qemu/hw/arm/mps2-tz.c
Marco Palumbi 5a558be93a hw/arm/mps2-tz.c: fix RX/TX interrupts order
The order of the RX and TX interrupts are swapped.
This commit fixes the order as per the following documents:
 * https://developer.arm.com/documentation/dai0505/latest/
 * https://developer.arm.com/documentation/dai0521/latest/
 * https://developer.arm.com/documentation/dai0524/latest/
 * https://developer.arm.com/documentation/dai0547/latest/

Cc: qemu-stable@nongnu.org
Signed-off-by: Marco Palumbi <Marco.Palumbi@tii.ae>
Message-id: 20240730073123.72992-1-marco@palumbi.it
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
2024-08-01 10:15:02 +01:00

1496 lines
55 KiB
C

/*
* ARM V2M MPS2 board emulation, trustzone aware FPGA images
*
* Copyright (c) 2017 Linaro Limited
* Written by Peter Maydell
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 or
* (at your option) any later version.
*/
/* The MPS2 and MPS2+ dev boards are FPGA based (the 2+ has a bigger
* FPGA but is otherwise the same as the 2). Since the CPU itself
* and most of the devices are in the FPGA, the details of the board
* as seen by the guest depend significantly on the FPGA image.
* This source file covers the following FPGA images, for TrustZone cores:
* "mps2-an505" -- Cortex-M33 as documented in ARM Application Note AN505
* "mps2-an521" -- Dual Cortex-M33 as documented in Application Note AN521
* "mps2-an524" -- Dual Cortex-M33 as documented in Application Note AN524
* "mps2-an547" -- Single Cortex-M55 as documented in Application Note AN547
*
* Links to the TRM for the board itself and to the various Application
* Notes which document the FPGA images can be found here:
* https://developer.arm.com/products/system-design/development-boards/fpga-prototyping-boards/mps2
*
* Board TRM:
* https://developer.arm.com/documentation/100112/latest/
* Application Note AN505:
* https://developer.arm.com/documentation/dai0505/latest/
* Application Note AN521:
* https://developer.arm.com/documentation/dai0521/latest/
* Application Note AN524:
* https://developer.arm.com/documentation/dai0524/latest/
* Application Note AN547:
* https://developer.arm.com/documentation/dai0547/latest/
*
* The AN505 defers to the Cortex-M33 processor ARMv8M IoT Kit FVP User Guide
* (ARM ECM0601256) for the details of some of the device layout:
* https://developer.arm.com/documentation/ecm0601256/latest
* Similarly, the AN521 and AN524 use the SSE-200, and the SSE-200 TRM defines
* most of the device layout:
* https://developer.arm.com/documentation/101104/latest/
* and the AN547 uses the SSE-300, whose layout is in the SSE-300 TRM:
* https://developer.arm.com/documentation/101773/latest/
*/
#include "qemu/osdep.h"
#include "qemu/units.h"
#include "qemu/cutils.h"
#include "qapi/error.h"
#include "qapi/qmp/qlist.h"
#include "qemu/error-report.h"
#include "hw/arm/boot.h"
#include "hw/arm/armv7m.h"
#include "hw/or-irq.h"
#include "hw/boards.h"
#include "exec/address-spaces.h"
#include "sysemu/sysemu.h"
#include "sysemu/reset.h"
#include "hw/misc/unimp.h"
#include "hw/char/cmsdk-apb-uart.h"
#include "hw/timer/cmsdk-apb-timer.h"
#include "hw/misc/mps2-scc.h"
#include "hw/misc/mps2-fpgaio.h"
#include "hw/misc/tz-mpc.h"
#include "hw/misc/tz-msc.h"
#include "hw/arm/armsse.h"
#include "hw/dma/pl080.h"
#include "hw/rtc/pl031.h"
#include "hw/ssi/pl022.h"
#include "hw/i2c/arm_sbcon_i2c.h"
#include "hw/net/lan9118.h"
#include "net/net.h"
#include "hw/core/split-irq.h"
#include "hw/qdev-clock.h"
#include "qom/object.h"
#include "hw/irq.h"
#define MPS2TZ_NUMIRQ_MAX 96
#define MPS2TZ_RAM_MAX 5
typedef enum MPS2TZFPGAType {
FPGA_AN505,
FPGA_AN521,
FPGA_AN524,
FPGA_AN547,
} MPS2TZFPGAType;
/*
* Define the layout of RAM in a board, including which parts are
* behind which MPCs.
* mrindex specifies the index into mms->ram[] to use for the backing RAM;
* -1 means "use the system RAM".
*/
typedef struct RAMInfo {
const char *name;
uint32_t base;
uint32_t size;
int mpc; /* MPC number, -1 for "not behind an MPC" */
int mrindex;
int flags;
} RAMInfo;
/*
* Flag values:
* IS_ALIAS: this RAM area is an alias to the upstream end of the
* MPC specified by its .mpc value
* IS_ROM: this RAM area is read-only
*/
#define IS_ALIAS 1
#define IS_ROM 2
struct MPS2TZMachineClass {
MachineClass parent;
MPS2TZFPGAType fpga_type;
uint32_t scc_id;
uint32_t sysclk_frq; /* Main SYSCLK frequency in Hz */
uint32_t apb_periph_frq; /* APB peripheral frequency in Hz */
uint32_t len_oscclk;
const uint32_t *oscclk;
uint32_t fpgaio_num_leds; /* Number of LEDs in FPGAIO LED0 register */
bool fpgaio_has_switches; /* Does FPGAIO have SWITCH register? */
bool fpgaio_has_dbgctrl; /* Does FPGAIO have DBGCTRL register? */
int numirq; /* Number of external interrupts */
int uart_overflow_irq; /* number of the combined UART overflow IRQ */
uint32_t init_svtor; /* init-svtor setting for SSE */
uint32_t sram_addr_width; /* SRAM_ADDR_WIDTH setting for SSE */
uint32_t cpu0_mpu_ns; /* CPU0_MPU_NS setting for SSE */
uint32_t cpu0_mpu_s; /* CPU0_MPU_S setting for SSE */
uint32_t cpu1_mpu_ns; /* CPU1_MPU_NS setting for SSE */
uint32_t cpu1_mpu_s; /* CPU1_MPU_S setting for SSE */
const RAMInfo *raminfo;
const char *armsse_type;
uint32_t boot_ram_size; /* size of ram at address 0; 0 == find in raminfo */
};
struct MPS2TZMachineState {
MachineState parent;
ARMSSE iotkit;
MemoryRegion ram[MPS2TZ_RAM_MAX];
MemoryRegion eth_usb_container;
MPS2SCC scc;
MPS2FPGAIO fpgaio;
TZPPC ppc[5];
TZMPC mpc[3];
PL022State spi[5];
ArmSbconI2CState i2c[5];
UnimplementedDeviceState i2s_audio;
UnimplementedDeviceState gpio[4];
UnimplementedDeviceState gfx;
UnimplementedDeviceState cldc;
UnimplementedDeviceState usb;
PL031State rtc;
PL080State dma[4];
TZMSC msc[4];
CMSDKAPBUART uart[6];
SplitIRQ sec_resp_splitter;
OrIRQState uart_irq_orgate;
DeviceState *lan9118;
SplitIRQ cpu_irq_splitter[MPS2TZ_NUMIRQ_MAX];
Clock *sysclk;
Clock *s32kclk;
bool remap;
qemu_irq remap_irq;
};
#define TYPE_MPS2TZ_MACHINE "mps2tz"
#define TYPE_MPS2TZ_AN505_MACHINE MACHINE_TYPE_NAME("mps2-an505")
#define TYPE_MPS2TZ_AN521_MACHINE MACHINE_TYPE_NAME("mps2-an521")
#define TYPE_MPS3TZ_AN524_MACHINE MACHINE_TYPE_NAME("mps3-an524")
#define TYPE_MPS3TZ_AN547_MACHINE MACHINE_TYPE_NAME("mps3-an547")
OBJECT_DECLARE_TYPE(MPS2TZMachineState, MPS2TZMachineClass, MPS2TZ_MACHINE)
/* Slow 32Khz S32KCLK frequency in Hz */
#define S32KCLK_FRQ (32 * 1000)
/*
* The MPS3 DDR is 2GiB, but on a 32-bit host QEMU doesn't permit
* emulation of that much guest RAM, so artificially make it smaller.
