qemu/tests/qtest/migration-test.c
Hyman Huang 17257b90be tests: Add migration dirty-limit capability test
Add migration dirty-limit capability test if kernel support
dirty ring.

Migration dirty-limit capability introduce dirty limit
capability, two parameters: x-vcpu-dirty-limit-period and
vcpu-dirty-limit are introduced to implement the live
migration with dirty limit.

The test case does the following things:
1. start src, dst vm and enable dirty-limit capability
2. start migrate and set cancel it to check if dirty limit
   stop working.
3. restart dst vm
4. start migrate and enable dirty-limit capability
5. check if migration satisfy the convergence condition
   during pre-switchover phase.

Note that this test case involves many passes, so it runs
in slow mode only.

Signed-off-by: Hyman Huang <yong.huang@smartx.com>
Acked-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Fabiano Rosas <farosas@suse.de>
Reviewed-by: Juan Quintela <quintela@redhat.com>
Signed-off-by: Juan Quintela <quintela@redhat.com>
Message-ID: <e55a302df9da7dbc00ad825f47f57c1a756d303e.1698847223.git.yong.huang@smartx.com>
2023-11-03 07:48:25 +01:00

3525 lines
105 KiB
C

/*
* QTest testcase for migration
*
* Copyright (c) 2016-2018 Red Hat, Inc. and/or its affiliates
* based on the vhost-user-test.c that is:
* Copyright (c) 2014 Virtual Open Systems Sarl.
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*
*/
#include "qemu/osdep.h"
#include "libqtest.h"
#include "qapi/error.h"
#include "qapi/qmp/qdict.h"
#include "qemu/module.h"
#include "qemu/option.h"
#include "qemu/range.h"
#include "qemu/sockets.h"
#include "chardev/char.h"
#include "qapi/qapi-visit-sockets.h"
#include "qapi/qobject-input-visitor.h"
#include "qapi/qobject-output-visitor.h"
#include "crypto/tlscredspsk.h"
#include "qapi/qmp/qlist.h"
#include "migration-helpers.h"
#include "tests/migration/migration-test.h"
#ifdef CONFIG_GNUTLS
# include "tests/unit/crypto-tls-psk-helpers.h"
# ifdef CONFIG_TASN1
# include "tests/unit/crypto-tls-x509-helpers.h"
# endif /* CONFIG_TASN1 */
#endif /* CONFIG_GNUTLS */
/* For dirty ring test; so far only x86_64 is supported */
#if defined(__linux__) && defined(HOST_X86_64)
#include "linux/kvm.h"
#endif
unsigned start_address;
unsigned end_address;
static bool uffd_feature_thread_id;
static bool got_src_stop;
static bool got_dst_resume;
/*
* An initial 3 MB offset is used as that corresponds
* to ~1 sec of data transfer with our bandwidth setting.
*/
#define MAGIC_OFFSET_BASE (3 * 1024 * 1024)
/*
* A further 1k is added to ensure we're not a multiple
* of TEST_MEM_PAGE_SIZE, thus avoid clash with writes
* from the migration guest workload.
*/
#define MAGIC_OFFSET_SHUFFLE 1024
#define MAGIC_OFFSET (MAGIC_OFFSET_BASE + MAGIC_OFFSET_SHUFFLE)
#define MAGIC_MARKER 0xFEED12345678CAFEULL
/*
* Dirtylimit stop working if dirty page rate error
* value less than DIRTYLIMIT_TOLERANCE_RANGE
*/
#define DIRTYLIMIT_TOLERANCE_RANGE 25 /* MB/s */
#define ANALYZE_SCRIPT "scripts/analyze-migration.py"
#define QEMU_VM_FILE_MAGIC 0x5145564d
#define FILE_TEST_FILENAME "migfile"
#define FILE_TEST_OFFSET 0x1000
#define QEMU_ENV_SRC "QTEST_QEMU_BINARY_SRC"
#define QEMU_ENV_DST "QTEST_QEMU_BINARY_DST"
#if defined(__linux__)
#include <sys/syscall.h>
#include <sys/vfs.h>
#endif
#if defined(__linux__) && defined(__NR_userfaultfd) && defined(CONFIG_EVENTFD)
#include <sys/eventfd.h>
#include <sys/ioctl.h>
#include "qemu/userfaultfd.h"
static bool ufd_version_check(void)
{
struct uffdio_api api_struct;
uint64_t ioctl_mask;
int ufd = uffd_open(O_CLOEXEC);
if (ufd == -1) {
g_test_message("Skipping test: userfaultfd not available");
return false;
}
api_struct.api = UFFD_API;
api_struct.features = 0;
if (ioctl(ufd, UFFDIO_API, &api_struct)) {
g_test_message("Skipping test: UFFDIO_API failed");
return false;
}
uffd_feature_thread_id = api_struct.features & UFFD_FEATURE_THREAD_ID;
ioctl_mask = (__u64)1 << _UFFDIO_REGISTER |
(__u64)1 << _UFFDIO_UNREGISTER;
if ((api_struct.ioctls & ioctl_mask) != ioctl_mask) {
g_test_message("Skipping test: Missing userfault feature");
return false;
}
return true;
}
#else
static bool ufd_version_check(void)
{
g_test_message("Skipping test: Userfault not available (builtdtime)");
return false;
}
#endif
static char *tmpfs;
static char *bootpath;
/* The boot file modifies memory area in [start_address, end_address)
* repeatedly. It outputs a 'B' at a fixed rate while it's still running.
*/
#include "tests/migration/i386/a-b-bootblock.h"
#include "tests/migration/aarch64/a-b-kernel.h"
#include "tests/migration/s390x/a-b-bios.h"
static void bootfile_create(char *dir)
{
const char *arch = qtest_get_arch();
unsigned char *content;
size_t len;
bootpath = g_strdup_printf("%s/bootsect", dir);
if (strcmp(arch, "i386") == 0 || strcmp(arch, "x86_64") == 0) {
/* the assembled x86 boot sector should be exactly one sector large */
g_assert(sizeof(x86_bootsect) == 512);
content = x86_bootsect;
len = sizeof(x86_bootsect);
} else if (g_str_equal(arch, "s390x")) {
content = s390x_elf;
len = sizeof(s390x_elf);
} else if (strcmp(arch, "ppc64") == 0) {
/*
* sane architectures can be programmed at the boot prompt
*/
return;
} else if (strcmp(arch, "aarch64") == 0) {
content = aarch64_kernel;
len = sizeof(aarch64_kernel);
g_assert(sizeof(aarch64_kernel) <= ARM_TEST_MAX_KERNEL_SIZE);
} else {
g_assert_not_reached();
}
FILE *bootfile = fopen(bootpath, "wb");
g_assert_cmpint(fwrite(content, len, 1, bootfile), ==, 1);
fclose(bootfile);
}
static void bootfile_delete(void)
{
unlink(bootpath);
g_free(bootpath);
bootpath = NULL;
}
/*
* Wait for some output in the serial output file,
* we get an 'A' followed by an endless string of 'B's
* but on the destination we won't have the A.
*/
static void wait_for_serial(const char *side)
{
g_autofree char *serialpath = g_strdup_printf("%s/%s", tmpfs, side);
FILE *serialfile = fopen(serialpath, "r");
const char *arch = qtest_get_arch();
int started = (strcmp(side, "src_serial") == 0 &&
strcmp(arch, "ppc64") == 0) ? 0 : 1;
do {
int readvalue = fgetc(serialfile);
if (!started) {
/* SLOF prints its banner before starting test,
* to ignore it, mark the start of the test with '_',
* ignore all characters until this marker
*/
switch (readvalue) {
case '_':
started = 1;
break;
case EOF:
fseek(serialfile, 0, SEEK_SET);
usleep(1000);
break;
}
continue;
}
switch (readvalue) {
case 'A':
/* Fine */
break;
case 'B':
/* It's alive! */
fclose(serialfile);
return;
case EOF:
started = (strcmp(side, "src_serial") == 0 &&
strcmp(arch, "ppc64") == 0) ? 0 : 1;
fseek(serialfile, 0, SEEK_SET);
usleep(1000);
break;
default:
fprintf(stderr, "Unexpected %d on %s serial\n", readvalue, side);
g_assert_not_reached();
}
} while (true);
}
/*
* It's tricky to use qemu's migration event capability with qtest,
* events suddenly appearing confuse the qmp()/hmp() responses.
*/
static int64_t read_ram_property_int(QTestState *who, const char *property)
{
QDict *rsp_return, *rsp_ram;
int64_t result;
rsp_return = migrate_query_not_failed(who);
if (!qdict_haskey(rsp_return, "ram")) {
/* Still in setup */
result = 0;
} else {
rsp_ram = qdict_get_qdict(rsp_return, "ram");
result = qdict_get_try_int(rsp_ram, property, 0);
}
qobject_unref(rsp_return);
return result;
}
static int64_t read_migrate_property_int(QTestState *who, const char *property)
{
QDict *rsp_return;
int64_t result;
rsp_return = migrate_query_not_failed(who);
result = qdict_get_try_int(rsp_return, property, 0);
qobject_unref(rsp_return);
return result;
}
static uint64_t get_migration_pass(QTestState *who)
{
return read_ram_property_int(who, "dirty-sync-count");
}
static void read_blocktime(QTestState *who)
{
QDict *rsp_return;
rsp_return = migrate_query_not_failed(who);
g_assert(qdict_haskey(rsp_return, "postcopy-blocktime"));
qobject_unref(rsp_return);
}
static void wait_for_migration_pass(QTestState *who)
{
uint64_t initial_pass = get_migration_pass(who);
uint64_t pass;
/* Wait for the 1st sync */
while (!got_src_stop && !initial_pass) {
usleep(1000);
initial_pass = get_migration_pass(who);
}
do {
usleep(1000);
pass = get_migration_pass(who);
} while (pass == initial_pass && !got_src_stop);
}
static void check_guests_ram(QTestState *who)
{
/* Our ASM test will have been incrementing one byte from each page from
* start_address to < end_address in order. This gives us a constraint
* that any page's byte should be equal or less than the previous pages
* byte (mod 256); and they should all be equal except for one transition
* at the point where we meet the incrementer. (We're running this with
* the guest stopped).
*/
unsigned address;
uint8_t first_byte;
uint8_t last_byte;
bool hit_edge = false;
int bad = 0;
qtest_memread(who, start_address, &first_byte, 1);
last_byte = first_byte;
for (address = start_address + TEST_MEM_PAGE_SIZE; address < end_address;
address += TEST_MEM_PAGE_SIZE)
{
uint8_t b;
qtest_memread(who, address, &b, 1);
if (b != last_byte) {
if (((b + 1) % 256) == last_byte && !hit_edge) {
/* This is OK, the guest stopped at the point of
* incrementing the previous page but didn't get
* to us yet.
