qemu/hw/intc/arm_gicv3_redist.c
Peter Maydell e40f60730a hw/intc/arm_gicv3: Fix decoding of ID register range
The GIC ID registers cover an area 0x30 bytes in size
(12 registers, 4 bytes each). We were incorrectly decoding
only the first 0x20 bytes.

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Message-id: 20190524124248.28394-2-peter.maydell@linaro.org
2019-06-17 15:13:19 +01:00

582 lines
18 KiB
C

/*
* ARM GICv3 emulation: Redistributor
*
* Copyright (c) 2015 Huawei.
* Copyright (c) 2016 Linaro Limited.
* Written by Shlomo Pongratz, Peter Maydell
*
* This code is licensed under the GPL, version 2 or (at your option)
* any later version.
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "trace.h"
#include "gicv3_internal.h"
static uint32_t mask_group(GICv3CPUState *cs, MemTxAttrs attrs)
{
/* Return a 32-bit mask which should be applied for this set of 32
* interrupts; each bit is 1 if access is permitted by the
* combination of attrs.secure and GICR_GROUPR. (GICR_NSACR does
* not affect config register accesses, unlike GICD_NSACR.)
*/
if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
/* bits for Group 0 or Secure Group 1 interrupts are RAZ/WI */
return cs->gicr_igroupr0;
}
return 0xFFFFFFFFU;
}
static int gicr_ns_access(GICv3CPUState *cs, int irq)
{
/* Return the 2 bit NSACR.NS_access field for this SGI */
assert(irq < 16);
return extract32(cs->gicr_nsacr, irq * 2, 2);
}
static void gicr_write_set_bitmap_reg(GICv3CPUState *cs, MemTxAttrs attrs,
uint32_t *reg, uint32_t val)
{
/* Helper routine to implement writing to a "set-bitmap" register */
val &= mask_group(cs, attrs);
*reg |= val;
gicv3_redist_update(cs);
}
static void gicr_write_clear_bitmap_reg(GICv3CPUState *cs, MemTxAttrs attrs,
uint32_t *reg, uint32_t val)
{
/* Helper routine to implement writing to a "clear-bitmap" register */
val &= mask_group(cs, attrs);
*reg &= ~val;
gicv3_redist_update(cs);
}
static uint32_t gicr_read_bitmap_reg(GICv3CPUState *cs, MemTxAttrs attrs,
uint32_t reg)
{
reg &= mask_group(cs, attrs);
return reg;
}
static uint8_t gicr_read_ipriorityr(GICv3CPUState *cs, MemTxAttrs attrs,
int irq)
{
/* Read the value of GICR_IPRIORITYR<n> for the specified interrupt,
* honouring security state (these are RAZ/WI for Group 0 or Secure
* Group 1 interrupts).
*/
uint32_t prio;
prio = cs->gicr_ipriorityr[irq];
if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
if (!(cs->gicr_igroupr0 & (1U << irq))) {
/* Fields for Group 0 or Secure Group 1 interrupts are RAZ/WI */
return 0;
}
/* NS view of the interrupt priority */
prio = (prio << 1) & 0xff;
}
return prio;
}
static void gicr_write_ipriorityr(GICv3CPUState *cs, MemTxAttrs attrs, int irq,
uint8_t value)
{
/* Write the value of GICD_IPRIORITYR<n> for the specified interrupt,
* honouring security state (these are RAZ/WI for Group 0 or Secure
* Group 1 interrupts).