*/
#if HOST_LONG_BITS == 32
#define MPS3_DDR_SIZE (1 * GiB)
#else
#define MPS3_DDR_SIZE (2 * GiB)
#endif
/* For cpu{0,1}_mpu_{ns,s}, means "leave at SSE's default value" */
#define MPU_REGION_DEFAULT UINT32_MAX
static const uint32_t an505_oscclk[] = {
40000000,
24580000,
25000000,
};
static const uint32_t an524_oscclk[] = {
24000000,
32000000,
50000000,
50000000,
24576000,
23750000,
};
static const RAMInfo an505_raminfo[] = { {
.name = "ssram-0",
.base = 0x00000000,
.size = 0x00400000,
.mpc = 0,
.mrindex = 0,
}, {
.name = "ssram-1",
.base = 0x28000000,
.size = 0x00200000,
.mpc = 1,
.mrindex = 1,
}, {
.name = "ssram-2",
.base = 0x28200000,
.size = 0x00200000,
.mpc = 2,
.mrindex = 2,
}, {
.name = "ssram-0-alias",
.base = 0x00400000,
.size = 0x00400000,
.mpc = 0,
.mrindex = 3,
.flags = IS_ALIAS,
}, {
/* Use the largest bit of contiguous RAM as our "system memory" */
.name = "mps.ram",
.base = 0x80000000,
.size = 16 * MiB,
.mpc = -1,
.mrindex = -1,
}, {
.name = NULL,
},
};
/*
* Note that the addresses and MPC numbering here should match up
* with those used in remap_memory(), which can swap the BRAM and QSPI.
*/
static const RAMInfo an524_raminfo[] = { {
.name = "bram",
.base = 0x00000000,
.size = 512 * KiB,
.mpc = 0,
.mrindex = 0,
}, {
/* We don't model QSPI flash yet; for now expose it as simple ROM */
.name = "QSPI",
.base = 0x28000000,
.size = 8 * MiB,
.mpc = 1,
.mrindex = 1,
.flags = IS_ROM,
}, {
.name = "DDR",
.base = 0x60000000,
.size = MPS3_DDR_SIZE,
.mpc = 2,
.mrindex = -1,
}, {
.name = NULL,
},
};
static const RAMInfo an547_raminfo[] = { {
.name = "sram",
.base = 0x01000000,
.size = 2 * MiB,
.mpc = 0,
.mrindex = 1,
}, {
.name = "sram 2",
.base = 0x21000000,
.size = 4 * MiB,
.mpc = -1,
.mrindex = 3,
}, {
/* We don't model QSPI flash yet; for now expose it as simple ROM */
.name = "QSPI",
.base = 0x28000000,
.size = 8 * MiB,
.mpc = 1,
.mrindex = 4,
.flags = IS_ROM,
}, {
.name = "DDR",
.base = 0x60000000,
.size = MPS3_DDR_SIZE,
.mpc = 2,
.mrindex = -1,
}, {
.name = NULL,
},
};
static const RAMInfo *find_raminfo_for_mpc(MPS2TZMachineState *mms, int mpc)
{
MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
const RAMInfo *p;
const RAMInfo *found = NULL;
for (p = mmc->raminfo; p->name; p++) {
if (p->mpc == mpc && !(p->flags & IS_ALIAS)) {
/* There should only be one entry in the array for this MPC */
g_assert(!found);
found = p;
}
}
/* if raminfo array doesn't have an entry for each MPC this is a bug */
assert(found);
return found;
}
static MemoryRegion *mr_for_raminfo(MPS2TZMachineState *mms,
const RAMInfo *raminfo)
{
/* Return an initialized MemoryRegion for the RAMInfo. */
MemoryRegion *ram;
if (raminfo->mrindex < 0) {
/* Means this RAMInfo is for QEMU's "system memory" */
MachineState *machine = MACHINE(mms);
assert(!(raminfo->flags & IS_ROM));
return machine->ram;
}
assert(raminfo->mrindex < MPS2TZ_RAM_MAX);
ram = &mms->ram[raminfo->mrindex];
memory_region_init_ram(ram, NULL, raminfo->name,
raminfo->size, &error_fatal);
if (raminfo->flags & IS_ROM) {
memory_region_set_readonly(ram, true);
}
return ram;
}
/* Create an alias of an entire original MemoryRegion @orig
* located at @base in the memory map.
*/
static void make_ram_alias(MemoryRegion *mr, const char *name,
MemoryRegion *orig, hwaddr base)
{
memory_region_init_alias(mr, NULL, name, orig, 0,
memory_region_size(orig));
memory_region_add_subregion(get_system_memory(), base, mr);
}
static qemu_irq get_sse_irq_in(MPS2TZMachineState *mms, int irqno)
{
/*
* Return a qemu_irq which will signal IRQ n to all CPUs in the
* SSE. The irqno should be as the CPU sees it, so the first
* external-to-the-SSE interrupt is 32.
*/
MachineClass *mc = MACHINE_GET_CLASS(mms);
MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
assert(irqno >= 32 && irqno < (mmc->numirq + 32));
/*
* Convert from "CPU irq number" (as listed in the FPGA image
* documentation) to the SSE external-interrupt number.
*/
irqno -= 32;
if (mc->max_cpus > 1) {
return qdev_get_gpio_in(DEVICE(&mms->cpu_irq_splitter[irqno]), 0);
} else {
return qdev_get_gpio_in_named(DEVICE(&mms->iotkit), "EXP_IRQ", irqno);
}
}
/* Union describing the device-specific extra data we pass to the devfn. */
typedef union PPCExtraData {
bool i2c_internal;
} PPCExtraData;
/* Most of the devices in the AN505 FPGA image sit behind
* Peripheral Protection Controllers. These data structures
* define the layout of which devices sit behind which PPCs.
* The devfn for each port is a function which creates, configures
* and initializes the device, returning the MemoryRegion which
* needs to be plugged into the downstream end of the PPC port.
*/
typedef MemoryRegion *MakeDevFn(MPS2TZMachineState *mms, void *opaque,
const char *name, hwaddr size,
const int *irqs,
const PPCExtraData *extradata);
typedef struct PPCPortInfo {
const char *name;
MakeDevFn *devfn;
void *opaque;
hwaddr addr;
hwaddr size;
int irqs[3]; /* currently no device needs more IRQ lines than this */
PPCExtraData extradata; /* to pass device-specific info to the devfn */
} PPCPortInfo;
typedef struct PPCInfo {
const char *name;
PPCPortInfo ports[TZ_NUM_PORTS];
} PPCInfo;
static MemoryRegion *make_unimp_dev(MPS2TZMachineState *mms,
void *opaque,
const char *name, hwaddr size,
const int *irqs,
const PPCExtraData *extradata)
{
/* Initialize, configure and realize a TYPE_UNIMPLEMENTED_DEVICE,
* and return a pointer to its MemoryRegion.