*/
hit_edge = true;
last_byte = b;
} else {
bad++;
if (bad <= 10) {
fprintf(stderr, "Memory content inconsistency at %x"
" first_byte = %x last_byte = %x current = %x"
" hit_edge = %x\n",
address, first_byte, last_byte, b, hit_edge);
}
}
}
}
if (bad >= 10) {
fprintf(stderr, "and in another %d pages", bad - 10);
}
g_assert(bad == 0);
}
static void cleanup(const char *filename)
{
g_autofree char *path = g_strdup_printf("%s/%s", tmpfs, filename);
unlink(path);
}
static char *SocketAddress_to_str(SocketAddress *addr)
{
switch (addr->type) {
case SOCKET_ADDRESS_TYPE_INET:
return g_strdup_printf("tcp:%s:%s",
addr->u.inet.host,
addr->u.inet.port);
case SOCKET_ADDRESS_TYPE_UNIX:
return g_strdup_printf("unix:%s",
addr->u.q_unix.path);
case SOCKET_ADDRESS_TYPE_FD:
return g_strdup_printf("fd:%s", addr->u.fd.str);
case SOCKET_ADDRESS_TYPE_VSOCK:
return g_strdup_printf("tcp:%s:%s",
addr->u.vsock.cid,
addr->u.vsock.port);
default:
return g_strdup("unknown address type");
}
}
static char *migrate_get_socket_address(QTestState *who, const char *parameter)
{
QDict *rsp;
char *result;
SocketAddressList *addrs;
Visitor *iv = NULL;
QObject *object;
rsp = migrate_query(who);
object = qdict_get(rsp, parameter);
iv = qobject_input_visitor_new(object);
visit_type_SocketAddressList(iv, NULL, &addrs, &error_abort);
visit_free(iv);
/* we are only using a single address */
result = SocketAddress_to_str(addrs->value);
qapi_free_SocketAddressList(addrs);
qobject_unref(rsp);
return result;
}
static long long migrate_get_parameter_int(QTestState *who,
const char *parameter)
{
QDict *rsp;
long long result;
rsp = qtest_qmp_assert_success_ref(
who, "{ 'execute': 'query-migrate-parameters' }");
result = qdict_get_int(rsp, parameter);
qobject_unref(rsp);
return result;
}
static void migrate_check_parameter_int(QTestState *who, const char *parameter,
long long value)
{
long long result;
result = migrate_get_parameter_int(who, parameter);
g_assert_cmpint(result, ==, value);
}
static void migrate_set_parameter_int(QTestState *who, const char *parameter,
long long value)
{
qtest_qmp_assert_success(who,
"{ 'execute': 'migrate-set-parameters',"
"'arguments': { %s: %lld } }",
parameter, value);
migrate_check_parameter_int(who, parameter, value);
}
static char *migrate_get_parameter_str(QTestState *who,
const char *parameter)
{
QDict *rsp;
char *result;
rsp = qtest_qmp_assert_success_ref(
who, "{ 'execute': 'query-migrate-parameters' }");
result = g_strdup(qdict_get_str(rsp, parameter));
qobject_unref(rsp);
return result;
}
static void migrate_check_parameter_str(QTestState *who, const char *parameter,
const char *value)
{
g_autofree char *result = migrate_get_parameter_str(who, parameter);
g_assert_cmpstr(result, ==, value);
}
static void migrate_set_parameter_str(QTestState *who, const char *parameter,
const char *value)
{
qtest_qmp_assert_success(who,
"{ 'execute': 'migrate-set-parameters',"
"'arguments': { %s: %s } }",
parameter, value);
migrate_check_parameter_str(who, parameter, value);
}
static long long migrate_get_parameter_bool(QTestState *who,
const char *parameter)
{
QDict *rsp;
int result;
rsp = qtest_qmp_assert_success_ref(
who, "{ 'execute': 'query-migrate-parameters' }");
result = qdict_get_bool(rsp, parameter);
qobject_unref(rsp);
return !!result;
}
static void migrate_check_parameter_bool(QTestState *who, const char *parameter,
int value)
{
int result;
result = migrate_get_parameter_bool(who, parameter);
g_assert_cmpint(result, ==, value);
}
static void migrate_set_parameter_bool(QTestState *who, const char *parameter,
int value)
{
qtest_qmp_assert_success(who,
"{ 'execute': 'migrate-set-parameters',"
"'arguments': { %s: %i } }",
parameter, value);
migrate_check_parameter_bool(who, parameter, value);
}
static void migrate_ensure_non_converge(QTestState *who)
{
/* Can't converge with 1ms downtime + 3 mbs bandwidth limit */
migrate_set_parameter_int(who, "max-bandwidth", 3 * 1000 * 1000);
migrate_set_parameter_int(who, "downtime-limit", 1);
}
static void migrate_ensure_converge(QTestState *who)
{
/* Should converge with 30s downtime + 1 gbs bandwidth limit */
migrate_set_parameter_int(who, "max-bandwidth", 1 * 1000 * 1000 * 1000);
migrate_set_parameter_int(who, "downtime-limit", 30 * 1000);
}
/*
* Our goal is to ensure that we run a single full migration
* iteration, and also dirty memory, ensuring that at least
* one further iteration is required.
*
* We can't directly synchronize with the start of a migration
* so we have to apply some tricks monitoring memory that is
* transferred.
*
* Initially we set the migration bandwidth to an insanely
* low value, with tiny max downtime too. This basically
* guarantees migration will never complete.
*
* This will result in a test that is unacceptably slow though,
* so we can't let the entire migration pass run at this speed.
* Our intent is to let it run just long enough that we can
* prove data prior to the marker has been transferred *AND*
* also prove this transferred data is dirty again.
*
* Before migration starts, we write a 64-bit magic marker
* into a fixed location in the src VM RAM.
*
* Then watch dst memory until the marker appears. This is
* proof that start_address -> MAGIC_OFFSET_BASE has been
* transferred.
*
* Finally we go back to the source and read a byte just
* before the marker until we see it flip in value. This
* is proof that start_address -> MAGIC_OFFSET_BASE
* is now dirty again.
*
* IOW, we're guaranteed at least a 2nd migration pass
* at this point.
*
* We can now let migration run at full speed to finish
* the test
*/
static void migrate_prepare_for_dirty_mem(QTestState *from)
{
/*
* The guest workflow iterates from start_address to
* end_address, writing 1 byte every TEST_MEM_PAGE_SIZE
* bytes.
*
* IOW, if we write to mem at a point which is NOT
* a multiple of TEST_MEM_PAGE_SIZE, our write won't
* conflict with the migration workflow.
*
* We put in a marker here, that we'll use to determine
* when the data has been transferred to the dst.
*/
qtest_writeq(from, start_address + MAGIC_OFFSET, MAGIC_MARKER);
}
static void migrate_wait_for_dirty_mem(QTestState *from,
QTestState *to)
{
uint64_t watch_address = start_address + MAGIC_OFFSET_BASE;
uint64_t marker_address = start_address + MAGIC_OFFSET;
uint8_t watch_byte;
/*
* Wait for the MAGIC_MARKER to get transferred, as an
* indicator that a migration pass has made some known
* amount of progress.
*/
do {
usleep(1000 * 10);
} while (qtest_readq(to, marker_address) != MAGIC_MARKER);
/*
* Now ensure that already transferred bytes are
* dirty again from the guest workload. Note the
* guest byte value will wrap around and by chance
* match the original watch_byte. This is harmless
* as we'll eventually see a different value if we
* keep watching
*/
watch_byte = qtest_readb(from, watch_address);
do {
usleep(1000 * 10);
} while (qtest_readb(from, watch_address) == watch_byte);
}
static void migrate_pause(QTestState *who)
{
qtest_qmp_assert_success(who, "{ 'execute': 'migrate-pause' }");
}
static void migrate_continue(QTestState *who, const char *state)
{
qtest_qmp_assert_success(who,
"{ 'execute': 'migrate-continue',"
" 'arguments': { 'state': %s } }",
state);
}
static void migrate_recover(QTestState *who, const char *uri)
{
qtest_qmp_assert_success(who,
"{ 'execute': 'migrate-recover', "
" 'id': 'recover-cmd', "
" 'arguments': { 'uri': %s } }",
uri);
}
static void migrate_cancel(QTestState *who)
{
qtest_qmp_assert_success(who, "{ 'execute': 'migrate_cancel' }");
}
static void migrate_postcopy_start(QTestState *from, QTestState *to)
{
qtest_qmp_assert_success(from, "{ 'execute': 'migrate-start-postcopy' }");
if (!got_src_stop) {
qtest_qmp_eventwait(from, "STOP");
}
qtest_qmp_eventwait(to, "RESUME");
}
typedef struct {
/*
* QTEST_LOG=1 may override this. When QTEST_LOG=1, we always dump errors
* unconditionally, because it means the user would like to be verbose.
*/
bool hide_stderr;
bool use_shmem;
/* only launch the target process */
bool only_target;
/* Use dirty ring if true; dirty logging otherwise */
bool use_dirty_ring;
const char *opts_source;
const char *opts_target;
} MigrateStart;
/*
* A hook that runs after the src and dst QEMUs have been
* created, but before the migration is started. This can
* be used to set migration parameters and capabilities.
*
* Returns: NULL, or a pointer to opaque state to be
* later passed to the TestMigrateFinishHook
*/
typedef void * (*TestMigrateStartHook)(QTestState *from,
QTestState *to);
/*
* A hook that runs after the migration has finished,
* regardless of whether it succeeded or failed, but
* before QEMU has terminated (unless it self-terminated
* due to migration error)
*
* @opaque is a pointer to state previously returned
* by the TestMigrateStartHook if any, or NULL.
*/
typedef void (*TestMigrateFinishHook)(QTestState *from,
QTestState *to,
void *opaque);
typedef struct {
/* Optional: fine tune start parameters */
MigrateStart start;
/* Required: the URI for the dst QEMU to listen on */
const char *listen_uri;
/*
* Optional: the URI for the src QEMU to connect to
* If NULL, then it will query the dst QEMU for its actual
* listening address and use that as the connect address.
* This allows for dynamically picking a free TCP port.
*/
const char *connect_uri;
/* Optional: callback to run at start to set migration parameters */
TestMigrateStartHook start_hook;
/* Optional: callback to run at finish to cleanup */
TestMigrateFinishHook finish_hook;
/*
* Optional: normally we expect the migration process to complete.
*
* There can be a variety of reasons and stages in which failure
* can happen during tests.
*
* If a failure is expected to happen at time of establishing
* the connection, then MIG_TEST_FAIL will indicate that the dst
* QEMU is expected to stay running and accept future migration
* connections.
*
* If a failure is expected to happen while processing the
* migration stream, then MIG_TEST_FAIL_DEST_QUIT_ERR will indicate
* that the dst QEMU is expected to quit with non-zero exit status
*/
enum {
/* This test should succeed, the default */
MIG_TEST_SUCCEED = 0,
/* This test should fail, dest qemu should keep alive */
MIG_TEST_FAIL,
/* This test should fail, dest qemu should fail with abnormal status */
MIG_TEST_FAIL_DEST_QUIT_ERR,
/* The QMP command for this migration should fail with an error */
MIG_TEST_QMP_ERROR,
} result;
/*
* Optional: set number of migration passes to wait for, if live==true.
* If zero, then merely wait for a few MB of dirty data
*/
unsigned int iterations;
/*
* Optional: whether the guest CPUs should be running during a precopy
* migration test. We used to always run with live but it took much
* longer so we reduced live tests to only the ones that have solid
* reason to be tested live-only. For each of the new test cases for
* precopy please provide justifications to use live explicitly (please
* refer to existing ones with live=true), or use live=off by default.
*/
bool live;
/* Postcopy specific fields */
void *postcopy_data;
bool postcopy_preempt;
bool postcopy_recovery_test_fail;
} MigrateCommon;
static int test_migrate_start(QTestState **from, QTestState **to,
const char *uri, MigrateStart *args)
{
g_autofree gchar *arch_source = NULL;
g_autofree gchar *arch_target = NULL;
/* options for source and target */
g_autofree gchar *arch_opts = NULL;
g_autofree gchar *cmd_source = NULL;
g_autofree gchar *cmd_target = NULL;
const gchar *ignore_stderr;
g_autofree char *shmem_opts = NULL;
g_autofree char *shmem_path = NULL;
const char *kvm_opts = NULL;
const char *arch = qtest_get_arch();
const char *memory_size;
const char *machine_alias, *machine_opts = "";
g_autofree char *machine = NULL;
if (args->use_shmem) {
if (!g_file_test("/dev/shm", G_FILE_TEST_IS_DIR)) {
g_test_skip("/dev/shm is not supported");
return -1;
}
}
got_src_stop = false;
got_dst_resume = false;
if (strcmp(arch, "i386") == 0 || strcmp(arch, "x86_64") == 0) {
memory_size = "150M";
if (g_str_equal(arch, "i386")) {
machine_alias = "pc";
} else {
machine_alias = "q35";
}
arch_opts = g_strdup_printf(
"-drive if=none,id=d0,file=%s,format=raw "
"-device ide-hd,drive=d0,secs=1,cyls=1,heads=1", bootpath);
start_address = X86_TEST_MEM_START;
end_address = X86_TEST_MEM_END;
} else if (g_str_equal(arch, "s390x")) {
memory_size = "128M";
machine_alias = "s390-ccw-virtio";
arch_opts = g_strdup_printf("-bios %s", bootpath);
start_address = S390_TEST_MEM_START;
end_address = S390_TEST_MEM_END;
} else if (strcmp(arch, "ppc64") == 0) {
memory_size = "256M";
start_address = PPC_TEST_MEM_START;
end_address = PPC_TEST_MEM_END;
arch_source = g_strdup_printf("-prom-env 'use-nvramrc?=true' -prom-env "
"'nvramrc=hex .\" _\" begin %x %x "
"do i c@ 1 + i c! 1000 +loop .\" B\" 0 "
"until'", end_address, start_address);
machine_alias = "pseries";
machine_opts = "vsmt=8";
arch_opts = g_strdup("-nodefaults");
} else if (strcmp(arch, "aarch64") == 0) {
memory_size = "150M";
machine_alias = "virt";
machine_opts = "gic-version=max";
arch_opts = g_strdup_printf("-cpu max -kernel %s", bootpath);
start_address = ARM_TEST_MEM_START;
end_address = ARM_TEST_MEM_END;
} else {
g_assert_not_reached();
}
if (!getenv("QTEST_LOG") && args->hide_stderr) {
#ifndef _WIN32
ignore_stderr = "2>/dev/null";
#else
/*
* On Windows the QEMU executable is created via CreateProcess() and
* IO redirection does not work, so don't bother adding IO redirection
* to the command line.