*/
if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
if (!(cs->gicr_igroupr0 & (1U << irq))) {
/* Fields for Group 0 or Secure Group 1 interrupts are RAZ/WI */
return;
}
/* NS view of the interrupt priority */
value = 0x80 | (value >> 1);
}
cs->gicr_ipriorityr[irq] = value;
}
static MemTxResult gicr_readb(GICv3CPUState *cs, hwaddr offset,
uint64_t *data, MemTxAttrs attrs)
{
switch (offset) {
case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f:
*data = gicr_read_ipriorityr(cs, attrs, offset - GICR_IPRIORITYR);
return MEMTX_OK;
default:
return MEMTX_ERROR;
}
}
static MemTxResult gicr_writeb(GICv3CPUState *cs, hwaddr offset,
uint64_t value, MemTxAttrs attrs)
{
switch (offset) {
case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f:
gicr_write_ipriorityr(cs, attrs, offset - GICR_IPRIORITYR, value);
gicv3_redist_update(cs);
return MEMTX_OK;
default:
return MEMTX_ERROR;
}
}
static MemTxResult gicr_readl(GICv3CPUState *cs, hwaddr offset,
uint64_t *data, MemTxAttrs attrs)
{
switch (offset) {
case GICR_CTLR:
*data = cs->gicr_ctlr;
return MEMTX_OK;
case GICR_IIDR:
*data = gicv3_iidr();
return MEMTX_OK;
case GICR_TYPER:
*data = extract64(cs->gicr_typer, 0, 32);
return MEMTX_OK;
case GICR_TYPER + 4:
*data = extract64(cs->gicr_typer, 32, 32);
return MEMTX_OK;
case GICR_STATUSR:
/* RAZ/WI for us (this is an optional register and our implementation
* does not track RO/WO/reserved violations to report them to the guest)
*/
*data = 0;
return MEMTX_OK;
case GICR_WAKER:
*data = cs->gicr_waker;
return MEMTX_OK;
case GICR_PROPBASER:
*data = extract64(cs->gicr_propbaser, 0, 32);
return MEMTX_OK;
case GICR_PROPBASER + 4:
*data = extract64(cs->gicr_propbaser, 32, 32);
return MEMTX_OK;
case GICR_PENDBASER:
*data = extract64(cs->gicr_pendbaser, 0, 32);
return MEMTX_OK;
case GICR_PENDBASER + 4:
*data = extract64(cs->gicr_pendbaser, 32, 32);
return MEMTX_OK;
case GICR_IGROUPR0:
if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
*data = 0;
return MEMTX_OK;
}
*data = cs->gicr_igroupr0;
return MEMTX_OK;
case GICR_ISENABLER0:
case GICR_ICENABLER0:
*data = gicr_read_bitmap_reg(cs, attrs, cs->gicr_ienabler0);
return MEMTX_OK;
case GICR_ISPENDR0:
case GICR_ICPENDR0:
{
/* The pending register reads as the logical OR of the pending
* latch and the input line level for level-triggered interrupts.
*/
uint32_t val = cs->gicr_ipendr0 | (~cs->edge_trigger & cs->level);
*data = gicr_read_bitmap_reg(cs, attrs, val);
return MEMTX_OK;
}
case GICR_ISACTIVER0:
case GICR_ICACTIVER0:
*data = gicr_read_bitmap_reg(cs, attrs, cs->gicr_iactiver0);
return MEMTX_OK;
case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f:
{
int i, irq = offset - GICR_IPRIORITYR;
uint32_t value = 0;
for (i = irq + 3; i >= irq; i--) {
value <<= 8;
value |= gicr_read_ipriorityr(cs, attrs, i);
}
*data = value;
return MEMTX_OK;
}
case GICR_ICFGR0:
case GICR_ICFGR1:
{
/* Our edge_trigger bitmap is one bit per irq; take the correct
* half of it, and spread it out into the odd bits.