*/
UnimplementedDeviceState *uds = opaque;
object_initialize_child(OBJECT(mms), name, uds, TYPE_UNIMPLEMENTED_DEVICE);
qdev_prop_set_string(DEVICE(uds), "name", name);
qdev_prop_set_uint64(DEVICE(uds), "size", size);
sysbus_realize(SYS_BUS_DEVICE(uds), &error_fatal);
return sysbus_mmio_get_region(SYS_BUS_DEVICE(uds), 0);
}
static MemoryRegion *make_uart(MPS2TZMachineState *mms, void *opaque,
const char *name, hwaddr size,
const int *irqs, const PPCExtraData *extradata)
{
/* The irq[] array is rx, tx, combined, in that order */
MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
CMSDKAPBUART *uart = opaque;
int i = uart - &mms->uart[0];
SysBusDevice *s;
DeviceState *orgate_dev = DEVICE(&mms->uart_irq_orgate);
object_initialize_child(OBJECT(mms), name, uart, TYPE_CMSDK_APB_UART);
qdev_prop_set_chr(DEVICE(uart), "chardev", serial_hd(i));
qdev_prop_set_uint32(DEVICE(uart), "pclk-frq", mmc->apb_periph_frq);
sysbus_realize(SYS_BUS_DEVICE(uart), &error_fatal);
s = SYS_BUS_DEVICE(uart);
sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqs[1]));
sysbus_connect_irq(s, 1, get_sse_irq_in(mms, irqs[0]));
sysbus_connect_irq(s, 2, qdev_get_gpio_in(orgate_dev, i * 2));
sysbus_connect_irq(s, 3, qdev_get_gpio_in(orgate_dev, i * 2 + 1));
sysbus_connect_irq(s, 4, get_sse_irq_in(mms, irqs[2]));
return sysbus_mmio_get_region(SYS_BUS_DEVICE(uart), 0);
}
static MemoryRegion *make_scc(MPS2TZMachineState *mms, void *opaque,
const char *name, hwaddr size,
const int *irqs, const PPCExtraData *extradata)
{
MPS2SCC *scc = opaque;
DeviceState *sccdev;
MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
QList *oscclk;
uint32_t i;
object_initialize_child(OBJECT(mms), "scc", scc, TYPE_MPS2_SCC);
sccdev = DEVICE(scc);
qdev_prop_set_uint32(sccdev, "scc-cfg0", mms->remap ? 1 : 0);
qdev_prop_set_uint32(sccdev, "scc-cfg4", 0x2);
qdev_prop_set_uint32(sccdev, "scc-aid", 0x00200008);
qdev_prop_set_uint32(sccdev, "scc-id", mmc->scc_id);
oscclk = qlist_new();
for (i = 0; i < mmc->len_oscclk; i++) {
qlist_append_int(oscclk, mmc->oscclk[i]);
}
qdev_prop_set_array(sccdev, "oscclk", oscclk);
sysbus_realize(SYS_BUS_DEVICE(scc), &error_fatal);
return sysbus_mmio_get_region(SYS_BUS_DEVICE(sccdev), 0);
}
static MemoryRegion *make_fpgaio(MPS2TZMachineState *mms, void *opaque,
const char *name, hwaddr size,
const int *irqs, const PPCExtraData *extradata)
{
MPS2FPGAIO *fpgaio = opaque;
MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
object_initialize_child(OBJECT(mms), "fpgaio", fpgaio, TYPE_MPS2_FPGAIO);
qdev_prop_set_uint32(DEVICE(fpgaio), "num-leds", mmc->fpgaio_num_leds);
qdev_prop_set_bit(DEVICE(fpgaio), "has-switches", mmc->fpgaio_has_switches);
qdev_prop_set_bit(DEVICE(fpgaio), "has-dbgctrl", mmc->fpgaio_has_dbgctrl);
sysbus_realize(SYS_BUS_DEVICE(fpgaio), &error_fatal);
return sysbus_mmio_get_region(SYS_BUS_DEVICE(fpgaio), 0);
}
static MemoryRegion *make_eth_dev(MPS2TZMachineState *mms, void *opaque,
const char *name, hwaddr size,
const int *irqs,
const PPCExtraData *extradata)
{
SysBusDevice *s;
/* In hardware this is a LAN9220; the LAN9118 is software compatible
* except that it doesn't support the checksum-offload feature.
*/
mms->lan9118 = qdev_new(TYPE_LAN9118);
qemu_configure_nic_device(mms->lan9118, true, NULL);
s = SYS_BUS_DEVICE(mms->lan9118);
sysbus_realize_and_unref(s, &error_fatal);
sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqs[0]));
return sysbus_mmio_get_region(s, 0);
}
static MemoryRegion *make_eth_usb(MPS2TZMachineState *mms, void *opaque,
const char *name, hwaddr size,
const int *irqs,
const PPCExtraData *extradata)
{
/*
* The AN524 makes the ethernet and USB share a PPC port.
* irqs[] is the ethernet IRQ.
*/
SysBusDevice *s;
memory_region_init(&mms->eth_usb_container, OBJECT(mms),
"mps2-tz-eth-usb-container", 0x200000);
/*
* In hardware this is a LAN9220; the LAN9118 is software compatible
* except that it doesn't support the checksum-offload feature.
*/
mms->lan9118 = qdev_new(TYPE_LAN9118);
qemu_configure_nic_device(mms->lan9118, true, NULL);
s = SYS_BUS_DEVICE(mms->lan9118);
sysbus_realize_and_unref(s, &error_fatal);
sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqs[0]));
memory_region_add_subregion(&mms->eth_usb_container,
0, sysbus_mmio_get_region(s, 0));
/* The USB OTG controller is an ISP1763; we don't have a model of it. */
object_initialize_child(OBJECT(mms), "usb-otg",
&mms->usb, TYPE_UNIMPLEMENTED_DEVICE);
qdev_prop_set_string(DEVICE(&mms->usb), "name", "usb-otg");
qdev_prop_set_uint64(DEVICE(&mms->usb), "size", 0x100000);
s = SYS_BUS_DEVICE(&mms->usb);
sysbus_realize(s, &error_fatal);
memory_region_add_subregion(&mms->eth_usb_container,
0x100000, sysbus_mmio_get_region(s, 0));
return &mms->eth_usb_container;
}
static MemoryRegion *make_mpc(MPS2TZMachineState *mms, void *opaque,
const char *name, hwaddr size,
const int *irqs, const PPCExtraData *extradata)
{
TZMPC *mpc = opaque;
int i = mpc - &mms->mpc[0];
MemoryRegion *upstream;
const RAMInfo *raminfo = find_raminfo_for_mpc(mms, i);
MemoryRegion *ram = mr_for_raminfo(mms, raminfo);
object_initialize_child(OBJECT(mms), name, mpc, TYPE_TZ_MPC);
object_property_set_link(OBJECT(mpc), "downstream", OBJECT(ram),
&error_fatal);
sysbus_realize(SYS_BUS_DEVICE(mpc), &error_fatal);
/* Map the upstream end of the MPC into system memory */
upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 1);
memory_region_add_subregion(get_system_memory(), raminfo->base, upstream);
/* and connect its interrupt to the IoTKit */
qdev_connect_gpio_out_named(DEVICE(mpc), "irq", 0,
qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
"mpcexp_status", i));
/* Return the register interface MR for our caller to map behind the PPC */
return sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 0);
}
static hwaddr boot_mem_base(MPS2TZMachineState *mms)
{
/*
* Return the canonical address of the block which will be mapped
* at address 0x0 (i.e. where the vector table is).
* This is usually 0, but if the AN524 alternate memory map is
* enabled it will be the base address of the QSPI block.
*/
return mms->remap ? 0x28000000 : 0;
}
static void remap_memory(MPS2TZMachineState *mms, int map)
{
/*
* Remap the memory for the AN524. 'map' is the value of
* SCC CFG_REG0 bit 0, i.e. 0 for the default map and 1
* for the "option 1" mapping where QSPI is at address 0.
*
* Effectively we need to swap around the "upstream" ends of
* MPC 0 and MPC 1.