*/
ignore_stderr = "";
#endif
} else {
ignore_stderr = "";
}
if (args->use_shmem) {
shmem_path = g_strdup_printf("/dev/shm/qemu-%d", getpid());
shmem_opts = g_strdup_printf(
"-object memory-backend-file,id=mem0,size=%s"
",mem-path=%s,share=on -numa node,memdev=mem0",
memory_size, shmem_path);
}
if (args->use_dirty_ring) {
kvm_opts = ",dirty-ring-size=4096";
}
machine = resolve_machine_version(machine_alias, QEMU_ENV_SRC,
QEMU_ENV_DST);
g_test_message("Using machine type: %s", machine);
cmd_source = g_strdup_printf("-accel kvm%s -accel tcg "
"-machine %s,%s "
"-name source,debug-threads=on "
"-m %s "
"-serial file:%s/src_serial "
"%s %s %s %s %s",
kvm_opts ? kvm_opts : "",
machine, machine_opts,
memory_size, tmpfs,
arch_opts ? arch_opts : "",
arch_source ? arch_source : "",
shmem_opts ? shmem_opts : "",
args->opts_source ? args->opts_source : "",
ignore_stderr);
if (!args->only_target) {
*from = qtest_init_with_env(QEMU_ENV_SRC, cmd_source);
qtest_qmp_set_event_callback(*from,
migrate_watch_for_stop,
&got_src_stop);
}
cmd_target = g_strdup_printf("-accel kvm%s -accel tcg "
"-machine %s,%s "
"-name target,debug-threads=on "
"-m %s "
"-serial file:%s/dest_serial "
"-incoming %s "
"%s %s %s %s %s",
kvm_opts ? kvm_opts : "",
machine, machine_opts,
memory_size, tmpfs, uri,
arch_opts ? arch_opts : "",
arch_target ? arch_target : "",
shmem_opts ? shmem_opts : "",
args->opts_target ? args->opts_target : "",
ignore_stderr);
*to = qtest_init_with_env(QEMU_ENV_DST, cmd_target);
qtest_qmp_set_event_callback(*to,
migrate_watch_for_resume,
&got_dst_resume);
/*
* Remove shmem file immediately to avoid memory leak in test failed case.
* It's valid because QEMU has already opened this file
*/
if (args->use_shmem) {
unlink(shmem_path);
}
return 0;
}
static void test_migrate_end(QTestState *from, QTestState *to, bool test_dest)
{
unsigned char dest_byte_a, dest_byte_b, dest_byte_c, dest_byte_d;
qtest_quit(from);
if (test_dest) {
qtest_memread(to, start_address, &dest_byte_a, 1);
/* Destination still running, wait for a byte to change */
do {
qtest_memread(to, start_address, &dest_byte_b, 1);
usleep(1000 * 10);
} while (dest_byte_a == dest_byte_b);
qtest_qmp_assert_success(to, "{ 'execute' : 'stop'}");
/* With it stopped, check nothing changes */
qtest_memread(to, start_address, &dest_byte_c, 1);
usleep(1000 * 200);
qtest_memread(to, start_address, &dest_byte_d, 1);
g_assert_cmpint(dest_byte_c, ==, dest_byte_d);
check_guests_ram(to);
}
qtest_quit(to);
cleanup("migsocket");
cleanup("src_serial");
cleanup("dest_serial");
cleanup(FILE_TEST_FILENAME);
}
#ifdef CONFIG_GNUTLS
struct TestMigrateTLSPSKData {
char *workdir;
char *workdiralt;
char *pskfile;
char *pskfilealt;
};
static void *
test_migrate_tls_psk_start_common(QTestState *from,
QTestState *to,
bool mismatch)
{
struct TestMigrateTLSPSKData *data =
g_new0(struct TestMigrateTLSPSKData, 1);
data->workdir = g_strdup_printf("%s/tlscredspsk0", tmpfs);
data->pskfile = g_strdup_printf("%s/%s", data->workdir,
QCRYPTO_TLS_CREDS_PSKFILE);
g_mkdir_with_parents(data->workdir, 0700);
test_tls_psk_init(data->pskfile);
if (mismatch) {
data->workdiralt = g_strdup_printf("%s/tlscredspskalt0", tmpfs);
data->pskfilealt = g_strdup_printf("%s/%s", data->workdiralt,
QCRYPTO_TLS_CREDS_PSKFILE);
g_mkdir_with_parents(data->workdiralt, 0700);
test_tls_psk_init_alt(data->pskfilealt);
}
qtest_qmp_assert_success(from,
"{ 'execute': 'object-add',"
" 'arguments': { 'qom-type': 'tls-creds-psk',"
" 'id': 'tlscredspsk0',"
" 'endpoint': 'client',"
" 'dir': %s,"
" 'username': 'qemu'} }",
data->workdir);
qtest_qmp_assert_success(to,
"{ 'execute': 'object-add',"
" 'arguments': { 'qom-type': 'tls-creds-psk',"
" 'id': 'tlscredspsk0',"
" 'endpoint': 'server',"
" 'dir': %s } }",
mismatch ? data->workdiralt : data->workdir);
migrate_set_parameter_str(from, "tls-creds", "tlscredspsk0");
migrate_set_parameter_str(to, "tls-creds", "tlscredspsk0");
return data;
}
static void *
test_migrate_tls_psk_start_match(QTestState *from,
QTestState *to)
{
return test_migrate_tls_psk_start_common(from, to, false);
}
static void *
test_migrate_tls_psk_start_mismatch(QTestState *from,
QTestState *to)
{
return test_migrate_tls_psk_start_common(from, to, true);
}
static void
test_migrate_tls_psk_finish(QTestState *from,
QTestState *to,
void *opaque)
{
struct TestMigrateTLSPSKData *data = opaque;
test_tls_psk_cleanup(data->pskfile);
if (data->pskfilealt) {
test_tls_psk_cleanup(data->pskfilealt);
}
rmdir(data->workdir);
if (data->workdiralt) {
rmdir(data->workdiralt);
}
g_free(data->workdiralt);
g_free(data->pskfilealt);
g_free(data->workdir);
g_free(data->pskfile);
g_free(data);
}
#ifdef CONFIG_TASN1
typedef struct {
char *workdir;
char *keyfile;
char *cacert;
char *servercert;
char *serverkey;
char *clientcert;
char *clientkey;
} TestMigrateTLSX509Data;
typedef struct {
bool verifyclient;
bool clientcert;
bool hostileclient;
bool authzclient;
const char *certhostname;
const char *certipaddr;
} TestMigrateTLSX509;
static void *
test_migrate_tls_x509_start_common(QTestState *from,
QTestState *to,
TestMigrateTLSX509 *args)
{
TestMigrateTLSX509Data *data = g_new0(TestMigrateTLSX509Data, 1);
data->workdir = g_strdup_printf("%s/tlscredsx5090", tmpfs);
data->keyfile = g_strdup_printf("%s/key.pem", data->workdir);
data->cacert = g_strdup_printf("%s/ca-cert.pem", data->workdir);
data->serverkey = g_strdup_printf("%s/server-key.pem", data->workdir);
data->servercert = g_strdup_printf("%s/server-cert.pem", data->workdir);
if (args->clientcert) {
data->clientkey = g_strdup_printf("%s/client-key.pem", data->workdir);
data->clientcert = g_strdup_printf("%s/client-cert.pem", data->workdir);
}
g_mkdir_with_parents(data->workdir, 0700);
test_tls_init(data->keyfile);
#ifndef _WIN32
g_assert(link(data->keyfile, data->serverkey) == 0);
#else
g_assert(CreateHardLink(data->serverkey, data->keyfile, NULL) != 0);
#endif
if (args->clientcert) {
#ifndef _WIN32
g_assert(link(data->keyfile, data->clientkey) == 0);
#else
g_assert(CreateHardLink(data->clientkey, data->keyfile, NULL) != 0);
#endif
}
TLS_ROOT_REQ_SIMPLE(cacertreq, data->cacert);
if (args->clientcert) {
TLS_CERT_REQ_SIMPLE_CLIENT(servercertreq, cacertreq,
args->hostileclient ?
QCRYPTO_TLS_TEST_CLIENT_HOSTILE_NAME :
QCRYPTO_TLS_TEST_CLIENT_NAME,
data->clientcert);
}
TLS_CERT_REQ_SIMPLE_SERVER(clientcertreq, cacertreq,
data->servercert,
args->certhostname,
args->certipaddr);
qtest_qmp_assert_success(from,
"{ 'execute': 'object-add',"
" 'arguments': { 'qom-type': 'tls-creds-x509',"
" 'id': 'tlscredsx509client0',"
" 'endpoint': 'client',"
" 'dir': %s,"
" 'sanity-check': true,"
" 'verify-peer': true} }",
data->workdir);
migrate_set_parameter_str(from, "tls-creds", "tlscredsx509client0");
if (args->certhostname) {
migrate_set_parameter_str(from, "tls-hostname", args->certhostname);
}
qtest_qmp_assert_success(to,
"{ 'execute': 'object-add',"
" 'arguments': { 'qom-type': 'tls-creds-x509',"
" 'id': 'tlscredsx509server0',"
" 'endpoint': 'server',"
" 'dir': %s,"
" 'sanity-check': true,"
" 'verify-peer': %i} }",
data->workdir, args->verifyclient);
migrate_set_parameter_str(to, "tls-creds", "tlscredsx509server0");
if (args->authzclient) {
qtest_qmp_assert_success(to,
"{ 'execute': 'object-add',"
" 'arguments': { 'qom-type': 'authz-simple',"
" 'id': 'tlsauthz0',"
" 'identity': %s} }",
"CN=" QCRYPTO_TLS_TEST_CLIENT_NAME);
migrate_set_parameter_str(to, "tls-authz", "tlsauthz0");
}
return data;
}
/*
* The normal case: match server's cert hostname against
* whatever host we were telling QEMU to connect to (if any)
*/
static void *
test_migrate_tls_x509_start_default_host(QTestState *from,
QTestState *to)
{
TestMigrateTLSX509 args = {
.verifyclient = true,
.clientcert = true,
.certipaddr = "127.0.0.1"
};
return test_migrate_tls_x509_start_common(from, to, &args);
}
/*
* The unusual case: the server's cert is different from
* the address we're telling QEMU to connect to (if any),
* so we must give QEMU an explicit hostname to validate
*/
static void *
test_migrate_tls_x509_start_override_host(QTestState *from,
QTestState *to)
{
TestMigrateTLSX509 args = {
.verifyclient = true,
.clientcert = true,
.certhostname = "qemu.org",
};
return test_migrate_tls_x509_start_common(from, to, &args);
}
/*
* The unusual case: the server's cert is different from
* the address we're telling QEMU to connect to, and so we
* expect the client to reject the server
*/
static void *
test_migrate_tls_x509_start_mismatch_host(QTestState *from,
QTestState *to)
{
TestMigrateTLSX509 args = {
.verifyclient = true,
.clientcert = true,
.certipaddr = "10.0.0.1",
};
return test_migrate_tls_x509_start_common(from, to, &args);
}
static void *
test_migrate_tls_x509_start_friendly_client(QTestState *from,
QTestState *to)
{
TestMigrateTLSX509 args = {
.verifyclient = true,
.clientcert = true,
.authzclient = true,
.certipaddr = "127.0.0.1",
};
return test_migrate_tls_x509_start_common(from, to, &args);
}
static void *
test_migrate_tls_x509_start_hostile_client(QTestState *from,
QTestState *to)
{
TestMigrateTLSX509 args = {
.verifyclient = true,
.clientcert = true,
.hostileclient = true,
.authzclient = true,
.certipaddr = "127.0.0.1",
};
return test_migrate_tls_x509_start_common(from, to, &args);
}
/*
* The case with no client certificate presented,
* and no server verification
*/
static void *
test_migrate_tls_x509_start_allow_anon_client(QTestState *from,
QTestState *to)
{
TestMigrateTLSX509 args = {
.certipaddr = "127.0.0.1",
};
return test_migrate_tls_x509_start_common(from, to, &args);
}
/*
* The case with no client certificate presented,
* and server verification rejecting
*/
static void *
test_migrate_tls_x509_start_reject_anon_client(QTestState *from,
QTestState *to)
{
TestMigrateTLSX509 args = {
.verifyclient = true,
.certipaddr = "127.0.0.1",
};
return test_migrate_tls_x509_start_common(from, to, &args);
}
static void
test_migrate_tls_x509_finish(QTestState *from,
QTestState *to,
void *opaque)
{
TestMigrateTLSX509Data *data = opaque;
test_tls_cleanup(data->keyfile);
g_free(data->keyfile);
unlink(data->cacert);
g_free(data->cacert);
unlink(data->servercert);
g_free(data->servercert);
unlink(data->serverkey);
g_free(data->serverkey);
if (data->clientcert) {
unlink(data->clientcert);
g_free(data->clientcert);
}
if (data->clientkey) {
unlink(data->clientkey);
g_free(data->clientkey);
}
rmdir(data->workdir);
g_free(data->workdir);
g_free(data);
}
#endif /* CONFIG_TASN1 */
#endif /* CONFIG_GNUTLS */
static void *
test_migrate_compress_start(QTestState *from,
QTestState *to)
{
migrate_set_parameter_int(from, "compress-level", 1);
migrate_set_parameter_int(from, "compress-threads", 4);
migrate_set_parameter_bool(from, "compress-wait-thread", true);
migrate_set_parameter_int(to, "decompress-threads", 4);
migrate_set_capability(from, "compress", true);
migrate_set_capability(to, "compress", true);
return NULL;
}
static void *
test_migrate_compress_nowait_start(QTestState *from,
QTestState *to)
{
migrate_set_parameter_int(from, "compress-level", 9);
migrate_set_parameter_int(from, "compress-threads", 1);
migrate_set_parameter_bool(from, "compress-wait-thread", false);
migrate_set_parameter_int(to, "decompress-threads", 1);
migrate_set_capability(from, "compress", true);
migrate_set_capability(to, "compress", true);
return NULL;
}
static int migrate_postcopy_prepare(QTestState **from_ptr,
QTestState **to_ptr,
MigrateCommon *args)
{
QTestState *from, *to;
if (test_migrate_start(&from, &to, "defer", &args->start)) {
return -1;
}
if (args->start_hook) {
args->postcopy_data = args->start_hook(from, to);
}
migrate_set_capability(from, "postcopy-ram", true);
migrate_set_capability(to, "postcopy-ram", true);
migrate_set_capability(to, "postcopy-blocktime", true);
