qemu/target/riscv/csr.c
Daniel Henrique Barboza 39b5efa5b8 target/riscv/csr.c: use 'vlenb' instead of 'vlen'
As a bonus, we're being more idiomatic using cpu->cfg.vlenb when
reading CSR_VLENB.

Signed-off-by: Daniel Henrique Barboza <dbarboza@ventanamicro.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Message-ID: <20240122161107.26737-3-dbarboza@ventanamicro.com>
Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
2024-02-09 20:43:14 +10:00

5188 lines
167 KiB
C

/*
* RISC-V Control and Status Registers.
*
* Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
* Copyright (c) 2017-2018 SiFive, Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2 or later, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "qemu/timer.h"
#include "cpu.h"
#include "tcg/tcg-cpu.h"
#include "pmu.h"
#include "time_helper.h"
#include "exec/exec-all.h"
#include "exec/tb-flush.h"
#include "sysemu/cpu-timers.h"
#include "qemu/guest-random.h"
#include "qapi/error.h"
/* CSR function table public API */
void riscv_get_csr_ops(int csrno, riscv_csr_operations *ops)
{
*ops = csr_ops[csrno & (CSR_TABLE_SIZE - 1)];
}
void riscv_set_csr_ops(int csrno, riscv_csr_operations *ops)
{
csr_ops[csrno & (CSR_TABLE_SIZE - 1)] = *ops;
}
/* Predicates */
#if !defined(CONFIG_USER_ONLY)
RISCVException smstateen_acc_ok(CPURISCVState *env, int index, uint64_t bit)
{
bool virt = env->virt_enabled;
if (env->priv == PRV_M || !riscv_cpu_cfg(env)->ext_smstateen) {
return RISCV_EXCP_NONE;
}
if (!(env->mstateen[index] & bit)) {
return RISCV_EXCP_ILLEGAL_INST;
}
if (virt) {
if (!(env->hstateen[index] & bit)) {
return RISCV_EXCP_VIRT_INSTRUCTION_FAULT;
}
if (env->priv == PRV_U && !(env->sstateen[index] & bit)) {
return RISCV_EXCP_VIRT_INSTRUCTION_FAULT;
}
}
if (env->priv == PRV_U && riscv_has_ext(env, RVS)) {
if (!(env->sstateen[index] & bit)) {
return RISCV_EXCP_ILLEGAL_INST;
}
}
return RISCV_EXCP_NONE;
}
#endif
static RISCVException fs(CPURISCVState *env, int csrno)
{
#if !defined(CONFIG_USER_ONLY)
if (!env->debugger && !riscv_cpu_fp_enabled(env) &&
!riscv_cpu_cfg(env)->ext_zfinx) {
return RISCV_EXCP_ILLEGAL_INST;
}
if (!env->debugger && !riscv_cpu_fp_enabled(env)) {
return smstateen_acc_ok(env, 0, SMSTATEEN0_FCSR);
}
#endif
return RISCV_EXCP_NONE;
}
static RISCVException vs(CPURISCVState *env, int csrno)
{
if (riscv_cpu_cfg(env)->ext_zve32f) {
#if !defined(CONFIG_USER_ONLY)
if (!env->debugger && !riscv_cpu_vector_enabled(env)) {
return RISCV_EXCP_ILLEGAL_INST;
}
#endif
return RISCV_EXCP_NONE;
}
return RISCV_EXCP_ILLEGAL_INST;
}
static RISCVException ctr(CPURISCVState *env, int csrno)
{
#if !defined(CONFIG_USER_ONLY)
RISCVCPU *cpu = env_archcpu(env);
int ctr_index;
target_ulong ctr_mask;
int base_csrno = CSR_CYCLE;
bool rv32 = riscv_cpu_mxl(env) == MXL_RV32 ? true : false;
if (rv32 && csrno >= CSR_CYCLEH) {
/* Offset for RV32 hpmcounternh counters */
base_csrno += 0x80;
}
ctr_index = csrno - base_csrno;
ctr_mask = BIT(ctr_index);
if ((csrno >= CSR_CYCLE && csrno <= CSR_INSTRET) ||
(csrno >= CSR_CYCLEH && csrno <= CSR_INSTRETH)) {
if (!riscv_cpu_cfg(env)->ext_zicntr) {
return RISCV_EXCP_ILLEGAL_INST;
}
goto skip_ext_pmu_check;
}
if (!(cpu->pmu_avail_ctrs & ctr_mask)) {
/* No counter is enabled in PMU or the counter is out of range */
return RISCV_EXCP_ILLEGAL_INST;
}
skip_ext_pmu_check:
if (env->debugger) {
return RISCV_EXCP_NONE;
}
if (env->priv < PRV_M && !get_field(env->mcounteren, ctr_mask)) {
return RISCV_EXCP_ILLEGAL_INST;
}
if (env->virt_enabled) {
if (!get_field(env->hcounteren, ctr_mask) ||
(env->priv == PRV_U && !get_field(env->scounteren, ctr_mask))) {
return RISCV_EXCP_VIRT_INSTRUCTION_FAULT;
}
}
if (riscv_has_ext(env, RVS) && env->priv == PRV_U &&
!get_field(env->scounteren, ctr_mask)) {
return RISCV_EXCP_ILLEGAL_INST;
}
#endif
return RISCV_EXCP_NONE;
}
static RISCVException ctr32(CPURISCVState *env, int csrno)
{
if (riscv_cpu_mxl(env) != MXL_RV32) {
return RISCV_EXCP_ILLEGAL_INST;
}
return ctr(env, csrno);
}
static RISCVException zcmt(CPURISCVState *env, int csrno)
{
if (!riscv_cpu_cfg(env)->ext_zcmt) {
return RISCV_EXCP_ILLEGAL_INST;
}
#if !defined(CONFIG_USER_ONLY)
RISCVException ret = smstateen_acc_ok(env, 0, SMSTATEEN0_JVT);
if (ret != RISCV_EXCP_NONE) {
return ret;
}
#endif
return RISCV_EXCP_NONE;
}
#if !defined(CONFIG_USER_ONLY)
static RISCVException mctr(CPURISCVState *env, int csrno)
{
RISCVCPU *cpu = env_archcpu(env);
uint32_t pmu_avail_ctrs = cpu->pmu_avail_ctrs;
int ctr_index;
int base_csrno = CSR_MHPMCOUNTER3;
if ((riscv_cpu_mxl(env) == MXL_RV32) && csrno >= CSR_MCYCLEH) {
/* Offset for RV32 mhpmcounternh counters */
csrno -= 0x80;
}
g_assert(csrno >= CSR_MHPMCOUNTER3 && csrno <= CSR_MHPMCOUNTER31);
ctr_index = csrno - base_csrno;
if ((BIT(ctr_index) & pmu_avail_ctrs >> 3) == 0) {
/* The PMU is not enabled or counter is out of range */
return RISCV_EXCP_ILLEGAL_INST;
}
return RISCV_EXCP_NONE;
}
static RISCVException mctr32(CPURISCVState *env, int csrno)
{
if (riscv_cpu_mxl(env) != MXL_RV32) {
return RISCV_EXCP_ILLEGAL_INST;
}
return mctr(env, csrno);
}
static RISCVException sscofpmf(CPURISCVState *env, int csrno)
{
if (!riscv_cpu_cfg(env)->ext_sscofpmf) {
return RISCV_EXCP_ILLEGAL_INST;
}
return RISCV_EXCP_NONE;
}
static RISCVException any(CPURISCVState *env, int csrno)
{
return RISCV_EXCP_NONE;
}
static RISCVException any32(CPURISCVState *env, int csrno)
{
if (riscv_cpu_mxl(env) != MXL_RV32) {
return RISCV_EXCP_ILLEGAL_INST;
}
return any(env, csrno);
}
static int aia_any(CPURISCVState *env, int csrno)
{
if (!riscv_cpu_cfg(env)->ext_smaia) {
return RISCV_EXCP_ILLEGAL_INST;
}
return any(env, csrno);
}
static int aia_any32(CPURISCVState *env, int csrno)
{
if (!riscv_cpu_cfg(env)->ext_smaia) {
return RISCV_EXCP_ILLEGAL_INST;
}
return any32(env, csrno);
}
static RISCVException smode(CPURISCVState *env, int csrno)
{
if (riscv_has_ext(env, RVS)) {
return RISCV_EXCP_NONE;
}
return RISCV_EXCP_ILLEGAL_INST;
}
static int smode32(CPURISCVState *env, int csrno)
{
if (riscv_cpu_mxl(env) != MXL_RV32) {
return RISCV_EXCP_ILLEGAL_INST;
}
return smode(env, csrno);
}
static int aia_smode(CPURISCVState *env, int csrno)
{
if (!riscv_cpu_cfg(env)->ext_ssaia) {
return RISCV_EXCP_ILLEGAL_INST;
}
return smode(env, csrno);
}
static int aia_smode32(CPURISCVState *env, int csrno)
{
if (!riscv_cpu_cfg(env)->ext_ssaia) {
return RISCV_EXCP_ILLEGAL_INST;
}
return smode32(env, csrno);
}
static RISCVException hmode(CPURISCVState *env, int csrno)
{
if (riscv_has_ext(env, RVH)) {
return RISCV_EXCP_NONE;
}
return RISCV_EXCP_ILLEGAL_INST;
}
static RISCVException hmode32(CPURISCVState *env, int csrno)
{
if (riscv_cpu_mxl(env) != MXL_RV32) {
return RISCV_EXCP_ILLEGAL_INST;
}
return hmode(env, csrno);
}
static RISCVException umode(CPURISCVState *env, int csrno)
{
if (riscv_has_ext(env, RVU)) {
return RISCV_EXCP_NONE;
}
return RISCV_EXCP_ILLEGAL_INST;
}
static RISCVException umode32(CPURISCVState *env, int csrno)
{
if (riscv_cpu_mxl(env) != MXL_RV32) {
return RISCV_EXCP_ILLEGAL_INST;
}
return umode(env, csrno);
}
static RISCVException mstateen(CPURISCVState *env, int csrno)
{
if (!riscv_cpu_cfg(env)->ext_smstateen) {
return RISCV_EXCP_ILLEGAL_INST;
}
return any(env, csrno);
}
static RISCVException hstateen_pred(CPURISCVState *env, int csrno, int base)
{
if (!riscv_cpu_cfg(env)->ext_smstateen) {
return RISCV_EXCP_ILLEGAL_INST;
}
RISCVException ret = hmode(env, csrno);
if (ret != RISCV_EXCP_NONE) {
return ret;
}
if (env->debugger) {
return RISCV_EXCP_NONE;
}
if (env->priv < PRV_M) {
if (!(env->mstateen[csrno - base] & SMSTATEEN_STATEEN)) {
return RISCV_EXCP_ILLEGAL_INST;
}
}
return RISCV_EXCP_NONE;
}
static RISCVException hstateen(CPURISCVState *env, int csrno)
{
return hstateen_pred(env, csrno, CSR_HSTATEEN0);
}
static RISCVException hstateenh(CPURISCVState *env, int csrno)
{
return hstateen_pred(env, csrno, CSR_HSTATEEN0H);
}
static RISCVException sstateen(CPURISCVState *env, int csrno)
{
bool virt = env->virt_enabled;
int index = csrno - CSR_SSTATEEN0;
if (!riscv_cpu_cfg(env)->ext_smstateen) {
return RISCV_EXCP_ILLEGAL_INST;
}
RISCVException ret = smode(env, csrno);
if (ret != RISCV_EXCP_NONE) {
return ret;
}
if (env->debugger) {
return RISCV_EXCP_NONE;
}
if (env->priv < PRV_M) {
if (!(env->mstateen[index] & SMSTATEEN_STATEEN)) {
return RISCV_EXCP_ILLEGAL_INST;
}
if (virt) {
if (!(env->hstateen[index] & SMSTATEEN_STATEEN)) {
return RISCV_EXCP_VIRT_INSTRUCTION_FAULT;
}
}
}
return RISCV_EXCP_NONE;
}
static RISCVException sstc(CPURISCVState *env, int csrno)
{
bool hmode_check = false;
if (!riscv_cpu_cfg(env)->ext_sstc || !env->rdtime_fn) {
return RISCV_EXCP_ILLEGAL_INST;
}
if ((csrno == CSR_VSTIMECMP) || (csrno == CSR_VSTIMECMPH)) {
hmode_check = true;
}
RISCVException ret = hmode_check ? hmode(env, csrno) : smode(env, csrno);
if (ret != RISCV_EXCP_NONE) {
return ret;
}
if (env->debugger) {
return RISCV_EXCP_NONE;
}
if (env->priv == PRV_M) {
return RISCV_EXCP_NONE;
}
/*
* No need of separate function for rv32 as menvcfg stores both menvcfg
* menvcfgh for RV32.
*/
if (!(get_field(env->mcounteren, COUNTEREN_TM) &&
get_field(env->menvcfg, MENVCFG_STCE))) {
return RISCV_EXCP_ILLEGAL_INST;
}
if (env->virt_enabled) {
if (!(get_field(env->hcounteren, COUNTEREN_TM) &&
get_field(env->henvcfg, HENVCFG_STCE))) {
return RISCV_EXCP_VIRT_INSTRUCTION_FAULT;
}
}
return RISCV_EXCP_NONE;
}
static RISCVException sstc_32(CPURISCVState *env, int csrno)
{
if (riscv_cpu_mxl(env) != MXL_RV32) {
return RISCV_EXCP_ILLEGAL_INST;
}
return sstc(env, csrno);
}
static RISCVException satp(CPURISCVState *env, int csrno)
{
if (env->priv == PRV_S && !env->virt_enabled &&
get_field(env->mstatus, MSTATUS_TVM)) {
return RISCV_EXCP_ILLEGAL_INST;
}
if (env->priv == PRV_S && env->virt_enabled &&
get_field(env->hstatus, HSTATUS_VTVM)) {
return RISCV_EXCP_VIRT_INSTRUCTION_FAULT;
}
return smode(env, csrno);
}
static RISCVException hgatp(CPURISCVState *env, int csrno)
{
if (env->priv == PRV_S && !env->virt_enabled &&
get_field(env->mstatus, MSTATUS_TVM)) {
return RISCV_EXCP_ILLEGAL_INST;
}
return hmode(env, csrno);
}
/* Checks if PointerMasking registers could be accessed */
static RISCVException pointer_masking(CPURISCVState *env, int csrno)
{
/* Check if j-ext is present */
if (riscv_has_ext(env, RVJ)) {
return RISCV_EXCP_NONE;
}
return RISCV_EXCP_ILLEGAL_INST;
}
static int aia_hmode(CPURISCVState *env, int csrno)
{
if (!riscv_cpu_cfg(env)->ext_ssaia) {
return RISCV_EXCP_ILLEGAL_INST;
}
return hmode(env, csrno);
}
static int aia_hmode32(CPURISCVState *env, int csrno)
{
if (!riscv_cpu_cfg(env)->ext_ssaia) {
return RISCV_EXCP_ILLEGAL_INST;
}
return hmode32(env, csrno);
}
static RISCVException pmp(CPURISCVState *env, int csrno)
{
if (riscv_cpu_cfg(env)->pmp) {
if (csrno <= CSR_PMPCFG3) {
uint32_t reg_index = csrno - CSR_PMPCFG0;
/* TODO: RV128 restriction check */
if ((reg_index & 1) && (riscv_cpu_mxl(env) == MXL_RV64)) {
return RISCV_EXCP_ILLEGAL_INST;
}
}
return RISCV_EXCP_NONE;
}
return RISCV_EXCP_ILLEGAL_INST;
}
static RISCVException have_mseccfg(CPURISCVState *env, int csrno)
{
if (riscv_cpu_cfg(env)->ext_smepmp) {
return RISCV_EXCP_NONE;
}
if (riscv_cpu_cfg(env)->ext_zkr) {
return RISCV_EXCP_NONE;
}
return RISCV_EXCP_ILLEGAL_INST;
}
static RISCVException debug(CPURISCVState *env, int csrno)
{
if (riscv_cpu_cfg(env)->debug) {
return RISCV_EXCP_NONE;
}
return RISCV_EXCP_ILLEGAL_INST;
}
#endif
static RISCVException seed(CPURISCVState *env, int csrno)
{
if (!riscv_cpu_cfg(env)->ext_zkr) {
return RISCV_EXCP_ILLEGAL_INST;
}
#if !defined(CONFIG_USER_ONLY)
if (env->debugger) {
return RISCV_EXCP_NONE;
}
/*
* With a CSR read-write instruction:
* 1) The seed CSR is always available in machine mode as normal.
* 2) Attempted access to seed from virtual modes VS and VU always raises
* an exception(virtual instruction exception only if mseccfg.sseed=1).
* 3) Without the corresponding access control bit set to 1, any attempted
* access to seed from U, S or HS modes will raise an illegal instruction
* exception.
*/
if (env->priv == PRV_M) {
return RISCV_EXCP_NONE;
} else if (env->virt_enabled) {
if (env->mseccfg & MSECCFG_SSEED) {
return RISCV_EXCP_VIRT_INSTRUCTION_FAULT;
} else {
return RISCV_EXCP_ILLEGAL_INST;
}
} else {
if (env->priv == PRV_S && (env->mseccfg & MSECCFG_SSEED)) {
return RISCV_EXCP_NONE;
} else if (env->priv == PRV_U && (env->mseccfg & MSECCFG_USEED)) {
return RISCV_EXCP_NONE;
} else {
return RISCV_EXCP_ILLEGAL_INST;
}
}
#else
return RISCV_EXCP_NONE;
#endif
}
/* User Floating-Point CSRs */
static RISCVException read_fflags(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = riscv_cpu_get_fflags(env);
return RISCV_EXCP_NONE;
}
static RISCVException write_fflags(CPURISCVState *env, int csrno,
target_ulong val)
{
#if !defined(CONFIG_USER_ONLY)
if (riscv_has_ext(env, RVF)) {
env->mstatus |= MSTATUS_FS;
}
#endif
riscv_cpu_set_fflags(env, val & (FSR_AEXC >> FSR_AEXC_SHIFT));
return RISCV_EXCP_NONE;
}
static RISCVException read_frm(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->frm;
return RISCV_EXCP_NONE;
}
static RISCVException write_frm(CPURISCVState *env, int csrno,
target_ulong val)
{
#if !defined(CONFIG_USER_ONLY)
if (riscv_has_ext(env, RVF)) {
env->mstatus |= MSTATUS_FS;
}
#endif
env->frm = val & (FSR_RD >> FSR_RD_SHIFT);
return RISCV_EXCP_NONE;
}
static RISCVException read_fcsr(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = (riscv_cpu_get_fflags(env) << FSR_AEXC_SHIFT)
| (env->frm << FSR_RD_SHIFT);
return RISCV_EXCP_NONE;
}
static RISCVException write_fcsr(CPURISCVState *env, int csrno,
target_ulong val)
{
#if !defined(CONFIG_USER_ONLY)
if (riscv_has_ext(env, RVF)) {
env->mstatus |= MSTATUS_FS;
}
#endif
env->frm = (val & FSR_RD) >> FSR_RD_SHIFT;
riscv_cpu_set_fflags(env, (val & FSR_AEXC) >> FSR_AEXC_SHIFT);
return RISCV_EXCP_NONE;
}
static RISCVException read_vtype(CPURISCVState *env, int csrno,
target_ulong *val)
{
uint64_t vill;
switch (env->xl) {
case MXL_RV32:
vill = (uint32_t)env->vill << 31;
break;
case MXL_RV64:
vill = (uint64_t)env->vill << 63;
break;
default:
g_assert_not_reached();
}
*val = (target_ulong)vill | env->vtype;
return RISCV_EXCP_NONE;
}
static RISCVException read_vl(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->vl;
return RISCV_EXCP_NONE;
}
static int read_vlenb(CPURISCVState *env, int csrno, target_ulong *val)
{
*val = riscv_cpu_cfg(env)->vlenb;
return RISCV_EXCP_NONE;
}
static RISCVException read_vxrm(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->vxrm;
return RISCV_EXCP_NONE;
}
static RISCVException write_vxrm(CPURISCVState *env, int csrno,
target_ulong val)
{
#if !defined(CONFIG_USER_ONLY)
env->mstatus |= MSTATUS_VS;
#endif
env->vxrm = val;
return RISCV_EXCP_NONE;
}
static RISCVException read_vxsat(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->vxsat;
return RISCV_EXCP_NONE;
}
static RISCVException write_vxsat(CPURISCVState *env, int csrno,
target_ulong val)
{
#if !defined(CONFIG_USER_ONLY)
env->mstatus |= MSTATUS_VS;
#endif
env->vxsat = val;
return RISCV_EXCP_NONE;
}
static RISCVException read_vstart(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->vstart;
return RISCV_EXCP_NONE;
}
static RISCVException write_vstart(CPURISCVState *env, int csrno,
target_ulong val)
{
#if !defined(CONFIG_USER_ONLY)
env->mstatus |= MSTATUS_VS;
#endif
/*
* The vstart CSR is defined to have only enough writable bits
* to hold the largest element index, i.e. lg2(VLEN) bits.