*/
MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
int i;
if (mmc->fpga_type != FPGA_AN524) {
return;
}
memory_region_transaction_begin();
for (i = 0; i < 2; i++) {
TZMPC *mpc = &mms->mpc[i];
MemoryRegion *upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 1);
hwaddr addr = (i ^ map) ? 0x28000000 : 0;
memory_region_set_address(upstream, addr);
}
memory_region_transaction_commit();
}
static void remap_irq_fn(void *opaque, int n, int level)
{
MPS2TZMachineState *mms = opaque;
remap_memory(mms, level);
}
static MemoryRegion *make_dma(MPS2TZMachineState *mms, void *opaque,
const char *name, hwaddr size,
const int *irqs, const PPCExtraData *extradata)
{
/* The irq[] array is DMACINTR, DMACINTERR, DMACINTTC, in that order */
PL080State *dma = opaque;
int i = dma - &mms->dma[0];
SysBusDevice *s;
char *mscname = g_strdup_printf("%s-msc", name);
TZMSC *msc = &mms->msc[i];
DeviceState *iotkitdev = DEVICE(&mms->iotkit);
MemoryRegion *msc_upstream;
MemoryRegion *msc_downstream;
/*
* Each DMA device is a PL081 whose transaction master interface
* is guarded by a Master Security Controller. The downstream end of
* the MSC connects to the IoTKit AHB Slave Expansion port, so the
* DMA devices can see all devices and memory that the CPU does.
*/
object_initialize_child(OBJECT(mms), mscname, msc, TYPE_TZ_MSC);
msc_downstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(&mms->iotkit), 0);
object_property_set_link(OBJECT(msc), "downstream",
OBJECT(msc_downstream), &error_fatal);
object_property_set_link(OBJECT(msc), "idau", OBJECT(mms), &error_fatal);
sysbus_realize(SYS_BUS_DEVICE(msc), &error_fatal);
qdev_connect_gpio_out_named(DEVICE(msc), "irq", 0,
qdev_get_gpio_in_named(iotkitdev,
"mscexp_status", i));
qdev_connect_gpio_out_named(iotkitdev, "mscexp_clear", i,
qdev_get_gpio_in_named(DEVICE(msc),
"irq_clear", 0));
qdev_connect_gpio_out_named(iotkitdev, "mscexp_ns", i,
qdev_get_gpio_in_named(DEVICE(msc),
"cfg_nonsec", 0));
qdev_connect_gpio_out(DEVICE(&mms->sec_resp_splitter),
ARRAY_SIZE(mms->ppc) + i,
qdev_get_gpio_in_named(DEVICE(msc),
"cfg_sec_resp", 0));
msc_upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(msc), 0);
object_initialize_child(OBJECT(mms), name, dma, TYPE_PL081);
object_property_set_link(OBJECT(dma), "downstream", OBJECT(msc_upstream),
&error_fatal);
sysbus_realize(SYS_BUS_DEVICE(dma), &error_fatal);
s = SYS_BUS_DEVICE(dma);
/* Wire up DMACINTR, DMACINTERR, DMACINTTC */
sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqs[0]));
sysbus_connect_irq(s, 1, get_sse_irq_in(mms, irqs[1]));
sysbus_connect_irq(s, 2, get_sse_irq_in(mms, irqs[2]));
g_free(mscname);
return sysbus_mmio_get_region(s, 0);
}
static MemoryRegion *make_spi(MPS2TZMachineState *mms, void *opaque,
const char *name, hwaddr size,
const int *irqs, const PPCExtraData *extradata)
{
/*
* The AN505 has five PL022 SPI controllers.
* One of these should have the LCD controller behind it; the others
* are connected only to the FPGA's "general purpose SPI connector"
* or "shield" expansion connectors.
* Note that if we do implement devices behind SPI, the chip select
* lines are set via the "MISC" register in the MPS2 FPGAIO device.
*/
PL022State *spi = opaque;
SysBusDevice *s;
object_initialize_child(OBJECT(mms), name, spi, TYPE_PL022);
sysbus_realize(SYS_BUS_DEVICE(spi), &error_fatal);
s = SYS_BUS_DEVICE(spi);
sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqs[0]));
return sysbus_mmio_get_region(s, 0);
}
static MemoryRegion *make_i2c(MPS2TZMachineState *mms, void *opaque,
const char *name, hwaddr size,
const int *irqs, const PPCExtraData *extradata)
{
ArmSbconI2CState *i2c = opaque;
SysBusDevice *s;
object_initialize_child(OBJECT(mms), name, i2c, TYPE_ARM_SBCON_I2C);
s = SYS_BUS_DEVICE(i2c);
sysbus_realize(s, &error_fatal);
/*
* If this is an internal-use-only i2c bus, mark it full
* so that user-created i2c devices are not plugged into it.
* If we implement models of any on-board i2c devices that
* plug in to one of the internal-use-only buses, then we will
* need to create and plugging those in here before we mark the
* bus as full.
*/
if (extradata->i2c_internal) {
BusState *qbus = qdev_get_child_bus(DEVICE(i2c), "i2c");
qbus_mark_full(qbus);
}
return sysbus_mmio_get_region(s, 0);
}
static MemoryRegion *make_rtc(MPS2TZMachineState *mms, void *opaque,
const char *name, hwaddr size,
const int *irqs, const PPCExtraData *extradata)
{
PL031State *pl031 = opaque;
SysBusDevice *s;
object_initialize_child(OBJECT(mms), name, pl031, TYPE_PL031);
s = SYS_BUS_DEVICE(pl031);
sysbus_realize(s, &error_fatal);
/*
* The board docs don't give an IRQ number for the PL031, so
* presumably it is not connected.
*/
return sysbus_mmio_get_region(s, 0);
}
static void create_non_mpc_ram(MPS2TZMachineState *mms)
{
/*
* Handle the RAMs which are either not behind MPCs or which are
* aliases to another MPC.