if (args->postcopy_preempt) {
migrate_set_capability(from, "postcopy-preempt", true);
migrate_set_capability(to, "postcopy-preempt", true);
}
migrate_ensure_non_converge(from);
migrate_prepare_for_dirty_mem(from);
qtest_qmp_assert_success(to, "{ 'execute': 'migrate-incoming',"
" 'arguments': { "
" 'channels': [ { 'channel-type': 'main',"
" 'addr': { 'transport': 'socket',"
" 'type': 'inet',"
" 'host': '127.0.0.1',"
" 'port': '0' } } ] } }");
/* Wait for the first serial output from the source */
wait_for_serial("src_serial");
g_autofree char *uri = migrate_get_socket_address(to, "socket-address");
migrate_qmp(from, uri, "{}");
migrate_wait_for_dirty_mem(from, to);
*from_ptr = from;
*to_ptr = to;
return 0;
}
static void migrate_postcopy_complete(QTestState *from, QTestState *to,
MigrateCommon *args)
{
wait_for_migration_complete(from);
/* Make sure we get at least one "B" on destination */
wait_for_serial("dest_serial");
if (uffd_feature_thread_id) {
read_blocktime(to);
}
if (args->finish_hook) {
args->finish_hook(from, to, args->postcopy_data);
args->postcopy_data = NULL;
}
test_migrate_end(from, to, true);
}
static void test_postcopy_common(MigrateCommon *args)
{
QTestState *from, *to;
if (migrate_postcopy_prepare(&from, &to, args)) {
return;
}
migrate_postcopy_start(from, to);
migrate_postcopy_complete(from, to, args);
}
static void test_postcopy(void)
{
MigrateCommon args = { };
test_postcopy_common(&args);
}
static void test_postcopy_compress(void)
{
MigrateCommon args = {
.start_hook = test_migrate_compress_start
};
test_postcopy_common(&args);
}
static void test_postcopy_preempt(void)
{
MigrateCommon args = {
.postcopy_preempt = true,
};
test_postcopy_common(&args);
}
#ifdef CONFIG_GNUTLS
static void test_postcopy_tls_psk(void)
{
MigrateCommon args = {
.start_hook = test_migrate_tls_psk_start_match,
.finish_hook = test_migrate_tls_psk_finish,
};
test_postcopy_common(&args);
}
static void test_postcopy_preempt_tls_psk(void)
{
MigrateCommon args = {
.postcopy_preempt = true,
.start_hook = test_migrate_tls_psk_start_match,
.finish_hook = test_migrate_tls_psk_finish,
};
test_postcopy_common(&args);
}
#endif
static void wait_for_postcopy_status(QTestState *one, const char *status)
{
wait_for_migration_status(one, status,
(const char * []) { "failed", "active",
"completed", NULL });
}
#ifndef _WIN32
static void postcopy_recover_fail(QTestState *from, QTestState *to)
{
int ret, pair1[2], pair2[2];
char c;
/* Create two unrelated socketpairs */
ret = qemu_socketpair(PF_LOCAL, SOCK_STREAM, 0, pair1);
g_assert_cmpint(ret, ==, 0);
ret = qemu_socketpair(PF_LOCAL, SOCK_STREAM, 0, pair2);
g_assert_cmpint(ret, ==, 0);
/*
* Give the guests unpaired ends of the sockets, so they'll all blocked
* at reading. This mimics a wrong channel established.
*/
qtest_qmp_fds_assert_success(from, &pair1[0], 1,
"{ 'execute': 'getfd',"
" 'arguments': { 'fdname': 'fd-mig' }}");
qtest_qmp_fds_assert_success(to, &pair2[0], 1,
"{ 'execute': 'getfd',"
" 'arguments': { 'fdname': 'fd-mig' }}");
/*
* Write the 1st byte as QEMU_VM_COMMAND (0x8) for the dest socket, to
* emulate the 1st byte of a real recovery, but stops from there to
* keep dest QEMU in RECOVER. This is needed so that we can kick off
* the recover process on dest QEMU (by triggering the G_IO_IN event).
*
* NOTE: this trick is not needed on src QEMUs, because src doesn't
* rely on an pre-existing G_IO_IN event, so it will always trigger the
* upcoming recovery anyway even if it can read nothing.
*/
#define QEMU_VM_COMMAND 0x08
c = QEMU_VM_COMMAND;
ret = send(pair2[1], &c, 1, 0);
g_assert_cmpint(ret, ==, 1);
migrate_recover(to, "fd:fd-mig");
migrate_qmp(from, "fd:fd-mig", "{'resume': true}");
/*
* Make sure both QEMU instances will go into RECOVER stage, then test
* kicking them out using migrate-pause.
*/
wait_for_postcopy_status(from, "postcopy-recover");
wait_for_postcopy_status(to, "postcopy-recover");
/*
* This would be issued by the admin upon noticing the hang, we should
* make sure we're able to kick this out.
*/
migrate_pause(from);
wait_for_postcopy_status(from, "postcopy-paused");
/* Do the same test on dest */
migrate_pause(to);
wait_for_postcopy_status(to, "postcopy-paused");
close(pair1[0]);
close(pair1[1]);
close(pair2[0]);
close(pair2[1]);
}
#endif /* _WIN32 */
static void test_postcopy_recovery_common(MigrateCommon *args)
{
QTestState *from, *to;
g_autofree char *uri = NULL;
/* Always hide errors for postcopy recover tests since they're expected */
args->start.hide_stderr = true;
if (migrate_postcopy_prepare(&from, &to, args)) {
return;
}
/* Turn postcopy speed down, 4K/s is slow enough on any machines */
migrate_set_parameter_int(from, "max-postcopy-bandwidth", 4096);
/* Now we start the postcopy */
migrate_postcopy_start(from, to);
/*
* Wait until postcopy is really started; we can only run the
* migrate-pause command during a postcopy
*/
wait_for_migration_status(from, "postcopy-active", NULL);
/*
* Manually stop the postcopy migration. This emulates a network
* failure with the migration socket
*/
migrate_pause(from);
/*
* Wait for destination side to reach postcopy-paused state. The
* migrate-recover command can only succeed if destination machine
* is in the paused state
*/
wait_for_postcopy_status(to, "postcopy-paused");
wait_for_postcopy_status(from, "postcopy-paused");
#ifndef _WIN32
if (args->postcopy_recovery_test_fail) {
/*
* Test when a wrong socket specified for recover, and then the
* ability to kick it out, and continue with a correct socket.
*/
postcopy_recover_fail(from, to);
/* continue with a good recovery */
}
#endif /* _WIN32 */
/*
* Create a new socket to emulate a new channel that is different
* from the broken migration channel; tell the destination to
* listen to the new port
*/
uri = g_strdup_printf("unix:%s/migsocket-recover", tmpfs);
migrate_recover(to, uri);
/*
* Try to rebuild the migration channel using the resume flag and
* the newly created channel
*/
migrate_qmp(from, uri, "{'resume': true}");
/* Restore the postcopy bandwidth to unlimited */
migrate_set_parameter_int(from, "max-postcopy-bandwidth", 0);
migrate_postcopy_complete(from, to, args);
}
static void test_postcopy_recovery(void)
{
MigrateCommon args = { };
test_postcopy_recovery_common(&args);
}
static void test_postcopy_recovery_compress(void)
{
MigrateCommon args = {
.start_hook = test_migrate_compress_start
};
test_postcopy_recovery_common(&args);
}
#ifndef _WIN32
static void test_postcopy_recovery_double_fail(void)
{
MigrateCommon args = {
.postcopy_recovery_test_fail = true,
};
test_postcopy_recovery_common(&args);
}
#endif /* _WIN32 */
#ifdef CONFIG_GNUTLS
static void test_postcopy_recovery_tls_psk(void)
{
MigrateCommon args = {
.start_hook = test_migrate_tls_psk_start_match,
.finish_hook = test_migrate_tls_psk_finish,
};
test_postcopy_recovery_common(&args);
}
#endif
static void test_postcopy_preempt_recovery(void)
{
MigrateCommon args = {
.postcopy_preempt = true,
};
test_postcopy_recovery_common(&args);
}
#ifdef CONFIG_GNUTLS
/* This contains preempt+recovery+tls test altogether */
static void test_postcopy_preempt_all(void)
{
MigrateCommon args = {
.postcopy_preempt = true,
.start_hook = test_migrate_tls_psk_start_match,
.finish_hook = test_migrate_tls_psk_finish,
};
test_postcopy_recovery_common(&args);
}
#endif
static void test_baddest(void)
{
MigrateStart args = {
.hide_stderr = true
};
QTestState *from, *to;
if (test_migrate_start(&from, &to, "tcp:127.0.0.1:0", &args)) {
return;
}
migrate_qmp(from, "tcp:127.0.0.1:0", "{}");
wait_for_migration_fail(from, false);
test_migrate_end(from, to, false);
}
#ifndef _WIN32
static void test_analyze_script(void)
{
MigrateStart args = {
.opts_source = "-uuid 11111111-1111-1111-1111-111111111111",
};
QTestState *from, *to;
g_autofree char *uri = NULL;
g_autofree char *file = NULL;
int pid, wstatus;
const char *python = g_getenv("PYTHON");
if (!python) {
g_test_skip("PYTHON variable not set");
return;
}
/* dummy url */
if (test_migrate_start(&from, &to, "tcp:127.0.0.1:0", &args)) {
return;
}
/*
* Setting these two capabilities causes the "configuration"
* vmstate to include subsections for them. The script needs to
* parse those subsections properly.
*/
migrate_set_capability(from, "validate-uuid", true);
migrate_set_capability(from, "x-ignore-shared", true);
file = g_strdup_printf("%s/migfile", tmpfs);
uri = g_strdup_printf("exec:cat > %s", file);
migrate_ensure_converge(from);
migrate_qmp(from, uri, "{}");
wait_for_migration_complete(from);
pid = fork();
if (!pid) {
close(1);
open("/dev/null", O_WRONLY);
execl(python, python, ANALYZE_SCRIPT, "-f", file, NULL);
g_assert_not_reached();
}
g_assert(waitpid(pid, &wstatus, 0) == pid);
if (WIFEXITED(wstatus) && WEXITSTATUS(wstatus) != 0) {
g_test_message("Failed to analyze the migration stream");
g_test_fail();
}
test_migrate_end(from, to, false);
cleanup("migfile");
}
#endif
static void test_precopy_common(MigrateCommon *args)
{
QTestState *from, *to;
void *data_hook = NULL;
g_autofree char *connect_uri = NULL;
if (test_migrate_start(&from, &to, args->listen_uri, &args->start)) {
return;
}
if (args->start_hook) {
data_hook = args->start_hook(from, to);
}
/* Wait for the first serial output from the source */
if (args->result == MIG_TEST_SUCCEED) {
wait_for_serial("src_serial");
}
if (args->live) {
migrate_ensure_non_converge(from);
migrate_prepare_for_dirty_mem(from);
} else {
/*
* Testing non-live migration, we allow it to run at
* full speed to ensure short test case duration.
* For tests expected to fail, we don't need to
* change anything.
*/
if (args->result == MIG_TEST_SUCCEED) {
qtest_qmp_assert_success(from, "{ 'execute' : 'stop'}");
if (!got_src_stop) {
qtest_qmp_eventwait(from, "STOP");
}
migrate_ensure_converge(from);
}
}
if (!args->connect_uri) {
connect_uri = migrate_get_socket_address(to, "socket-address");
} else {
connect_uri = g_strdup(args->connect_uri);
}
if (args->result == MIG_TEST_QMP_ERROR) {
migrate_qmp_fail(from, connect_uri, "{}");
goto finish;
}
migrate_qmp(from, connect_uri, "{}");
if (args->result != MIG_TEST_SUCCEED) {
bool allow_active = args->result == MIG_TEST_FAIL;
wait_for_migration_fail(from, allow_active);
if (args->result == MIG_TEST_FAIL_DEST_QUIT_ERR) {
qtest_set_expected_status(to, EXIT_FAILURE);
}
} else {
if (args->live) {
/*
* For initial iteration(s) we must do a full pass,
* but for the final iteration, we need only wait
* for some dirty mem before switching to converge
*/
while (args->iterations > 1) {
wait_for_migration_pass(from);
args->iterations--;
}
migrate_wait_for_dirty_mem(from, to);
migrate_ensure_converge(from);
/*
* We do this first, as it has a timeout to stop us
* hanging forever if migration didn't converge
*/
wait_for_migration_complete(from);
if (!got_src_stop) {
qtest_qmp_eventwait(from, "STOP");
}
} else {
wait_for_migration_complete(from);
/*
* Must wait for dst to finish reading all incoming
* data on the socket before issuing 'cont' otherwise
* it'll be ignored
*/
wait_for_migration_complete(to);
qtest_qmp_assert_success(to, "{ 'execute' : 'cont'}");
}
if (!got_dst_resume) {
qtest_qmp_eventwait(to, "RESUME");
}
wait_for_serial("dest_serial");
}
finish:
if (args->finish_hook) {
args->finish_hook(from, to, data_hook);
}
test_migrate_end(from, to, args->result == MIG_TEST_SUCCEED);
}
static void test_file_common(MigrateCommon *args, bool stop_src)
{
QTestState *from, *to;
void *data_hook = NULL;
g_autofree char *connect_uri = g_strdup(args->connect_uri);
if (test_migrate_start(&from, &to, args->listen_uri, &args->start)) {
return;
}
/*
* File migration is never live. We can keep the source VM running
* during migration, but the destination will not be running
* concurrently.