*/
env->vstart = val & ~(~0ULL << ctzl(riscv_cpu_cfg(env)->vlenb << 3));
return RISCV_EXCP_NONE;
}
static int read_vcsr(CPURISCVState *env, int csrno, target_ulong *val)
{
*val = (env->vxrm << VCSR_VXRM_SHIFT) | (env->vxsat << VCSR_VXSAT_SHIFT);
return RISCV_EXCP_NONE;
}
static int write_vcsr(CPURISCVState *env, int csrno, target_ulong val)
{
#if !defined(CONFIG_USER_ONLY)
env->mstatus |= MSTATUS_VS;
#endif
env->vxrm = (val & VCSR_VXRM) >> VCSR_VXRM_SHIFT;
env->vxsat = (val & VCSR_VXSAT) >> VCSR_VXSAT_SHIFT;
return RISCV_EXCP_NONE;
}
/* User Timers and Counters */
static target_ulong get_ticks(bool shift)
{
int64_t val;
target_ulong result;
#if !defined(CONFIG_USER_ONLY)
if (icount_enabled()) {
val = icount_get();
} else {
val = cpu_get_host_ticks();
}
#else
val = cpu_get_host_ticks();
#endif
if (shift) {
result = val >> 32;
} else {
result = val;
}
return result;
}
#if defined(CONFIG_USER_ONLY)
static RISCVException read_time(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = cpu_get_host_ticks();
return RISCV_EXCP_NONE;
}
static RISCVException read_timeh(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = cpu_get_host_ticks() >> 32;
return RISCV_EXCP_NONE;
}
static int read_hpmcounter(CPURISCVState *env, int csrno, target_ulong *val)
{
*val = get_ticks(false);
return RISCV_EXCP_NONE;
}
static int read_hpmcounterh(CPURISCVState *env, int csrno, target_ulong *val)
{
*val = get_ticks(true);
return RISCV_EXCP_NONE;
}
#else /* CONFIG_USER_ONLY */
static int read_mhpmevent(CPURISCVState *env, int csrno, target_ulong *val)
{
int evt_index = csrno - CSR_MCOUNTINHIBIT;
*val = env->mhpmevent_val[evt_index];
return RISCV_EXCP_NONE;
}
static int write_mhpmevent(CPURISCVState *env, int csrno, target_ulong val)
{
int evt_index = csrno - CSR_MCOUNTINHIBIT;
uint64_t mhpmevt_val = val;
env->mhpmevent_val[evt_index] = val;
if (riscv_cpu_mxl(env) == MXL_RV32) {
mhpmevt_val = mhpmevt_val |
((uint64_t)env->mhpmeventh_val[evt_index] << 32);
}
riscv_pmu_update_event_map(env, mhpmevt_val, evt_index);
return RISCV_EXCP_NONE;
}
static int read_mhpmeventh(CPURISCVState *env, int csrno, target_ulong *val)
{
int evt_index = csrno - CSR_MHPMEVENT3H + 3;
*val = env->mhpmeventh_val[evt_index];
return RISCV_EXCP_NONE;
}
static int write_mhpmeventh(CPURISCVState *env, int csrno, target_ulong val)
{
int evt_index = csrno - CSR_MHPMEVENT3H + 3;
uint64_t mhpmevth_val = val;
uint64_t mhpmevt_val = env->mhpmevent_val[evt_index];
mhpmevt_val = mhpmevt_val | (mhpmevth_val << 32);
env->mhpmeventh_val[evt_index] = val;
riscv_pmu_update_event_map(env, mhpmevt_val, evt_index);
return RISCV_EXCP_NONE;
}
static int write_mhpmcounter(CPURISCVState *env, int csrno, target_ulong val)
{
int ctr_idx = csrno - CSR_MCYCLE;
PMUCTRState *counter = &env->pmu_ctrs[ctr_idx];
uint64_t mhpmctr_val = val;
counter->mhpmcounter_val = val;
if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) ||
riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) {
counter->mhpmcounter_prev = get_ticks(false);
if (ctr_idx > 2) {
if (riscv_cpu_mxl(env) == MXL_RV32) {
mhpmctr_val = mhpmctr_val |
((uint64_t)counter->mhpmcounterh_val << 32);
}
riscv_pmu_setup_timer(env, mhpmctr_val, ctr_idx);
}
} else {
/* Other counters can keep incrementing from the given value */
counter->mhpmcounter_prev = val;
}
return RISCV_EXCP_NONE;
}
static int write_mhpmcounterh(CPURISCVState *env, int csrno, target_ulong val)
{
int ctr_idx = csrno - CSR_MCYCLEH;
PMUCTRState *counter = &env->pmu_ctrs[ctr_idx];
uint64_t mhpmctr_val = counter->mhpmcounter_val;
uint64_t mhpmctrh_val = val;
counter->mhpmcounterh_val = val;
mhpmctr_val = mhpmctr_val | (mhpmctrh_val << 32);
if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) ||
riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) {
counter->mhpmcounterh_prev = get_ticks(true);
if (ctr_idx > 2) {
riscv_pmu_setup_timer(env, mhpmctr_val, ctr_idx);
}
} else {
counter->mhpmcounterh_prev = val;
}
return RISCV_EXCP_NONE;
}
static RISCVException riscv_pmu_read_ctr(CPURISCVState *env, target_ulong *val,
bool upper_half, uint32_t ctr_idx)
{
PMUCTRState *counter = &env->pmu_ctrs[ctr_idx];
target_ulong ctr_prev = upper_half ? counter->mhpmcounterh_prev :
counter->mhpmcounter_prev;
target_ulong ctr_val = upper_half ? counter->mhpmcounterh_val :
counter->mhpmcounter_val;
if (get_field(env->mcountinhibit, BIT(ctr_idx))) {
/*
* Counter should not increment if inhibit bit is set. We can't really
* stop the icount counting. Just return the counter value written by
* the supervisor to indicate that counter was not incremented.
*/
if (!counter->started) {
*val = ctr_val;
return RISCV_EXCP_NONE;
} else {
/* Mark that the counter has been stopped */
counter->started = false;
}
}
/*
* The kernel computes the perf delta by subtracting the current value from
* the value it initialized previously (ctr_val).
*/
if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) ||
riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) {
*val = get_ticks(upper_half) - ctr_prev + ctr_val;
} else {
*val = ctr_val;
}
return RISCV_EXCP_NONE;
}
static int read_hpmcounter(CPURISCVState *env, int csrno, target_ulong *val)
{
uint16_t ctr_index;
if (csrno >= CSR_MCYCLE && csrno <= CSR_MHPMCOUNTER31) {
ctr_index = csrno - CSR_MCYCLE;
} else if (csrno >= CSR_CYCLE && csrno <= CSR_HPMCOUNTER31) {
ctr_index = csrno - CSR_CYCLE;
} else {
return RISCV_EXCP_ILLEGAL_INST;
}
return riscv_pmu_read_ctr(env, val, false, ctr_index);
}
static int read_hpmcounterh(CPURISCVState *env, int csrno, target_ulong *val)
{
uint16_t ctr_index;
if (csrno >= CSR_MCYCLEH && csrno <= CSR_MHPMCOUNTER31H) {
ctr_index = csrno - CSR_MCYCLEH;
} else if (csrno >= CSR_CYCLEH && csrno <= CSR_HPMCOUNTER31H) {
ctr_index = csrno - CSR_CYCLEH;
} else {
return RISCV_EXCP_ILLEGAL_INST;
}
return riscv_pmu_read_ctr(env, val, true, ctr_index);
}
static int read_scountovf(CPURISCVState *env, int csrno, target_ulong *val)
{
int mhpmevt_start = CSR_MHPMEVENT3 - CSR_MCOUNTINHIBIT;
int i;
*val = 0;
target_ulong *mhpm_evt_val;
uint64_t of_bit_mask;
if (riscv_cpu_mxl(env) == MXL_RV32) {
mhpm_evt_val = env->mhpmeventh_val;
of_bit_mask = MHPMEVENTH_BIT_OF;
} else {
mhpm_evt_val = env->mhpmevent_val;
of_bit_mask = MHPMEVENT_BIT_OF;
}
for (i = mhpmevt_start; i < RV_MAX_MHPMEVENTS; i++) {
if ((get_field(env->mcounteren, BIT(i))) &&
(mhpm_evt_val[i] & of_bit_mask)) {
*val |= BIT(i);
}
}
return RISCV_EXCP_NONE;
}
static RISCVException read_time(CPURISCVState *env, int csrno,
target_ulong *val)
{
uint64_t delta = env->virt_enabled ? env->htimedelta : 0;
if (!env->rdtime_fn) {
return RISCV_EXCP_ILLEGAL_INST;
}
*val = env->rdtime_fn(env->rdtime_fn_arg) + delta;
return RISCV_EXCP_NONE;
}
static RISCVException read_timeh(CPURISCVState *env, int csrno,
target_ulong *val)
{
uint64_t delta = env->virt_enabled ? env->htimedelta : 0;
if (!env->rdtime_fn) {
return RISCV_EXCP_ILLEGAL_INST;
}
*val = (env->rdtime_fn(env->rdtime_fn_arg) + delta) >> 32;
return RISCV_EXCP_NONE;
}
static RISCVException read_vstimecmp(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->vstimecmp;
return RISCV_EXCP_NONE;
}
static RISCVException read_vstimecmph(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->vstimecmp >> 32;
return RISCV_EXCP_NONE;
}
static RISCVException write_vstimecmp(CPURISCVState *env, int csrno,
target_ulong val)
{
if (riscv_cpu_mxl(env) == MXL_RV32) {
env->vstimecmp = deposit64(env->vstimecmp, 0, 32, (uint64_t)val);
} else {
env->vstimecmp = val;
}
riscv_timer_write_timecmp(env, env->vstimer, env->vstimecmp,
env->htimedelta, MIP_VSTIP);
return RISCV_EXCP_NONE;
}
static RISCVException write_vstimecmph(CPURISCVState *env, int csrno,
target_ulong val)
{
env->vstimecmp = deposit64(env->vstimecmp, 32, 32, (uint64_t)val);
riscv_timer_write_timecmp(env, env->vstimer, env->vstimecmp,
env->htimedelta, MIP_VSTIP);
return RISCV_EXCP_NONE;
}
static RISCVException read_stimecmp(CPURISCVState *env, int csrno,
target_ulong *val)
{
if (env->virt_enabled) {
*val = env->vstimecmp;
} else {
*val = env->stimecmp;
}
return RISCV_EXCP_NONE;
}
static RISCVException read_stimecmph(CPURISCVState *env, int csrno,
target_ulong *val)
{
if (env->virt_enabled) {
*val = env->vstimecmp >> 32;
} else {
*val = env->stimecmp >> 32;
}
return RISCV_EXCP_NONE;
}
static RISCVException write_stimecmp(CPURISCVState *env, int csrno,
target_ulong val)
{
if (env->virt_enabled) {
if (env->hvictl & HVICTL_VTI) {
return RISCV_EXCP_VIRT_INSTRUCTION_FAULT;
}
return write_vstimecmp(env, csrno, val);
}
if (riscv_cpu_mxl(env) == MXL_RV32) {
env->stimecmp = deposit64(env->stimecmp, 0, 32, (uint64_t)val);
} else {
env->stimecmp = val;
}
riscv_timer_write_timecmp(env, env->stimer, env->stimecmp, 0, MIP_STIP);
return RISCV_EXCP_NONE;
}
static RISCVException write_stimecmph(CPURISCVState *env, int csrno,
target_ulong val)
{
if (env->virt_enabled) {
if (env->hvictl & HVICTL_VTI) {
return RISCV_EXCP_VIRT_INSTRUCTION_FAULT;
}
return write_vstimecmph(env, csrno, val);
}
env->stimecmp = deposit64(env->stimecmp, 32, 32, (uint64_t)val);
riscv_timer_write_timecmp(env, env->stimer, env->stimecmp, 0, MIP_STIP);
return RISCV_EXCP_NONE;
}
#define VSTOPI_NUM_SRCS 5
#define LOCAL_INTERRUPTS (~0x1FFF)
static const uint64_t delegable_ints =
S_MODE_INTERRUPTS | VS_MODE_INTERRUPTS | MIP_LCOFIP;
static const uint64_t vs_delegable_ints =
(VS_MODE_INTERRUPTS | LOCAL_INTERRUPTS) & ~MIP_LCOFIP;
static const uint64_t all_ints = M_MODE_INTERRUPTS | S_MODE_INTERRUPTS |
HS_MODE_INTERRUPTS | LOCAL_INTERRUPTS;
#define DELEGABLE_EXCPS ((1ULL << (RISCV_EXCP_INST_ADDR_MIS)) | \
(1ULL << (RISCV_EXCP_INST_ACCESS_FAULT)) | \
(1ULL << (RISCV_EXCP_ILLEGAL_INST)) | \
(1ULL << (RISCV_EXCP_BREAKPOINT)) | \
(1ULL << (RISCV_EXCP_LOAD_ADDR_MIS)) | \
(1ULL << (RISCV_EXCP_LOAD_ACCESS_FAULT)) | \
(1ULL << (RISCV_EXCP_STORE_AMO_ADDR_MIS)) | \
(1ULL << (RISCV_EXCP_STORE_AMO_ACCESS_FAULT)) | \
(1ULL << (RISCV_EXCP_U_ECALL)) | \
(1ULL << (RISCV_EXCP_S_ECALL)) | \
(1ULL << (RISCV_EXCP_VS_ECALL)) | \
(1ULL << (RISCV_EXCP_M_ECALL)) | \
(1ULL << (RISCV_EXCP_INST_PAGE_FAULT)) | \
(1ULL << (RISCV_EXCP_LOAD_PAGE_FAULT)) | \
(1ULL << (RISCV_EXCP_STORE_PAGE_FAULT)) | \
(1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) | \
(1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) | \
(1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) | \
(1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT)))
static const target_ulong vs_delegable_excps = DELEGABLE_EXCPS &
~((1ULL << (RISCV_EXCP_S_ECALL)) |
(1ULL << (RISCV_EXCP_VS_ECALL)) |
(1ULL << (RISCV_EXCP_M_ECALL)) |
(1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) |
(1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) |
(1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) |
(1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT)));
static const target_ulong sstatus_v1_10_mask = SSTATUS_SIE | SSTATUS_SPIE |
SSTATUS_UIE | SSTATUS_UPIE | SSTATUS_SPP | SSTATUS_FS | SSTATUS_XS |
SSTATUS_SUM | SSTATUS_MXR | SSTATUS_VS;
/*
* Spec allows for bits 13:63 to be either read-only or writable.
* So far we have interrupt LCOFIP in that region which is writable.
*
* Also, spec allows to inject virtual interrupts in this region even
* without any hardware interrupts for that interrupt number.
*
* For now interrupt in 13:63 region are all kept writable. 13 being
* LCOFIP and 14:63 being virtual only. Change this in future if we
* introduce more interrupts that are not writable.
*/
/* Bit STIP can be an alias of mip.STIP that's why it's writable in mvip. */
static const target_ulong mvip_writable_mask = MIP_SSIP | MIP_STIP | MIP_SEIP |
LOCAL_INTERRUPTS;
static const target_ulong mvien_writable_mask = MIP_SSIP | MIP_SEIP |
LOCAL_INTERRUPTS;
static const target_ulong sip_writable_mask = SIP_SSIP | LOCAL_INTERRUPTS;
static const target_ulong hip_writable_mask = MIP_VSSIP;
static const target_ulong hvip_writable_mask = MIP_VSSIP | MIP_VSTIP |
MIP_VSEIP | LOCAL_INTERRUPTS;
static const target_ulong hvien_writable_mask = LOCAL_INTERRUPTS;
static const target_ulong vsip_writable_mask = MIP_VSSIP | LOCAL_INTERRUPTS;
const bool valid_vm_1_10_32[16] = {
[VM_1_10_MBARE] = true,
[VM_1_10_SV32] = true
};
const bool valid_vm_1_10_64[16] = {
[VM_1_10_MBARE] = true,
[VM_1_10_SV39] = true,
[VM_1_10_SV48] = true,
[VM_1_10_SV57] = true
};
/* Machine Information Registers */
static RISCVException read_zero(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = 0;
return RISCV_EXCP_NONE;
}
static RISCVException write_ignore(CPURISCVState *env, int csrno,
target_ulong val)
{
return RISCV_EXCP_NONE;
}
static RISCVException read_mvendorid(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = riscv_cpu_cfg(env)->mvendorid;
return RISCV_EXCP_NONE;
}
static RISCVException read_marchid(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = riscv_cpu_cfg(env)->marchid;
return RISCV_EXCP_NONE;
}
static RISCVException read_mimpid(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = riscv_cpu_cfg(env)->mimpid;
return RISCV_EXCP_NONE;
}
static RISCVException read_mhartid(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->mhartid;
return RISCV_EXCP_NONE;
}
/* Machine Trap Setup */
/* We do not store SD explicitly, only compute it on demand. */
static uint64_t add_status_sd(RISCVMXL xl, uint64_t status)
{
if ((status & MSTATUS_FS) == MSTATUS_FS ||
(status & MSTATUS_VS) == MSTATUS_VS ||
(status & MSTATUS_XS) == MSTATUS_XS) {
switch (xl) {
case MXL_RV32:
return status | MSTATUS32_SD;
case MXL_RV64:
return status | MSTATUS64_SD;
case MXL_RV128:
return MSTATUSH128_SD;
default:
g_assert_not_reached();
}
}
return status;
}
static RISCVException read_mstatus(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = add_status_sd(riscv_cpu_mxl(env), env->mstatus);
return RISCV_EXCP_NONE;
}
static bool validate_vm(CPURISCVState *env, target_ulong vm)
{
return (vm & 0xf) <=
satp_mode_max_from_map(riscv_cpu_cfg(env)->satp_mode.map);
}
static target_ulong legalize_mpp(CPURISCVState *env, target_ulong old_mpp,
target_ulong val)
{
bool valid = false;
target_ulong new_mpp = get_field(val, MSTATUS_MPP);
switch (new_mpp) {
case PRV_M:
valid = true;
break;
case PRV_S:
valid = riscv_has_ext(env, RVS);
break;
case PRV_U:
valid = riscv_has_ext(env, RVU);
break;
}
/* Remain field unchanged if new_mpp value is invalid */
if (!valid) {
val = set_field(val, MSTATUS_MPP, old_mpp);
}
return val;
}
static RISCVException write_mstatus(CPURISCVState *env, int csrno,
target_ulong val)
{
uint64_t mstatus = env->mstatus;
uint64_t mask = 0;
RISCVMXL xl = riscv_cpu_mxl(env);
/*
* MPP field have been made WARL since priv version 1.11. However,
* legalization for it will not break any software running on 1.10.
*/
val = legalize_mpp(env, get_field(mstatus, MSTATUS_MPP), val);
/* flush tlb on mstatus fields that affect VM */
if ((val ^ mstatus) & MSTATUS_MXR) {
tlb_flush(env_cpu(env));
}
mask = MSTATUS_SIE | MSTATUS_SPIE | MSTATUS_MIE | MSTATUS_MPIE |
MSTATUS_SPP | MSTATUS_MPRV | MSTATUS_SUM |
MSTATUS_MPP | MSTATUS_MXR | MSTATUS_TVM | MSTATUS_TSR |
MSTATUS_TW;
if (riscv_has_ext(env, RVF)) {
mask |= MSTATUS_FS;
}
if (riscv_has_ext(env, RVV)) {
mask |= MSTATUS_VS;
}
if (xl != MXL_RV32 || env->debugger) {
if (riscv_has_ext(env, RVH)) {
mask |= MSTATUS_MPV | MSTATUS_GVA;
}
if ((val & MSTATUS64_UXL) != 0) {
mask |= MSTATUS64_UXL;
}
}
mstatus = (mstatus & ~mask) | (val & mask);
env->mstatus = mstatus;
/*
* Except in debug mode, UXL/SXL can only be modified by higher
* privilege mode. So xl will not be changed in normal mode.