*/
uint32_t value;
value = cs->edge_trigger & mask_group(cs, attrs);
value = extract32(value, (offset == GICR_ICFGR1) ? 16 : 0, 16);
value = half_shuffle32(value) << 1;
*data = value;
return MEMTX_OK;
}
case GICR_IGRPMODR0:
if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
/* RAZ/WI if security disabled, or if
* security enabled and this is an NS access
*/
*data = 0;
return MEMTX_OK;
}
*data = cs->gicr_igrpmodr0;
return MEMTX_OK;
case GICR_NSACR:
if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
/* RAZ/WI if security disabled, or if
* security enabled and this is an NS access
*/
*data = 0;
return MEMTX_OK;
}
*data = cs->gicr_nsacr;
return MEMTX_OK;
case GICR_IDREGS ... GICR_IDREGS + 0x2f:
*data = gicv3_idreg(offset - GICR_IDREGS);
return MEMTX_OK;
default:
return MEMTX_ERROR;
}
}
static MemTxResult gicr_writel(GICv3CPUState *cs, hwaddr offset,
uint64_t value, MemTxAttrs attrs)
{
switch (offset) {
case GICR_CTLR:
/* For our implementation, GICR_TYPER.DPGS is 0 and so all
* the DPG bits are RAZ/WI. We don't do anything asynchronously,
* so UWP and RWP are RAZ/WI. And GICR_TYPER.LPIS is 0 (we don't
* implement LPIs) so Enable_LPIs is RES0. So there are no writable
* bits for us.
*/
return MEMTX_OK;
case GICR_STATUSR:
/* RAZ/WI for our implementation */
return MEMTX_OK;
case GICR_WAKER:
/* Only the ProcessorSleep bit is writeable. When the guest sets
* it it requests that we transition the channel between the
* redistributor and the cpu interface to quiescent, and that
* we set the ChildrenAsleep bit once the inteface has reached the
* quiescent state.
* Setting the ProcessorSleep to 0 reverses the quiescing, and
* ChildrenAsleep is cleared once the transition is complete.
* Since our interface is not asynchronous, we complete these
* transitions instantaneously, so we set ChildrenAsleep to the
* same value as ProcessorSleep here.
*/
value &= GICR_WAKER_ProcessorSleep;
if (value & GICR_WAKER_ProcessorSleep) {
value |= GICR_WAKER_ChildrenAsleep;
}
cs->gicr_waker = value;
return MEMTX_OK;
case GICR_PROPBASER:
cs->gicr_propbaser = deposit64(cs->gicr_propbaser, 0, 32, value);
return MEMTX_OK;
case GICR_PROPBASER + 4:
cs->gicr_propbaser = deposit64(cs->gicr_propbaser, 32, 32, value);
return MEMTX_OK;
case GICR_PENDBASER:
cs->gicr_pendbaser = deposit64(cs->gicr_pendbaser, 0, 32, value);
return MEMTX_OK;
case GICR_PENDBASER + 4:
cs->gicr_pendbaser = deposit64(cs->gicr_pendbaser, 32, 32, value);
return MEMTX_OK;
case GICR_IGROUPR0:
if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
return MEMTX_OK;
}
cs->gicr_igroupr0 = value;
gicv3_redist_update(cs);
return MEMTX_OK;
case GICR_ISENABLER0:
gicr_write_set_bitmap_reg(cs, attrs, &cs->gicr_ienabler0, value);
return MEMTX_OK;
case GICR_ICENABLER0:
gicr_write_clear_bitmap_reg(cs, attrs, &cs->gicr_ienabler0, value);
return MEMTX_OK;
case GICR_ISPENDR0:
gicr_write_set_bitmap_reg(cs, attrs, &cs->gicr_ipendr0, value);
return MEMTX_OK;
case GICR_ICPENDR0:
gicr_write_clear_bitmap_reg(cs, attrs, &cs->gicr_ipendr0, value);
return MEMTX_OK;
case GICR_ISACTIVER0:
gicr_write_set_bitmap_reg(cs, attrs, &cs->gicr_iactiver0, value);
return MEMTX_OK;
case GICR_ICACTIVER0:
gicr_write_clear_bitmap_reg(cs, attrs, &cs->gicr_iactiver0, value);
return MEMTX_OK;
case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f:
{
int i, irq = offset - GICR_IPRIORITYR;
for (i = irq; i < irq + 4; i++, value >>= 8) {
gicr_write_ipriorityr(cs, attrs, i, value);
}
gicv3_redist_update(cs);
return MEMTX_OK;
}
case GICR_ICFGR0:
/* Register is all RAZ/WI or RAO/WI bits */
return MEMTX_OK;
case GICR_ICFGR1:
{
uint32_t mask;
/* Since our edge_trigger bitmap is one bit per irq, our input
* 32-bits will compress down into 16 bits which we need
* to write into the bitmap.