*/
g_assert_false(args->live);
if (args->start_hook) {
data_hook = args->start_hook(from, to);
}
migrate_ensure_converge(from);
wait_for_serial("src_serial");
if (stop_src) {
qtest_qmp_assert_success(from, "{ 'execute' : 'stop'}");
if (!got_src_stop) {
qtest_qmp_eventwait(from, "STOP");
}
}
if (args->result == MIG_TEST_QMP_ERROR) {
migrate_qmp_fail(from, connect_uri, "{}");
goto finish;
}
migrate_qmp(from, connect_uri, "{}");
wait_for_migration_complete(from);
/*
* We need to wait for the source to finish before starting the
* destination.
*/
migrate_incoming_qmp(to, connect_uri, "{}");
wait_for_migration_complete(to);
if (stop_src) {
qtest_qmp_assert_success(to, "{ 'execute' : 'cont'}");
}
if (!got_dst_resume) {
qtest_qmp_eventwait(to, "RESUME");
}
wait_for_serial("dest_serial");
finish:
if (args->finish_hook) {
args->finish_hook(from, to, data_hook);
}
test_migrate_end(from, to, args->result == MIG_TEST_SUCCEED);
}
static void test_precopy_unix_plain(void)
{
g_autofree char *uri = g_strdup_printf("unix:%s/migsocket", tmpfs);
MigrateCommon args = {
.listen_uri = uri,
.connect_uri = uri,
/*
* The simplest use case of precopy, covering smoke tests of
* get-dirty-log dirty tracking.
*/
.live = true,
};
test_precopy_common(&args);
}
static void test_precopy_unix_dirty_ring(void)
{
g_autofree char *uri = g_strdup_printf("unix:%s/migsocket", tmpfs);
MigrateCommon args = {
.start = {
.use_dirty_ring = true,
},
.listen_uri = uri,
.connect_uri = uri,
/*
* Besides the precopy/unix basic test, cover dirty ring interface
* rather than get-dirty-log.
*/
.live = true,
};
test_precopy_common(&args);
}
#ifdef CONFIG_GNUTLS
static void test_precopy_unix_tls_psk(void)
{
g_autofree char *uri = g_strdup_printf("unix:%s/migsocket", tmpfs);
MigrateCommon args = {
.connect_uri = uri,
.listen_uri = uri,
.start_hook = test_migrate_tls_psk_start_match,
.finish_hook = test_migrate_tls_psk_finish,
};
test_precopy_common(&args);
}
#ifdef CONFIG_TASN1
static void test_precopy_unix_tls_x509_default_host(void)
{
g_autofree char *uri = g_strdup_printf("unix:%s/migsocket", tmpfs);
MigrateCommon args = {
.start = {
.hide_stderr = true,
},
.connect_uri = uri,
.listen_uri = uri,
.start_hook = test_migrate_tls_x509_start_default_host,
.finish_hook = test_migrate_tls_x509_finish,
.result = MIG_TEST_FAIL_DEST_QUIT_ERR,
};
test_precopy_common(&args);
}
static void test_precopy_unix_tls_x509_override_host(void)
{
g_autofree char *uri = g_strdup_printf("unix:%s/migsocket", tmpfs);
MigrateCommon args = {
.connect_uri = uri,
.listen_uri = uri,
.start_hook = test_migrate_tls_x509_start_override_host,
.finish_hook = test_migrate_tls_x509_finish,
};
test_precopy_common(&args);
}
#endif /* CONFIG_TASN1 */
#endif /* CONFIG_GNUTLS */
#if 0
/* Currently upset on aarch64 TCG */
static void test_ignore_shared(void)
{
g_autofree char *uri = g_strdup_printf("unix:%s/migsocket", tmpfs);
QTestState *from, *to;
if (test_migrate_start(&from, &to, uri, false, true, NULL, NULL)) {
return;
}
migrate_ensure_non_converge(from);
migrate_prepare_for_dirty_mem(from);
migrate_set_capability(from, "x-ignore-shared", true);
migrate_set_capability(to, "x-ignore-shared", true);
/* Wait for the first serial output from the source */
wait_for_serial("src_serial");
migrate_qmp(from, uri, "{}");
migrate_wait_for_dirty_mem(from, to);
if (!got_src_stop) {
qtest_qmp_eventwait(from, "STOP");
}
qtest_qmp_eventwait(to, "RESUME");
wait_for_serial("dest_serial");
wait_for_migration_complete(from);
/* Check whether shared RAM has been really skipped */
g_assert_cmpint(read_ram_property_int(from, "transferred"), <, 1024 * 1024);
test_migrate_end(from, to, true);
}
#endif
static void *
test_migrate_xbzrle_start(QTestState *from,
QTestState *to)
{
migrate_set_parameter_int(from, "xbzrle-cache-size", 33554432);
migrate_set_capability(from, "xbzrle", true);
migrate_set_capability(to, "xbzrle", true);
return NULL;
}
static void test_precopy_unix_xbzrle(void)
{
g_autofree char *uri = g_strdup_printf("unix:%s/migsocket", tmpfs);
MigrateCommon args = {
.connect_uri = uri,
.listen_uri = uri,
.start_hook = test_migrate_xbzrle_start,
.iterations = 2,
/*
* XBZRLE needs pages to be modified when doing the 2nd+ round
* iteration to have real data pushed to the stream.
*/
.live = true,
};
test_precopy_common(&args);
}
static void test_precopy_unix_compress(void)
{
g_autofree char *uri = g_strdup_printf("unix:%s/migsocket", tmpfs);
MigrateCommon args = {
.connect_uri = uri,
.listen_uri = uri,
.start_hook = test_migrate_compress_start,
/*
* Test that no invalid thread state is left over from
* the previous iteration.
*/
.iterations = 2,
/*
* We make sure the compressor can always work well even if guest
* memory is changing. See commit 34ab9e9743 where we used to fix
* a bug when only trigger-able with guest memory changing.
*/
.live = true,
};
test_precopy_common(&args);
}
static void test_precopy_unix_compress_nowait(void)
{
g_autofree char *uri = g_strdup_printf("unix:%s/migsocket", tmpfs);
MigrateCommon args = {
.connect_uri = uri,
.listen_uri = uri,
.start_hook = test_migrate_compress_nowait_start,
/*
* Test that no invalid thread state is left over from
* the previous iteration.
*/
.iterations = 2,
/* Same reason for the wait version of precopy compress test */
.live = true,
};
test_precopy_common(&args);
}
static void test_precopy_file(void)
{
g_autofree char *uri = g_strdup_printf("file:%s/%s", tmpfs,
FILE_TEST_FILENAME);
MigrateCommon args = {
.connect_uri = uri,
.listen_uri = "defer",
};
test_file_common(&args, true);
}
static void file_offset_finish_hook(QTestState *from, QTestState *to,
void *opaque)
{
#if defined(__linux__)
g_autofree char *path = g_strdup_printf("%s/%s", tmpfs, FILE_TEST_FILENAME);
size_t size = FILE_TEST_OFFSET + sizeof(QEMU_VM_FILE_MAGIC);
uintptr_t *addr, *p;
int fd;
fd = open(path, O_RDONLY);
g_assert(fd != -1);
addr = mmap(NULL, size, PROT_READ, MAP_SHARED, fd, 0);
g_assert(addr != MAP_FAILED);
/*
* Ensure the skipped offset contains zeros and the migration
* stream starts at the right place.
*/
p = addr;
while (p < addr + FILE_TEST_OFFSET / sizeof(uintptr_t)) {
g_assert(*p == 0);
p++;
}
g_assert_cmpint(cpu_to_be64(*p) >> 32, ==, QEMU_VM_FILE_MAGIC);
munmap(addr, size);
close(fd);
#endif
}
static void test_precopy_file_offset(void)
{
g_autofree char *uri = g_strdup_printf("file:%s/%s,offset=%d", tmpfs,
FILE_TEST_FILENAME,
FILE_TEST_OFFSET);
MigrateCommon args = {
.connect_uri = uri,
.listen_uri = "defer",
.finish_hook = file_offset_finish_hook,
};
test_file_common(&args, false);
}
static void test_precopy_file_offset_bad(void)
{
/* using a value not supported by qemu_strtosz() */
g_autofree char *uri = g_strdup_printf("file:%s/%s,offset=0x20M",
tmpfs, FILE_TEST_FILENAME);
MigrateCommon args = {
.connect_uri = uri,
.listen_uri = "defer",
.result = MIG_TEST_QMP_ERROR,
};
test_file_common(&args, false);
}
static void *test_mode_reboot_start(QTestState *from, QTestState *to)
{
migrate_set_parameter_str(from, "mode", "cpr-reboot");
migrate_set_parameter_str(to, "mode", "cpr-reboot");
migrate_set_capability(from, "x-ignore-shared", true);
migrate_set_capability(to, "x-ignore-shared", true);
return NULL;
}
static void test_mode_reboot(void)
{
g_autofree char *uri = g_strdup_printf("file:%s/%s", tmpfs,
FILE_TEST_FILENAME);
MigrateCommon args = {
.start.use_shmem = true,
.connect_uri = uri,
.listen_uri = "defer",
.start_hook = test_mode_reboot_start
};
test_file_common(&args, true);
}
static void test_precopy_tcp_plain(void)
{
MigrateCommon args = {
.listen_uri = "tcp:127.0.0.1:0",
};
test_precopy_common(&args);
}
static void *test_migrate_switchover_ack_start(QTestState *from, QTestState *to)
{
migrate_set_capability(from, "return-path", true);
migrate_set_capability(to, "return-path", true);
migrate_set_capability(from, "switchover-ack", true);
migrate_set_capability(to, "switchover-ack", true);
return NULL;
}
static void test_precopy_tcp_switchover_ack(void)
{
MigrateCommon args = {
.listen_uri = "tcp:127.0.0.1:0",
.start_hook = test_migrate_switchover_ack_start,
/*
* Source VM must be running in order to consider the switchover ACK
* when deciding to do switchover or not.