*/
if (env->debugger) {
env->xl = cpu_recompute_xl(env);
}
riscv_cpu_update_mask(env);
return RISCV_EXCP_NONE;
}
static RISCVException read_mstatush(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->mstatus >> 32;
return RISCV_EXCP_NONE;
}
static RISCVException write_mstatush(CPURISCVState *env, int csrno,
target_ulong val)
{
uint64_t valh = (uint64_t)val << 32;
uint64_t mask = riscv_has_ext(env, RVH) ? MSTATUS_MPV | MSTATUS_GVA : 0;
env->mstatus = (env->mstatus & ~mask) | (valh & mask);
return RISCV_EXCP_NONE;
}
static RISCVException read_mstatus_i128(CPURISCVState *env, int csrno,
Int128 *val)
{
*val = int128_make128(env->mstatus, add_status_sd(MXL_RV128,
env->mstatus));
return RISCV_EXCP_NONE;
}
static RISCVException read_misa_i128(CPURISCVState *env, int csrno,
Int128 *val)
{
*val = int128_make128(env->misa_ext, (uint64_t)MXL_RV128 << 62);
return RISCV_EXCP_NONE;
}
static RISCVException read_misa(CPURISCVState *env, int csrno,
target_ulong *val)
{
target_ulong misa;
switch (env->misa_mxl) {
case MXL_RV32:
misa = (target_ulong)MXL_RV32 << 30;
break;
#ifdef TARGET_RISCV64
case MXL_RV64:
misa = (target_ulong)MXL_RV64 << 62;
break;
#endif
default:
g_assert_not_reached();
}
*val = misa | env->misa_ext;
return RISCV_EXCP_NONE;
}
static RISCVException write_misa(CPURISCVState *env, int csrno,
target_ulong val)
{
RISCVCPU *cpu = env_archcpu(env);
uint32_t orig_misa_ext = env->misa_ext;
Error *local_err = NULL;
if (!riscv_cpu_cfg(env)->misa_w) {
/* drop write to misa */
return RISCV_EXCP_NONE;
}
/* Mask extensions that are not supported by this hart */
val &= env->misa_ext_mask;
/*
* Suppress 'C' if next instruction is not aligned
* TODO: this should check next_pc
*/
if ((val & RVC) && (GETPC() & ~3) != 0) {
val &= ~RVC;
}
/* Disable RVG if any of its dependencies are disabled */
if (!(val & RVI && val & RVM && val & RVA &&
val & RVF && val & RVD)) {
val &= ~RVG;
}
/* If nothing changed, do nothing. */
if (val == env->misa_ext) {
return RISCV_EXCP_NONE;
}
env->misa_ext = val;
riscv_cpu_validate_set_extensions(cpu, &local_err);
if (local_err != NULL) {
/* Rollback on validation error */
qemu_log_mask(LOG_GUEST_ERROR, "Unable to write MISA ext value "
"0x%x, keeping existing MISA ext 0x%x\n",
env->misa_ext, orig_misa_ext);
env->misa_ext = orig_misa_ext;
return RISCV_EXCP_NONE;
}
if (!(env->misa_ext & RVF)) {
env->mstatus &= ~MSTATUS_FS;
}
/* flush translation cache */
tb_flush(env_cpu(env));
env->xl = riscv_cpu_mxl(env);
return RISCV_EXCP_NONE;
}
static RISCVException read_medeleg(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->medeleg;
return RISCV_EXCP_NONE;
}
static RISCVException write_medeleg(CPURISCVState *env, int csrno,
target_ulong val)
{
env->medeleg = (env->medeleg & ~DELEGABLE_EXCPS) | (val & DELEGABLE_EXCPS);
return RISCV_EXCP_NONE;
}
static RISCVException rmw_mideleg64(CPURISCVState *env, int csrno,
uint64_t *ret_val,
uint64_t new_val, uint64_t wr_mask)
{
uint64_t mask = wr_mask & delegable_ints;
if (ret_val) {
*ret_val = env->mideleg;
}
env->mideleg = (env->mideleg & ~mask) | (new_val & mask);
if (riscv_has_ext(env, RVH)) {
env->mideleg |= HS_MODE_INTERRUPTS;
}
return RISCV_EXCP_NONE;
}
static RISCVException rmw_mideleg(CPURISCVState *env, int csrno,
target_ulong *ret_val,
target_ulong new_val, target_ulong wr_mask)
{
uint64_t rval;
RISCVException ret;
ret = rmw_mideleg64(env, csrno, &rval, new_val, wr_mask);
if (ret_val) {
*ret_val = rval;
}
return ret;
}
static RISCVException rmw_midelegh(CPURISCVState *env, int csrno,
target_ulong *ret_val,
target_ulong new_val,
target_ulong wr_mask)
{
uint64_t rval;
RISCVException ret;
ret = rmw_mideleg64(env, csrno, &rval,
((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32);
if (ret_val) {
*ret_val = rval >> 32;
}
return ret;
}
static RISCVException rmw_mie64(CPURISCVState *env, int csrno,
uint64_t *ret_val,
uint64_t new_val, uint64_t wr_mask)
{
uint64_t mask = wr_mask & all_ints;
if (ret_val) {
*ret_val = env->mie;
}
env->mie = (env->mie & ~mask) | (new_val & mask);
if (!riscv_has_ext(env, RVH)) {
env->mie &= ~((uint64_t)HS_MODE_INTERRUPTS);
}
return RISCV_EXCP_NONE;
}
static RISCVException rmw_mie(CPURISCVState *env, int csrno,
target_ulong *ret_val,
target_ulong new_val, target_ulong wr_mask)
{
uint64_t rval;
RISCVException ret;
ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask);
if (ret_val) {
*ret_val = rval;
}
return ret;
}
static RISCVException rmw_mieh(CPURISCVState *env, int csrno,
target_ulong *ret_val,
target_ulong new_val, target_ulong wr_mask)
{
uint64_t rval;
RISCVException ret;
ret = rmw_mie64(env, csrno, &rval,
((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32);
if (ret_val) {
*ret_val = rval >> 32;
}
return ret;
}
static RISCVException rmw_mvien64(CPURISCVState *env, int csrno,
uint64_t *ret_val,
uint64_t new_val, uint64_t wr_mask)
{
uint64_t mask = wr_mask & mvien_writable_mask;
if (ret_val) {
*ret_val = env->mvien;
}
env->mvien = (env->mvien & ~mask) | (new_val & mask);
return RISCV_EXCP_NONE;
}
static RISCVException rmw_mvien(CPURISCVState *env, int csrno,
target_ulong *ret_val,
target_ulong new_val, target_ulong wr_mask)
{
uint64_t rval;
RISCVException ret;
ret = rmw_mvien64(env, csrno, &rval, new_val, wr_mask);
if (ret_val) {
*ret_val = rval;
}
return ret;
}
static RISCVException rmw_mvienh(CPURISCVState *env, int csrno,
target_ulong *ret_val,
target_ulong new_val, target_ulong wr_mask)
{
uint64_t rval;
RISCVException ret;
ret = rmw_mvien64(env, csrno, &rval,
((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32);
if (ret_val) {
*ret_val = rval >> 32;
}
return ret;
}
static int read_mtopi(CPURISCVState *env, int csrno, target_ulong *val)
{
int irq;
uint8_t iprio;
irq = riscv_cpu_mirq_pending(env);
if (irq <= 0 || irq > 63) {
*val = 0;
} else {
iprio = env->miprio[irq];
if (!iprio) {
if (riscv_cpu_default_priority(irq) > IPRIO_DEFAULT_M) {
iprio = IPRIO_MMAXIPRIO;
}
}
*val = (irq & TOPI_IID_MASK) << TOPI_IID_SHIFT;
*val |= iprio;
}
return RISCV_EXCP_NONE;
}
static int aia_xlate_vs_csrno(CPURISCVState *env, int csrno)
{
if (!env->virt_enabled) {
return csrno;
}
switch (csrno) {
case CSR_SISELECT:
return CSR_VSISELECT;
case CSR_SIREG:
return CSR_VSIREG;
case CSR_STOPEI:
return CSR_VSTOPEI;
default:
return csrno;
};
}
static int rmw_xiselect(CPURISCVState *env, int csrno, target_ulong *val,
target_ulong new_val, target_ulong wr_mask)
{
target_ulong *iselect;
/* Translate CSR number for VS-mode */
csrno = aia_xlate_vs_csrno(env, csrno);
/* Find the iselect CSR based on CSR number */
switch (csrno) {
case CSR_MISELECT:
iselect = &env->miselect;
break;
case CSR_SISELECT:
iselect = &env->siselect;
break;
case CSR_VSISELECT:
iselect = &env->vsiselect;
break;
default:
return RISCV_EXCP_ILLEGAL_INST;
};
if (val) {
*val = *iselect;
}
wr_mask &= ISELECT_MASK;
if (wr_mask) {
*iselect = (*iselect & ~wr_mask) | (new_val & wr_mask);
}
return RISCV_EXCP_NONE;
}
static int rmw_iprio(target_ulong xlen,
target_ulong iselect, uint8_t *iprio,
target_ulong *val, target_ulong new_val,
target_ulong wr_mask, int ext_irq_no)
{
int i, firq, nirqs;
target_ulong old_val;
if (iselect < ISELECT_IPRIO0 || ISELECT_IPRIO15 < iselect) {
return -EINVAL;
}
if (xlen != 32 && iselect & 0x1) {
return -EINVAL;
}
nirqs = 4 * (xlen / 32);
firq = ((iselect - ISELECT_IPRIO0) / (xlen / 32)) * (nirqs);
old_val = 0;
for (i = 0; i < nirqs; i++) {
old_val |= ((target_ulong)iprio[firq + i]) << (IPRIO_IRQ_BITS * i);
}
if (val) {
*val = old_val;
}
if (wr_mask) {
new_val = (old_val & ~wr_mask) | (new_val & wr_mask);
for (i = 0; i < nirqs; i++) {
/*
* M-level and S-level external IRQ priority always read-only
* zero. This means default priority order is always preferred
* for M-level and S-level external IRQs.
*/
if ((firq + i) == ext_irq_no) {
continue;
}
iprio[firq + i] = (new_val >> (IPRIO_IRQ_BITS * i)) & 0xff;
}
}
return 0;
}
static int rmw_xireg(CPURISCVState *env, int csrno, target_ulong *val,
target_ulong new_val, target_ulong wr_mask)
{
bool virt, isel_reserved;
uint8_t *iprio;
int ret = -EINVAL;
target_ulong priv, isel, vgein;
/* Translate CSR number for VS-mode */
csrno = aia_xlate_vs_csrno(env, csrno);
/* Decode register details from CSR number */
virt = false;
isel_reserved = false;
switch (csrno) {
case CSR_MIREG:
iprio = env->miprio;
isel = env->miselect;
priv = PRV_M;
break;
case CSR_SIREG:
if (env->priv == PRV_S && env->mvien & MIP_SEIP &&
env->siselect >= ISELECT_IMSIC_EIDELIVERY &&
env->siselect <= ISELECT_IMSIC_EIE63) {
goto done;
}
iprio = env->siprio;
isel = env->siselect;
priv = PRV_S;
break;
case CSR_VSIREG:
iprio = env->hviprio;
isel = env->vsiselect;
priv = PRV_S;
virt = true;
break;
default:
goto done;
};
/* Find the selected guest interrupt file */
vgein = (virt) ? get_field(env->hstatus, HSTATUS_VGEIN) : 0;
if (ISELECT_IPRIO0 <= isel && isel <= ISELECT_IPRIO15) {
/* Local interrupt priority registers not available for VS-mode */
if (!virt) {
ret = rmw_iprio(riscv_cpu_mxl_bits(env),
isel, iprio, val, new_val, wr_mask,
(priv == PRV_M) ? IRQ_M_EXT : IRQ_S_EXT);
}
} else if (ISELECT_IMSIC_FIRST <= isel && isel <= ISELECT_IMSIC_LAST) {
/* IMSIC registers only available when machine implements it. */
if (env->aia_ireg_rmw_fn[priv]) {
/* Selected guest interrupt file should not be zero */
if (virt && (!vgein || env->geilen < vgein)) {
goto done;
}
/* Call machine specific IMSIC register emulation */
ret = env->aia_ireg_rmw_fn[priv](env->aia_ireg_rmw_fn_arg[priv],
AIA_MAKE_IREG(isel, priv, virt, vgein,
riscv_cpu_mxl_bits(env)),
val, new_val, wr_mask);
}
} else {
isel_reserved = true;
}
done:
if (ret) {
return (env->virt_enabled && virt && !isel_reserved) ?
RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST;
}
return RISCV_EXCP_NONE;
}
static int rmw_xtopei(CPURISCVState *env, int csrno, target_ulong *val,
target_ulong new_val, target_ulong wr_mask)
{
bool virt;
int ret = -EINVAL;
target_ulong priv, vgein;
/* Translate CSR number for VS-mode */
csrno = aia_xlate_vs_csrno(env, csrno);
/* Decode register details from CSR number */
virt = false;
switch (csrno) {
case CSR_MTOPEI:
priv = PRV_M;
break;
case CSR_STOPEI:
if (env->mvien & MIP_SEIP && env->priv == PRV_S) {
goto done;
}
priv = PRV_S;
break;
case CSR_VSTOPEI:
priv = PRV_S;
virt = true;
break;
default:
goto done;
};
/* IMSIC CSRs only available when machine implements IMSIC. */
if (!env->aia_ireg_rmw_fn[priv]) {
goto done;
}
/* Find the selected guest interrupt file */
vgein = (virt) ? get_field(env->hstatus, HSTATUS_VGEIN) : 0;
/* Selected guest interrupt file should be valid */
if (virt && (!vgein || env->geilen < vgein)) {
goto done;
}
/* Call machine specific IMSIC register emulation for TOPEI */
ret = env->aia_ireg_rmw_fn[priv](env->aia_ireg_rmw_fn_arg[priv],
AIA_MAKE_IREG(ISELECT_IMSIC_TOPEI, priv, virt, vgein,
riscv_cpu_mxl_bits(env)),
val, new_val, wr_mask);
done:
if (ret) {
return (env->virt_enabled && virt) ?
RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST;
}
return RISCV_EXCP_NONE;
}
static RISCVException read_mtvec(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->mtvec;
return RISCV_EXCP_NONE;
}
static RISCVException write_mtvec(CPURISCVState *env, int csrno,
target_ulong val)
{
/* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */
if ((val & 3) < 2) {
env->mtvec = val;
} else {
qemu_log_mask(LOG_UNIMP, "CSR_MTVEC: reserved mode not supported\n");
}
return RISCV_EXCP_NONE;
}
static RISCVException read_mcountinhibit(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->mcountinhibit;
return RISCV_EXCP_NONE;
}
static RISCVException write_mcountinhibit(CPURISCVState *env, int csrno,
target_ulong val)
{
int cidx;
PMUCTRState *counter;
RISCVCPU *cpu = env_archcpu(env);
/* WARL register - disable unavailable counters; TM bit is always 0 */
env->mcountinhibit =
val & (cpu->pmu_avail_ctrs | COUNTEREN_CY | COUNTEREN_IR);
/* Check if any other counter is also monitoring cycles/instructions */
for (cidx = 0; cidx < RV_MAX_MHPMCOUNTERS; cidx++) {
if (!get_field(env->mcountinhibit, BIT(cidx))) {
counter = &env->pmu_ctrs[cidx];
counter->started = true;
}
}
return RISCV_EXCP_NONE;
}
static RISCVException read_mcounteren(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->mcounteren;
return RISCV_EXCP_NONE;
}
static RISCVException write_mcounteren(CPURISCVState *env, int csrno,
target_ulong val)
{
RISCVCPU *cpu = env_archcpu(env);
/* WARL register - disable unavailable counters */
env->mcounteren = val & (cpu->pmu_avail_ctrs | COUNTEREN_CY | COUNTEREN_TM |
COUNTEREN_IR);
return RISCV_EXCP_NONE;
}
/* Machine Trap Handling */
static RISCVException read_mscratch_i128(CPURISCVState *env, int csrno,
Int128 *val)
{
*val = int128_make128(env->mscratch, env->mscratchh);
return RISCV_EXCP_NONE;
}
static RISCVException write_mscratch_i128(CPURISCVState *env, int csrno,
Int128 val)
{
env->mscratch = int128_getlo(val);
env->mscratchh = int128_gethi(val);
return RISCV_EXCP_NONE;
}
static RISCVException read_mscratch(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->mscratch;
return RISCV_EXCP_NONE;
}
static RISCVException write_mscratch(CPURISCVState *env, int csrno,
target_ulong val)
{
env->mscratch = val;
return RISCV_EXCP_NONE;
}
static RISCVException read_mepc(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->mepc;
return RISCV_EXCP_NONE;
}
static RISCVException write_mepc(CPURISCVState *env, int csrno,
target_ulong val)
{
env->mepc = val;
return RISCV_EXCP_NONE;
}
static RISCVException read_mcause(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->mcause;
return RISCV_EXCP_NONE;
}
static RISCVException write_mcause(CPURISCVState *env, int csrno,
target_ulong val)
{
env->mcause = val;
return RISCV_EXCP_NONE;
}
static RISCVException read_mtval(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->mtval;
return RISCV_EXCP_NONE;
}
static RISCVException write_mtval(CPURISCVState *env, int csrno,
target_ulong val)
{
env->mtval = val;
return RISCV_EXCP_NONE;
}
/* Execution environment configuration setup */
static RISCVException read_menvcfg(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->menvcfg;
return RISCV_EXCP_NONE;
}
static RISCVException write_menvcfg(CPURISCVState *env, int csrno,
target_ulong val)
{
const RISCVCPUConfig *cfg = riscv_cpu_cfg(env);
uint64_t mask = MENVCFG_FIOM | MENVCFG_CBIE | MENVCFG_CBCFE | MENVCFG_CBZE;
if (riscv_cpu_mxl(env) == MXL_RV64) {
mask |= (cfg->ext_svpbmt ? MENVCFG_PBMTE : 0) |
(cfg->ext_sstc ? MENVCFG_STCE : 0) |
(cfg->ext_svadu ? MENVCFG_ADUE : 0);
}
env->menvcfg = (env->menvcfg & ~mask) | (val & mask);
return RISCV_EXCP_NONE;
}
static RISCVException read_menvcfgh(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->menvcfg >> 32;
return RISCV_EXCP_NONE;
}
static RISCVException write_menvcfgh(CPURISCVState *env, int csrno,
target_ulong val)
{
const RISCVCPUConfig *cfg = riscv_cpu_cfg(env);
uint64_t mask = (cfg->ext_svpbmt ? MENVCFG_PBMTE : 0) |
(cfg->ext_sstc ? MENVCFG_STCE : 0) |
(cfg->ext_svadu ? MENVCFG_ADUE : 0);
uint64_t valh = (uint64_t)val << 32;
env->menvcfg = (env->menvcfg & ~mask) | (valh & mask);
return RISCV_EXCP_NONE;
}
static RISCVException read_senvcfg(CPURISCVState *env, int csrno,
target_ulong *val)
{
RISCVException ret;
ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG);
if (ret != RISCV_EXCP_NONE) {
return ret;
}
*val = env->senvcfg;
return RISCV_EXCP_NONE;
}
static RISCVException write_senvcfg(CPURISCVState *env, int csrno,
target_ulong val)
{
uint64_t mask = SENVCFG_FIOM | SENVCFG_CBIE | SENVCFG_CBCFE | SENVCFG_CBZE;
RISCVException ret;
ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG);
if (ret != RISCV_EXCP_NONE) {
return ret;
}
env->senvcfg = (env->senvcfg & ~mask) | (val & mask);
return RISCV_EXCP_NONE;
}
static RISCVException read_henvcfg(CPURISCVState *env, int csrno,
target_ulong *val)
{
RISCVException ret;
ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG);
if (ret != RISCV_EXCP_NONE) {
return ret;
}
/*
* henvcfg.pbmte is read_only 0 when menvcfg.pbmte = 0
* henvcfg.stce is read_only 0 when menvcfg.stce = 0
* henvcfg.hade is read_only 0 when menvcfg.hade = 0
*/
*val = env->henvcfg & (~(HENVCFG_PBMTE | HENVCFG_STCE | HENVCFG_ADUE) |
env->menvcfg);
return RISCV_EXCP_NONE;
}
static RISCVException write_henvcfg(CPURISCVState *env, int csrno,
target_ulong val)
{
uint64_t mask = HENVCFG_FIOM | HENVCFG_CBIE | HENVCFG_CBCFE | HENVCFG_CBZE;
RISCVException ret;
ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG);
if (ret != RISCV_EXCP_NONE) {
return ret;
}
if (riscv_cpu_mxl(env) == MXL_RV64) {
mask |= env->menvcfg & (HENVCFG_PBMTE | HENVCFG_STCE | HENVCFG_ADUE);
}
env->henvcfg = (env->henvcfg & ~mask) | (val & mask);
return RISCV_EXCP_NONE;
}
static RISCVException read_henvcfgh(CPURISCVState *env, int csrno,
target_ulong *val)
{
RISCVException ret;
ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG);
if (ret != RISCV_EXCP_NONE) {
return ret;
}
*val = (env->henvcfg & (~(HENVCFG_PBMTE | HENVCFG_STCE | HENVCFG_ADUE) |
env->menvcfg)) >> 32;
return RISCV_EXCP_NONE;
}
static RISCVException write_henvcfgh(CPURISCVState *env, int csrno,
target_ulong val)
{
uint64_t mask = env->menvcfg & (HENVCFG_PBMTE | HENVCFG_STCE |
HENVCFG_ADUE);
uint64_t valh = (uint64_t)val << 32;
RISCVException ret;
ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG);
if (ret != RISCV_EXCP_NONE) {
return ret;
}
env->henvcfg = (env->henvcfg & ~mask) | (valh & mask);
return RISCV_EXCP_NONE;
}
static RISCVException read_mstateen(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->mstateen[csrno - CSR_MSTATEEN0];
return RISCV_EXCP_NONE;
}
static RISCVException write_mstateen(CPURISCVState *env, int csrno,
uint64_t wr_mask, target_ulong new_val)
{
uint64_t *reg;
reg = &env->mstateen[csrno - CSR_MSTATEEN0];
*reg = (*reg & ~wr_mask) | (new_val & wr_mask);
return RISCV_EXCP_NONE;
}
static RISCVException write_mstateen0(CPURISCVState *env, int csrno,
target_ulong new_val)
{
uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG;
if (!riscv_has_ext(env, RVF)) {
wr_mask |= SMSTATEEN0_FCSR;
}
return write_mstateen(env, csrno, wr_mask, new_val);
}
static RISCVException write_mstateen_1_3(CPURISCVState *env, int csrno,
target_ulong new_val)
{
return write_mstateen(env, csrno, SMSTATEEN_STATEEN, new_val);
}
static RISCVException read_mstateenh(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->mstateen[csrno - CSR_MSTATEEN0H] >> 32;
return RISCV_EXCP_NONE;
}
static RISCVException write_mstateenh(CPURISCVState *env, int csrno,
uint64_t wr_mask, target_ulong new_val)
{
uint64_t *reg, val;
reg = &env->mstateen[csrno - CSR_MSTATEEN0H];
val = (uint64_t)new_val << 32;
val |= *reg & 0xFFFFFFFF;
*reg = (*reg & ~wr_mask) | (val & wr_mask);
return RISCV_EXCP_NONE;
}
static RISCVException write_mstateen0h(CPURISCVState *env, int csrno,
target_ulong new_val)
{
uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG;
return write_mstateenh(env, csrno, wr_mask, new_val);
}
static RISCVException write_mstateenh_1_3(CPURISCVState *env, int csrno,
target_ulong new_val)
{
return write_mstateenh(env, csrno, SMSTATEEN_STATEEN, new_val);
}
static RISCVException read_hstateen(CPURISCVState *env, int csrno,
target_ulong *val)
{
int index = csrno - CSR_HSTATEEN0;
*val = env->hstateen[index] & env->mstateen[index];
return RISCV_EXCP_NONE;
}
static RISCVException write_hstateen(CPURISCVState *env, int csrno,
uint64_t mask, target_ulong new_val)
{
int index = csrno - CSR_HSTATEEN0;
uint64_t *reg, wr_mask;
reg = &env->hstateen[index];
wr_mask = env->mstateen[index] & mask;
*reg = (*reg & ~wr_mask) | (new_val & wr_mask);
return RISCV_EXCP_NONE;
}
static RISCVException write_hstateen0(CPURISCVState *env, int csrno,
target_ulong new_val)
{
uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG;
if (!riscv_has_ext(env, RVF)) {
wr_mask |= SMSTATEEN0_FCSR;
}
return write_hstateen(env, csrno, wr_mask, new_val);
}
static RISCVException write_hstateen_1_3(CPURISCVState *env, int csrno,
target_ulong new_val)
{
return write_hstateen(env, csrno, SMSTATEEN_STATEEN, new_val);
}
static RISCVException read_hstateenh(CPURISCVState *env, int csrno,
target_ulong *val)
{
int index = csrno - CSR_HSTATEEN0H;
*val = (env->hstateen[index] >> 32) & (env->mstateen[index] >> 32);
return RISCV_EXCP_NONE;
}
static RISCVException write_hstateenh(CPURISCVState *env, int csrno,
uint64_t mask, target_ulong new_val)
{
int index = csrno - CSR_HSTATEEN0H;
uint64_t *reg, wr_mask, val;
reg = &env->hstateen[index];
val = (uint64_t)new_val << 32;
val |= *reg & 0xFFFFFFFF;
wr_mask = env->mstateen[index] & mask;
*reg = (*reg & ~wr_mask) | (val & wr_mask);
return RISCV_EXCP_NONE;
}
static RISCVException write_hstateen0h(CPURISCVState *env, int csrno,
target_ulong new_val)
{
uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG;
return write_hstateenh(env, csrno, wr_mask, new_val);
}
static RISCVException write_hstateenh_1_3(CPURISCVState *env, int csrno,
target_ulong new_val)
{
return write_hstateenh(env, csrno, SMSTATEEN_STATEEN, new_val);
}
static RISCVException read_sstateen(CPURISCVState *env, int csrno,
target_ulong *val)
{
bool virt = env->virt_enabled;
int index = csrno - CSR_SSTATEEN0;
*val = env->sstateen[index] & env->mstateen[index];
if (virt) {
*val &= env->hstateen[index];
}
return RISCV_EXCP_NONE;
}
static RISCVException write_sstateen(CPURISCVState *env, int csrno,
uint64_t mask, target_ulong new_val)
{
bool virt = env->virt_enabled;
int index = csrno - CSR_SSTATEEN0;
uint64_t wr_mask;
uint64_t *reg;
wr_mask = env->mstateen[index] & mask;
if (virt) {
wr_mask &= env->hstateen[index];
}
reg = &env->sstateen[index];
*reg = (*reg & ~wr_mask) | (new_val & wr_mask);
return RISCV_EXCP_NONE;
}
static RISCVException write_sstateen0(CPURISCVState *env, int csrno,
target_ulong new_val)
{
uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG;
if (!riscv_has_ext(env, RVF)) {
wr_mask |= SMSTATEEN0_FCSR;
}
return write_sstateen(env, csrno, wr_mask, new_val);
}
static RISCVException write_sstateen_1_3(CPURISCVState *env, int csrno,
target_ulong new_val)
{
return write_sstateen(env, csrno, SMSTATEEN_STATEEN, new_val);
}
static RISCVException rmw_mip64(CPURISCVState *env, int csrno,
uint64_t *ret_val,
uint64_t new_val, uint64_t wr_mask)
{
uint64_t old_mip, mask = wr_mask & delegable_ints;
uint32_t gin;
if (mask & MIP_SEIP) {
env->software_seip = new_val & MIP_SEIP;
new_val |= env->external_seip * MIP_SEIP;
}
if (riscv_cpu_cfg(env)->ext_sstc && (env->priv == PRV_M) &&
get_field(env->menvcfg, MENVCFG_STCE)) {
/* sstc extension forbids STIP & VSTIP to be writeable in mip */
mask = mask & ~(MIP_STIP | MIP_VSTIP);
}
if (mask) {
old_mip = riscv_cpu_update_mip(env, mask, (new_val & mask));
} else {
old_mip = env->mip;
}
if (csrno != CSR_HVIP) {
gin = get_field(env->hstatus, HSTATUS_VGEIN);
old_mip |= (env->hgeip & ((target_ulong)1 << gin)) ? MIP_VSEIP : 0;
old_mip |= env->vstime_irq ? MIP_VSTIP : 0;
}
if (ret_val) {
*ret_val = old_mip;
}
return RISCV_EXCP_NONE;
}
static RISCVException rmw_mip(CPURISCVState *env, int csrno,
target_ulong *ret_val,
target_ulong new_val, target_ulong wr_mask)
{
uint64_t rval;
RISCVException ret;
ret = rmw_mip64(env, csrno, &rval, new_val, wr_mask);
if (ret_val) {
*ret_val = rval;
}
return ret;
}
static RISCVException rmw_miph(CPURISCVState *env, int csrno,
target_ulong *ret_val,
target_ulong new_val, target_ulong wr_mask)
{
uint64_t rval;
RISCVException ret;
ret = rmw_mip64(env, csrno, &rval,
((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32);
if (ret_val) {
*ret_val = rval >> 32;
}
return ret;
}
/*
* The function is written for two use-cases:
* 1- To access mvip csr as is for m-mode access.
