);
plc->parent_realize(dev, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
/* P9 uses a MMIO region */
memory_region_init_io(&lpc->xscom_regs, OBJECT(lpc), &pnv_lpc_mmio_ops,
lpc, "lpcm", PNV9_LPCM_SIZE);
/* P9 LPC routes ISA irqs to 4 PSI SERIRQ lines */
qdev_init_gpio_out_named(dev, lpc->psi_irq_serirq, "SERIRQ", 4);
}
static void pnv_lpc_power9_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
PnvLpcClass *plc = PNV_LPC_CLASS(klass);
dc->desc = "PowerNV LPC Controller POWER9";
device_class_set_parent_realize(dc, pnv_lpc_power9_realize,
&plc->parent_realize);
}
static const TypeInfo pnv_lpc_power9_info = {
.name = TYPE_PNV9_LPC,
.parent = TYPE_PNV_LPC,
.class_init = pnv_lpc_power9_class_init,
};
static void pnv_lpc_power10_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->desc = "PowerNV LPC Controller POWER10";
}
static const TypeInfo pnv_lpc_power10_info = {
.name = TYPE_PNV10_LPC,
.parent = TYPE_PNV9_LPC,
.class_init = pnv_lpc_power10_class_init,
};
static void pnv_lpc_realize(DeviceState *dev, Error **errp)
{
PnvLpcController *lpc = PNV_LPC(dev);
/* Reg inits */
lpc->lpc_hc_fw_rd_acc_size = LPC_HC_FW_RD_4B;
/* Create address space and backing MR for the OPB bus */
memory_region_init(&lpc->opb_mr, OBJECT(dev), "lpc-opb", 0x100000000ull);
address_space_init(&lpc->opb_as, &lpc->opb_mr, "lpc-opb");
/* Create ISA IO and Mem space regions which are the root of
* the ISA bus (ie, ISA address spaces). We don't create a
* separate one for FW which we alias to memory.
*/
memory_region_init(&lpc->isa_io, OBJECT(dev), "isa-io", ISA_IO_SIZE);
memory_region_init(&lpc->isa_mem, OBJECT(dev), "isa-mem", ISA_MEM_SIZE);
memory_region_init(&lpc->isa_fw, OBJECT(dev), "isa-fw", ISA_FW_SIZE);
/* Create windows from the OPB space to the ISA space */
memory_region_init_alias(&lpc->opb_isa_io, OBJECT(dev), "lpc-isa-io",
&lpc->isa_io, 0, LPC_IO_OPB_SIZE);
memory_region_add_subregion(&lpc->opb_mr, LPC_IO_OPB_ADDR,
&lpc->opb_isa_io);
memory_region_init_alias(&lpc->opb_isa_mem, OBJECT(dev), "lpc-isa-mem",
&lpc->isa_mem, 0, LPC_MEM_OPB_SIZE);
memory_region_add_subregion(&lpc->opb_mr, LPC_MEM_OPB_ADDR,
&lpc->opb_isa_mem);
memory_region_init_alias(&lpc->opb_isa_fw, OBJECT(dev), "lpc-isa-fw",
&lpc->isa_fw, 0, LPC_FW_OPB_SIZE);
memory_region_add_subregion(&lpc->opb_mr, LPC_FW_OPB_ADDR,
&lpc->opb_isa_fw);
/* Create MMIO regions for LPC HC and OPB registers */
memory_region_init_io(&lpc->opb_master_regs, OBJECT(dev), &opb_master_ops,
lpc, "lpc-opb-master", LPC_OPB_REGS_OPB_SIZE);
lpc->opb_master_regs.disable_reentrancy_guard = true;
memory_region_add_subregion(&lpc->opb_mr, LPC_OPB_REGS_OPB_ADDR,
&lpc->opb_master_regs);
memory_region_init_io(&lpc->lpc_hc_regs, OBJECT(dev), &lpc_hc_ops, lpc,
"lpc-hc", LPC_HC_REGS_OPB_SIZE);
/* xscom writes to lpc-hc. As such mark lpc-hc re-entrancy safe */
lpc->lpc_hc_regs.disable_reentrancy_guard = true;
memory_region_add_subregion(&lpc->opb_mr, LPC_HC_REGS_OPB_ADDR,
&lpc->lpc_hc_regs);
qdev_init_gpio_out_named(dev, &lpc->psi_irq_lpchc, "LPCHC", 1);
}
static Property pnv_lpc_properties[] = {
DEFINE_PROP_BOOL("psi-serirq", PnvLpcController, psi_has_serirq, false),