*/
.live = true,
};
test_precopy_common(&args);
}
#ifdef CONFIG_GNUTLS
static void test_precopy_tcp_tls_psk_match(void)
{
MigrateCommon args = {
.listen_uri = "tcp:127.0.0.1:0",
.start_hook = test_migrate_tls_psk_start_match,
.finish_hook = test_migrate_tls_psk_finish,
};
test_precopy_common(&args);
}
static void test_precopy_tcp_tls_psk_mismatch(void)
{
MigrateCommon args = {
.start = {
.hide_stderr = true,
},
.listen_uri = "tcp:127.0.0.1:0",
.start_hook = test_migrate_tls_psk_start_mismatch,
.finish_hook = test_migrate_tls_psk_finish,
.result = MIG_TEST_FAIL,
};
test_precopy_common(&args);
}
#ifdef CONFIG_TASN1
static void test_precopy_tcp_tls_x509_default_host(void)
{
MigrateCommon args = {
.listen_uri = "tcp:127.0.0.1:0",
.start_hook = test_migrate_tls_x509_start_default_host,
.finish_hook = test_migrate_tls_x509_finish,
};
test_precopy_common(&args);
}
static void test_precopy_tcp_tls_x509_override_host(void)
{
MigrateCommon args = {
.listen_uri = "tcp:127.0.0.1:0",
.start_hook = test_migrate_tls_x509_start_override_host,
.finish_hook = test_migrate_tls_x509_finish,
};
test_precopy_common(&args);
}
static void test_precopy_tcp_tls_x509_mismatch_host(void)
{
MigrateCommon args = {
.start = {
.hide_stderr = true,
},
.listen_uri = "tcp:127.0.0.1:0",
.start_hook = test_migrate_tls_x509_start_mismatch_host,
.finish_hook = test_migrate_tls_x509_finish,
.result = MIG_TEST_FAIL_DEST_QUIT_ERR,
};
test_precopy_common(&args);
}
static void test_precopy_tcp_tls_x509_friendly_client(void)
{
MigrateCommon args = {
.listen_uri = "tcp:127.0.0.1:0",
.start_hook = test_migrate_tls_x509_start_friendly_client,
.finish_hook = test_migrate_tls_x509_finish,
};
test_precopy_common(&args);
}
static void test_precopy_tcp_tls_x509_hostile_client(void)
{
MigrateCommon args = {
.start = {
.hide_stderr = true,
},
.listen_uri = "tcp:127.0.0.1:0",
.start_hook = test_migrate_tls_x509_start_hostile_client,
.finish_hook = test_migrate_tls_x509_finish,
.result = MIG_TEST_FAIL,
};
test_precopy_common(&args);
}
static void test_precopy_tcp_tls_x509_allow_anon_client(void)
{
MigrateCommon args = {
.listen_uri = "tcp:127.0.0.1:0",
.start_hook = test_migrate_tls_x509_start_allow_anon_client,
.finish_hook = test_migrate_tls_x509_finish,
};
test_precopy_common(&args);
}
static void test_precopy_tcp_tls_x509_reject_anon_client(void)
{
MigrateCommon args = {
.start = {
.hide_stderr = true,
},
.listen_uri = "tcp:127.0.0.1:0",
.start_hook = test_migrate_tls_x509_start_reject_anon_client,
.finish_hook = test_migrate_tls_x509_finish,
.result = MIG_TEST_FAIL,
};
test_precopy_common(&args);
}
#endif /* CONFIG_TASN1 */
#endif /* CONFIG_GNUTLS */
#ifndef _WIN32
static void *test_migrate_fd_start_hook(QTestState *from,
QTestState *to)
{
int ret;
int pair[2];
/* Create two connected sockets for migration */
ret = qemu_socketpair(PF_LOCAL, SOCK_STREAM, 0, pair);
g_assert_cmpint(ret, ==, 0);
/* Send the 1st socket to the target */
qtest_qmp_fds_assert_success(to, &pair[0], 1,
"{ 'execute': 'getfd',"
" 'arguments': { 'fdname': 'fd-mig' }}");
close(pair[0]);
/* Start incoming migration from the 1st socket */
migrate_incoming_qmp(to, "fd:fd-mig", "{}");
/* Send the 2nd socket to the target */
qtest_qmp_fds_assert_success(from, &pair[1], 1,
"{ 'execute': 'getfd',"
" 'arguments': { 'fdname': 'fd-mig' }}");
close(pair[1]);
return NULL;
}
static void test_migrate_fd_finish_hook(QTestState *from,
QTestState *to,
void *opaque)
{
QDict *rsp;
const char *error_desc;
/* Test closing fds */
/* We assume, that QEMU removes named fd from its list,
* so this should fail */
rsp = qtest_qmp(from, "{ 'execute': 'closefd',"
" 'arguments': { 'fdname': 'fd-mig' }}");
g_assert_true(qdict_haskey(rsp, "error"));
error_desc = qdict_get_str(qdict_get_qdict(rsp, "error"), "desc");
g_assert_cmpstr(error_desc, ==, "File descriptor named 'fd-mig' not found");
qobject_unref(rsp);
rsp = qtest_qmp(to, "{ 'execute': 'closefd',"
" 'arguments': { 'fdname': 'fd-mig' }}");
g_assert_true(qdict_haskey(rsp, "error"));
error_desc = qdict_get_str(qdict_get_qdict(rsp, "error"), "desc");
g_assert_cmpstr(error_desc, ==, "File descriptor named 'fd-mig' not found");
qobject_unref(rsp);
}
static void test_migrate_fd_proto(void)
{
MigrateCommon args = {
.listen_uri = "defer",
.connect_uri = "fd:fd-mig",
.start_hook = test_migrate_fd_start_hook,
.finish_hook = test_migrate_fd_finish_hook
};
test_precopy_common(&args);
}
#endif /* _WIN32 */
static void do_test_validate_uuid(MigrateStart *args, bool should_fail)
{
g_autofree char *uri = g_strdup_printf("unix:%s/migsocket", tmpfs);
QTestState *from, *to;
if (test_migrate_start(&from, &to, uri, args)) {
return;
}
/*
* UUID validation is at the begin of migration. So, the main process of
* migration is not interesting for us here. Thus, set huge downtime for
* very fast migration.
*/
migrate_set_parameter_int(from, "downtime-limit", 1000000);
migrate_set_capability(from, "validate-uuid", true);
/* Wait for the first serial output from the source */
wait_for_serial("src_serial");
migrate_qmp(from, uri, "{}");
if (should_fail) {
qtest_set_expected_status(to, EXIT_FAILURE);
wait_for_migration_fail(from, true);
} else {
wait_for_migration_complete(from);
}
test_migrate_end(from, to, false);
}
static void test_validate_uuid(void)
{
MigrateStart args = {
.opts_source = "-uuid 11111111-1111-1111-1111-111111111111",
.opts_target = "-uuid 11111111-1111-1111-1111-111111111111",
};
do_test_validate_uuid(&args, false);
}
static void test_validate_uuid_error(void)
{
MigrateStart args = {
.opts_source = "-uuid 11111111-1111-1111-1111-111111111111",
.opts_target = "-uuid 22222222-2222-2222-2222-222222222222",
.hide_stderr = true,
};
do_test_validate_uuid(&args, true);
}
static void test_validate_uuid_src_not_set(void)
{
MigrateStart args = {
.opts_target = "-uuid 22222222-2222-2222-2222-222222222222",
.hide_stderr = true,
};
do_test_validate_uuid(&args, false);
}
static void test_validate_uuid_dst_not_set(void)
{
MigrateStart args = {
.opts_source = "-uuid 11111111-1111-1111-1111-111111111111",
.hide_stderr = true,
};
do_test_validate_uuid(&args, false);
}
/*
* The way auto_converge works, we need to do too many passes to
* run this test. Auto_converge logic is only run once every
* three iterations, so:
*
* - 3 iterations without auto_converge enabled
* - 3 iterations with pct = 5
* - 3 iterations with pct = 30
* - 3 iterations with pct = 55
* - 3 iterations with pct = 80
* - 3 iterations with pct = 95 (max(95, 80 + 25))
*
* To make things even worse, we need to run the initial stage at
* 3MB/s so we enter autoconverge even when host is (over)loaded.
*/
static void test_migrate_auto_converge(void)
{
g_autofree char *uri = g_strdup_printf("unix:%s/migsocket", tmpfs);
MigrateStart args = {};
QTestState *from, *to;
int64_t percentage;
/*
* We want the test to be stable and as fast as possible.
* E.g., with 1Gb/s bandwidth migration may pass without throttling,
* so we need to decrease a bandwidth.
*/
const int64_t init_pct = 5, inc_pct = 25, max_pct = 95;
if (test_migrate_start(&from, &to, uri, &args)) {
return;
}
migrate_set_capability(from, "auto-converge", true);
migrate_set_parameter_int(from, "cpu-throttle-initial", init_pct);
migrate_set_parameter_int(from, "cpu-throttle-increment", inc_pct);
migrate_set_parameter_int(from, "max-cpu-throttle", max_pct);
/*
* Set the initial parameters so that the migration could not converge
* without throttling.
*/
migrate_ensure_non_converge(from);
/* To check remaining size after precopy */
migrate_set_capability(from, "pause-before-switchover", true);
/* Wait for the first serial output from the source */
wait_for_serial("src_serial");
migrate_qmp(from, uri, "{}");
/* Wait for throttling begins */
percentage = 0;
do {
percentage = read_migrate_property_int(from, "cpu-throttle-percentage");
if (percentage != 0) {
break;
}
usleep(20);
g_assert_false(got_src_stop);
} while (true);
/* The first percentage of throttling should be at least init_pct */
g_assert_cmpint(percentage, >=, init_pct);
/* Now, when we tested that throttling works, let it converge */
migrate_ensure_converge(from);
/*
* Wait for pre-switchover status to check last throttle percentage
* and remaining. These values will be zeroed later
*/
wait_for_migration_status(from, "pre-switchover", NULL);
/* The final percentage of throttling shouldn't be greater than max_pct */
percentage = read_migrate_property_int(from, "cpu-throttle-percentage");
g_assert_cmpint(percentage, <=, max_pct);
migrate_continue(from, "pre-switchover");
qtest_qmp_eventwait(to, "RESUME");
wait_for_serial("dest_serial");
wait_for_migration_complete(from);
test_migrate_end(from, to, true);
}
static void *
test_migrate_precopy_tcp_multifd_start_common(QTestState *from,
QTestState *to,
const char *method)
{
migrate_set_parameter_int(from, "multifd-channels", 16);
migrate_set_parameter_int(to, "multifd-channels", 16);
migrate_set_parameter_str(from, "multifd-compression", method);
migrate_set_parameter_str(to, "multifd-compression", method);
migrate_set_capability(from, "multifd", true);
migrate_set_capability(to, "multifd", true);
/* Start incoming migration from the 1st socket */
migrate_incoming_qmp(to, "tcp:127.0.0.1:0", "{}");
return NULL;
}
static void *
test_migrate_precopy_tcp_multifd_start(QTestState *from,
QTestState *to)
{
return test_migrate_precopy_tcp_multifd_start_common(from, to, "none");
}
static void *
test_migrate_precopy_tcp_multifd_zlib_start(QTestState *from,
QTestState *to)
{
return test_migrate_precopy_tcp_multifd_start_common(from, to, "zlib");
}
#ifdef CONFIG_ZSTD
static void *
test_migrate_precopy_tcp_multifd_zstd_start(QTestState *from,
QTestState *to)
{
return test_migrate_precopy_tcp_multifd_start_common(from, to, "zstd");
}
#endif /* CONFIG_ZSTD */
static void test_multifd_tcp_none(void)
{
MigrateCommon args = {
.listen_uri = "defer",
.start_hook = test_migrate_precopy_tcp_multifd_start,
/*
* Multifd is more complicated than most of the features, it
* directly takes guest page buffers when sending, make sure
* everything will work alright even if guest page is changing.
*/
.live = true,
};
test_precopy_common(&args);
}
static void test_multifd_tcp_zlib(void)
{
MigrateCommon args = {
.listen_uri = "defer",
.start_hook = test_migrate_precopy_tcp_multifd_zlib_start,
};
test_precopy_common(&args);
}
#ifdef CONFIG_ZSTD
static void test_multifd_tcp_zstd(void)
{
MigrateCommon args = {
.listen_uri = "defer",
.start_hook = test_migrate_precopy_tcp_multifd_zstd_start,
};
test_precopy_common(&args);
}
#endif
#ifdef CONFIG_GNUTLS
static void *
test_migrate_multifd_tcp_tls_psk_start_match(QTestState *from,
QTestState *to)
{
test_migrate_precopy_tcp_multifd_start_common(from, to, "none");
return test_migrate_tls_psk_start_match(from, to);
}
static void *
test_migrate_multifd_tcp_tls_psk_start_mismatch(QTestState *from,
QTestState *to)
{
test_migrate_precopy_tcp_multifd_start_common(from, to, "none");
return test_migrate_tls_psk_start_mismatch(from, to);
}
#ifdef CONFIG_TASN1
static void *
test_migrate_multifd_tls_x509_start_default_host(QTestState *from,
QTestState *to)
{
test_migrate_precopy_tcp_multifd_start_common(from, to, "none");
return test_migrate_tls_x509_start_default_host(from, to);
}
static void *
test_migrate_multifd_tls_x509_start_override_host(QTestState *from,
QTestState *to)
{
test_migrate_precopy_tcp_multifd_start_common(from, to, "none");
return test_migrate_tls_x509_start_override_host(from, to);
}
static void *
test_migrate_multifd_tls_x509_start_mismatch_host(QTestState *from,
QTestState *to)
{
test_migrate_precopy_tcp_multifd_start_common(from, to, "none");
return test_migrate_tls_x509_start_mismatch_host(from, to);
}
static void *
test_migrate_multifd_tls_x509_start_allow_anon_client(QTestState *from,
QTestState *to)
{
test_migrate_precopy_tcp_multifd_start_common(from, to, "none");
return test_migrate_tls_x509_start_allow_anon_client(from, to);
}
static void *
test_migrate_multifd_tls_x509_start_reject_anon_client(QTestState *from,
QTestState *to)
{
test_migrate_precopy_tcp_multifd_start_common(from, to, "none");
return test_migrate_tls_x509_start_reject_anon_client(from, to);
}
#endif /* CONFIG_TASN1 */
static void test_multifd_tcp_tls_psk_match(void)
{
MigrateCommon args = {
.listen_uri = "defer",
.start_hook = test_migrate_multifd_tcp_tls_psk_start_match,
.finish_hook = test_migrate_tls_psk_finish,
};
test_precopy_common(&args);
}
static void test_multifd_tcp_tls_psk_mismatch(void)
{
MigrateCommon args = {
.start = {
.hide_stderr = true,
},
.listen_uri = "defer",
.start_hook = test_migrate_multifd_tcp_tls_psk_start_mismatch,
.finish_hook = test_migrate_tls_psk_finish,
.result = MIG_TEST_FAIL,
};
test_precopy_common(&args);
}
#ifdef CONFIG_TASN1
static void test_multifd_tcp_tls_x509_default_host(void)
{
MigrateCommon args = {
.listen_uri = "defer",
.start_hook = test_migrate_multifd_tls_x509_start_default_host,
.finish_hook = test_migrate_tls_x509_finish,
};
test_precopy_common(&args);
}
static void test_multifd_tcp_tls_x509_override_host(void)
{
MigrateCommon args = {
.listen_uri = "defer",
.start_hook = test_migrate_multifd_tls_x509_start_override_host,
.finish_hook = test_migrate_tls_x509_finish,
};
test_precopy_common(&args);
}
static void test_multifd_tcp_tls_x509_mismatch_host(void)
{
/*
* This has different behaviour to the non-multifd case.