* 2- To access sip as a combination of mip and mvip for s-mode.
*
* Both report bits 1, 5, 9 and 13:63 but with the exception of
* STIP being read-only zero in case of mvip when sstc extension
* is present.
* Also, sip needs to be read-only zero when both mideleg[i] and
* mvien[i] are zero but mvip needs to be an alias of mip.
*/
static RISCVException rmw_mvip64(CPURISCVState *env, int csrno,
uint64_t *ret_val,
uint64_t new_val, uint64_t wr_mask)
{
RISCVCPU *cpu = env_archcpu(env);
target_ulong ret_mip = 0;
RISCVException ret;
uint64_t old_mvip;
/*
* mideleg[i] mvien[i]
* 0 0 No delegation. mvip[i] is alias of mip[i].
* 0 1 mvip[i] becomes source of interrupt, mip bypassed.
* 1 X mip[i] is source of interrupt and mvip[i] aliases
* mip[i].
*
* So alias condition would be for bits:
* ((S_MODE_INTERRUPTS | LOCAL_INTERRUPTS) & (mideleg | ~mvien)) |
* (!sstc & MIP_STIP)
*
* Non-alias condition will be for bits:
* (S_MODE_INTERRUPTS | LOCAL_INTERRUPTS) & (~mideleg & mvien)
*
* alias_mask denotes the bits that come from mip nalias_mask denotes bits
* that come from hvip.
*/
uint64_t alias_mask = ((S_MODE_INTERRUPTS | LOCAL_INTERRUPTS) &
(env->mideleg | ~env->mvien)) | MIP_STIP;
uint64_t nalias_mask = (S_MODE_INTERRUPTS | LOCAL_INTERRUPTS) &
(~env->mideleg & env->mvien);
uint64_t wr_mask_mvip;
uint64_t wr_mask_mip;
/*
* mideleg[i] mvien[i]
* 0 0 sip[i] read-only zero.
* 0 1 sip[i] alias of mvip[i].
* 1 X sip[i] alias of mip[i].
*
* Both alias and non-alias mask remain same for sip except for bits
* which are zero in both mideleg and mvien.
*/
if (csrno == CSR_SIP) {
/* Remove bits that are zero in both mideleg and mvien. */
alias_mask &= (env->mideleg | env->mvien);
nalias_mask &= (env->mideleg | env->mvien);
}
/*
* If sstc is present, mvip.STIP is not an alias of mip.STIP so clear
* that our in mip returned value.
*/
if (cpu->cfg.ext_sstc && (env->priv == PRV_M) &&
get_field(env->menvcfg, MENVCFG_STCE)) {
alias_mask &= ~MIP_STIP;
}
wr_mask_mip = wr_mask & alias_mask & mvip_writable_mask;
wr_mask_mvip = wr_mask & nalias_mask & mvip_writable_mask;
/*
* For bits set in alias_mask, mvip needs to be alias of mip, so forward
* this to rmw_mip.
*/
ret = rmw_mip(env, CSR_MIP, &ret_mip, new_val, wr_mask_mip);
if (ret != RISCV_EXCP_NONE) {
return ret;
}
old_mvip = env->mvip;
/*
* Write to mvip. Update only non-alias bits. Alias bits were updated
* in mip in rmw_mip above.
*/
if (wr_mask_mvip) {
env->mvip = (env->mvip & ~wr_mask_mvip) | (new_val & wr_mask_mvip);
/*
* Given mvip is separate source from mip, we need to trigger interrupt
* from here separately. Normally this happen from riscv_cpu_update_mip.
*/
riscv_cpu_interrupt(env);
}
if (ret_val) {
ret_mip &= alias_mask;
old_mvip &= nalias_mask;
*ret_val = old_mvip | ret_mip;
}
return RISCV_EXCP_NONE;
}
static RISCVException rmw_mvip(CPURISCVState *env, int csrno,
target_ulong *ret_val,
target_ulong new_val, target_ulong wr_mask)
{
uint64_t rval;
RISCVException ret;
ret = rmw_mvip64(env, csrno, &rval, new_val, wr_mask);
if (ret_val) {
*ret_val = rval;
}
return ret;
}
static RISCVException rmw_mviph(CPURISCVState *env, int csrno,
target_ulong *ret_val,
target_ulong new_val, target_ulong wr_mask)
{
uint64_t rval;
RISCVException ret;
ret = rmw_mvip64(env, csrno, &rval,
((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32);
if (ret_val) {
*ret_val = rval >> 32;
}
return ret;
}
/* Supervisor Trap Setup */
static RISCVException read_sstatus_i128(CPURISCVState *env, int csrno,
Int128 *val)
{
uint64_t mask = sstatus_v1_10_mask;
uint64_t sstatus = env->mstatus & mask;
if (env->xl != MXL_RV32 || env->debugger) {
mask |= SSTATUS64_UXL;
}
*val = int128_make128(sstatus, add_status_sd(MXL_RV128, sstatus));
return RISCV_EXCP_NONE;
}
static RISCVException read_sstatus(CPURISCVState *env, int csrno,
target_ulong *val)
{
target_ulong mask = (sstatus_v1_10_mask);
if (env->xl != MXL_RV32 || env->debugger) {
mask |= SSTATUS64_UXL;
}
/* TODO: Use SXL not MXL. */
*val = add_status_sd(riscv_cpu_mxl(env), env->mstatus & mask);
return RISCV_EXCP_NONE;
}
static RISCVException write_sstatus(CPURISCVState *env, int csrno,
target_ulong val)
{
target_ulong mask = (sstatus_v1_10_mask);
if (env->xl != MXL_RV32 || env->debugger) {
if ((val & SSTATUS64_UXL) != 0) {
mask |= SSTATUS64_UXL;
}
}
target_ulong newval = (env->mstatus & ~mask) | (val & mask);
return write_mstatus(env, CSR_MSTATUS, newval);
}
static RISCVException rmw_vsie64(CPURISCVState *env, int csrno,
uint64_t *ret_val,
uint64_t new_val, uint64_t wr_mask)
{
uint64_t alias_mask = (LOCAL_INTERRUPTS | VS_MODE_INTERRUPTS) &
env->hideleg;
uint64_t nalias_mask = LOCAL_INTERRUPTS & (~env->hideleg & env->hvien);
uint64_t rval, rval_vs, vsbits;
uint64_t wr_mask_vsie;
uint64_t wr_mask_mie;
RISCVException ret;
/* Bring VS-level bits to correct position */
vsbits = new_val & (VS_MODE_INTERRUPTS >> 1);
new_val &= ~(VS_MODE_INTERRUPTS >> 1);
new_val |= vsbits << 1;
vsbits = wr_mask & (VS_MODE_INTERRUPTS >> 1);
wr_mask &= ~(VS_MODE_INTERRUPTS >> 1);
wr_mask |= vsbits << 1;
wr_mask_mie = wr_mask & alias_mask;
wr_mask_vsie = wr_mask & nalias_mask;
ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask_mie);
rval_vs = env->vsie & nalias_mask;
env->vsie = (env->vsie & ~wr_mask_vsie) | (new_val & wr_mask_vsie);
if (ret_val) {
rval &= alias_mask;
vsbits = rval & VS_MODE_INTERRUPTS;
rval &= ~VS_MODE_INTERRUPTS;
*ret_val = rval | (vsbits >> 1) | rval_vs;
}
return ret;
}
static RISCVException rmw_vsie(CPURISCVState *env, int csrno,
target_ulong *ret_val,
target_ulong new_val, target_ulong wr_mask)
{
uint64_t rval;
RISCVException ret;
ret = rmw_vsie64(env, csrno, &rval, new_val, wr_mask);
if (ret_val) {
*ret_val = rval;
}
return ret;
}
static RISCVException rmw_vsieh(CPURISCVState *env, int csrno,
target_ulong *ret_val,
target_ulong new_val, target_ulong wr_mask)
{
uint64_t rval;
RISCVException ret;
ret = rmw_vsie64(env, csrno, &rval,
((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32);
if (ret_val) {
*ret_val = rval >> 32;
}
return ret;
}
static RISCVException rmw_sie64(CPURISCVState *env, int csrno,
uint64_t *ret_val,
uint64_t new_val, uint64_t wr_mask)
{
uint64_t nalias_mask = (S_MODE_INTERRUPTS | LOCAL_INTERRUPTS) &
(~env->mideleg & env->mvien);
uint64_t alias_mask = (S_MODE_INTERRUPTS | LOCAL_INTERRUPTS) & env->mideleg;
uint64_t sie_mask = wr_mask & nalias_mask;
RISCVException ret;
/*
* mideleg[i] mvien[i]
* 0 0 sie[i] read-only zero.
* 0 1 sie[i] is a separate writable bit.
* 1 X sie[i] alias of mie[i].
*
* Both alias and non-alias mask remain same for sip except for bits
* which are zero in both mideleg and mvien.
*/
if (env->virt_enabled) {
if (env->hvictl & HVICTL_VTI) {
return RISCV_EXCP_VIRT_INSTRUCTION_FAULT;
}
ret = rmw_vsie64(env, CSR_VSIE, ret_val, new_val, wr_mask);
if (ret_val) {
*ret_val &= alias_mask;
}
} else {
ret = rmw_mie64(env, csrno, ret_val, new_val, wr_mask & alias_mask);
if (ret_val) {
*ret_val &= alias_mask;
*ret_val |= env->sie & nalias_mask;
}
env->sie = (env->sie & ~sie_mask) | (new_val & sie_mask);
}
return ret;
}
static RISCVException rmw_sie(CPURISCVState *env, int csrno,
target_ulong *ret_val,
target_ulong new_val, target_ulong wr_mask)
{
uint64_t rval;
RISCVException ret;
ret = rmw_sie64(env, csrno, &rval, new_val, wr_mask);
if (ret == RISCV_EXCP_NONE && ret_val) {
*ret_val = rval;
}
return ret;
}
static RISCVException rmw_sieh(CPURISCVState *env, int csrno,
target_ulong *ret_val,
target_ulong new_val, target_ulong wr_mask)
{
uint64_t rval;
RISCVException ret;
ret = rmw_sie64(env, csrno, &rval,
((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32);
if (ret_val) {
*ret_val = rval >> 32;
}
return ret;
}
static RISCVException read_stvec(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->stvec;
return RISCV_EXCP_NONE;
}
static RISCVException write_stvec(CPURISCVState *env, int csrno,
target_ulong val)
{
/* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */
if ((val & 3) < 2) {
env->stvec = val;
} else {
qemu_log_mask(LOG_UNIMP, "CSR_STVEC: reserved mode not supported\n");
}
return RISCV_EXCP_NONE;
}
static RISCVException read_scounteren(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->scounteren;
return RISCV_EXCP_NONE;
}
static RISCVException write_scounteren(CPURISCVState *env, int csrno,
target_ulong val)
{
env->scounteren = val;
return RISCV_EXCP_NONE;
}
/* Supervisor Trap Handling */
static RISCVException read_sscratch_i128(CPURISCVState *env, int csrno,
Int128 *val)
{
*val = int128_make128(env->sscratch, env->sscratchh);
return RISCV_EXCP_NONE;
}
static RISCVException write_sscratch_i128(CPURISCVState *env, int csrno,
Int128 val)
{
env->sscratch = int128_getlo(val);
env->sscratchh = int128_gethi(val);
return RISCV_EXCP_NONE;
}
static RISCVException read_sscratch(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->sscratch;
return RISCV_EXCP_NONE;
}
static RISCVException write_sscratch(CPURISCVState *env, int csrno,
target_ulong val)
{
env->sscratch = val;
return RISCV_EXCP_NONE;
}
static RISCVException read_sepc(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->sepc;
return RISCV_EXCP_NONE;
}
static RISCVException write_sepc(CPURISCVState *env, int csrno,
target_ulong val)
{
env->sepc = val;
return RISCV_EXCP_NONE;
}
static RISCVException read_scause(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->scause;
return RISCV_EXCP_NONE;
}
static RISCVException write_scause(CPURISCVState *env, int csrno,
target_ulong val)
{
env->scause = val;
return RISCV_EXCP_NONE;
}
static RISCVException read_stval(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->stval;
return RISCV_EXCP_NONE;
}
static RISCVException write_stval(CPURISCVState *env, int csrno,
target_ulong val)
{
env->stval = val;
return RISCV_EXCP_NONE;
}
static RISCVException rmw_hvip64(CPURISCVState *env, int csrno,
uint64_t *ret_val,
uint64_t new_val, uint64_t wr_mask);
static RISCVException rmw_vsip64(CPURISCVState *env, int csrno,
uint64_t *ret_val,
uint64_t new_val, uint64_t wr_mask)
{
RISCVException ret;
uint64_t rval, mask = env->hideleg & VS_MODE_INTERRUPTS;
uint64_t vsbits;
/* Add virtualized bits into vsip mask. */
mask |= env->hvien & ~env->hideleg;
/* Bring VS-level bits to correct position */
vsbits = new_val & (VS_MODE_INTERRUPTS >> 1);
new_val &= ~(VS_MODE_INTERRUPTS >> 1);
new_val |= vsbits << 1;
vsbits = wr_mask & (VS_MODE_INTERRUPTS >> 1);
wr_mask &= ~(VS_MODE_INTERRUPTS >> 1);
wr_mask |= vsbits << 1;
ret = rmw_hvip64(env, csrno, &rval, new_val,
wr_mask & mask & vsip_writable_mask);
if (ret_val) {
rval &= mask;
vsbits = rval & VS_MODE_INTERRUPTS;
rval &= ~VS_MODE_INTERRUPTS;
*ret_val = rval | (vsbits >> 1);
}
return ret;
}
static RISCVException rmw_vsip(CPURISCVState *env, int csrno,
target_ulong *ret_val,
target_ulong new_val, target_ulong wr_mask)
{
uint64_t rval;
RISCVException ret;
ret = rmw_vsip64(env, csrno, &rval, new_val, wr_mask);
if (ret_val) {
*ret_val = rval;
}
return ret;
}
static RISCVException rmw_vsiph(CPURISCVState *env, int csrno,
target_ulong *ret_val,
target_ulong new_val, target_ulong wr_mask)
{
uint64_t rval;
RISCVException ret;
ret = rmw_vsip64(env, csrno, &rval,
((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32);
if (ret_val) {
*ret_val = rval >> 32;
}
return ret;
}
static RISCVException rmw_sip64(CPURISCVState *env, int csrno,
uint64_t *ret_val,
uint64_t new_val, uint64_t wr_mask)
{
RISCVException ret;
uint64_t mask = (env->mideleg | env->mvien) & sip_writable_mask;
if (env->virt_enabled) {
if (env->hvictl & HVICTL_VTI) {
return RISCV_EXCP_VIRT_INSTRUCTION_FAULT;
}
ret = rmw_vsip64(env, CSR_VSIP, ret_val, new_val, wr_mask);
} else {
ret = rmw_mvip64(env, csrno, ret_val, new_val, wr_mask & mask);
}
if (ret_val) {
*ret_val &= (env->mideleg | env->mvien) &
(S_MODE_INTERRUPTS | LOCAL_INTERRUPTS);
}
return ret;
}
static RISCVException rmw_sip(CPURISCVState *env, int csrno,
target_ulong *ret_val,
target_ulong new_val, target_ulong wr_mask)
{
uint64_t rval;
RISCVException ret;
ret = rmw_sip64(env, csrno, &rval, new_val, wr_mask);
if (ret_val) {
*ret_val = rval;
}
return ret;
}
static RISCVException rmw_siph(CPURISCVState *env, int csrno,
target_ulong *ret_val,
target_ulong new_val, target_ulong wr_mask)
{
uint64_t rval;
RISCVException ret;
ret = rmw_sip64(env, csrno, &rval,
((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32);
if (ret_val) {
*ret_val = rval >> 32;
}
return ret;
}
/* Supervisor Protection and Translation */
static RISCVException read_satp(CPURISCVState *env, int csrno,
target_ulong *val)
{
if (!riscv_cpu_cfg(env)->mmu) {
*val = 0;
return RISCV_EXCP_NONE;
}
*val = env->satp;
return RISCV_EXCP_NONE;
}
static RISCVException write_satp(CPURISCVState *env, int csrno,
target_ulong val)
{
target_ulong mask;
bool vm;
if (!riscv_cpu_cfg(env)->mmu) {
return RISCV_EXCP_NONE;
}
if (riscv_cpu_mxl(env) == MXL_RV32) {
vm = validate_vm(env, get_field(val, SATP32_MODE));
mask = (val ^ env->satp) & (SATP32_MODE | SATP32_ASID | SATP32_PPN);
} else {
vm = validate_vm(env, get_field(val, SATP64_MODE));
mask = (val ^ env->satp) & (SATP64_MODE | SATP64_ASID | SATP64_PPN);
}
if (vm && mask) {
/*
* The ISA defines SATP.MODE=Bare as "no translation", but we still
* pass these through QEMU's TLB emulation as it improves
* performance. Flushing the TLB on SATP writes with paging
* enabled avoids leaking those invalid cached mappings.