*/
const RAMInfo *p;
MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
for (p = mmc->raminfo; p->name; p++) {
if (p->flags & IS_ALIAS) {
SysBusDevice *mpc_sbd = SYS_BUS_DEVICE(&mms->mpc[p->mpc]);
MemoryRegion *upstream = sysbus_mmio_get_region(mpc_sbd, 1);
make_ram_alias(&mms->ram[p->mrindex], p->name, upstream, p->base);
} else if (p->mpc == -1) {
/* RAM not behind an MPC */
MemoryRegion *mr = mr_for_raminfo(mms, p);
memory_region_add_subregion(get_system_memory(), p->base, mr);
}
}
}
static uint32_t boot_ram_size(MPS2TZMachineState *mms)
{
/* Return the size of the RAM block at guest address zero */
const RAMInfo *p;
MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
/*
* Use a per-board specification (for when the boot RAM is in
* the SSE and so doesn't have a RAMInfo list entry)
*/
if (mmc->boot_ram_size) {
return mmc->boot_ram_size;
}
for (p = mmc->raminfo; p->name; p++) {
if (p->base == boot_mem_base(mms)) {
return p->size;
}
}
g_assert_not_reached();
}
static void mps2tz_common_init(MachineState *machine)
{
MPS2TZMachineState *mms = MPS2TZ_MACHINE(machine);
MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
MachineClass *mc = MACHINE_GET_CLASS(machine);
MemoryRegion *system_memory = get_system_memory();
DeviceState *iotkitdev;
DeviceState *dev_splitter;
const PPCInfo *ppcs;
int num_ppcs;
int i;
if (machine->ram_size != mc->default_ram_size) {
char *sz = size_to_str(mc->default_ram_size);
error_report("Invalid RAM size, should be %s", sz);
g_free(sz);
exit(EXIT_FAILURE);
}
/* These clocks don't need migration because they are fixed-frequency */
mms->sysclk = clock_new(OBJECT(machine), "SYSCLK");
clock_set_hz(mms->sysclk, mmc->sysclk_frq);
mms->s32kclk = clock_new(OBJECT(machine), "S32KCLK");
clock_set_hz(mms->s32kclk, S32KCLK_FRQ);
object_initialize_child(OBJECT(machine), TYPE_IOTKIT, &mms->iotkit,
mmc->armsse_type);
iotkitdev = DEVICE(&mms->iotkit);
object_property_set_link(OBJECT(&mms->iotkit), "memory",
OBJECT(system_memory), &error_abort);
qdev_prop_set_uint32(iotkitdev, "EXP_NUMIRQ", mmc->numirq);
qdev_prop_set_uint32(iotkitdev, "init-svtor", mmc->init_svtor);
if (mmc->cpu0_mpu_ns != MPU_REGION_DEFAULT) {
qdev_prop_set_uint32(iotkitdev, "CPU0_MPU_NS", mmc->cpu0_mpu_ns);
}
if (mmc->cpu0_mpu_s != MPU_REGION_DEFAULT) {
qdev_prop_set_uint32(iotkitdev, "CPU0_MPU_S", mmc->cpu0_mpu_s);
}
if (object_property_find(OBJECT(iotkitdev), "CPU1_MPU_NS")) {
if (mmc->cpu1_mpu_ns != MPU_REGION_DEFAULT) {
qdev_prop_set_uint32(iotkitdev, "CPU1_MPU_NS", mmc->cpu1_mpu_ns);
}
if (mmc->cpu1_mpu_s != MPU_REGION_DEFAULT) {
qdev_prop_set_uint32(iotkitdev, "CPU1_MPU_S", mmc->cpu1_mpu_s);
}
}
qdev_prop_set_uint32(iotkitdev, "SRAM_ADDR_WIDTH", mmc->sram_addr_width);
qdev_connect_clock_in(iotkitdev, "MAINCLK", mms->sysclk);
qdev_connect_clock_in(iotkitdev, "S32KCLK", mms->s32kclk);
sysbus_realize(SYS_BUS_DEVICE(&mms->iotkit), &error_fatal);
/*
* If this board has more than one CPU, then we need to create splitters
* to feed the IRQ inputs for each CPU in the SSE from each device in the
* board. If there is only one CPU, we can just wire the device IRQ
* directly to the SSE's IRQ input.
*/
assert(mmc->numirq <= MPS2TZ_NUMIRQ_MAX);
if (mc->max_cpus > 1) {
for (i = 0; i < mmc->numirq; i++) {
char *name = g_strdup_printf("mps2-irq-splitter%d", i);
SplitIRQ *splitter = &mms->cpu_irq_splitter[i];
object_initialize_child_with_props(OBJECT(machine), name,
splitter, sizeof(*splitter),
TYPE_SPLIT_IRQ, &error_fatal,
NULL);
g_free(name);
object_property_set_int(OBJECT(splitter), "num-lines", 2,
&error_fatal);
qdev_realize(DEVICE(splitter), NULL, &error_fatal);
qdev_connect_gpio_out(DEVICE(splitter), 0,
qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
"EXP_IRQ", i));
qdev_connect_gpio_out(DEVICE(splitter), 1,
qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
"EXP_CPU1_IRQ", i));
}
}
/* The sec_resp_cfg output from the IoTKit must be split into multiple
* lines, one for each of the PPCs we create here, plus one per MSC.
*/
object_initialize_child(OBJECT(machine), "sec-resp-splitter",
&mms->sec_resp_splitter, TYPE_SPLIT_IRQ);
object_property_set_int(OBJECT(&mms->sec_resp_splitter), "num-lines",
ARRAY_SIZE(mms->ppc) + ARRAY_SIZE(mms->msc),
&error_fatal);
qdev_realize(DEVICE(&mms->sec_resp_splitter), NULL, &error_fatal);
dev_splitter = DEVICE(&mms->sec_resp_splitter);
qdev_connect_gpio_out_named(iotkitdev, "sec_resp_cfg", 0,
qdev_get_gpio_in(dev_splitter, 0));
/*
* The IoTKit sets up much of the memory layout, including
* the aliases between secure and non-secure regions in the
* address space, and also most of the devices in the system.
* The FPGA itself contains various RAMs and some additional devices.
* The FPGA images have an odd combination of different RAMs,
* because in hardware they are different implementations and
* connected to different buses, giving varying performance/size
* tradeoffs. For QEMU they're all just RAM, though. We arbitrarily
* call the largest lump our "system memory".
*/
/*
* The overflow IRQs for all UARTs are ORed together.
* Tx, Rx and "combined" IRQs are sent to the NVIC separately.
* Create the OR gate for this: it has one input for the TX overflow
* and one for the RX overflow for each UART we might have.
* (If the board has fewer than the maximum possible number of UARTs
* those inputs are never wired up and are treated as always-zero.)
*/
object_initialize_child(OBJECT(mms), "uart-irq-orgate",
&mms->uart_irq_orgate, TYPE_OR_IRQ);
object_property_set_int(OBJECT(&mms->uart_irq_orgate), "num-lines",
2 * ARRAY_SIZE(mms->uart),
&error_fatal);
qdev_realize(DEVICE(&mms->uart_irq_orgate), NULL, &error_fatal);
qdev_connect_gpio_out(DEVICE(&mms->uart_irq_orgate), 0,
get_sse_irq_in(mms, mmc->uart_overflow_irq));
/* Most of the devices in the FPGA are behind Peripheral Protection
* Controllers. The required order for initializing things is:
* + initialize the PPC
* + initialize, configure and realize downstream devices
* + connect downstream device MemoryRegions to the PPC