*/
value = half_unshuffle32(value >> 1) << 16;
mask = mask_group(cs, attrs) & 0xffff0000U;
cs->edge_trigger &= ~mask;
cs->edge_trigger |= (value & mask);
gicv3_redist_update(cs);
return MEMTX_OK;
}
case GICR_IGRPMODR0:
if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
/* RAZ/WI if security disabled, or if
* security enabled and this is an NS access
*/
return MEMTX_OK;
}
cs->gicr_igrpmodr0 = value;
gicv3_redist_update(cs);
return MEMTX_OK;
case GICR_NSACR:
if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
/* RAZ/WI if security disabled, or if
* security enabled and this is an NS access
*/
return MEMTX_OK;
}
cs->gicr_nsacr = value;
/* no update required as this only affects access permission checks */
return MEMTX_OK;
case GICR_IIDR:
case GICR_TYPER:
case GICR_IDREGS ... GICR_IDREGS + 0x2f:
/* RO registers, ignore the write */
qemu_log_mask(LOG_GUEST_ERROR,
"%s: invalid guest write to RO register at offset "
TARGET_FMT_plx "\n", __func__, offset);
return MEMTX_OK;
default:
return MEMTX_ERROR;
}
}
static MemTxResult gicr_readll(GICv3CPUState *cs, hwaddr offset,
uint64_t *data, MemTxAttrs attrs)
{
switch (offset) {
case GICR_TYPER:
*data = cs->gicr_typer;
return MEMTX_OK;
case GICR_PROPBASER:
*data = cs->gicr_propbaser;
return MEMTX_OK;
case GICR_PENDBASER:
*data = cs->gicr_pendbaser;
return MEMTX_OK;
default:
return MEMTX_ERROR;
}
}
static MemTxResult gicr_writell(GICv3CPUState *cs, hwaddr offset,
uint64_t value, MemTxAttrs attrs)
{
switch (offset) {
case GICR_PROPBASER:
cs->gicr_propbaser = value;
return MEMTX_OK;
case GICR_PENDBASER:
cs->gicr_pendbaser = value;
return MEMTX_OK;
case GICR_TYPER:
/* RO register, ignore the write */
qemu_log_mask(LOG_GUEST_ERROR,
"%s: invalid guest write to RO register at offset "
TARGET_FMT_plx "\n", __func__, offset);
return MEMTX_OK;
default:
return MEMTX_ERROR;
}
}
MemTxResult gicv3_redist_read(void *opaque, hwaddr offset, uint64_t *data,
unsigned size, MemTxAttrs attrs)
{
GICv3State *s = opaque;
GICv3CPUState *cs;
MemTxResult r;
int cpuidx;
assert((offset & (size - 1)) == 0);
/* This region covers all the redistributor pages; there are
* (for GICv3) two 64K pages per CPU. At the moment they are
* all contiguous (ie in this one region), though we might later
* want to allow splitting of redistributor pages into several
* blocks so we can support more CPUs.
*/
cpuidx = offset / 0x20000;
offset %= 0x20000;
assert(cpuidx < s->num_cpu);
cs = &s->cpu[cpuidx];
switch (size) {
case 1:
r = gicr_readb(cs, offset, data, attrs);
break;
case 4:
r = gicr_readl(cs, offset, data, attrs);
break;
case 8:
r = gicr_readll(cs, offset, data, attrs);
break;
default:
r = MEMTX_ERROR;
break;
}
if (r == MEMTX_ERROR) {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: invalid guest read at offset " TARGET_FMT_plx
"size %u\n", __func__, offset, size);
trace_gicv3_redist_badread(gicv3_redist_affid(cs), offset,
size, attrs.secure);
/* The spec requires that reserved registers are RAZ/WI;
* so use MEMTX_ERROR returns from leaf functions as a way to
* trigger the guest-error logging but don't return it to
* the caller, or we'll cause a spurious guest data abort.