*/
tlb_flush(env_cpu(env));
env->satp = val;
}
return RISCV_EXCP_NONE;
}
static int read_vstopi(CPURISCVState *env, int csrno, target_ulong *val)
{
int irq, ret;
target_ulong topei;
uint64_t vseip, vsgein;
uint32_t iid, iprio, hviid, hviprio, gein;
uint32_t s, scount = 0, siid[VSTOPI_NUM_SRCS], siprio[VSTOPI_NUM_SRCS];
gein = get_field(env->hstatus, HSTATUS_VGEIN);
hviid = get_field(env->hvictl, HVICTL_IID);
hviprio = get_field(env->hvictl, HVICTL_IPRIO);
if (gein) {
vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0;
vseip = env->mie & (env->mip | vsgein) & MIP_VSEIP;
if (gein <= env->geilen && vseip) {
siid[scount] = IRQ_S_EXT;
siprio[scount] = IPRIO_MMAXIPRIO + 1;
if (env->aia_ireg_rmw_fn[PRV_S]) {
/*
* Call machine specific IMSIC register emulation for
* reading TOPEI.
*/
ret = env->aia_ireg_rmw_fn[PRV_S](
env->aia_ireg_rmw_fn_arg[PRV_S],
AIA_MAKE_IREG(ISELECT_IMSIC_TOPEI, PRV_S, true, gein,
riscv_cpu_mxl_bits(env)),
&topei, 0, 0);
if (!ret && topei) {
siprio[scount] = topei & IMSIC_TOPEI_IPRIO_MASK;
}
}
scount++;
}
} else {
if (hviid == IRQ_S_EXT && hviprio) {
siid[scount] = IRQ_S_EXT;
siprio[scount] = hviprio;
scount++;
}
}
if (env->hvictl & HVICTL_VTI) {
if (hviid != IRQ_S_EXT) {
siid[scount] = hviid;
siprio[scount] = hviprio;
scount++;
}
} else {
irq = riscv_cpu_vsirq_pending(env);
if (irq != IRQ_S_EXT && 0 < irq && irq <= 63) {
siid[scount] = irq;
siprio[scount] = env->hviprio[irq];
scount++;
}
}
iid = 0;
iprio = UINT_MAX;
for (s = 0; s < scount; s++) {
if (siprio[s] < iprio) {
iid = siid[s];
iprio = siprio[s];
}
}
if (iid) {
if (env->hvictl & HVICTL_IPRIOM) {
if (iprio > IPRIO_MMAXIPRIO) {
iprio = IPRIO_MMAXIPRIO;
}
if (!iprio) {
if (riscv_cpu_default_priority(iid) > IPRIO_DEFAULT_S) {
iprio = IPRIO_MMAXIPRIO;
}
}
} else {
iprio = 1;
}
} else {
iprio = 0;
}
*val = (iid & TOPI_IID_MASK) << TOPI_IID_SHIFT;
*val |= iprio;
return RISCV_EXCP_NONE;
}
static int read_stopi(CPURISCVState *env, int csrno, target_ulong *val)
{
int irq;
uint8_t iprio;
if (env->virt_enabled) {
return read_vstopi(env, CSR_VSTOPI, val);
}
irq = riscv_cpu_sirq_pending(env);
if (irq <= 0 || irq > 63) {
*val = 0;
} else {
iprio = env->siprio[irq];
if (!iprio) {
if (riscv_cpu_default_priority(irq) > IPRIO_DEFAULT_S) {
iprio = IPRIO_MMAXIPRIO;
}
}
*val = (irq & TOPI_IID_MASK) << TOPI_IID_SHIFT;
*val |= iprio;
}
return RISCV_EXCP_NONE;
}
/* Hypervisor Extensions */
static RISCVException read_hstatus(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->hstatus;
if (riscv_cpu_mxl(env) != MXL_RV32) {
/* We only support 64-bit VSXL */
*val = set_field(*val, HSTATUS_VSXL, 2);
}
/* We only support little endian */
*val = set_field(*val, HSTATUS_VSBE, 0);
return RISCV_EXCP_NONE;
}
static RISCVException write_hstatus(CPURISCVState *env, int csrno,
target_ulong val)
{
env->hstatus = val;
if (riscv_cpu_mxl(env) != MXL_RV32 && get_field(val, HSTATUS_VSXL) != 2) {
qemu_log_mask(LOG_UNIMP,
"QEMU does not support mixed HSXLEN options.");
}
if (get_field(val, HSTATUS_VSBE) != 0) {
qemu_log_mask(LOG_UNIMP, "QEMU does not support big endian guests.");
}
return RISCV_EXCP_NONE;
}
static RISCVException read_hedeleg(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->hedeleg;
return RISCV_EXCP_NONE;
}
static RISCVException write_hedeleg(CPURISCVState *env, int csrno,
target_ulong val)
{
env->hedeleg = val & vs_delegable_excps;
return RISCV_EXCP_NONE;
}
static RISCVException rmw_hvien64(CPURISCVState *env, int csrno,
uint64_t *ret_val,
uint64_t new_val, uint64_t wr_mask)
{
uint64_t mask = wr_mask & hvien_writable_mask;
if (ret_val) {
*ret_val = env->hvien;
}
env->hvien = (env->hvien & ~mask) | (new_val & mask);
return RISCV_EXCP_NONE;
}
static RISCVException rmw_hvien(CPURISCVState *env, int csrno,
target_ulong *ret_val,
target_ulong new_val, target_ulong wr_mask)
{
uint64_t rval;
RISCVException ret;
ret = rmw_hvien64(env, csrno, &rval, new_val, wr_mask);
if (ret_val) {
*ret_val = rval;
}
return ret;
}
static RISCVException rmw_hvienh(CPURISCVState *env, int csrno,
target_ulong *ret_val,
target_ulong new_val, target_ulong wr_mask)
{
uint64_t rval;
RISCVException ret;
ret = rmw_hvien64(env, csrno, &rval,
((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32);
if (ret_val) {
*ret_val = rval >> 32;
}
return ret;
}
static RISCVException rmw_hideleg64(CPURISCVState *env, int csrno,
uint64_t *ret_val,
uint64_t new_val, uint64_t wr_mask)
{
uint64_t mask = wr_mask & vs_delegable_ints;
if (ret_val) {
*ret_val = env->hideleg & vs_delegable_ints;
}
env->hideleg = (env->hideleg & ~mask) | (new_val & mask);
return RISCV_EXCP_NONE;
}
static RISCVException rmw_hideleg(CPURISCVState *env, int csrno,
target_ulong *ret_val,
target_ulong new_val, target_ulong wr_mask)
{
uint64_t rval;
RISCVException ret;
ret = rmw_hideleg64(env, csrno, &rval, new_val, wr_mask);
if (ret_val) {
*ret_val = rval;
}
return ret;
}
static RISCVException rmw_hidelegh(CPURISCVState *env, int csrno,
target_ulong *ret_val,
target_ulong new_val, target_ulong wr_mask)
{
uint64_t rval;
RISCVException ret;
ret = rmw_hideleg64(env, csrno, &rval,
((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32);
if (ret_val) {
*ret_val = rval >> 32;
}
return ret;
}
/*
* The function is written for two use-cases:
* 1- To access hvip csr as is for HS-mode access.
* 2- To access vsip as a combination of hvip, and mip for vs-mode.
*
* Both report bits 2, 6, 10 and 13:63.
* vsip needs to be read-only zero when both hideleg[i] and
* hvien[i] are zero.
*/
static RISCVException rmw_hvip64(CPURISCVState *env, int csrno,
uint64_t *ret_val,
uint64_t new_val, uint64_t wr_mask)
{
RISCVException ret;
uint64_t old_hvip;
uint64_t ret_mip;
/*
* For bits 10, 6 and 2, vsip[i] is an alias of hip[i]. These bits are
* present in hip, hvip and mip. Where mip[i] is alias of hip[i] and hvip[i]
* is OR'ed in hip[i] to inject virtual interrupts from hypervisor. These
* bits are actually being maintained in mip so we read them from there.
* This way we have a single source of truth and allows for easier
* implementation.
*
* For bits 13:63 we have:
*
* hideleg[i] hvien[i]
* 0 0 No delegation. vsip[i] readonly zero.
* 0 1 vsip[i] is alias of hvip[i], sip bypassed.
* 1 X vsip[i] is alias of sip[i], hvip bypassed.
*
* alias_mask denotes the bits that come from sip (mip here given we
* maintain all bits there). nalias_mask denotes bits that come from
* hvip.
*/
uint64_t alias_mask = (env->hideleg | ~env->hvien) | VS_MODE_INTERRUPTS;
uint64_t nalias_mask = (~env->hideleg & env->hvien);
uint64_t wr_mask_hvip;
uint64_t wr_mask_mip;
/*
* Both alias and non-alias mask remain same for vsip except:
* 1- For VS* bits if they are zero in hideleg.
* 2- For 13:63 bits if they are zero in both hideleg and hvien.
*/
if (csrno == CSR_VSIP) {
/* zero-out VS* bits that are not delegated to VS mode. */
alias_mask &= (env->hideleg | ~VS_MODE_INTERRUPTS);
/*
* zero-out 13:63 bits that are zero in both hideleg and hvien.
* nalias_mask mask can not contain any VS* bits so only second
* condition applies on it.
*/
nalias_mask &= (env->hideleg | env->hvien);
alias_mask &= (env->hideleg | env->hvien);
}
wr_mask_hvip = wr_mask & nalias_mask & hvip_writable_mask;
wr_mask_mip = wr_mask & alias_mask & hvip_writable_mask;
/* Aliased bits, bits 10, 6, 2 need to come from mip. */
ret = rmw_mip64(env, csrno, &ret_mip, new_val, wr_mask_mip);
if (ret != RISCV_EXCP_NONE) {
return ret;
}
old_hvip = env->hvip;
if (wr_mask_hvip) {
env->hvip = (env->hvip & ~wr_mask_hvip) | (new_val & wr_mask_hvip);
/*
* Given hvip is separate source from mip, we need to trigger interrupt
* from here separately. Normally this happen from riscv_cpu_update_mip.
*/
riscv_cpu_interrupt(env);
}
if (ret_val) {
/* Only take VS* bits from mip. */
ret_mip &= alias_mask;
/* Take in non-delegated 13:63 bits from hvip. */
old_hvip &= nalias_mask;
*ret_val = ret_mip | old_hvip;
}
return ret;
}
static RISCVException rmw_hvip(CPURISCVState *env, int csrno,
target_ulong *ret_val,
target_ulong new_val, target_ulong wr_mask)
{
uint64_t rval;
RISCVException ret;
ret = rmw_hvip64(env, csrno, &rval, new_val, wr_mask);
if (ret_val) {
*ret_val = rval;
}
return ret;
}
static RISCVException rmw_hviph(CPURISCVState *env, int csrno,
target_ulong *ret_val,
target_ulong new_val, target_ulong wr_mask)
{
uint64_t rval;
RISCVException ret;
ret = rmw_hvip64(env, csrno, &rval,
((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32);
if (ret_val) {
*ret_val = rval >> 32;
}
return ret;
}
static RISCVException rmw_hip(CPURISCVState *env, int csrno,
target_ulong *ret_value,
target_ulong new_value, target_ulong write_mask)
{
int ret = rmw_mip(env, csrno, ret_value, new_value,
write_mask & hip_writable_mask);
if (ret_value) {
*ret_value &= HS_MODE_INTERRUPTS;
}
return ret;
}
static RISCVException rmw_hie(CPURISCVState *env, int csrno,
target_ulong *ret_val,
target_ulong new_val, target_ulong wr_mask)
{
uint64_t rval;
RISCVException ret;
ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask & HS_MODE_INTERRUPTS);
if (ret_val) {
*ret_val = rval & HS_MODE_INTERRUPTS;
}
return ret;
}
static RISCVException read_hcounteren(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->hcounteren;
return RISCV_EXCP_NONE;
}
static RISCVException write_hcounteren(CPURISCVState *env, int csrno,
target_ulong val)
{
env->hcounteren = val;
return RISCV_EXCP_NONE;
}
static RISCVException read_hgeie(CPURISCVState *env, int csrno,
target_ulong *val)
{
if (val) {
*val = env->hgeie;
}
return RISCV_EXCP_NONE;
}
static RISCVException write_hgeie(CPURISCVState *env, int csrno,
target_ulong val)
{
/* Only GEILEN:1 bits implemented and BIT0 is never implemented */
val &= ((((target_ulong)1) << env->geilen) - 1) << 1;
env->hgeie = val;
/* Update mip.SGEIP bit */
riscv_cpu_update_mip(env, MIP_SGEIP,
BOOL_TO_MASK(!!(env->hgeie & env->hgeip)));
return RISCV_EXCP_NONE;
}
static RISCVException read_htval(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->htval;
return RISCV_EXCP_NONE;
}
static RISCVException write_htval(CPURISCVState *env, int csrno,
target_ulong val)
{
env->htval = val;
return RISCV_EXCP_NONE;
}
static RISCVException read_htinst(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->htinst;
return RISCV_EXCP_NONE;
}
static RISCVException write_htinst(CPURISCVState *env, int csrno,
target_ulong val)
{
return RISCV_EXCP_NONE;
}
static RISCVException read_hgeip(CPURISCVState *env, int csrno,
target_ulong *val)
{
if (val) {
*val = env->hgeip;
}
return RISCV_EXCP_NONE;
}
static RISCVException read_hgatp(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->hgatp;
return RISCV_EXCP_NONE;
}
static RISCVException write_hgatp(CPURISCVState *env, int csrno,
target_ulong val)
{
env->hgatp = val;
return RISCV_EXCP_NONE;
}
static RISCVException read_htimedelta(CPURISCVState *env, int csrno,
target_ulong *val)
{
if (!env->rdtime_fn) {
return RISCV_EXCP_ILLEGAL_INST;
}
*val = env->htimedelta;
return RISCV_EXCP_NONE;
}
static RISCVException write_htimedelta(CPURISCVState *env, int csrno,
target_ulong val)
{
if (!env->rdtime_fn) {
return RISCV_EXCP_ILLEGAL_INST;
}
if (riscv_cpu_mxl(env) == MXL_RV32) {
env->htimedelta = deposit64(env->htimedelta, 0, 32, (uint64_t)val);
} else {
env->htimedelta = val;
}
if (riscv_cpu_cfg(env)->ext_sstc && env->rdtime_fn) {
riscv_timer_write_timecmp(env, env->vstimer, env->vstimecmp,
env->htimedelta, MIP_VSTIP);
}
return RISCV_EXCP_NONE;
}
static RISCVException read_htimedeltah(CPURISCVState *env, int csrno,
target_ulong *val)
{
if (!env->rdtime_fn) {
return RISCV_EXCP_ILLEGAL_INST;
}
*val = env->htimedelta >> 32;
return RISCV_EXCP_NONE;
}
static RISCVException write_htimedeltah(CPURISCVState *env, int csrno,
target_ulong val)
{
if (!env->rdtime_fn) {
return RISCV_EXCP_ILLEGAL_INST;
}
env->htimedelta = deposit64(env->htimedelta, 32, 32, (uint64_t)val);
if (riscv_cpu_cfg(env)->ext_sstc && env->rdtime_fn) {
riscv_timer_write_timecmp(env, env->vstimer, env->vstimecmp,
env->htimedelta, MIP_VSTIP);
}
return RISCV_EXCP_NONE;
}
static int read_hvictl(CPURISCVState *env, int csrno, target_ulong *val)
{
*val = env->hvictl;
return RISCV_EXCP_NONE;
}
static int write_hvictl(CPURISCVState *env, int csrno, target_ulong val)
{
env->hvictl = val & HVICTL_VALID_MASK;
return RISCV_EXCP_NONE;
}
static int read_hvipriox(CPURISCVState *env, int first_index,
uint8_t *iprio, target_ulong *val)
{
int i, irq, rdzero, num_irqs = 4 * (riscv_cpu_mxl_bits(env) / 32);
/* First index has to be a multiple of number of irqs per register */
if (first_index % num_irqs) {
return (env->virt_enabled) ?
RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST;
}
/* Fill-up return value */
*val = 0;
for (i = 0; i < num_irqs; i++) {
if (riscv_cpu_hviprio_index2irq(first_index + i, &irq, &rdzero)) {
continue;
}
if (rdzero) {
continue;
}
*val |= ((target_ulong)iprio[irq]) << (i * 8);
}
return RISCV_EXCP_NONE;
}
static int write_hvipriox(CPURISCVState *env, int first_index,
uint8_t *iprio, target_ulong val)
{
int i, irq, rdzero, num_irqs = 4 * (riscv_cpu_mxl_bits(env) / 32);
/* First index has to be a multiple of number of irqs per register */
if (first_index % num_irqs) {
return (env->virt_enabled) ?
RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST;
}
/* Fill-up priority array */
for (i = 0; i < num_irqs; i++) {
if (riscv_cpu_hviprio_index2irq(first_index + i, &irq, &rdzero)) {
continue;
}
if (rdzero) {
iprio[irq] = 0;
} else {
iprio[irq] = (val >> (i * 8)) & 0xff;
}
}
return RISCV_EXCP_NONE;
}
static int read_hviprio1(CPURISCVState *env, int csrno, target_ulong *val)
{
return read_hvipriox(env, 0, env->hviprio, val);
}
static int write_hviprio1(CPURISCVState *env, int csrno, target_ulong val)
{
return write_hvipriox(env, 0, env->hviprio, val);
}
static int read_hviprio1h(CPURISCVState *env, int csrno, target_ulong *val)
{
return read_hvipriox(env, 4, env->hviprio, val);
}
static int write_hviprio1h(CPURISCVState *env, int csrno, target_ulong val)
{
return write_hvipriox(env, 4, env->hviprio, val);
}
static int read_hviprio2(CPURISCVState *env, int csrno, target_ulong *val)
{
return read_hvipriox(env, 8, env->hviprio, val);
}
static int write_hviprio2(CPURISCVState *env, int csrno, target_ulong val)
{
return write_hvipriox(env, 8, env->hviprio, val);
}
static int read_hviprio2h(CPURISCVState *env, int csrno, target_ulong *val)
{
return read_hvipriox(env, 12, env->hviprio, val);
}
static int write_hviprio2h(CPURISCVState *env, int csrno, target_ulong val)
{
return write_hvipriox(env, 12, env->hviprio, val);
}
/* Virtual CSR Registers */
static RISCVException read_vsstatus(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->vsstatus;
return RISCV_EXCP_NONE;
}
static RISCVException write_vsstatus(CPURISCVState *env, int csrno,
target_ulong val)
{
uint64_t mask = (target_ulong)-1;
if ((val & VSSTATUS64_UXL) == 0) {
mask &= ~VSSTATUS64_UXL;
}
env->vsstatus = (env->vsstatus & ~mask) | (uint64_t)val;
return RISCV_EXCP_NONE;
}
static int read_vstvec(CPURISCVState *env, int csrno, target_ulong *val)
{
*val = env->vstvec;
return RISCV_EXCP_NONE;
}
static RISCVException write_vstvec(CPURISCVState *env, int csrno,
target_ulong val)
{
env->vstvec = val;
return RISCV_EXCP_NONE;
}
static RISCVException read_vsscratch(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->vsscratch;
return RISCV_EXCP_NONE;
}
static RISCVException write_vsscratch(CPURISCVState *env, int csrno,
target_ulong val)
{
env->vsscratch = val;
return RISCV_EXCP_NONE;
}
static RISCVException read_vsepc(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->vsepc;
return RISCV_EXCP_NONE;
}
static RISCVException write_vsepc(CPURISCVState *env, int csrno,
target_ulong val)
{
env->vsepc = val;
return RISCV_EXCP_NONE;
}
static RISCVException read_vscause(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->vscause;
return RISCV_EXCP_NONE;
}
static RISCVException write_vscause(CPURISCVState *env, int csrno,
target_ulong val)
{
env->vscause = val;
return RISCV_EXCP_NONE;
}
static RISCVException read_vstval(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->vstval;
return RISCV_EXCP_NONE;
}
static RISCVException write_vstval(CPURISCVState *env, int csrno,
target_ulong val)
{
env->vstval = val;
return RISCV_EXCP_NONE;
}
static RISCVException read_vsatp(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->vsatp;
return RISCV_EXCP_NONE;
}
static RISCVException write_vsatp(CPURISCVState *env, int csrno,
target_ulong val)
{
env->vsatp = val;
return RISCV_EXCP_NONE;
}
static RISCVException read_mtval2(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->mtval2;
return RISCV_EXCP_NONE;
}
static RISCVException write_mtval2(CPURISCVState *env, int csrno,
target_ulong val)
{
env->mtval2 = val;
return RISCV_EXCP_NONE;
}
static RISCVException read_mtinst(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->mtinst;
return RISCV_EXCP_NONE;
}
static RISCVException write_mtinst(CPURISCVState *env, int csrno,
target_ulong val)
{
env->mtinst = val;
return RISCV_EXCP_NONE;
}
/* Physical Memory Protection */
static RISCVException read_mseccfg(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = mseccfg_csr_read(env);
return RISCV_EXCP_NONE;
}
static RISCVException write_mseccfg(CPURISCVState *env, int csrno,
target_ulong val)
{
mseccfg_csr_write(env, val);
return RISCV_EXCP_NONE;
}
static RISCVException read_pmpcfg(CPURISCVState *env, int csrno,
target_ulong *val)
{
uint32_t reg_index = csrno - CSR_PMPCFG0;
*val = pmpcfg_csr_read(env, reg_index);
return RISCV_EXCP_NONE;
}
static RISCVException write_pmpcfg(CPURISCVState *env, int csrno,
target_ulong val)
{
uint32_t reg_index = csrno - CSR_PMPCFG0;
pmpcfg_csr_write(env, reg_index, val);
return RISCV_EXCP_NONE;
}
static RISCVException read_pmpaddr(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = pmpaddr_csr_read(env, csrno - CSR_PMPADDR0);
return RISCV_EXCP_NONE;
}
static RISCVException write_pmpaddr(CPURISCVState *env, int csrno,
target_ulong val)
{
pmpaddr_csr_write(env, csrno - CSR_PMPADDR0, val);
return RISCV_EXCP_NONE;
}
static RISCVException read_tselect(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = tselect_csr_read(env);
return RISCV_EXCP_NONE;
}
static RISCVException write_tselect(CPURISCVState *env, int csrno,
target_ulong val)
{
tselect_csr_write(env, val);
return RISCV_EXCP_NONE;
}
static RISCVException read_tdata(CPURISCVState *env, int csrno,
target_ulong *val)
{
/* return 0 in tdata1 to end the trigger enumeration */
if (env->trigger_cur >= RV_MAX_TRIGGERS && csrno == CSR_TDATA1) {
*val = 0;
return RISCV_EXCP_NONE;
}
if (!tdata_available(env, csrno - CSR_TDATA1)) {
return RISCV_EXCP_ILLEGAL_INST;
}
*val = tdata_csr_read(env, csrno - CSR_TDATA1);
return RISCV_EXCP_NONE;
}
static RISCVException write_tdata(CPURISCVState *env, int csrno,
target_ulong val)
{
if (!tdata_available(env, csrno - CSR_TDATA1)) {
return RISCV_EXCP_ILLEGAL_INST;
}
tdata_csr_write(env, csrno - CSR_TDATA1, val);
return RISCV_EXCP_NONE;
}
static RISCVException read_tinfo(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = tinfo_csr_read(env);
return RISCV_EXCP_NONE;
}
static RISCVException read_mcontext(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->mcontext;
return RISCV_EXCP_NONE;
}
static RISCVException write_mcontext(CPURISCVState *env, int csrno,
target_ulong val)
{
bool rv32 = riscv_cpu_mxl(env) == MXL_RV32 ? true : false;
int32_t mask;
if (riscv_has_ext(env, RVH)) {
/* Spec suggest 7-bit for RV32 and 14-bit for RV64 w/ H extension */
mask = rv32 ? MCONTEXT32_HCONTEXT : MCONTEXT64_HCONTEXT;
} else {
/* Spec suggest 6-bit for RV32 and 13-bit for RV64 w/o H extension */
mask = rv32 ? MCONTEXT32 : MCONTEXT64;
}
env->mcontext = val & mask;
return RISCV_EXCP_NONE;
}
/*
* Functions to access Pointer Masking feature registers
* We have to check if current priv lvl could modify
* csr in given mode
*/
static bool check_pm_current_disabled(CPURISCVState *env, int csrno)
{
int csr_priv = get_field(csrno, 0x300);
int pm_current;
if (env->debugger) {
return false;
}
/*
* If priv lvls differ that means we're accessing csr from higher priv lvl,
* so allow the access
*/
if (env->priv != csr_priv) {
return false;
}
switch (env->priv) {
case PRV_M:
pm_current = get_field(env->mmte, M_PM_CURRENT);
break;
case PRV_S:
pm_current = get_field(env->mmte, S_PM_CURRENT);
break;
case PRV_U:
pm_current = get_field(env->mmte, U_PM_CURRENT);
break;
default:
g_assert_not_reached();
}
/* It's same priv lvl, so we allow to modify csr only if pm.current==1 */
return !pm_current;
}
static RISCVException read_mmte(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->mmte & MMTE_MASK;
return RISCV_EXCP_NONE;
}
static RISCVException write_mmte(CPURISCVState *env, int csrno,
target_ulong val)
{
uint64_t mstatus;
target_ulong wpri_val = val & MMTE_MASK;
if (val != wpri_val) {
qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s"
TARGET_FMT_lx "\n", "MMTE: WPRI violation written 0x",
val, "vs expected 0x", wpri_val);
}
/* for machine mode pm.current is hardwired to 1 */
wpri_val |= MMTE_M_PM_CURRENT;
/* hardwiring pm.instruction bit to 0, since it's not supported yet */
wpri_val &= ~(MMTE_M_PM_INSN | MMTE_S_PM_INSN | MMTE_U_PM_INSN);
env->mmte = wpri_val | EXT_STATUS_DIRTY;
riscv_cpu_update_mask(env);
/* Set XS and SD bits, since PM CSRs are dirty */
mstatus = env->mstatus | MSTATUS_XS;
write_mstatus(env, csrno, mstatus);
return RISCV_EXCP_NONE;
}
static RISCVException read_smte(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->mmte & SMTE_MASK;
return RISCV_EXCP_NONE;
}
static RISCVException write_smte(CPURISCVState *env, int csrno,
target_ulong val)
{
target_ulong wpri_val = val & SMTE_MASK;
if (val != wpri_val) {
qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s"
TARGET_FMT_lx "\n", "SMTE: WPRI violation written 0x",
val, "vs expected 0x", wpri_val);
}
/* if pm.current==0 we can't modify current PM CSRs */
if (check_pm_current_disabled(env, csrno)) {
return RISCV_EXCP_NONE;
}
wpri_val |= (env->mmte & ~SMTE_MASK);
write_mmte(env, csrno, wpri_val);
return RISCV_EXCP_NONE;
}
static RISCVException read_umte(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->mmte & UMTE_MASK;
return RISCV_EXCP_NONE;
}
static RISCVException write_umte(CPURISCVState *env, int csrno,
target_ulong val)
{
target_ulong wpri_val = val & UMTE_MASK;
if (val != wpri_val) {
qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s"
TARGET_FMT_lx "\n", "UMTE: WPRI violation written 0x",
val, "vs expected 0x", wpri_val);
}
if (check_pm_current_disabled(env, csrno)) {
return RISCV_EXCP_NONE;
}
wpri_val |= (env->mmte & ~UMTE_MASK);
write_mmte(env, csrno, wpri_val);
return RISCV_EXCP_NONE;
}
static RISCVException read_mpmmask(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->mpmmask;
return RISCV_EXCP_NONE;
}
static RISCVException write_mpmmask(CPURISCVState *env, int csrno,
target_ulong val)
{
uint64_t mstatus;
env->mpmmask = val;
if ((cpu_address_mode(env) == PRV_M) && (env->mmte & M_PM_ENABLE)) {
env->cur_pmmask = val;
}
env->mmte |= EXT_STATUS_DIRTY;
/* Set XS and SD bits, since PM CSRs are dirty */
mstatus = env->mstatus | MSTATUS_XS;
write_mstatus(env, csrno, mstatus);
return RISCV_EXCP_NONE;
}
static RISCVException read_spmmask(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->spmmask;
return RISCV_EXCP_NONE;
}
static RISCVException write_spmmask(CPURISCVState *env, int csrno,
target_ulong val)
{
uint64_t mstatus;
/* if pm.current==0 we can't modify current PM CSRs */
if (check_pm_current_disabled(env, csrno)) {
return RISCV_EXCP_NONE;
}
env->spmmask = val;
if ((cpu_address_mode(env) == PRV_S) && (env->mmte & S_PM_ENABLE)) {
env->cur_pmmask = val;
if (cpu_get_xl(env, PRV_S) == MXL_RV32) {
env->cur_pmmask &= UINT32_MAX;
}
}
env->mmte |= EXT_STATUS_DIRTY;
/* Set XS and SD bits, since PM CSRs are dirty */
mstatus = env->mstatus | MSTATUS_XS;
write_mstatus(env, csrno, mstatus);
return RISCV_EXCP_NONE;
}
static RISCVException read_upmmask(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->upmmask;
return RISCV_EXCP_NONE;
}
static RISCVException write_upmmask(CPURISCVState *env, int csrno,
target_ulong val)
{
uint64_t mstatus;
/* if pm.current==0 we can't modify current PM CSRs */
if (check_pm_current_disabled(env, csrno)) {
return RISCV_EXCP_NONE;
}
env->upmmask = val;
if ((cpu_address_mode(env) == PRV_U) && (env->mmte & U_PM_ENABLE)) {
env->cur_pmmask = val;
if (cpu_get_xl(env, PRV_U) == MXL_RV32) {
env->cur_pmmask &= UINT32_MAX;
}
}
env->mmte |= EXT_STATUS_DIRTY;
/* Set XS and SD bits, since PM CSRs are dirty */
mstatus = env->mstatus | MSTATUS_XS;
write_mstatus(env, csrno, mstatus);
return RISCV_EXCP_NONE;
}
static RISCVException read_mpmbase(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->mpmbase;
return RISCV_EXCP_NONE;
}
static RISCVException write_mpmbase(CPURISCVState *env, int csrno,
target_ulong val)
{
uint64_t mstatus;
env->mpmbase = val;
if ((cpu_address_mode(env) == PRV_M) && (env->mmte & M_PM_ENABLE)) {
env->cur_pmbase = val;
}
env->mmte |= EXT_STATUS_DIRTY;
/* Set XS and SD bits, since PM CSRs are dirty */
mstatus = env->mstatus | MSTATUS_XS;
write_mstatus(env, csrno, mstatus);
return RISCV_EXCP_NONE;
}
static RISCVException read_spmbase(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->spmbase;
return RISCV_EXCP_NONE;
}
static RISCVException write_spmbase(CPURISCVState *env, int csrno,
target_ulong val)
{
uint64_t mstatus;
/* if pm.current==0 we can't modify current PM CSRs */
if (check_pm_current_disabled(env, csrno)) {
return RISCV_EXCP_NONE;
}
env->spmbase = val;
if ((cpu_address_mode(env) == PRV_S) && (env->mmte & S_PM_ENABLE)) {
env->cur_pmbase = val;
if (cpu_get_xl(env, PRV_S) == MXL_RV32) {
env->cur_pmbase &= UINT32_MAX;
}
}
env->mmte |= EXT_STATUS_DIRTY;
/* Set XS and SD bits, since PM CSRs are dirty */
mstatus = env->mstatus | MSTATUS_XS;
write_mstatus(env, csrno, mstatus);
return RISCV_EXCP_NONE;
}
static RISCVException read_upmbase(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->upmbase;
return RISCV_EXCP_NONE;
}
static RISCVException write_upmbase(CPURISCVState *env, int csrno,
target_ulong val)
{
uint64_t mstatus;
/* if pm.current==0 we can't modify current PM CSRs */
if (check_pm_current_disabled(env, csrno)) {
return RISCV_EXCP_NONE;
}
env->upmbase = val;
if ((cpu_address_mode(env) == PRV_U) && (env->mmte & U_PM_ENABLE)) {
env->cur_pmbase = val;
if (cpu_get_xl(env, PRV_U) == MXL_RV32) {
env->cur_pmbase &= UINT32_MAX;
}
}
env->mmte |= EXT_STATUS_DIRTY;
/* Set XS and SD bits, since PM CSRs are dirty */
mstatus = env->mstatus | MSTATUS_XS;
write_mstatus(env, csrno, mstatus);
return RISCV_EXCP_NONE;
}
#endif
/* Crypto Extension */
static RISCVException rmw_seed(CPURISCVState *env, int csrno,
target_ulong *ret_value,
target_ulong new_value,
target_ulong write_mask)
{
uint16_t random_v;
Error *random_e = NULL;
int random_r;
target_ulong rval;
random_r = qemu_guest_getrandom(&random_v, 2, &random_e);
if (unlikely(random_r < 0)) {
/*
* Failed, for unknown reasons in the crypto subsystem.
* The best we can do is log the reason and return a
* failure indication to the guest. There is no reason
* we know to expect the failure to be transitory, so
* indicate DEAD to avoid having the guest spin on WAIT.
*/
qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
__func__, error_get_pretty(random_e));
error_free(random_e);
rval = SEED_OPST_DEAD;
} else {
rval = random_v | SEED_OPST_ES16;
}
if (ret_value) {
*ret_value = rval;
}
return RISCV_EXCP_NONE;
}
/*
* riscv_csrrw - read and/or update control and status register
*
* csrr <-> riscv_csrrw(env, csrno, ret_value, 0, 0);
* csrrw <-> riscv_csrrw(env, csrno, ret_value, value, -1);
* csrrs <-> riscv_csrrw(env, csrno, ret_value, -1, value);
* csrrc <-> riscv_csrrw(env, csrno, ret_value, 0, value);
*/
static inline RISCVException riscv_csrrw_check(CPURISCVState *env,
int csrno,
bool write_mask)
{
/* check privileges and return RISCV_EXCP_ILLEGAL_INST if check fails */
bool read_only = get_field(csrno, 0xC00) == 3;
int csr_min_priv = csr_ops[csrno].min_priv_ver;
/* ensure the CSR extension is enabled */
if (!riscv_cpu_cfg(env)->ext_zicsr) {
return RISCV_EXCP_ILLEGAL_INST;
}
/* ensure CSR is implemented by checking predicate */
if (!csr_ops[csrno].predicate) {
return RISCV_EXCP_ILLEGAL_INST;
}
/* privileged spec version check */
if (env->priv_ver < csr_min_priv) {
return RISCV_EXCP_ILLEGAL_INST;
}
/* read / write check */
if (write_mask && read_only) {
return RISCV_EXCP_ILLEGAL_INST;
}
/*
* The predicate() not only does existence check but also does some
* access control check which triggers for example virtual instruction
* exception in some cases. When writing read-only CSRs in those cases
* illegal instruction exception should be triggered instead of virtual
* instruction exception. Hence this comes after the read / write check.
*/
RISCVException ret = csr_ops[csrno].predicate(env, csrno);
if (ret != RISCV_EXCP_NONE) {
return ret;
}
#if !defined(CONFIG_USER_ONLY)
int csr_priv, effective_priv = env->priv;
if (riscv_has_ext(env, RVH) && env->priv == PRV_S &&
!env->virt_enabled) {
/*
* We are in HS mode. Add 1 to the effective privilege level to
* allow us to access the Hypervisor CSRs.
*/
effective_priv++;
}
csr_priv = get_field(csrno, 0x300);
if (!env->debugger && (effective_priv < csr_priv)) {
if (csr_priv == (PRV_S + 1) && env->virt_enabled) {
return RISCV_EXCP_VIRT_INSTRUCTION_FAULT;
}
return RISCV_EXCP_ILLEGAL_INST;
}
#endif
return RISCV_EXCP_NONE;
}
static RISCVException riscv_csrrw_do64(CPURISCVState *env, int csrno,
target_ulong *ret_value,
target_ulong new_value,
target_ulong write_mask)
{
RISCVException ret;
target_ulong old_value = 0;
/* execute combined read/write operation if it exists */
if (csr_ops[csrno].op) {
return csr_ops[csrno].op(env, csrno, ret_value, new_value, write_mask);
}
/*
* ret_value == NULL means that rd=x0 and we're coming from helper_csrw()
* and we can't throw side effects caused by CSR reads.
*/
if (ret_value) {
/* if no accessor exists then return failure */
if (!csr_ops[csrno].read) {
return RISCV_EXCP_ILLEGAL_INST;
}
/* read old value */
ret = csr_ops[csrno].read(env, csrno, &old_value);
if (ret != RISCV_EXCP_NONE) {
return ret;
}
}
/* write value if writable and write mask set, otherwise drop writes */
if (write_mask) {
new_value = (old_value & ~write_mask) | (new_value & write_mask);
if (csr_ops[csrno].write) {
ret = csr_ops[csrno].write(env, csrno, new_value);
if (ret != RISCV_EXCP_NONE) {
return ret;
}
}
}
/* return old value */
if (ret_value) {
*ret_value = old_value;
}
return RISCV_EXCP_NONE;
}
RISCVException riscv_csrrw(CPURISCVState *env, int csrno,
target_ulong *ret_value,
target_ulong new_value, target_ulong write_mask)
{
RISCVException ret = riscv_csrrw_check(env, csrno, write_mask);
if (ret != RISCV_EXCP_NONE) {
return ret;
}
return riscv_csrrw_do64(env, csrno, ret_value, new_value, write_mask);
}
static RISCVException riscv_csrrw_do128(CPURISCVState *env, int csrno,
Int128 *ret_value,
Int128 new_value,
Int128 write_mask)
{
RISCVException ret;
Int128 old_value;
/* read old value */
ret = csr_ops[csrno].read128(env, csrno, &old_value);
if (ret != RISCV_EXCP_NONE) {
return ret;
}
/* write value if writable and write mask set, otherwise drop writes */
if (int128_nz(write_mask)) {
new_value = int128_or(int128_and(old_value, int128_not(write_mask)),
int128_and(new_value, write_mask));
if (csr_ops[csrno].write128) {
ret = csr_ops[csrno].write128(env, csrno, new_value);
if (ret != RISCV_EXCP_NONE) {
return ret;
}
} else if (csr_ops[csrno].write) {
/* avoids having to write wrappers for all registers */
ret = csr_ops[csrno].write(env, csrno, int128_getlo(new_value));
if (ret != RISCV_EXCP_NONE) {
return ret;
}
}
}
/* return old value */
if (ret_value) {
*ret_value = old_value;
}
return RISCV_EXCP_NONE;
}
RISCVException riscv_csrrw_i128(CPURISCVState *env, int csrno,
Int128 *ret_value,
Int128 new_value, Int128 write_mask)
{
RISCVException ret;
ret = riscv_csrrw_check(env, csrno, int128_nz(write_mask));
if (ret != RISCV_EXCP_NONE) {
return ret;
}
if (csr_ops[csrno].read128) {
return riscv_csrrw_do128(env, csrno, ret_value, new_value, write_mask);
}
/*
* Fall back to 64-bit version for now, if the 128-bit alternative isn't
* at all defined.
* Note, some CSRs don't need to extend to MXLEN (64 upper bits non
* significant), for those, this fallback is correctly handling the
* accesses
*/
target_ulong old_value;
ret = riscv_csrrw_do64(env, csrno, &old_value,
int128_getlo(new_value),
int128_getlo(write_mask));
if (ret == RISCV_EXCP_NONE && ret_value) {
*ret_value = int128_make64(old_value);
}
return ret;
}
/*
* Debugger support. If not in user mode, set env->debugger before the
* riscv_csrrw call and clear it after the call.
*/
RISCVException riscv_csrrw_debug(CPURISCVState *env, int csrno,
target_ulong *ret_value,
target_ulong new_value,
target_ulong write_mask)
{
RISCVException ret;
#if !defined(CONFIG_USER_ONLY)
env->debugger = true;
#endif
ret = riscv_csrrw(env, csrno, ret_value, new_value, write_mask);
#if !defined(CONFIG_USER_ONLY)
env->debugger = false;
#endif
return ret;
}
static RISCVException read_jvt(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->jvt;
return RISCV_EXCP_NONE;
}
static RISCVException write_jvt(CPURISCVState *env, int csrno,
target_ulong val)
{
env->jvt = val;
return RISCV_EXCP_NONE;
}
/*
* Control and Status Register function table
* riscv_csr_operations::predicate() must be provided for an implemented CSR
*/
riscv_csr_operations csr_ops[CSR_TABLE_SIZE] = {
/* User Floating-Point CSRs */
[CSR_FFLAGS] = { "fflags", fs, read_fflags, write_fflags },
[CSR_FRM] = { "frm", fs, read_frm, write_frm },
[CSR_FCSR] = { "fcsr", fs, read_fcsr, write_fcsr },
/* Vector CSRs */
[CSR_VSTART] = { "vstart", vs, read_vstart, write_vstart },
[CSR_VXSAT] = { "vxsat", vs, read_vxsat, write_vxsat },
[CSR_VXRM] = { "vxrm", vs, read_vxrm, write_vxrm },
[CSR_VCSR] = { "vcsr", vs, read_vcsr, write_vcsr },
[CSR_VL] = { "vl", vs, read_vl },
[CSR_VTYPE] = { "vtype", vs, read_vtype },
[CSR_VLENB] = { "vlenb", vs, read_vlenb },
/* User Timers and Counters */
[CSR_CYCLE] = { "cycle", ctr, read_hpmcounter },
[CSR_INSTRET] = { "instret", ctr, read_hpmcounter },
[CSR_CYCLEH] = { "cycleh", ctr32, read_hpmcounterh },
[CSR_INSTRETH] = { "instreth", ctr32, read_hpmcounterh },
/*
* In privileged mode, the monitor will have to emulate TIME CSRs only if
* rdtime callback is not provided by machine/platform emulation.