*
* In non-multifd case when client aborts due to mismatched
* cert host, the server has already started trying to load
* migration state, and so it exits with I/O failure.
*
* In multifd case when client aborts due to mismatched
* cert host, the server is still waiting for the other
* multifd connections to arrive so hasn't started trying
* to load migration state, and thus just aborts the migration
* without exiting.
*/
MigrateCommon args = {
.start = {
.hide_stderr = true,
},
.listen_uri = "defer",
.start_hook = test_migrate_multifd_tls_x509_start_mismatch_host,
.finish_hook = test_migrate_tls_x509_finish,
.result = MIG_TEST_FAIL,
};
test_precopy_common(&args);
}
static void test_multifd_tcp_tls_x509_allow_anon_client(void)
{
MigrateCommon args = {
.listen_uri = "defer",
.start_hook = test_migrate_multifd_tls_x509_start_allow_anon_client,
.finish_hook = test_migrate_tls_x509_finish,
};
test_precopy_common(&args);
}
static void test_multifd_tcp_tls_x509_reject_anon_client(void)
{
MigrateCommon args = {
.start = {
.hide_stderr = true,
},
.listen_uri = "defer",
.start_hook = test_migrate_multifd_tls_x509_start_reject_anon_client,
.finish_hook = test_migrate_tls_x509_finish,
.result = MIG_TEST_FAIL,
};
test_precopy_common(&args);
}
#endif /* CONFIG_TASN1 */
#endif /* CONFIG_GNUTLS */
/*
* This test does:
* source target
* migrate_incoming
* migrate
* migrate_cancel
* launch another target
* migrate
*
* And see that it works
*/
static void test_multifd_tcp_cancel(void)
{
MigrateStart args = {
.hide_stderr = true,
};
QTestState *from, *to, *to2;
g_autofree char *uri = NULL;
if (test_migrate_start(&from, &to, "defer", &args)) {
return;
}
migrate_ensure_non_converge(from);
migrate_prepare_for_dirty_mem(from);
migrate_set_parameter_int(from, "multifd-channels", 16);
migrate_set_parameter_int(to, "multifd-channels", 16);
migrate_set_capability(from, "multifd", true);
migrate_set_capability(to, "multifd", true);
/* Start incoming migration from the 1st socket */
migrate_incoming_qmp(to, "tcp:127.0.0.1:0", "{}");
/* Wait for the first serial output from the source */
wait_for_serial("src_serial");
uri = migrate_get_socket_address(to, "socket-address");
migrate_qmp(from, uri, "{}");
migrate_wait_for_dirty_mem(from, to);
migrate_cancel(from);
/* Make sure QEMU process "to" exited */
qtest_set_expected_status(to, EXIT_FAILURE);
qtest_wait_qemu(to);
args = (MigrateStart){
.only_target = true,
};
if (test_migrate_start(&from, &to2, "defer", &args)) {
return;
}
migrate_set_parameter_int(to2, "multifd-channels", 16);
migrate_set_capability(to2, "multifd", true);
/* Start incoming migration from the 1st socket */
migrate_incoming_qmp(to2, "tcp:127.0.0.1:0", "{}");
g_free(uri);
uri = migrate_get_socket_address(to2, "socket-address");
wait_for_migration_status(from, "cancelled", NULL);
migrate_ensure_non_converge(from);
migrate_qmp(from, uri, "{}");
migrate_wait_for_dirty_mem(from, to2);
migrate_ensure_converge(from);
if (!got_src_stop) {
qtest_qmp_eventwait(from, "STOP");
}
qtest_qmp_eventwait(to2, "RESUME");
wait_for_serial("dest_serial");
wait_for_migration_complete(from);
test_migrate_end(from, to2, true);
}
static void calc_dirty_rate(QTestState *who, uint64_t calc_time)
{
qtest_qmp_assert_success(who,
"{ 'execute': 'calc-dirty-rate',"
"'arguments': { "
"'calc-time': %" PRIu64 ","
"'mode': 'dirty-ring' }}",
calc_time);
}
static QDict *query_dirty_rate(QTestState *who)
{
return qtest_qmp_assert_success_ref(who,
"{ 'execute': 'query-dirty-rate' }");
}
static void dirtylimit_set_all(QTestState *who, uint64_t dirtyrate)
{
qtest_qmp_assert_success(who,
"{ 'execute': 'set-vcpu-dirty-limit',"
"'arguments': { "
"'dirty-rate': %" PRIu64 " } }",
dirtyrate);
}
static void cancel_vcpu_dirty_limit(QTestState *who)
{
qtest_qmp_assert_success(who,
"{ 'execute': 'cancel-vcpu-dirty-limit' }");
}
static QDict *query_vcpu_dirty_limit(QTestState *who)
{
QDict *rsp;
rsp = qtest_qmp(who, "{ 'execute': 'query-vcpu-dirty-limit' }");
g_assert(!qdict_haskey(rsp, "error"));
g_assert(qdict_haskey(rsp, "return"));
return rsp;
}
static bool calc_dirtyrate_ready(QTestState *who)
{
QDict *rsp_return;
gchar *status;
rsp_return = query_dirty_rate(who);
g_assert(rsp_return);
status = g_strdup(qdict_get_str(rsp_return, "status"));
g_assert(status);
return g_strcmp0(status, "measuring");
}
static void wait_for_calc_dirtyrate_complete(QTestState *who,
int64_t time_s)
{
int max_try_count = 10000;
usleep(time_s * 1000000);
while (!calc_dirtyrate_ready(who) && max_try_count--) {
usleep(1000);
}
/*
* Set the timeout with 10 s(max_try_count * 1000us),
* if dirtyrate measurement not complete, fail test.
*/
g_assert_cmpint(max_try_count, !=, 0);
}
static int64_t get_dirty_rate(QTestState *who)
{
QDict *rsp_return;
gchar *status;
QList *rates;
const QListEntry *entry;
QDict *rate;
int64_t dirtyrate;
rsp_return = query_dirty_rate(who);
g_assert(rsp_return);
status = g_strdup(qdict_get_str(rsp_return, "status"));
g_assert(status);
g_assert_cmpstr(status, ==, "measured");
rates = qdict_get_qlist(rsp_return, "vcpu-dirty-rate");
g_assert(rates && !qlist_empty(rates));
entry = qlist_first(rates);
g_assert(entry);
rate = qobject_to(QDict, qlist_entry_obj(entry));
g_assert(rate);
dirtyrate = qdict_get_try_int(rate, "dirty-rate", -1);
qobject_unref(rsp_return);
return dirtyrate;
}
static int64_t get_limit_rate(QTestState *who)
{
QDict *rsp_return;
QList *rates;
const QListEntry *entry;
QDict *rate;
int64_t dirtyrate;
rsp_return = query_vcpu_dirty_limit(who);
g_assert(rsp_return);
rates = qdict_get_qlist(rsp_return, "return");
g_assert(rates && !qlist_empty(rates));
entry = qlist_first(rates);
g_assert(entry);
rate = qobject_to(QDict, qlist_entry_obj(entry));
g_assert(rate);
dirtyrate = qdict_get_try_int(rate, "limit-rate", -1);
qobject_unref(rsp_return);
return dirtyrate;
}
static QTestState *dirtylimit_start_vm(void)
{
QTestState *vm = NULL;
g_autofree gchar *
cmd = g_strdup_printf("-accel kvm,dirty-ring-size=4096 "
"-name dirtylimit-test,debug-threads=on "
"-m 150M -smp 1 "
"-serial file:%s/vm_serial "
"-drive file=%s,format=raw ",
tmpfs, bootpath);
vm = qtest_init(cmd);
return vm;
}
static void dirtylimit_stop_vm(QTestState *vm)
{
qtest_quit(vm);
cleanup("vm_serial");
}
static void test_vcpu_dirty_limit(void)
{
QTestState *vm;
int64_t origin_rate;
int64_t quota_rate;
int64_t rate ;
int max_try_count = 20;
int hit = 0;
/* Start vm for vcpu dirtylimit test */
vm = dirtylimit_start_vm();
/* Wait for the first serial output from the vm*/
wait_for_serial("vm_serial");
/* Do dirtyrate measurement with calc time equals 1s */
calc_dirty_rate(vm, 1);
/* Sleep calc time and wait for calc dirtyrate complete */
wait_for_calc_dirtyrate_complete(vm, 1);
/* Query original dirty page rate */
origin_rate = get_dirty_rate(vm);
/* VM booted from bootsect should dirty memory steadily */
assert(origin_rate != 0);
/* Setup quota dirty page rate at half of origin */
quota_rate = origin_rate / 2;
/* Set dirtylimit */
dirtylimit_set_all(vm, quota_rate);
/*
* Check if set-vcpu-dirty-limit and query-vcpu-dirty-limit
* works literally
*/
g_assert_cmpint(quota_rate, ==, get_limit_rate(vm));
/* Sleep a bit to check if it take effect */
usleep(2000000);
/*
* Check if dirtylimit take effect realistically, set the
* timeout with 20 s(max_try_count * 1s), if dirtylimit
* doesn't take effect, fail test.
*/
while (--max_try_count) {
calc_dirty_rate(vm, 1);
wait_for_calc_dirtyrate_complete(vm, 1);
rate = get_dirty_rate(vm);
/*
* Assume hitting if current rate is less
* than quota rate (within accepting error)
*/
if (rate < (quota_rate + DIRTYLIMIT_TOLERANCE_RANGE)) {
hit = 1;
break;
}
}
g_assert_cmpint(hit, ==, 1);
hit = 0;
max_try_count = 20;
/* Check if dirtylimit cancellation take effect */
cancel_vcpu_dirty_limit(vm);
while (--max_try_count) {
calc_dirty_rate(vm, 1);
wait_for_calc_dirtyrate_complete(vm, 1);
rate = get_dirty_rate(vm);
/*
* Assume dirtylimit be canceled if current rate is
* greater than quota rate (within accepting error)
*/
if (rate > (quota_rate + DIRTYLIMIT_TOLERANCE_RANGE)) {
hit = 1;
break;
}
}
g_assert_cmpint(hit, ==, 1);
dirtylimit_stop_vm(vm);
}
static void migrate_dirty_limit_wait_showup(QTestState *from,
const int64_t period,
const int64_t value)
{
/* Enable dirty limit capability */
migrate_set_capability(from, "dirty-limit", true);
/* Set dirty limit parameters */
migrate_set_parameter_int(from, "x-vcpu-dirty-limit-period", period);
migrate_set_parameter_int(from, "vcpu-dirty-limit", value);
/* Make sure migrate can't converge */
migrate_ensure_non_converge(from);
/* To check limit rate after precopy */
migrate_set_capability(from, "pause-before-switchover", true);
/* Wait for the serial output from the source */
wait_for_serial("src_serial");
}
/*
* This test does:
* source destination
* start vm
* start incoming vm
* migrate
* wait dirty limit to begin
* cancel migrate
* cancellation check
* restart incoming vm
* migrate
* wait dirty limit to begin
* wait pre-switchover event
* convergence condition check
*
* And see if dirty limit migration works correctly.
* This test case involves many passes, so it runs in slow mode only.
*/
static void test_migrate_dirty_limit(void)
{
g_autofree char *uri = g_strdup_printf("unix:%s/migsocket", tmpfs);
QTestState *from, *to;
int64_t remaining;
uint64_t throttle_us_per_full;
/*
* We want the test to be stable and as fast as possible.
* E.g., with 1Gb/s bandwith migration may pass without dirty limit,
* so we need to decrease a bandwidth.
*/
const int64_t dirtylimit_period = 1000, dirtylimit_value = 50;
const int64_t max_bandwidth = 400000000; /* ~400Mb/s */
const int64_t downtime_limit = 250; /* 250ms */
/*
* We migrate through unix-socket (> 500Mb/s).
* Thus, expected migration speed ~= bandwidth limit (< 500Mb/s).