*/
r = MEMTX_OK;
*data = 0;
} else {
trace_gicv3_redist_read(gicv3_redist_affid(cs), offset, *data,
size, attrs.secure);
}
return r;
}
MemTxResult gicv3_redist_write(void *opaque, hwaddr offset, uint64_t data,
unsigned size, MemTxAttrs attrs)
{
GICv3State *s = opaque;
GICv3CPUState *cs;
MemTxResult r;
int cpuidx;
assert((offset & (size - 1)) == 0);
/* This region covers all the redistributor pages; there are
* (for GICv3) two 64K pages per CPU. At the moment they are
* all contiguous (ie in this one region), though we might later
* want to allow splitting of redistributor pages into several
* blocks so we can support more CPUs.
*/
cpuidx = offset / 0x20000;
offset %= 0x20000;
assert(cpuidx < s->num_cpu);
cs = &s->cpu[cpuidx];
switch (size) {
case 1:
r = gicr_writeb(cs, offset, data, attrs);
break;
case 4:
r = gicr_writel(cs, offset, data, attrs);
break;
case 8:
r = gicr_writell(cs, offset, data, attrs);
break;
default:
r = MEMTX_ERROR;
break;
}
if (r == MEMTX_ERROR) {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: invalid guest write at offset " TARGET_FMT_plx
"size %u\n", __func__, offset, size);
trace_gicv3_redist_badwrite(gicv3_redist_affid(cs), offset, data,
size, attrs.secure);
/* The spec requires that reserved registers are RAZ/WI;
* so use MEMTX_ERROR returns from leaf functions as a way to
* trigger the guest-error logging but don't return it to
* the caller, or we'll cause a spurious guest data abort.
*/
r = MEMTX_OK;
} else {
trace_gicv3_redist_write(gicv3_redist_affid(cs), offset, data,
size, attrs.secure);
}
return r;
}
void gicv3_redist_set_irq(GICv3CPUState *cs, int irq, int level)
{
/* Update redistributor state for a change in an external PPI input line */
if (level == extract32(cs->level, irq, 1)) {
return;
}
trace_gicv3_redist_set_irq(gicv3_redist_affid(cs), irq, level);
cs->level = deposit32(cs->level, irq, 1, level);
if (level) {
/* 0->1 edges latch the pending bit for edge-triggered interrupts */
if (extract32(cs->edge_trigger, irq, 1)) {
cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 1);
}
}
gicv3_redist_update(cs);
}
void gicv3_redist_send_sgi(GICv3CPUState *cs, int grp, int irq, bool ns)
{
/* Update redistributor state for a generated SGI */
int irqgrp = gicv3_irq_group(cs->gic, cs, irq);
/* If we are asked for a Secure Group 1 SGI and it's actually
* configured as Secure Group 0 this is OK (subject to the usual
* NSACR checks).
*/
if (grp == GICV3_G1 && irqgrp == GICV3_G0) {
grp = GICV3_G0;
}
if (grp != irqgrp) {
return;
}
if (ns && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
/* If security is enabled we must test the NSACR bits */
int nsaccess = gicr_ns_access(cs, irq);
if ((irqgrp == GICV3_G0 && nsaccess < 1) ||
(irqgrp == GICV3_G1 && nsaccess < 2)) {
return;
}
}
/* OK, we can accept the SGI */
trace_gicv3_redist_send_sgi(gicv3_redist_affid(cs), irq);
cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 1);
gicv3_redist_update(cs);
}