* + realize the PPC
* + map the PPC's MemoryRegions to the places in the address map
* where the downstream devices should appear
* + wire up the PPC's control lines to the IoTKit object
*/
const PPCInfo an505_ppcs[] = { {
.name = "apb_ppcexp0",
.ports = {
{ "ssram-0-mpc", make_mpc, &mms->mpc[0], 0x58007000, 0x1000 },
{ "ssram-1-mpc", make_mpc, &mms->mpc[1], 0x58008000, 0x1000 },
{ "ssram-2-mpc", make_mpc, &mms->mpc[2], 0x58009000, 0x1000 },
},
}, {
.name = "apb_ppcexp1",
.ports = {
{ "spi0", make_spi, &mms->spi[0], 0x40205000, 0x1000, { 51 } },
{ "spi1", make_spi, &mms->spi[1], 0x40206000, 0x1000, { 52 } },
{ "spi2", make_spi, &mms->spi[2], 0x40209000, 0x1000, { 53 } },
{ "spi3", make_spi, &mms->spi[3], 0x4020a000, 0x1000, { 54 } },
{ "spi4", make_spi, &mms->spi[4], 0x4020b000, 0x1000, { 55 } },
{ "uart0", make_uart, &mms->uart[0], 0x40200000, 0x1000, { 32, 33, 42 } },
{ "uart1", make_uart, &mms->uart[1], 0x40201000, 0x1000, { 34, 35, 43 } },
{ "uart2", make_uart, &mms->uart[2], 0x40202000, 0x1000, { 36, 37, 44 } },
{ "uart3", make_uart, &mms->uart[3], 0x40203000, 0x1000, { 38, 39, 45 } },
{ "uart4", make_uart, &mms->uart[4], 0x40204000, 0x1000, { 40, 41, 46 } },
{ "i2c0", make_i2c, &mms->i2c[0], 0x40207000, 0x1000, {},
{ .i2c_internal = true /* touchscreen */ } },
{ "i2c1", make_i2c, &mms->i2c[1], 0x40208000, 0x1000, {},
{ .i2c_internal = true /* audio conf */ } },
{ "i2c2", make_i2c, &mms->i2c[2], 0x4020c000, 0x1000, {},
{ .i2c_internal = false /* shield 0 */ } },
{ "i2c3", make_i2c, &mms->i2c[3], 0x4020d000, 0x1000, {},
{ .i2c_internal = false /* shield 1 */ } },
},
}, {
.name = "apb_ppcexp2",
.ports = {
{ "scc", make_scc, &mms->scc, 0x40300000, 0x1000 },
{ "i2s-audio", make_unimp_dev, &mms->i2s_audio,
0x40301000, 0x1000 },
{ "fpgaio", make_fpgaio, &mms->fpgaio, 0x40302000, 0x1000 },
},
}, {
.name = "ahb_ppcexp0",
.ports = {
{ "gfx", make_unimp_dev, &mms->gfx, 0x41000000, 0x140000 },
{ "gpio0", make_unimp_dev, &mms->gpio[0], 0x40100000, 0x1000 },
{ "gpio1", make_unimp_dev, &mms->gpio[1], 0x40101000, 0x1000 },
{ "gpio2", make_unimp_dev, &mms->gpio[2], 0x40102000, 0x1000 },
{ "gpio3", make_unimp_dev, &mms->gpio[3], 0x40103000, 0x1000 },
{ "eth", make_eth_dev, NULL, 0x42000000, 0x100000, { 48 } },
},
}, {
.name = "ahb_ppcexp1",
.ports = {
{ "dma0", make_dma, &mms->dma[0], 0x40110000, 0x1000, { 58, 56, 57 } },
{ "dma1", make_dma, &mms->dma[1], 0x40111000, 0x1000, { 61, 59, 60 } },
{ "dma2", make_dma, &mms->dma[2], 0x40112000, 0x1000, { 64, 62, 63 } },
{ "dma3", make_dma, &mms->dma[3], 0x40113000, 0x1000, { 67, 65, 66 } },
},
},
};
const PPCInfo an524_ppcs[] = { {
.name = "apb_ppcexp0",
.ports = {
{ "bram-mpc", make_mpc, &mms->mpc[0], 0x58007000, 0x1000 },
{ "qspi-mpc", make_mpc, &mms->mpc[1], 0x58008000, 0x1000 },
{ "ddr-mpc", make_mpc, &mms->mpc[2], 0x58009000, 0x1000 },
},
}, {
.name = "apb_ppcexp1",
.ports = {
{ "i2c0", make_i2c, &mms->i2c[0], 0x41200000, 0x1000, {},
{ .i2c_internal = true /* touchscreen */ } },
{ "i2c1", make_i2c, &mms->i2c[1], 0x41201000, 0x1000, {},
{ .i2c_internal = true /* audio conf */ } },
{ "spi0", make_spi, &mms->spi[0], 0x41202000, 0x1000, { 52 } },
{ "spi1", make_spi, &mms->spi[1], 0x41203000, 0x1000, { 53 } },
{ "spi2", make_spi, &mms->spi[2], 0x41204000, 0x1000, { 54 } },
{ "i2c2", make_i2c, &mms->i2c[2], 0x41205000, 0x1000, {},
{ .i2c_internal = false /* shield 0 */ } },
{ "i2c3", make_i2c, &mms->i2c[3], 0x41206000, 0x1000, {},
{ .i2c_internal = false /* shield 1 */ } },
{ /* port 7 reserved */ },
{ "i2c4", make_i2c, &mms->i2c[4], 0x41208000, 0x1000, {},
{ .i2c_internal = true /* DDR4 EEPROM */ } },
},
}, {
.name = "apb_ppcexp2",
.ports = {
{ "scc", make_scc, &mms->scc, 0x41300000, 0x1000 },
{ "i2s-audio", make_unimp_dev, &mms->i2s_audio,
0x41301000, 0x1000 },
{ "fpgaio", make_fpgaio, &mms->fpgaio, 0x41302000, 0x1000 },
{ "uart0", make_uart, &mms->uart[0], 0x41303000, 0x1000, { 32, 33, 42 } },
{ "uart1", make_uart, &mms->uart[1], 0x41304000, 0x1000, { 34, 35, 43 } },
{ "uart2", make_uart, &mms->uart[2], 0x41305000, 0x1000, { 36, 37, 44 } },
{ "uart3", make_uart, &mms->uart[3], 0x41306000, 0x1000, { 38, 39, 45 } },
{ "uart4", make_uart, &mms->uart[4], 0x41307000, 0x1000, { 40, 41, 46 } },
{ "uart5", make_uart, &mms->uart[5], 0x41308000, 0x1000, { 124, 125, 126 } },
{ /* port 9 reserved */ },
{ "clcd", make_unimp_dev, &mms->cldc, 0x4130a000, 0x1000 },
{ "rtc", make_rtc, &mms->rtc, 0x4130b000, 0x1000 },
},
}, {
.name = "ahb_ppcexp0",
.ports = {
{ "gpio0", make_unimp_dev, &mms->gpio[0], 0x41100000, 0x1000 },
{ "gpio1", make_unimp_dev, &mms->gpio[1], 0x41101000, 0x1000 },
{ "gpio2", make_unimp_dev, &mms->gpio[2], 0x41102000, 0x1000 },
{ "gpio3", make_unimp_dev, &mms->gpio[3], 0x41103000, 0x1000 },
{ "eth-usb", make_eth_usb, NULL, 0x41400000, 0x200000, { 48 } },
},
},
};
const PPCInfo an547_ppcs[] = { {
.name = "apb_ppcexp0",
.ports = {
{ "ssram-mpc", make_mpc, &mms->mpc[0], 0x57000000, 0x1000 },
{ "qspi-mpc", make_mpc, &mms->mpc[1], 0x57001000, 0x1000 },
{ "ddr-mpc", make_mpc, &mms->mpc[2], 0x57002000, 0x1000 },
},
}, {
.name = "apb_ppcexp1",
.ports = {
{ "i2c0", make_i2c, &mms->i2c[0], 0x49200000, 0x1000, {},
{ .i2c_internal = true /* touchscreen */ } },
{ "i2c1", make_i2c, &mms->i2c[1], 0x49201000, 0x1000, {},
{ .i2c_internal = true /* audio conf */ } },
{ "spi0", make_spi, &mms->spi[0], 0x49202000, 0x1000, { 53 } },
{ "spi1", make_spi, &mms->spi[1], 0x49203000, 0x1000, { 54 } },
{ "spi2", make_spi, &mms->spi[2], 0x49204000, 0x1000, { 55 } },
{ "i2c2", make_i2c, &mms->i2c[2], 0x49205000, 0x1000, {},
{ .i2c_internal = false /* shield 0 */ } },
{ "i2c3", make_i2c, &mms->i2c[3], 0x49206000, 0x1000, {},
{ .i2c_internal = false /* shield 1 */ } },
{ /* port 7 reserved */ },
{ "i2c4", make_i2c, &mms->i2c[4], 0x49208000, 0x1000, {},
{ .i2c_internal = true /* DDR4 EEPROM */ } },
},
}, {
.name = "apb_ppcexp2",
.ports = {
{ "scc", make_scc, &mms->scc, 0x49300000, 0x1000 },
{ "i2s-audio", make_unimp_dev, &mms->i2s_audio, 0x49301000, 0x1000 },