DEFINE_PROP_END_OF_LIST(),
};
static void pnv_lpc_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
device_class_set_props(dc, pnv_lpc_properties);
dc->realize = pnv_lpc_realize;
dc->desc = "PowerNV LPC Controller";
dc->user_creatable = false;
}
static const TypeInfo pnv_lpc_info = {
.name = TYPE_PNV_LPC,
.parent = TYPE_DEVICE,
.instance_size = sizeof(PnvLpcController),
.class_init = pnv_lpc_class_init,
.class_size = sizeof(PnvLpcClass),
.abstract = true,
};
static void pnv_lpc_register_types(void)
{
type_register_static(&pnv_lpc_info);
type_register_static(&pnv_lpc_power8_info);
type_register_static(&pnv_lpc_power9_info);
type_register_static(&pnv_lpc_power10_info);
}
type_init(pnv_lpc_register_types)
/* If we don't use the built-in LPC interrupt deserializer, we need
* to provide a set of qirqs for the ISA bus or things will go bad.
*
* Most machines using pre-Naples chips (without said deserializer)
* have a CPLD that will collect the SerIRQ and shoot them as a
* single level interrupt to the P8 chip. So let's setup a hook
* for doing just that.
*/
static void pnv_lpc_isa_irq_handler_cpld(void *opaque, int n, int level)
{
PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
uint32_t old_state = pnv->cpld_irqstate;
PnvLpcController *lpc = PNV_LPC(opaque);
if (level) {
pnv->cpld_irqstate |= 1u << n;
} else {
pnv->cpld_irqstate &= ~(1u << n);
}
if (pnv->cpld_irqstate != old_state) {
qemu_set_irq(lpc->psi_irq_lpchc, pnv->cpld_irqstate != 0);
}
}
static void pnv_lpc_isa_irq_handler(void *opaque, int n, int level)
{
PnvLpcController *lpc = PNV_LPC(opaque);
uint32_t irq_bit = LPC_HC_IRQ_SERIRQ0 >> n;
if (level) {
lpc->lpc_hc_irq_inputs |= irq_bit;
/*
* The LPC HC in Naples and later latches LPC IRQ into a bit field in
* the IRQSTAT register, and that drives the PSI IRQ to the IC.
* Software clears this bit manually (see LPC_HC_IRQSTAT handler).
*/
lpc->lpc_hc_irqstat |= irq_bit;
pnv_lpc_eval_irqs(lpc);
} else {
lpc->lpc_hc_irq_inputs &= ~irq_bit;
/* POWER9 adds an auto-clear mode that clears IRQSTAT bits on EOI */
if (lpc->psi_has_serirq &&
(lpc->lpc_hc_irqser_ctrl & LPC_HC_IRQSER_AUTO_CLEAR)) {
lpc->lpc_hc_irqstat &= ~irq_bit;
pnv_lpc_eval_irqs(lpc);
}
}
}
ISABus *pnv_lpc_isa_create(PnvLpcController *lpc, bool use_cpld, Error **errp)
{
Error *local_err = NULL;
ISABus *isa_bus;
qemu_irq *irqs;
qemu_irq_handler handler;
/* let isa_bus_new() create its own bridge on SysBus otherwise
* devices specified on the command line won't find the bus and
* will fail to create.
*/
isa_bus = isa_bus_new(NULL, &lpc->isa_mem, &lpc->isa_io, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return NULL;
}
/* Not all variants have a working serial irq decoder. If not,
* handling of LPC interrupts becomes a platform issue (some
* platforms have a CPLD to do it).
*/
if (use_cpld) {
handler = pnv_lpc_isa_irq_handler_cpld;
} else {
handler = pnv_lpc_isa_irq_handler;
}
/* POWER has a 17th irq, QEMU only implements the 16 regular device irqs */
irqs = qemu_allocate_irqs(handler, lpc, ISA_NUM_IRQS);
isa_bus_register_input_irqs(isa_bus, irqs);
return isa_bus;
}