* So, we can predict expected_threshold
*/
const int64_t expected_threshold = max_bandwidth * downtime_limit / 1000;
int max_try_count = 10;
MigrateCommon args = {
.start = {
.hide_stderr = true,
.use_dirty_ring = true,
},
.listen_uri = uri,
.connect_uri = uri,
};
/* Start src, dst vm */
if (test_migrate_start(&from, &to, args.listen_uri, &args.start)) {
return;
}
/* Prepare for dirty limit migration and wait src vm show up */
migrate_dirty_limit_wait_showup(from, dirtylimit_period, dirtylimit_value);
/* Start migrate */
migrate_qmp(from, uri, "{}");
/* Wait for dirty limit throttle begin */
throttle_us_per_full = 0;
while (throttle_us_per_full == 0) {
throttle_us_per_full =
read_migrate_property_int(from, "dirty-limit-throttle-time-per-round");
usleep(100);
g_assert_false(got_src_stop);
}
/* Now cancel migrate and wait for dirty limit throttle switch off */
migrate_cancel(from);
wait_for_migration_status(from, "cancelled", NULL);
/* Check if dirty limit throttle switched off, set timeout 1ms */
do {
throttle_us_per_full =
read_migrate_property_int(from, "dirty-limit-throttle-time-per-round");
usleep(100);
g_assert_false(got_src_stop);
} while (throttle_us_per_full != 0 && --max_try_count);
/* Assert dirty limit is not in service */
g_assert_cmpint(throttle_us_per_full, ==, 0);
args = (MigrateCommon) {
.start = {
.only_target = true,
.use_dirty_ring = true,
},
.listen_uri = uri,
.connect_uri = uri,
};
/* Restart dst vm, src vm already show up so we needn't wait anymore */
if (test_migrate_start(&from, &to, args.listen_uri, &args.start)) {
return;
}
/* Start migrate */
migrate_qmp(from, uri, "{}");
/* Wait for dirty limit throttle begin */
throttle_us_per_full = 0;
while (throttle_us_per_full == 0) {
throttle_us_per_full =
read_migrate_property_int(from, "dirty-limit-throttle-time-per-round");
usleep(100);
g_assert_false(got_src_stop);
}
/*
* The dirty limit rate should equals the return value of
* query-vcpu-dirty-limit if dirty limit cap set
*/
g_assert_cmpint(dirtylimit_value, ==, get_limit_rate(from));
/* Now, we have tested if dirty limit works, let it converge */
migrate_set_parameter_int(from, "downtime-limit", downtime_limit);
migrate_set_parameter_int(from, "max-bandwidth", max_bandwidth);
/*
* Wait for pre-switchover status to check if migration
* satisfy the convergence condition
*/
wait_for_migration_status(from, "pre-switchover", NULL);
remaining = read_ram_property_int(from, "remaining");
g_assert_cmpint(remaining, <,
(expected_threshold + expected_threshold / 100));
migrate_continue(from, "pre-switchover");
qtest_qmp_eventwait(to, "RESUME");
wait_for_serial("dest_serial");
wait_for_migration_complete(from);
test_migrate_end(from, to, true);
}
static bool kvm_dirty_ring_supported(void)
{
#if defined(__linux__) && defined(HOST_X86_64)
int ret, kvm_fd = open("/dev/kvm", O_RDONLY);
if (kvm_fd < 0) {
return false;
}
ret = ioctl(kvm_fd, KVM_CHECK_EXTENSION, KVM_CAP_DIRTY_LOG_RING);
close(kvm_fd);
/* We test with 4096 slots */
if (ret < 4096) {
return false;
}
return true;
#else
return false;
#endif
}
int main(int argc, char **argv)
{
bool has_kvm, has_tcg;
bool has_uffd;
const char *arch;
g_autoptr(GError) err = NULL;
const char *qemu_src = getenv(QEMU_ENV_SRC);
const char *qemu_dst = getenv(QEMU_ENV_DST);
int ret;
g_test_init(&argc, &argv, NULL);
/*
* The default QTEST_QEMU_BINARY must always be provided because
* that is what helpers use to query the accel type and
* architecture.
*/
if (qemu_src && qemu_dst) {
g_test_message("Only one of %s, %s is allowed",
QEMU_ENV_SRC, QEMU_ENV_DST);
exit(1);
}
has_kvm = qtest_has_accel("kvm");
has_tcg = qtest_has_accel("tcg");
if (!has_tcg && !has_kvm) {
g_test_skip("No KVM or TCG accelerator available");
return 0;
}
has_uffd = ufd_version_check();
arch = qtest_get_arch();
/*
* On ppc64, the test only works with kvm-hv, but not with kvm-pr and TCG
* is touchy due to race conditions on dirty bits (especially on PPC for
* some reason)
*/
if (g_str_equal(arch, "ppc64") &&
(!has_kvm || access("/sys/module/kvm_hv", F_OK))) {
g_test_message("Skipping test: kvm_hv not available");
return g_test_run();
}
/*
* Similar to ppc64, s390x seems to be touchy with TCG, so disable it
* there until the problems are resolved
*/
if (g_str_equal(arch, "s390x") && !has_kvm) {
g_test_message("Skipping test: s390x host with KVM is required");
return g_test_run();
}
tmpfs = g_dir_make_tmp("migration-test-XXXXXX", &err);
if (!tmpfs) {
g_test_message("Can't create temporary directory in %s: %s",
g_get_tmp_dir(), err->message);
}
g_assert(tmpfs);
bootfile_create(tmpfs);
module_call_init(MODULE_INIT_QOM);
if (has_uffd) {
qtest_add_func("/migration/postcopy/plain", test_postcopy);
qtest_add_func("/migration/postcopy/recovery/plain",
test_postcopy_recovery);
qtest_add_func("/migration/postcopy/preempt/plain", test_postcopy_preempt);
qtest_add_func("/migration/postcopy/preempt/recovery/plain",
test_postcopy_preempt_recovery);
if (getenv("QEMU_TEST_FLAKY_TESTS")) {
qtest_add_func("/migration/postcopy/compress/plain",
test_postcopy_compress);
qtest_add_func("/migration/postcopy/recovery/compress/plain",
test_postcopy_recovery_compress);
}
#ifndef _WIN32
qtest_add_func("/migration/postcopy/recovery/double-failures",
test_postcopy_recovery_double_fail);
#endif /* _WIN32 */
}
qtest_add_func("/migration/bad_dest", test_baddest);
#ifndef _WIN32
if (!g_str_equal(arch, "s390x")) {
qtest_add_func("/migration/analyze-script", test_analyze_script);
}
#endif
qtest_add_func("/migration/precopy/unix/plain", test_precopy_unix_plain);
qtest_add_func("/migration/precopy/unix/xbzrle", test_precopy_unix_xbzrle);
/*
* Compression fails from time to time.
* Put test here but don't enable it until everything is fixed.
*/
if (getenv("QEMU_TEST_FLAKY_TESTS")) {
qtest_add_func("/migration/precopy/unix/compress/wait",
test_precopy_unix_compress);
qtest_add_func("/migration/precopy/unix/compress/nowait",
test_precopy_unix_compress_nowait);
}
qtest_add_func("/migration/precopy/file",
test_precopy_file);
qtest_add_func("/migration/precopy/file/offset",
test_precopy_file_offset);
qtest_add_func("/migration/precopy/file/offset/bad",
test_precopy_file_offset_bad);
/*
* Our CI system has problems with shared memory.
* Don't run this test until we find a workaround.
*/
if (getenv("QEMU_TEST_FLAKY_TESTS")) {
qtest_add_func("/migration/mode/reboot", test_mode_reboot);
}
#ifdef CONFIG_GNUTLS
qtest_add_func("/migration/precopy/unix/tls/psk",
test_precopy_unix_tls_psk);
if (has_uffd) {
/*
* NOTE: psk test is enough for postcopy, as other types of TLS
* channels are tested under precopy. Here what we want to test is the
* general postcopy path that has TLS channel enabled.
*/
qtest_add_func("/migration/postcopy/tls/psk", test_postcopy_tls_psk);
qtest_add_func("/migration/postcopy/recovery/tls/psk",
test_postcopy_recovery_tls_psk);
qtest_add_func("/migration/postcopy/preempt/tls/psk",
test_postcopy_preempt_tls_psk);
qtest_add_func("/migration/postcopy/preempt/recovery/tls/psk",
test_postcopy_preempt_all);
}
#ifdef CONFIG_TASN1
qtest_add_func("/migration/precopy/unix/tls/x509/default-host",
test_precopy_unix_tls_x509_default_host);
qtest_add_func("/migration/precopy/unix/tls/x509/override-host",
test_precopy_unix_tls_x509_override_host);
#endif /* CONFIG_TASN1 */
#endif /* CONFIG_GNUTLS */
qtest_add_func("/migration/precopy/tcp/plain", test_precopy_tcp_plain);
qtest_add_func("/migration/precopy/tcp/plain/switchover-ack",
test_precopy_tcp_switchover_ack);
#ifdef CONFIG_GNUTLS
qtest_add_func("/migration/precopy/tcp/tls/psk/match",
test_precopy_tcp_tls_psk_match);
qtest_add_func("/migration/precopy/tcp/tls/psk/mismatch",
test_precopy_tcp_tls_psk_mismatch);
#ifdef CONFIG_TASN1
qtest_add_func("/migration/precopy/tcp/tls/x509/default-host",
test_precopy_tcp_tls_x509_default_host);
qtest_add_func("/migration/precopy/tcp/tls/x509/override-host",
test_precopy_tcp_tls_x509_override_host);
qtest_add_func("/migration/precopy/tcp/tls/x509/mismatch-host",
test_precopy_tcp_tls_x509_mismatch_host);
qtest_add_func("/migration/precopy/tcp/tls/x509/friendly-client",
test_precopy_tcp_tls_x509_friendly_client);
qtest_add_func("/migration/precopy/tcp/tls/x509/hostile-client",
test_precopy_tcp_tls_x509_hostile_client);
qtest_add_func("/migration/precopy/tcp/tls/x509/allow-anon-client",
test_precopy_tcp_tls_x509_allow_anon_client);
qtest_add_func("/migration/precopy/tcp/tls/x509/reject-anon-client",
test_precopy_tcp_tls_x509_reject_anon_client);
#endif /* CONFIG_TASN1 */
#endif /* CONFIG_GNUTLS */
/* qtest_add_func("/migration/ignore_shared", test_ignore_shared); */
#ifndef _WIN32
qtest_add_func("/migration/fd_proto", test_migrate_fd_proto);
#endif
qtest_add_func("/migration/validate_uuid", test_validate_uuid);
qtest_add_func("/migration/validate_uuid_error", test_validate_uuid_error);
qtest_add_func("/migration/validate_uuid_src_not_set",
test_validate_uuid_src_not_set);
qtest_add_func("/migration/validate_uuid_dst_not_set",
test_validate_uuid_dst_not_set);
/*
* See explanation why this test is slow on function definition
*/
if (g_test_slow()) {
qtest_add_func("/migration/auto_converge", test_migrate_auto_converge);
if (g_str_equal(arch, "x86_64") &&
has_kvm && kvm_dirty_ring_supported()) {
qtest_add_func("/migration/dirty_limit", test_migrate_dirty_limit);
}
}
qtest_add_func("/migration/multifd/tcp/plain/none",
test_multifd_tcp_none);
/*
* This test is flaky and sometimes fails in CI and otherwise:
* don't run unless user opts in via environment variable.
*/
if (getenv("QEMU_TEST_FLAKY_TESTS")) {
qtest_add_func("/migration/multifd/tcp/plain/cancel",
test_multifd_tcp_cancel);
}
qtest_add_func("/migration/multifd/tcp/plain/zlib",
test_multifd_tcp_zlib);
#ifdef CONFIG_ZSTD
qtest_add_func("/migration/multifd/tcp/plain/zstd",
test_multifd_tcp_zstd);
#endif
#ifdef CONFIG_GNUTLS
qtest_add_func("/migration/multifd/tcp/tls/psk/match",
test_multifd_tcp_tls_psk_match);
qtest_add_func("/migration/multifd/tcp/tls/psk/mismatch",
test_multifd_tcp_tls_psk_mismatch);
#ifdef CONFIG_TASN1
qtest_add_func("/migration/multifd/tcp/tls/x509/default-host",
test_multifd_tcp_tls_x509_default_host);
qtest_add_func("/migration/multifd/tcp/tls/x509/override-host",
test_multifd_tcp_tls_x509_override_host);
qtest_add_func("/migration/multifd/tcp/tls/x509/mismatch-host",
test_multifd_tcp_tls_x509_mismatch_host);
qtest_add_func("/migration/multifd/tcp/tls/x509/allow-anon-client",
test_multifd_tcp_tls_x509_allow_anon_client);
qtest_add_func("/migration/multifd/tcp/tls/x509/reject-anon-client",
test_multifd_tcp_tls_x509_reject_anon_client);
#endif /* CONFIG_TASN1 */
#endif /* CONFIG_GNUTLS */
if (g_str_equal(arch, "x86_64") && has_kvm && kvm_dirty_ring_supported()) {
qtest_add_func("/migration/dirty_ring",
test_precopy_unix_dirty_ring);
qtest_add_func("/migration/vcpu_dirty_limit",
test_vcpu_dirty_limit);
}
ret = g_test_run();
g_assert_cmpint(ret, ==, 0);
bootfile_delete();
ret = rmdir(tmpfs);
if (ret != 0) {
g_test_message("unable to rmdir: path (%s): %s",
tmpfs, strerror(errno));
}
g_free(tmpfs);
return ret;
}