{ "fpgaio", make_fpgaio, &mms->fpgaio, 0x49302000, 0x1000 },
{ "uart0", make_uart, &mms->uart[0], 0x49303000, 0x1000, { 33, 34, 43 } },
{ "uart1", make_uart, &mms->uart[1], 0x49304000, 0x1000, { 35, 36, 44 } },
{ "uart2", make_uart, &mms->uart[2], 0x49305000, 0x1000, { 37, 38, 45 } },
{ "uart3", make_uart, &mms->uart[3], 0x49306000, 0x1000, { 39, 40, 46 } },
{ "uart4", make_uart, &mms->uart[4], 0x49307000, 0x1000, { 41, 42, 47 } },
{ "uart5", make_uart, &mms->uart[5], 0x49308000, 0x1000, { 125, 126, 127 } },
{ /* port 9 reserved */ },
{ "clcd", make_unimp_dev, &mms->cldc, 0x4930a000, 0x1000 },
{ "rtc", make_rtc, &mms->rtc, 0x4930b000, 0x1000 },
},
}, {
.name = "ahb_ppcexp0",
.ports = {
{ "gpio0", make_unimp_dev, &mms->gpio[0], 0x41100000, 0x1000 },
{ "gpio1", make_unimp_dev, &mms->gpio[1], 0x41101000, 0x1000 },
{ "gpio2", make_unimp_dev, &mms->gpio[2], 0x41102000, 0x1000 },
{ "gpio3", make_unimp_dev, &mms->gpio[3], 0x41103000, 0x1000 },
{ /* port 4 USER AHB interface 0 */ },
{ /* port 5 USER AHB interface 1 */ },
{ /* port 6 USER AHB interface 2 */ },
{ /* port 7 USER AHB interface 3 */ },
{ "eth-usb", make_eth_usb, NULL, 0x41400000, 0x200000, { 49 } },
},
},
};
switch (mmc->fpga_type) {
case FPGA_AN505:
case FPGA_AN521:
ppcs = an505_ppcs;
num_ppcs = ARRAY_SIZE(an505_ppcs);
break;
case FPGA_AN524:
ppcs = an524_ppcs;
num_ppcs = ARRAY_SIZE(an524_ppcs);
break;
case FPGA_AN547:
ppcs = an547_ppcs;
num_ppcs = ARRAY_SIZE(an547_ppcs);
break;
default:
g_assert_not_reached();
}
for (i = 0; i < num_ppcs; i++) {
const PPCInfo *ppcinfo = &ppcs[i];
TZPPC *ppc = &mms->ppc[i];
DeviceState *ppcdev;
int port;
char *gpioname;
object_initialize_child(OBJECT(machine), ppcinfo->name, ppc,
TYPE_TZ_PPC);
ppcdev = DEVICE(ppc);
for (port = 0; port < TZ_NUM_PORTS; port++) {
const PPCPortInfo *pinfo = &ppcinfo->ports[port];
MemoryRegion *mr;
char *portname;
if (!pinfo->devfn) {
continue;
}
mr = pinfo->devfn(mms, pinfo->opaque, pinfo->name, pinfo->size,
pinfo->irqs, &pinfo->extradata);
portname = g_strdup_printf("port[%d]", port);
object_property_set_link(OBJECT(ppc), portname, OBJECT(mr),
&error_fatal);
g_free(portname);
}
sysbus_realize(SYS_BUS_DEVICE(ppc), &error_fatal);
for (port = 0; port < TZ_NUM_PORTS; port++) {
const PPCPortInfo *pinfo = &ppcinfo->ports[port];
if (!pinfo->devfn) {
continue;
}
sysbus_mmio_map(SYS_BUS_DEVICE(ppc), port, pinfo->addr);
gpioname = g_strdup_printf("%s_nonsec", ppcinfo->name);
qdev_connect_gpio_out_named(iotkitdev, gpioname, port,
qdev_get_gpio_in_named(ppcdev,
"cfg_nonsec",
port));
g_free(gpioname);
gpioname = g_strdup_printf("%s_ap", ppcinfo->name);
qdev_connect_gpio_out_named(iotkitdev, gpioname, port,
qdev_get_gpio_in_named(ppcdev,
"cfg_ap", port));
g_free(gpioname);
}
gpioname = g_strdup_printf("%s_irq_enable", ppcinfo->name);
qdev_connect_gpio_out_named(iotkitdev, gpioname, 0,
qdev_get_gpio_in_named(ppcdev,
"irq_enable", 0));
g_free(gpioname);
gpioname = g_strdup_printf("%s_irq_clear", ppcinfo->name);
qdev_connect_gpio_out_named(iotkitdev, gpioname, 0,
qdev_get_gpio_in_named(ppcdev,
"irq_clear", 0));
g_free(gpioname);
gpioname = g_strdup_printf("%s_irq_status", ppcinfo->name);
qdev_connect_gpio_out_named(ppcdev, "irq", 0,
qdev_get_gpio_in_named(iotkitdev,
gpioname, 0));
g_free(gpioname);
qdev_connect_gpio_out(dev_splitter, i,
qdev_get_gpio_in_named(ppcdev,
"cfg_sec_resp", 0));
}
create_unimplemented_device("FPGA NS PC", 0x48007000, 0x1000);
if (mmc->fpga_type == FPGA_AN547) {
create_unimplemented_device("U55 timing adapter 0", 0x48102000, 0x1000);
create_unimplemented_device("U55 timing adapter 1", 0x48103000, 0x1000);
}
create_non_mpc_ram(mms);
if (mmc->fpga_type == FPGA_AN524) {
/*
* Connect the line from the SCC so that we can remap when the
* guest updates that register.
*/
mms->remap_irq = qemu_allocate_irq(remap_irq_fn, mms, 0);
qdev_connect_gpio_out_named(DEVICE(&mms->scc), "remap", 0,
mms->remap_irq);
}
armv7m_load_kernel(ARM_CPU(first_cpu), machine->kernel_filename,
0, boot_ram_size(mms));
}
static void mps2_tz_idau_check(IDAUInterface *ii, uint32_t address,
int *iregion, bool *exempt, bool *ns, bool *nsc)
{
/*
* The MPS2 TZ FPGA images have IDAUs in them which are connected to
* the Master Security Controllers. These have the same logic as
* is used by the IoTKit for the IDAU connected to the CPU, except
* that MSCs don't care about the NSC attribute.
*/
int region = extract32(address, 28, 4);
*ns = !(region & 1);
*nsc = false;
/* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
*exempt = (address & 0xeff00000) == 0xe0000000;
*iregion = region;
}
static char *mps2_get_remap(Object *obj, Error **errp)
{
MPS2TZMachineState *mms = MPS2TZ_MACHINE(obj);
const char *val = mms->remap ? "QSPI" : "BRAM";
return g_strdup(val);
}
static void mps2_set_remap(Object *obj, const char *value, Error **errp)
{
MPS2TZMachineState *mms = MPS2TZ_MACHINE(obj);
if (!strcmp(value, "BRAM")) {
mms->remap = false;
} else if (!strcmp(value, "QSPI")) {
mms->remap = true;
} else {
error_setg(errp, "Invalid remap value");
error_append_hint(errp, "Valid values are BRAM and QSPI.\n");
}
}
static void mps2_machine_reset(MachineState *machine, ShutdownCause reason)
{
MPS2TZMachineState *mms = MPS2TZ_MACHINE(machine);
/*
* Set the initial memory mapping before triggering the reset of
* the rest of the system, so that the guest image loader and CPU
* reset see the correct mapping.
*/
remap_memory(mms, mms->remap);
qemu_devices_reset(reason);
}
static void mps2tz_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(oc);
MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
mc->init = mps2tz_common_init;
mc->reset = mps2_machine_reset;
iic->check = mps2_tz_idau_check;
/* Most machines leave these at the SSE defaults */
mmc->cpu0_mpu_ns = MPU_REGION_DEFAULT;
mmc->cpu0_mpu_s = MPU_REGION_DEFAULT;
mmc->cpu1_mpu_ns = MPU_REGION_DEFAULT;
mmc->cpu1_mpu_s = MPU_REGION_DEFAULT;
}
static void mps2tz_set_default_ram_info(MPS2TZMachineClass *mmc)
{
/*
* Set mc->default_ram_size and default_ram_id from the
* information in mmc->raminfo.