*/
[CSR_TIME] = { "time", ctr, read_time },
[CSR_TIMEH] = { "timeh", ctr32, read_timeh },
/* Crypto Extension */
[CSR_SEED] = { "seed", seed, NULL, NULL, rmw_seed },
/* Zcmt Extension */
[CSR_JVT] = {"jvt", zcmt, read_jvt, write_jvt},
#if !defined(CONFIG_USER_ONLY)
/* Machine Timers and Counters */
[CSR_MCYCLE] = { "mcycle", any, read_hpmcounter,
write_mhpmcounter },
[CSR_MINSTRET] = { "minstret", any, read_hpmcounter,
write_mhpmcounter },
[CSR_MCYCLEH] = { "mcycleh", any32, read_hpmcounterh,
write_mhpmcounterh },
[CSR_MINSTRETH] = { "minstreth", any32, read_hpmcounterh,
write_mhpmcounterh },
/* Machine Information Registers */
[CSR_MVENDORID] = { "mvendorid", any, read_mvendorid },
[CSR_MARCHID] = { "marchid", any, read_marchid },
[CSR_MIMPID] = { "mimpid", any, read_mimpid },
[CSR_MHARTID] = { "mhartid", any, read_mhartid },
[CSR_MCONFIGPTR] = { "mconfigptr", any, read_zero,
.min_priv_ver = PRIV_VERSION_1_12_0 },
/* Machine Trap Setup */
[CSR_MSTATUS] = { "mstatus", any, read_mstatus, write_mstatus,
NULL, read_mstatus_i128 },
[CSR_MISA] = { "misa", any, read_misa, write_misa,
NULL, read_misa_i128 },
[CSR_MIDELEG] = { "mideleg", any, NULL, NULL, rmw_mideleg },
[CSR_MEDELEG] = { "medeleg", any, read_medeleg, write_medeleg },
[CSR_MIE] = { "mie", any, NULL, NULL, rmw_mie },
[CSR_MTVEC] = { "mtvec", any, read_mtvec, write_mtvec },
[CSR_MCOUNTEREN] = { "mcounteren", umode, read_mcounteren,
write_mcounteren },
[CSR_MSTATUSH] = { "mstatush", any32, read_mstatush,
write_mstatush },
/* Machine Trap Handling */
[CSR_MSCRATCH] = { "mscratch", any, read_mscratch, write_mscratch,
NULL, read_mscratch_i128, write_mscratch_i128 },
[CSR_MEPC] = { "mepc", any, read_mepc, write_mepc },
[CSR_MCAUSE] = { "mcause", any, read_mcause, write_mcause },
[CSR_MTVAL] = { "mtval", any, read_mtval, write_mtval },
[CSR_MIP] = { "mip", any, NULL, NULL, rmw_mip },
/* Machine-Level Window to Indirectly Accessed Registers (AIA) */
[CSR_MISELECT] = { "miselect", aia_any, NULL, NULL, rmw_xiselect },
[CSR_MIREG] = { "mireg", aia_any, NULL, NULL, rmw_xireg },
/* Machine-Level Interrupts (AIA) */
[CSR_MTOPEI] = { "mtopei", aia_any, NULL, NULL, rmw_xtopei },
[CSR_MTOPI] = { "mtopi", aia_any, read_mtopi },
/* Virtual Interrupts for Supervisor Level (AIA) */
[CSR_MVIEN] = { "mvien", aia_any, NULL, NULL, rmw_mvien },
[CSR_MVIP] = { "mvip", aia_any, NULL, NULL, rmw_mvip },
/* Machine-Level High-Half CSRs (AIA) */
[CSR_MIDELEGH] = { "midelegh", aia_any32, NULL, NULL, rmw_midelegh },
[CSR_MIEH] = { "mieh", aia_any32, NULL, NULL, rmw_mieh },
[CSR_MVIENH] = { "mvienh", aia_any32, NULL, NULL, rmw_mvienh },
[CSR_MVIPH] = { "mviph", aia_any32, NULL, NULL, rmw_mviph },
[CSR_MIPH] = { "miph", aia_any32, NULL, NULL, rmw_miph },
/* Execution environment configuration */
[CSR_MENVCFG] = { "menvcfg", umode, read_menvcfg, write_menvcfg,
.min_priv_ver = PRIV_VERSION_1_12_0 },
[CSR_MENVCFGH] = { "menvcfgh", umode32, read_menvcfgh, write_menvcfgh,
.min_priv_ver = PRIV_VERSION_1_12_0 },
[CSR_SENVCFG] = { "senvcfg", smode, read_senvcfg, write_senvcfg,
.min_priv_ver = PRIV_VERSION_1_12_0 },
[CSR_HENVCFG] = { "henvcfg", hmode, read_henvcfg, write_henvcfg,
.min_priv_ver = PRIV_VERSION_1_12_0 },
[CSR_HENVCFGH] = { "henvcfgh", hmode32, read_henvcfgh, write_henvcfgh,
.min_priv_ver = PRIV_VERSION_1_12_0 },
/* Smstateen extension CSRs */
[CSR_MSTATEEN0] = { "mstateen0", mstateen, read_mstateen, write_mstateen0,
.min_priv_ver = PRIV_VERSION_1_12_0 },
[CSR_MSTATEEN0H] = { "mstateen0h", mstateen, read_mstateenh,
write_mstateen0h,
.min_priv_ver = PRIV_VERSION_1_12_0 },
[CSR_MSTATEEN1] = { "mstateen1", mstateen, read_mstateen,
write_mstateen_1_3,
.min_priv_ver = PRIV_VERSION_1_12_0 },
[CSR_MSTATEEN1H] = { "mstateen1h", mstateen, read_mstateenh,
write_mstateenh_1_3,
.min_priv_ver = PRIV_VERSION_1_12_0 },
[CSR_MSTATEEN2] = { "mstateen2", mstateen, read_mstateen,
write_mstateen_1_3,
.min_priv_ver = PRIV_VERSION_1_12_0 },
[CSR_MSTATEEN2H] = { "mstateen2h", mstateen, read_mstateenh,
write_mstateenh_1_3,
.min_priv_ver = PRIV_VERSION_1_12_0 },
[CSR_MSTATEEN3] = { "mstateen3", mstateen, read_mstateen,
write_mstateen_1_3,
.min_priv_ver = PRIV_VERSION_1_12_0 },
[CSR_MSTATEEN3H] = { "mstateen3h", mstateen, read_mstateenh,
write_mstateenh_1_3,
.min_priv_ver = PRIV_VERSION_1_12_0 },
[CSR_HSTATEEN0] = { "hstateen0", hstateen, read_hstateen, write_hstateen0,
.min_priv_ver = PRIV_VERSION_1_12_0 },
[CSR_HSTATEEN0H] = { "hstateen0h", hstateenh, read_hstateenh,
write_hstateen0h,
.min_priv_ver = PRIV_VERSION_1_12_0 },
[CSR_HSTATEEN1] = { "hstateen1", hstateen, read_hstateen,
write_hstateen_1_3,
.min_priv_ver = PRIV_VERSION_1_12_0 },
[CSR_HSTATEEN1H] = { "hstateen1h", hstateenh, read_hstateenh,
write_hstateenh_1_3,
.min_priv_ver = PRIV_VERSION_1_12_0 },
[CSR_HSTATEEN2] = { "hstateen2", hstateen, read_hstateen,
write_hstateen_1_3,
.min_priv_ver = PRIV_VERSION_1_12_0 },
[CSR_HSTATEEN2H] = { "hstateen2h", hstateenh, read_hstateenh,
write_hstateenh_1_3,
.min_priv_ver = PRIV_VERSION_1_12_0 },
[CSR_HSTATEEN3] = { "hstateen3", hstateen, read_hstateen,
write_hstateen_1_3,
.min_priv_ver = PRIV_VERSION_1_12_0 },
[CSR_HSTATEEN3H] = { "hstateen3h", hstateenh, read_hstateenh,
write_hstateenh_1_3,
.min_priv_ver = PRIV_VERSION_1_12_0 },
[CSR_SSTATEEN0] = { "sstateen0", sstateen, read_sstateen, write_sstateen0,
.min_priv_ver = PRIV_VERSION_1_12_0 },
[CSR_SSTATEEN1] = { "sstateen1", sstateen, read_sstateen,
write_sstateen_1_3,
.min_priv_ver = PRIV_VERSION_1_12_0 },
[CSR_SSTATEEN2] = { "sstateen2", sstateen, read_sstateen,
write_sstateen_1_3,
.min_priv_ver = PRIV_VERSION_1_12_0 },
[CSR_SSTATEEN3] = { "sstateen3", sstateen, read_sstateen,
write_sstateen_1_3,
.min_priv_ver = PRIV_VERSION_1_12_0 },
/* Supervisor Trap Setup */
[CSR_SSTATUS] = { "sstatus", smode, read_sstatus, write_sstatus,
NULL, read_sstatus_i128 },
[CSR_SIE] = { "sie", smode, NULL, NULL, rmw_sie },
[CSR_STVEC] = { "stvec", smode, read_stvec, write_stvec },
[CSR_SCOUNTEREN] = { "scounteren", smode, read_scounteren,
write_scounteren },
/* Supervisor Trap Handling */
[CSR_SSCRATCH] = { "sscratch", smode, read_sscratch, write_sscratch,
NULL, read_sscratch_i128, write_sscratch_i128 },
[CSR_SEPC] = { "sepc", smode, read_sepc, write_sepc },
[CSR_SCAUSE] = { "scause", smode, read_scause, write_scause },
[CSR_STVAL] = { "stval", smode, read_stval, write_stval },
[CSR_SIP] = { "sip", smode, NULL, NULL, rmw_sip },
[CSR_STIMECMP] = { "stimecmp", sstc, read_stimecmp, write_stimecmp,
.min_priv_ver = PRIV_VERSION_1_12_0 },
[CSR_STIMECMPH] = { "stimecmph", sstc_32, read_stimecmph, write_stimecmph,
.min_priv_ver = PRIV_VERSION_1_12_0 },
[CSR_VSTIMECMP] = { "vstimecmp", sstc, read_vstimecmp,
write_vstimecmp,
.min_priv_ver = PRIV_VERSION_1_12_0 },
[CSR_VSTIMECMPH] = { "vstimecmph", sstc_32, read_vstimecmph,
write_vstimecmph,
.min_priv_ver = PRIV_VERSION_1_12_0 },
/* Supervisor Protection and Translation */
[CSR_SATP] = { "satp", satp, read_satp, write_satp },
/* Supervisor-Level Window to Indirectly Accessed Registers (AIA) */
[CSR_SISELECT] = { "siselect", aia_smode, NULL, NULL, rmw_xiselect },
[CSR_SIREG] = { "sireg", aia_smode, NULL, NULL, rmw_xireg },
/* Supervisor-Level Interrupts (AIA) */
[CSR_STOPEI] = { "stopei", aia_smode, NULL, NULL, rmw_xtopei },
[CSR_STOPI] = { "stopi", aia_smode, read_stopi },
/* Supervisor-Level High-Half CSRs (AIA) */
[CSR_SIEH] = { "sieh", aia_smode32, NULL, NULL, rmw_sieh },
[CSR_SIPH] = { "siph", aia_smode32, NULL, NULL, rmw_siph },
[CSR_HSTATUS] = { "hstatus", hmode, read_hstatus, write_hstatus,
.min_priv_ver = PRIV_VERSION_1_12_0 },
[CSR_HEDELEG] = { "hedeleg", hmode, read_hedeleg, write_hedeleg,
.min_priv_ver = PRIV_VERSION_1_12_0 },
[CSR_HIDELEG] = { "hideleg", hmode, NULL, NULL, rmw_hideleg,
.min_priv_ver = PRIV_VERSION_1_12_0 },
[CSR_HVIP] = { "hvip", hmode, NULL, NULL, rmw_hvip,
.min_priv_ver = PRIV_VERSION_1_12_0 },
[CSR_HIP] = { "hip", hmode, NULL, NULL, rmw_hip,
.min_priv_ver = PRIV_VERSION_1_12_0 },
[CSR_HIE] = { "hie", hmode, NULL, NULL, rmw_hie,
.min_priv_ver = PRIV_VERSION_1_12_0 },
[CSR_HCOUNTEREN] = { "hcounteren", hmode, read_hcounteren,
write_hcounteren,
.min_priv_ver = PRIV_VERSION_1_12_0 },
[CSR_HGEIE] = { "hgeie", hmode, read_hgeie, write_hgeie,
.min_priv_ver = PRIV_VERSION_1_12_0 },
[CSR_HTVAL] = { "htval", hmode, read_htval, write_htval,
.min_priv_ver = PRIV_VERSION_1_12_0 },
[CSR_HTINST] = { "htinst", hmode, read_htinst, write_htinst,
.min_priv_ver = PRIV_VERSION_1_12_0 },
[CSR_HGEIP] = { "hgeip", hmode, read_hgeip,
.min_priv_ver = PRIV_VERSION_1_12_0 },
[CSR_HGATP] = { "hgatp", hgatp, read_hgatp, write_hgatp,
.min_priv_ver = PRIV_VERSION_1_12_0 },
[CSR_HTIMEDELTA] = { "htimedelta", hmode, read_htimedelta,
write_htimedelta,
.min_priv_ver = PRIV_VERSION_1_12_0 },
[CSR_HTIMEDELTAH] = { "htimedeltah", hmode32, read_htimedeltah,
write_htimedeltah,
.min_priv_ver = PRIV_VERSION_1_12_0 },
[CSR_VSSTATUS] = { "vsstatus", hmode, read_vsstatus,
write_vsstatus,
.min_priv_ver = PRIV_VERSION_1_12_0 },
[CSR_VSIP] = { "vsip", hmode, NULL, NULL, rmw_vsip,
.min_priv_ver = PRIV_VERSION_1_12_0 },
[CSR_VSIE] = { "vsie", hmode, NULL, NULL, rmw_vsie ,
.min_priv_ver = PRIV_VERSION_1_12_0 },
[CSR_VSTVEC] = { "vstvec", hmode, read_vstvec, write_vstvec,
.min_priv_ver = PRIV_VERSION_1_12_0 },
[CSR_VSSCRATCH] = { "vsscratch", hmode, read_vsscratch,
write_vsscratch,
.min_priv_ver = PRIV_VERSION_1_12_0 },
[CSR_VSEPC] = { "vsepc", hmode, read_vsepc, write_vsepc,
.min_priv_ver = PRIV_VERSION_1_12_0 },
[CSR_VSCAUSE] = { "vscause", hmode, read_vscause, write_vscause,
.min_priv_ver = PRIV_VERSION_1_12_0 },
[CSR_VSTVAL] = { "vstval", hmode, read_vstval, write_vstval,
.min_priv_ver = PRIV_VERSION_1_12_0 },
[CSR_VSATP] = { "vsatp", hmode, read_vsatp, write_vsatp,
.min_priv_ver = PRIV_VERSION_1_12_0 },
[CSR_MTVAL2] = { "mtval2", hmode, read_mtval2, write_mtval2,
.min_priv_ver = PRIV_VERSION_1_12_0 },
[CSR_MTINST] = { "mtinst", hmode, read_mtinst, write_mtinst,
.min_priv_ver = PRIV_VERSION_1_12_0 },
/* Virtual Interrupts and Interrupt Priorities (H-extension with AIA) */
[CSR_HVIEN] = { "hvien", aia_hmode, NULL, NULL, rmw_hvien },
[CSR_HVICTL] = { "hvictl", aia_hmode, read_hvictl,
write_hvictl },
[CSR_HVIPRIO1] = { "hviprio1", aia_hmode, read_hviprio1,
write_hviprio1 },
[CSR_HVIPRIO2] = { "hviprio2", aia_hmode, read_hviprio2,
write_hviprio2 },
/*
* VS-Level Window to Indirectly Accessed Registers (H-extension with AIA)
*/
[CSR_VSISELECT] = { "vsiselect", aia_hmode, NULL, NULL,
rmw_xiselect },
[CSR_VSIREG] = { "vsireg", aia_hmode, NULL, NULL, rmw_xireg },
/* VS-Level Interrupts (H-extension with AIA) */
[CSR_VSTOPEI] = { "vstopei", aia_hmode, NULL, NULL, rmw_xtopei },
[CSR_VSTOPI] = { "vstopi", aia_hmode, read_vstopi },
/* Hypervisor and VS-Level High-Half CSRs (H-extension with AIA) */
[CSR_HIDELEGH] = { "hidelegh", aia_hmode32, NULL, NULL,
rmw_hidelegh },
[CSR_HVIENH] = { "hvienh", aia_hmode32, NULL, NULL, rmw_hvienh },
[CSR_HVIPH] = { "hviph", aia_hmode32, NULL, NULL, rmw_hviph },
[CSR_HVIPRIO1H] = { "hviprio1h", aia_hmode32, read_hviprio1h,
write_hviprio1h },
[CSR_HVIPRIO2H] = { "hviprio2h", aia_hmode32, read_hviprio2h,
write_hviprio2h },
[CSR_VSIEH] = { "vsieh", aia_hmode32, NULL, NULL, rmw_vsieh },
[CSR_VSIPH] = { "vsiph", aia_hmode32, NULL, NULL, rmw_vsiph },
/* Physical Memory Protection */
[CSR_MSECCFG] = { "mseccfg", have_mseccfg, read_mseccfg, write_mseccfg,
.min_priv_ver = PRIV_VERSION_1_11_0 },
[CSR_PMPCFG0] = { "pmpcfg0", pmp, read_pmpcfg, write_pmpcfg },
[CSR_PMPCFG1] = { "pmpcfg1", pmp, read_pmpcfg, write_pmpcfg },
[CSR_PMPCFG2] = { "pmpcfg2", pmp, read_pmpcfg, write_pmpcfg },
[CSR_PMPCFG3] = { "pmpcfg3", pmp, read_pmpcfg, write_pmpcfg },
[CSR_PMPADDR0] = { "pmpaddr0", pmp, read_pmpaddr, write_pmpaddr },
[CSR_PMPADDR1] = { "pmpaddr1", pmp, read_pmpaddr, write_pmpaddr },
[CSR_PMPADDR2] = { "pmpaddr2", pmp, read_pmpaddr, write_pmpaddr },
[CSR_PMPADDR3] = { "pmpaddr3", pmp, read_pmpaddr, write_pmpaddr },
[CSR_PMPADDR4] = { "pmpaddr4", pmp, read_pmpaddr, write_pmpaddr },
[CSR_PMPADDR5] = { "pmpaddr5", pmp, read_pmpaddr, write_pmpaddr },
[CSR_PMPADDR6] = { "pmpaddr6", pmp, read_pmpaddr, write_pmpaddr },
[CSR_PMPADDR7] = { "pmpaddr7", pmp, read_pmpaddr, write_pmpaddr },
[CSR_PMPADDR8] = { "pmpaddr8", pmp, read_pmpaddr, write_pmpaddr },
[CSR_PMPADDR9] = { "pmpaddr9", pmp, read_pmpaddr, write_pmpaddr },
[CSR_PMPADDR10] = { "pmpaddr10", pmp, read_pmpaddr, write_pmpaddr },
[CSR_PMPADDR11] = { "pmpaddr11", pmp, read_pmpaddr, write_pmpaddr },
[CSR_PMPADDR12] = { "pmpaddr12", pmp, read_pmpaddr, write_pmpaddr },
[CSR_PMPADDR13] = { "pmpaddr13", pmp, read_pmpaddr, write_pmpaddr },
[CSR_PMPADDR14] = { "pmpaddr14", pmp, read_pmpaddr, write_pmpaddr },
[CSR_PMPADDR15] = { "pmpaddr15", pmp, read_pmpaddr, write_pmpaddr },
/* Debug CSRs */
[CSR_TSELECT] = { "tselect", debug, read_tselect, write_tselect },
[CSR_TDATA1] = { "tdata1", debug, read_tdata, write_tdata },
[CSR_TDATA2] = { "tdata2", debug, read_tdata, write_tdata },
[CSR_TDATA3] = { "tdata3", debug, read_tdata, write_tdata },
[CSR_TINFO] = { "tinfo", debug, read_tinfo, write_ignore },
[CSR_MCONTEXT] = { "mcontext", debug, read_mcontext, write_mcontext },
/* User Pointer Masking */
[CSR_UMTE] = { "umte", pointer_masking, read_umte, write_umte },
[CSR_UPMMASK] = { "upmmask", pointer_masking, read_upmmask,
write_upmmask },
[CSR_UPMBASE] = { "upmbase", pointer_masking, read_upmbase,
write_upmbase },
/* Machine Pointer Masking */
[CSR_MMTE] = { "mmte", pointer_masking, read_mmte, write_mmte },
[CSR_MPMMASK] = { "mpmmask", pointer_masking, read_mpmmask,
write_mpmmask },
[CSR_MPMBASE] = { "mpmbase", pointer_masking, read_mpmbase,
write_mpmbase },
/* Supervisor Pointer Masking */
[CSR_SMTE] = { "smte", pointer_masking, read_smte, write_smte },
[CSR_SPMMASK] = { "spmmask", pointer_masking, read_spmmask,
write_spmmask },
[CSR_SPMBASE] = { "spmbase", pointer_masking, read_spmbase,
write_spmbase },
/* Performance Counters */
[CSR_HPMCOUNTER3] = { "hpmcounter3", ctr, read_hpmcounter },
[CSR_HPMCOUNTER4] = { "hpmcounter4", ctr, read_hpmcounter },
[CSR_HPMCOUNTER5] = { "hpmcounter5", ctr, read_hpmcounter },
[CSR_HPMCOUNTER6] = { "hpmcounter6", ctr, read_hpmcounter },
[CSR_HPMCOUNTER7] = { "hpmcounter7", ctr, read_hpmcounter },
[CSR_HPMCOUNTER8] = { "hpmcounter8", ctr, read_hpmcounter },
[CSR_HPMCOUNTER9] = { "hpmcounter9", ctr, read_hpmcounter },
[CSR_HPMCOUNTER10] = { "hpmcounter10", ctr, read_hpmcounter },