*/
MachineClass *mc = MACHINE_CLASS(mmc);
const RAMInfo *p;
for (p = mmc->raminfo; p->name; p++) {
if (p->mrindex < 0) {
/* Found the entry for "system memory" */
mc->default_ram_size = p->size;
mc->default_ram_id = p->name;
return;
}
}
g_assert_not_reached();
}
static void mps2tz_an505_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
static const char * const valid_cpu_types[] = {
ARM_CPU_TYPE_NAME("cortex-m33"),
NULL
};
mc->desc = "ARM MPS2 with AN505 FPGA image for Cortex-M33";
mc->default_cpus = 1;
mc->min_cpus = mc->default_cpus;
mc->max_cpus = mc->default_cpus;
mmc->fpga_type = FPGA_AN505;
mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
mc->valid_cpu_types = valid_cpu_types;
mmc->scc_id = 0x41045050;
mmc->sysclk_frq = 20 * 1000 * 1000; /* 20MHz */
mmc->apb_periph_frq = mmc->sysclk_frq;
mmc->oscclk = an505_oscclk;
mmc->len_oscclk = ARRAY_SIZE(an505_oscclk);
mmc->fpgaio_num_leds = 2;
mmc->fpgaio_has_switches = false;
mmc->fpgaio_has_dbgctrl = false;
mmc->numirq = 92;
mmc->uart_overflow_irq = 47;
mmc->init_svtor = 0x10000000;
mmc->sram_addr_width = 15;
mmc->raminfo = an505_raminfo;
mmc->armsse_type = TYPE_IOTKIT;
mmc->boot_ram_size = 0;
mps2tz_set_default_ram_info(mmc);
}
static void mps2tz_an521_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
static const char * const valid_cpu_types[] = {
ARM_CPU_TYPE_NAME("cortex-m33"),
NULL
};
mc->desc = "ARM MPS2 with AN521 FPGA image for dual Cortex-M33";
mc->default_cpus = 2;
mc->min_cpus = mc->default_cpus;
mc->max_cpus = mc->default_cpus;
mmc->fpga_type = FPGA_AN521;
mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
mc->valid_cpu_types = valid_cpu_types;
mmc->scc_id = 0x41045210;
mmc->sysclk_frq = 20 * 1000 * 1000; /* 20MHz */
mmc->apb_periph_frq = mmc->sysclk_frq;
mmc->oscclk = an505_oscclk; /* AN521 is the same as AN505 here */
mmc->len_oscclk = ARRAY_SIZE(an505_oscclk);
mmc->fpgaio_num_leds = 2;
mmc->fpgaio_has_switches = false;
mmc->fpgaio_has_dbgctrl = false;
mmc->numirq = 92;
mmc->uart_overflow_irq = 47;
mmc->init_svtor = 0x10000000;
mmc->sram_addr_width = 15;
mmc->raminfo = an505_raminfo; /* AN521 is the same as AN505 here */
mmc->armsse_type = TYPE_SSE200;
mmc->boot_ram_size = 0;
mps2tz_set_default_ram_info(mmc);
}
static void mps3tz_an524_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
static const char * const valid_cpu_types[] = {
ARM_CPU_TYPE_NAME("cortex-m33"),
NULL
};
mc->desc = "ARM MPS3 with AN524 FPGA image for dual Cortex-M33";
mc->default_cpus = 2;
mc->min_cpus = mc->default_cpus;
mc->max_cpus = mc->default_cpus;
mmc->fpga_type = FPGA_AN524;
mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
mc->valid_cpu_types = valid_cpu_types;
mmc->scc_id = 0x41045240;
mmc->sysclk_frq = 32 * 1000 * 1000; /* 32MHz */
mmc->apb_periph_frq = mmc->sysclk_frq;
mmc->oscclk = an524_oscclk;
mmc->len_oscclk = ARRAY_SIZE(an524_oscclk);
mmc->fpgaio_num_leds = 10;
mmc->fpgaio_has_switches = true;
mmc->fpgaio_has_dbgctrl = false;
mmc->numirq = 95;
mmc->uart_overflow_irq = 47;
mmc->init_svtor = 0x10000000;
mmc->sram_addr_width = 15;
mmc->raminfo = an524_raminfo;
mmc->armsse_type = TYPE_SSE200;
mmc->boot_ram_size = 0;
mps2tz_set_default_ram_info(mmc);
object_class_property_add_str(oc, "remap", mps2_get_remap, mps2_set_remap);
object_class_property_set_description(oc, "remap",
"Set memory mapping. Valid values "
"are BRAM (default) and QSPI.");
}
static void mps3tz_an547_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
static const char * const valid_cpu_types[] = {
ARM_CPU_TYPE_NAME("cortex-m55"),
NULL
};
mc->desc = "ARM MPS3 with AN547 FPGA image for Cortex-M55";
mc->default_cpus = 1;
mc->min_cpus = mc->default_cpus;
mc->max_cpus = mc->default_cpus;
mmc->fpga_type = FPGA_AN547;
mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m55");
mc->valid_cpu_types = valid_cpu_types;
mmc->scc_id = 0x41055470;
mmc->sysclk_frq = 32 * 1000 * 1000; /* 32MHz */
mmc->apb_periph_frq = 25 * 1000 * 1000; /* 25MHz */
mmc->oscclk = an524_oscclk; /* same as AN524 */
mmc->len_oscclk = ARRAY_SIZE(an524_oscclk);
mmc->fpgaio_num_leds = 10;
mmc->fpgaio_has_switches = true;
mmc->fpgaio_has_dbgctrl = true;
mmc->numirq = 96;
mmc->uart_overflow_irq = 48;
mmc->init_svtor = 0x00000000;
mmc->cpu0_mpu_s = mmc->cpu0_mpu_ns = 16;
mmc->sram_addr_width = 21;
mmc->raminfo = an547_raminfo;
mmc->armsse_type = TYPE_SSE300;
mmc->boot_ram_size = 512 * KiB;
mps2tz_set_default_ram_info(mmc);
}
static const TypeInfo mps2tz_info = {
.name = TYPE_MPS2TZ_MACHINE,
.parent = TYPE_MACHINE,
.abstract = true,
.instance_size = sizeof(MPS2TZMachineState),
.class_size = sizeof(MPS2TZMachineClass),
.class_init = mps2tz_class_init,
.interfaces = (InterfaceInfo[]) {
{ TYPE_IDAU_INTERFACE },
{ }
},
};
static const TypeInfo mps2tz_an505_info = {
.name = TYPE_MPS2TZ_AN505_MACHINE,
.parent = TYPE_MPS2TZ_MACHINE,
.class_init = mps2tz_an505_class_init,
};
static const TypeInfo mps2tz_an521_info = {
.name = TYPE_MPS2TZ_AN521_MACHINE,
.parent = TYPE_MPS2TZ_MACHINE,
.class_init = mps2tz_an521_class_init,
};
static const TypeInfo mps3tz_an524_info = {
.name = TYPE_MPS3TZ_AN524_MACHINE,
.parent = TYPE_MPS2TZ_MACHINE,
.class_init = mps3tz_an524_class_init,
};
static const TypeInfo mps3tz_an547_info = {
.name = TYPE_MPS3TZ_AN547_MACHINE,
.parent = TYPE_MPS2TZ_MACHINE,
.class_init = mps3tz_an547_class_init,
};
static void mps2tz_machine_init(void)
{
type_register_static(&mps2tz_info);
type_register_static(&mps2tz_an505_info);
type_register_static(&mps2tz_an521_info);
type_register_static(&mps3tz_an524_info);
type_register_static(&mps3tz_an547_info);
}
type_init(mps2tz_machine_init);