[CSR_HPMCOUNTER11] = { "hpmcounter11", ctr, read_hpmcounter },
[CSR_HPMCOUNTER12] = { "hpmcounter12", ctr, read_hpmcounter },
[CSR_HPMCOUNTER13] = { "hpmcounter13", ctr, read_hpmcounter },
[CSR_HPMCOUNTER14] = { "hpmcounter14", ctr, read_hpmcounter },
[CSR_HPMCOUNTER15] = { "hpmcounter15", ctr, read_hpmcounter },
[CSR_HPMCOUNTER16] = { "hpmcounter16", ctr, read_hpmcounter },
[CSR_HPMCOUNTER17] = { "hpmcounter17", ctr, read_hpmcounter },
[CSR_HPMCOUNTER18] = { "hpmcounter18", ctr, read_hpmcounter },
[CSR_HPMCOUNTER19] = { "hpmcounter19", ctr, read_hpmcounter },
[CSR_HPMCOUNTER20] = { "hpmcounter20", ctr, read_hpmcounter },
[CSR_HPMCOUNTER21] = { "hpmcounter21", ctr, read_hpmcounter },
[CSR_HPMCOUNTER22] = { "hpmcounter22", ctr, read_hpmcounter },
[CSR_HPMCOUNTER23] = { "hpmcounter23", ctr, read_hpmcounter },
[CSR_HPMCOUNTER24] = { "hpmcounter24", ctr, read_hpmcounter },
[CSR_HPMCOUNTER25] = { "hpmcounter25", ctr, read_hpmcounter },
[CSR_HPMCOUNTER26] = { "hpmcounter26", ctr, read_hpmcounter },
[CSR_HPMCOUNTER27] = { "hpmcounter27", ctr, read_hpmcounter },
[CSR_HPMCOUNTER28] = { "hpmcounter28", ctr, read_hpmcounter },
[CSR_HPMCOUNTER29] = { "hpmcounter29", ctr, read_hpmcounter },
[CSR_HPMCOUNTER30] = { "hpmcounter30", ctr, read_hpmcounter },
[CSR_HPMCOUNTER31] = { "hpmcounter31", ctr, read_hpmcounter },
[CSR_MHPMCOUNTER3] = { "mhpmcounter3", mctr, read_hpmcounter,
write_mhpmcounter },
[CSR_MHPMCOUNTER4] = { "mhpmcounter4", mctr, read_hpmcounter,
write_mhpmcounter },
[CSR_MHPMCOUNTER5] = { "mhpmcounter5", mctr, read_hpmcounter,
write_mhpmcounter },
[CSR_MHPMCOUNTER6] = { "mhpmcounter6", mctr, read_hpmcounter,
write_mhpmcounter },
[CSR_MHPMCOUNTER7] = { "mhpmcounter7", mctr, read_hpmcounter,
write_mhpmcounter },
[CSR_MHPMCOUNTER8] = { "mhpmcounter8", mctr, read_hpmcounter,
write_mhpmcounter },
[CSR_MHPMCOUNTER9] = { "mhpmcounter9", mctr, read_hpmcounter,
write_mhpmcounter },
[CSR_MHPMCOUNTER10] = { "mhpmcounter10", mctr, read_hpmcounter,
write_mhpmcounter },
[CSR_MHPMCOUNTER11] = { "mhpmcounter11", mctr, read_hpmcounter,
write_mhpmcounter },
[CSR_MHPMCOUNTER12] = { "mhpmcounter12", mctr, read_hpmcounter,
write_mhpmcounter },
[CSR_MHPMCOUNTER13] = { "mhpmcounter13", mctr, read_hpmcounter,
write_mhpmcounter },
[CSR_MHPMCOUNTER14] = { "mhpmcounter14", mctr, read_hpmcounter,
write_mhpmcounter },
[CSR_MHPMCOUNTER15] = { "mhpmcounter15", mctr, read_hpmcounter,
write_mhpmcounter },
[CSR_MHPMCOUNTER16] = { "mhpmcounter16", mctr, read_hpmcounter,
write_mhpmcounter },
[CSR_MHPMCOUNTER17] = { "mhpmcounter17", mctr, read_hpmcounter,
write_mhpmcounter },
[CSR_MHPMCOUNTER18] = { "mhpmcounter18", mctr, read_hpmcounter,
write_mhpmcounter },
[CSR_MHPMCOUNTER19] = { "mhpmcounter19", mctr, read_hpmcounter,
write_mhpmcounter },
[CSR_MHPMCOUNTER20] = { "mhpmcounter20", mctr, read_hpmcounter,
write_mhpmcounter },
[CSR_MHPMCOUNTER21] = { "mhpmcounter21", mctr, read_hpmcounter,
write_mhpmcounter },
[CSR_MHPMCOUNTER22] = { "mhpmcounter22", mctr, read_hpmcounter,
write_mhpmcounter },
[CSR_MHPMCOUNTER23] = { "mhpmcounter23", mctr, read_hpmcounter,
write_mhpmcounter },
[CSR_MHPMCOUNTER24] = { "mhpmcounter24", mctr, read_hpmcounter,
write_mhpmcounter },
[CSR_MHPMCOUNTER25] = { "mhpmcounter25", mctr, read_hpmcounter,
write_mhpmcounter },
[CSR_MHPMCOUNTER26] = { "mhpmcounter26", mctr, read_hpmcounter,
write_mhpmcounter },
[CSR_MHPMCOUNTER27] = { "mhpmcounter27", mctr, read_hpmcounter,
write_mhpmcounter },
[CSR_MHPMCOUNTER28] = { "mhpmcounter28", mctr, read_hpmcounter,
write_mhpmcounter },
[CSR_MHPMCOUNTER29] = { "mhpmcounter29", mctr, read_hpmcounter,
write_mhpmcounter },
[CSR_MHPMCOUNTER30] = { "mhpmcounter30", mctr, read_hpmcounter,
write_mhpmcounter },
[CSR_MHPMCOUNTER31] = { "mhpmcounter31", mctr, read_hpmcounter,
write_mhpmcounter },
[CSR_MCOUNTINHIBIT] = { "mcountinhibit", any, read_mcountinhibit,
write_mcountinhibit,
.min_priv_ver = PRIV_VERSION_1_11_0 },
[CSR_MHPMEVENT3] = { "mhpmevent3", any, read_mhpmevent,
write_mhpmevent },
[CSR_MHPMEVENT4] = { "mhpmevent4", any, read_mhpmevent,
write_mhpmevent },
[CSR_MHPMEVENT5] = { "mhpmevent5", any, read_mhpmevent,
write_mhpmevent },
[CSR_MHPMEVENT6] = { "mhpmevent6", any, read_mhpmevent,
write_mhpmevent },
[CSR_MHPMEVENT7] = { "mhpmevent7", any, read_mhpmevent,
write_mhpmevent },
[CSR_MHPMEVENT8] = { "mhpmevent8", any, read_mhpmevent,
write_mhpmevent },
[CSR_MHPMEVENT9] = { "mhpmevent9", any, read_mhpmevent,
write_mhpmevent },
[CSR_MHPMEVENT10] = { "mhpmevent10", any, read_mhpmevent,
write_mhpmevent },
[CSR_MHPMEVENT11] = { "mhpmevent11", any, read_mhpmevent,
write_mhpmevent },
[CSR_MHPMEVENT12] = { "mhpmevent12", any, read_mhpmevent,
write_mhpmevent },
[CSR_MHPMEVENT13] = { "mhpmevent13", any, read_mhpmevent,
write_mhpmevent },
[CSR_MHPMEVENT14] = { "mhpmevent14", any, read_mhpmevent,
write_mhpmevent },
[CSR_MHPMEVENT15] = { "mhpmevent15", any, read_mhpmevent,
write_mhpmevent },
[CSR_MHPMEVENT16] = { "mhpmevent16", any, read_mhpmevent,
write_mhpmevent },
[CSR_MHPMEVENT17] = { "mhpmevent17", any, read_mhpmevent,
write_mhpmevent },
[CSR_MHPMEVENT18] = { "mhpmevent18", any, read_mhpmevent,
write_mhpmevent },
[CSR_MHPMEVENT19] = { "mhpmevent19", any, read_mhpmevent,
write_mhpmevent },
[CSR_MHPMEVENT20] = { "mhpmevent20", any, read_mhpmevent,
write_mhpmevent },
[CSR_MHPMEVENT21] = { "mhpmevent21", any, read_mhpmevent,
write_mhpmevent },
[CSR_MHPMEVENT22] = { "mhpmevent22", any, read_mhpmevent,
write_mhpmevent },
[CSR_MHPMEVENT23] = { "mhpmevent23", any, read_mhpmevent,
write_mhpmevent },
[CSR_MHPMEVENT24] = { "mhpmevent24", any, read_mhpmevent,
write_mhpmevent },
[CSR_MHPMEVENT25] = { "mhpmevent25", any, read_mhpmevent,
write_mhpmevent },
[CSR_MHPMEVENT26] = { "mhpmevent26", any, read_mhpmevent,
write_mhpmevent },
[CSR_MHPMEVENT27] = { "mhpmevent27", any, read_mhpmevent,
write_mhpmevent },
[CSR_MHPMEVENT28] = { "mhpmevent28", any, read_mhpmevent,
write_mhpmevent },
[CSR_MHPMEVENT29] = { "mhpmevent29", any, read_mhpmevent,
write_mhpmevent },
[CSR_MHPMEVENT30] = { "mhpmevent30", any, read_mhpmevent,
write_mhpmevent },
[CSR_MHPMEVENT31] = { "mhpmevent31", any, read_mhpmevent,
write_mhpmevent },
[CSR_MHPMEVENT3H] = { "mhpmevent3h", sscofpmf, read_mhpmeventh,
write_mhpmeventh,
.min_priv_ver = PRIV_VERSION_1_12_0 },
[CSR_MHPMEVENT4H] = { "mhpmevent4h", sscofpmf, read_mhpmeventh,
write_mhpmeventh,
.min_priv_ver = PRIV_VERSION_1_12_0 },
[CSR_MHPMEVENT5H] = { "mhpmevent5h", sscofpmf, read_mhpmeventh,
write_mhpmeventh,
.min_priv_ver = PRIV_VERSION_1_12_0 },
[CSR_MHPMEVENT6H] = { "mhpmevent6h", sscofpmf, read_mhpmeventh,
write_mhpmeventh,
.min_priv_ver = PRIV_VERSION_1_12_0 },
[CSR_MHPMEVENT7H] = { "mhpmevent7h", sscofpmf, read_mhpmeventh,
write_mhpmeventh,
.min_priv_ver = PRIV_VERSION_1_12_0 },
[CSR_MHPMEVENT8H] = { "mhpmevent8h", sscofpmf, read_mhpmeventh,
write_mhpmeventh,
.min_priv_ver = PRIV_VERSION_1_12_0 },
[CSR_MHPMEVENT9H] = { "mhpmevent9h", sscofpmf, read_mhpmeventh,
write_mhpmeventh,
.min_priv_ver = PRIV_VERSION_1_12_0 },
[CSR_MHPMEVENT10H] = { "mhpmevent10h", sscofpmf, read_mhpmeventh,
write_mhpmeventh,
.min_priv_ver = PRIV_VERSION_1_12_0 },
[CSR_MHPMEVENT11H] = { "mhpmevent11h", sscofpmf, read_mhpmeventh,
write_mhpmeventh,
.min_priv_ver = PRIV_VERSION_1_12_0 },
[CSR_MHPMEVENT12H] = { "mhpmevent12h", sscofpmf, read_mhpmeventh,
write_mhpmeventh,
.min_priv_ver = PRIV_VERSION_1_12_0 },
[CSR_MHPMEVENT13H] = { "mhpmevent13h", sscofpmf, read_mhpmeventh,
write_mhpmeventh,
.min_priv_ver = PRIV_VERSION_1_12_0 },
[CSR_MHPMEVENT14H] = { "mhpmevent14h", sscofpmf, read_mhpmeventh,
write_mhpmeventh,
.min_priv_ver = PRIV_VERSION_1_12_0 },
[CSR_MHPMEVENT15H] = { "mhpmevent15h", sscofpmf, read_mhpmeventh,
write_mhpmeventh,
.min_priv_ver = PRIV_VERSION_1_12_0 },
[CSR_MHPMEVENT16H] = { "mhpmevent16h", sscofpmf, read_mhpmeventh,
write_mhpmeventh,
.min_priv_ver = PRIV_VERSION_1_12_0 },
[CSR_MHPMEVENT17H] = { "mhpmevent17h", sscofpmf, read_mhpmeventh,
write_mhpmeventh,
.min_priv_ver = PRIV_VERSION_1_12_0 },
[CSR_MHPMEVENT18H] = { "mhpmevent18h", sscofpmf, read_mhpmeventh,
write_mhpmeventh,
.min_priv_ver = PRIV_VERSION_1_12_0 },
[CSR_MHPMEVENT19H] = { "mhpmevent19h", sscofpmf, read_mhpmeventh,
write_mhpmeventh,
.min_priv_ver = PRIV_VERSION_1_12_0 },
[CSR_MHPMEVENT20H] = { "mhpmevent20h", sscofpmf, read_mhpmeventh,
write_mhpmeventh,
.min_priv_ver = PRIV_VERSION_1_12_0 },
[CSR_MHPMEVENT21H] = { "mhpmevent21h", sscofpmf, read_mhpmeventh,
write_mhpmeventh,
.min_priv_ver = PRIV_VERSION_1_12_0 },
[CSR_MHPMEVENT22H] = { "mhpmevent22h", sscofpmf, read_mhpmeventh,
write_mhpmeventh,
.min_priv_ver = PRIV_VERSION_1_12_0 },
[CSR_MHPMEVENT23H] = { "mhpmevent23h", sscofpmf, read_mhpmeventh,
write_mhpmeventh,
.min_priv_ver = PRIV_VERSION_1_12_0 },
[CSR_MHPMEVENT24H] = { "mhpmevent24h", sscofpmf, read_mhpmeventh,
write_mhpmeventh,
.min_priv_ver = PRIV_VERSION_1_12_0 },
[CSR_MHPMEVENT25H] = { "mhpmevent25h", sscofpmf, read_mhpmeventh,
write_mhpmeventh,
.min_priv_ver = PRIV_VERSION_1_12_0 },
[CSR_MHPMEVENT26H] = { "mhpmevent26h", sscofpmf, read_mhpmeventh,
write_mhpmeventh,
.min_priv_ver = PRIV_VERSION_1_12_0 },
[CSR_MHPMEVENT27H] = { "mhpmevent27h", sscofpmf, read_mhpmeventh,
write_mhpmeventh,
.min_priv_ver = PRIV_VERSION_1_12_0 },
[CSR_MHPMEVENT28H] = { "mhpmevent28h", sscofpmf, read_mhpmeventh,
write_mhpmeventh,
.min_priv_ver = PRIV_VERSION_1_12_0 },
[CSR_MHPMEVENT29H] = { "mhpmevent29h", sscofpmf, read_mhpmeventh,
write_mhpmeventh,
.min_priv_ver = PRIV_VERSION_1_12_0 },
[CSR_MHPMEVENT30H] = { "mhpmevent30h", sscofpmf, read_mhpmeventh,
write_mhpmeventh,
.min_priv_ver = PRIV_VERSION_1_12_0 },
[CSR_MHPMEVENT31H] = { "mhpmevent31h", sscofpmf, read_mhpmeventh,
write_mhpmeventh,
.min_priv_ver = PRIV_VERSION_1_12_0 },
[CSR_HPMCOUNTER3H] = { "hpmcounter3h", ctr32, read_hpmcounterh },
[CSR_HPMCOUNTER4H] = { "hpmcounter4h", ctr32, read_hpmcounterh },
[CSR_HPMCOUNTER5H] = { "hpmcounter5h", ctr32, read_hpmcounterh },
[CSR_HPMCOUNTER6H] = { "hpmcounter6h", ctr32, read_hpmcounterh },
[CSR_HPMCOUNTER7H] = { "hpmcounter7h", ctr32, read_hpmcounterh },
[CSR_HPMCOUNTER8H] = { "hpmcounter8h", ctr32, read_hpmcounterh },
[CSR_HPMCOUNTER9H] = { "hpmcounter9h", ctr32, read_hpmcounterh },
[CSR_HPMCOUNTER10H] = { "hpmcounter10h", ctr32, read_hpmcounterh },
[CSR_HPMCOUNTER11H] = { "hpmcounter11h", ctr32, read_hpmcounterh },
[CSR_HPMCOUNTER12H] = { "hpmcounter12h", ctr32, read_hpmcounterh },
[CSR_HPMCOUNTER13H] = { "hpmcounter13h", ctr32, read_hpmcounterh },
[CSR_HPMCOUNTER14H] = { "hpmcounter14h", ctr32, read_hpmcounterh },
[CSR_HPMCOUNTER15H] = { "hpmcounter15h", ctr32, read_hpmcounterh },
[CSR_HPMCOUNTER16H] = { "hpmcounter16h", ctr32, read_hpmcounterh },
[CSR_HPMCOUNTER17H] = { "hpmcounter17h", ctr32, read_hpmcounterh },
[CSR_HPMCOUNTER18H] = { "hpmcounter18h", ctr32, read_hpmcounterh },
[CSR_HPMCOUNTER19H] = { "hpmcounter19h", ctr32, read_hpmcounterh },
[CSR_HPMCOUNTER20H] = { "hpmcounter20h", ctr32, read_hpmcounterh },
[CSR_HPMCOUNTER21H] = { "hpmcounter21h", ctr32, read_hpmcounterh },
[CSR_HPMCOUNTER22H] = { "hpmcounter22h", ctr32, read_hpmcounterh },
[CSR_HPMCOUNTER23H] = { "hpmcounter23h", ctr32, read_hpmcounterh },
[CSR_HPMCOUNTER24H] = { "hpmcounter24h", ctr32, read_hpmcounterh },
[CSR_HPMCOUNTER25H] = { "hpmcounter25h", ctr32, read_hpmcounterh },
[CSR_HPMCOUNTER26H] = { "hpmcounter26h", ctr32, read_hpmcounterh },
[CSR_HPMCOUNTER27H] = { "hpmcounter27h", ctr32, read_hpmcounterh },
[CSR_HPMCOUNTER28H] = { "hpmcounter28h", ctr32, read_hpmcounterh },
[CSR_HPMCOUNTER29H] = { "hpmcounter29h", ctr32, read_hpmcounterh },
[CSR_HPMCOUNTER30H] = { "hpmcounter30h", ctr32, read_hpmcounterh },
[CSR_HPMCOUNTER31H] = { "hpmcounter31h", ctr32, read_hpmcounterh },
[CSR_MHPMCOUNTER3H] = { "mhpmcounter3h", mctr32, read_hpmcounterh,
write_mhpmcounterh },
[CSR_MHPMCOUNTER4H] = { "mhpmcounter4h", mctr32, read_hpmcounterh,
write_mhpmcounterh },
[CSR_MHPMCOUNTER5H] = { "mhpmcounter5h", mctr32, read_hpmcounterh,
write_mhpmcounterh },
[CSR_MHPMCOUNTER6H] = { "mhpmcounter6h", mctr32, read_hpmcounterh,
write_mhpmcounterh },
[CSR_MHPMCOUNTER7H] = { "mhpmcounter7h", mctr32, read_hpmcounterh,
write_mhpmcounterh },
[CSR_MHPMCOUNTER8H] = { "mhpmcounter8h", mctr32, read_hpmcounterh,
write_mhpmcounterh },
[CSR_MHPMCOUNTER9H] = { "mhpmcounter9h", mctr32, read_hpmcounterh,
write_mhpmcounterh },
[CSR_MHPMCOUNTER10H] = { "mhpmcounter10h", mctr32, read_hpmcounterh,
write_mhpmcounterh },
[CSR_MHPMCOUNTER11H] = { "mhpmcounter11h", mctr32, read_hpmcounterh,
write_mhpmcounterh },
[CSR_MHPMCOUNTER12H] = { "mhpmcounter12h", mctr32, read_hpmcounterh,
write_mhpmcounterh },
[CSR_MHPMCOUNTER13H] = { "mhpmcounter13h", mctr32, read_hpmcounterh,
write_mhpmcounterh },
[CSR_MHPMCOUNTER14H] = { "mhpmcounter14h", mctr32, read_hpmcounterh,
write_mhpmcounterh },
[CSR_MHPMCOUNTER15H] = { "mhpmcounter15h", mctr32, read_hpmcounterh,
write_mhpmcounterh },
[CSR_MHPMCOUNTER16H] = { "mhpmcounter16h", mctr32, read_hpmcounterh,
write_mhpmcounterh },
[CSR_MHPMCOUNTER17H] = { "mhpmcounter17h", mctr32, read_hpmcounterh,
write_mhpmcounterh },
[CSR_MHPMCOUNTER18H] = { "mhpmcounter18h", mctr32, read_hpmcounterh,
write_mhpmcounterh },
[CSR_MHPMCOUNTER19H] = { "mhpmcounter19h", mctr32, read_hpmcounterh,
write_mhpmcounterh },
[CSR_MHPMCOUNTER20H] = { "mhpmcounter20h", mctr32, read_hpmcounterh,
write_mhpmcounterh },
[CSR_MHPMCOUNTER21H] = { "mhpmcounter21h", mctr32, read_hpmcounterh,
write_mhpmcounterh },
[CSR_MHPMCOUNTER22H] = { "mhpmcounter22h", mctr32, read_hpmcounterh,
write_mhpmcounterh },
[CSR_MHPMCOUNTER23H] = { "mhpmcounter23h", mctr32, read_hpmcounterh,
write_mhpmcounterh },
[CSR_MHPMCOUNTER24H] = { "mhpmcounter24h", mctr32, read_hpmcounterh,
write_mhpmcounterh },
[CSR_MHPMCOUNTER25H] = { "mhpmcounter25h", mctr32, read_hpmcounterh,
write_mhpmcounterh },
[CSR_MHPMCOUNTER26H] = { "mhpmcounter26h", mctr32, read_hpmcounterh,
write_mhpmcounterh },
[CSR_MHPMCOUNTER27H] = { "mhpmcounter27h", mctr32, read_hpmcounterh,
write_mhpmcounterh },
[CSR_MHPMCOUNTER28H] = { "mhpmcounter28h", mctr32, read_hpmcounterh,
write_mhpmcounterh },
[CSR_MHPMCOUNTER29H] = { "mhpmcounter29h", mctr32, read_hpmcounterh,
write_mhpmcounterh },
[CSR_MHPMCOUNTER30H] = { "mhpmcounter30h", mctr32, read_hpmcounterh,
write_mhpmcounterh },
[CSR_MHPMCOUNTER31H] = { "mhpmcounter31h", mctr32, read_hpmcounterh,
write_mhpmcounterh },
[CSR_SCOUNTOVF] = { "scountovf", sscofpmf, read_scountovf,
.min_priv_ver = PRIV_VERSION_1_12_0 },
#endif /* !CONFIG_USER_ONLY */
};