qemu/include/hw/core/cpu.h
Peter Maydell 4dd6517e36 x86 and machine queue for 5.0 soft freeze
Bug fixes:
 * memory encryption: Disable mem merge
   (Dr. David Alan Gilbert)
 
 Features:
 * New EPYC CPU definitions (Babu Moger)
 * Denventon-v2 CPU model (Tao Xu)
 * New 'note' field on versioned CPU models (Tao Xu)
 
 Cleanups:
 * x86 CPU topology cleanups (Babu Moger)
 * cpu: Use DeviceClass reset instead of a special CPUClass reset
   (Peter Maydell)
 -----BEGIN PGP SIGNATURE-----
 
 iQJIBAABCAAyFiEEWjIv1avE09usz9GqKAeTb5hNxaYFAl5xdnsUHGVoYWJrb3N0
 QHJlZGhhdC5jb20ACgkQKAeTb5hNxaYkGA/9Fn1tCdW/74CEREPbcKNOf8twmCr2
 L4qykix7mFcZXstFhEQuoNJQMz8mEPJngOfUSQY1c9w4psf0AXE6q3wbdNcxxdj1
 1/+cPbaRuoF8EKw63MgR3AaReuWtAV+sGS4+eKBMJTMUbl03pOYARE+irCWJU6rd
 YdP0t6CX0NWF4afv+2wMeeZVr+IcKEo81jCCCSjmM0YLkwvu0Vs5ng3jE7vtFKPj
 MQHMyqD/lz0FwyksBiOLwjOCbnmIydWc/8VV68UH5ulxka96jk8CwmI0+A9v2UMQ
 4PjQ84UeQclJTbec+h/Qy8DoCP3qiqijFMRau2wo1UWCsAjMcaRIJjIe5CSOJFRu
 3FrP2FEJCZiWjh11b/x3jIyjK6MDjv3Y1oky1j5VkCnFUNLHbXUA2KY3jaZ/pf+1
 BDqa6lNDYJBN+FQQt0yXDWAdGLUxxP87S9jmU9RULzwAwCic0FxVR/a5zk9EUDi0
 mA+WL0ekfhIEVACdHYuCTxujGq8QnGiCppr1Wgx3t+GgveR8AjXdd/KclcKskYiw
 ozbujtBPQUImuq3xi6FTkRHXuEW+zc+IFbhZ3Zq5OhmJmpdgmSHryFcKAdvNJH/z
 VllKAsLg1hffm+PjlpuZLBucC4PBrvHbS7htHhMaemEiJHO9V5EfGDWQdELNRM8p
 sKymFNs5XjzQcGE=
 =9fEL
 -----END PGP SIGNATURE-----

Merge remote-tracking branch 'remotes/ehabkost/tags/x86-and-machine-pull-request' into staging

x86 and machine queue for 5.0 soft freeze

Bug fixes:
* memory encryption: Disable mem merge
  (Dr. David Alan Gilbert)

Features:
* New EPYC CPU definitions (Babu Moger)
* Denventon-v2 CPU model (Tao Xu)
* New 'note' field on versioned CPU models (Tao Xu)

Cleanups:
* x86 CPU topology cleanups (Babu Moger)
* cpu: Use DeviceClass reset instead of a special CPUClass reset
  (Peter Maydell)

# gpg: Signature made Wed 18 Mar 2020 01:16:43 GMT
# gpg:                using RSA key 5A322FD5ABC4D3DBACCFD1AA2807936F984DC5A6
# gpg:                issuer "ehabkost@redhat.com"
# gpg: Good signature from "Eduardo Habkost <ehabkost@redhat.com>" [full]
# Primary key fingerprint: 5A32 2FD5 ABC4 D3DB ACCF  D1AA 2807 936F 984D C5A6

* remotes/ehabkost/tags/x86-and-machine-pull-request:
  hw/i386: Rename apicid_from_topo_ids to x86_apicid_from_topo_ids
  hw/i386: Update structures to save the number of nodes per package
  hw/i386: Remove unnecessary initialization in x86_cpu_new
  machine: Add SMP Sockets in CpuTopology
  hw/i386: Consolidate topology functions
  hw/i386: Introduce X86CPUTopoInfo to contain topology info
  cpu: Use DeviceClass reset instead of a special CPUClass reset
  machine/memory encryption: Disable mem merge
  hw/i386: Rename X86CPUTopoInfo structure to X86CPUTopoIDs
  i386: Add 2nd Generation AMD EPYC processors
  i386: Add missing cpu feature bits in EPYC model
  target/i386: Add new property note to versioned CPU models
  target/i386: Add Denverton-v2 (no MPX) CPU model

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
2020-03-19 14:22:46 +00:00

1158 lines
36 KiB
C

/*
* QEMU CPU model
*
* Copyright (c) 2012 SUSE LINUX Products GmbH
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see
* <http://www.gnu.org/licenses/gpl-2.0.html>
*/
#ifndef QEMU_CPU_H
#define QEMU_CPU_H
#include "hw/qdev-core.h"
#include "disas/dis-asm.h"
#include "exec/hwaddr.h"
#include "exec/memattrs.h"
#include "qapi/qapi-types-run-state.h"
#include "qemu/bitmap.h"
#include "qemu/rcu_queue.h"
#include "qemu/queue.h"
#include "qemu/thread.h"
#include "qemu/plugin.h"
typedef int (*WriteCoreDumpFunction)(const void *buf, size_t size,
void *opaque);
/**
* vaddr:
* Type wide enough to contain any #target_ulong virtual address.
*/
typedef uint64_t vaddr;
#define VADDR_PRId PRId64
#define VADDR_PRIu PRIu64
#define VADDR_PRIo PRIo64
#define VADDR_PRIx PRIx64
#define VADDR_PRIX PRIX64
#define VADDR_MAX UINT64_MAX
/**
* SECTION:cpu
* @section_id: QEMU-cpu
* @title: CPU Class
* @short_description: Base class for all CPUs
*/
#define TYPE_CPU "cpu"
/* Since this macro is used a lot in hot code paths and in conjunction with
* FooCPU *foo_env_get_cpu(), we deviate from usual QOM practice by using
* an unchecked cast.
*/
#define CPU(obj) ((CPUState *)(obj))
#define CPU_CLASS(class) OBJECT_CLASS_CHECK(CPUClass, (class), TYPE_CPU)
#define CPU_GET_CLASS(obj) OBJECT_GET_CLASS(CPUClass, (obj), TYPE_CPU)
typedef enum MMUAccessType {
MMU_DATA_LOAD = 0,
MMU_DATA_STORE = 1,
MMU_INST_FETCH = 2
} MMUAccessType;
typedef struct CPUWatchpoint CPUWatchpoint;
struct TranslationBlock;
/**
* CPUClass:
* @class_by_name: Callback to map -cpu command line model name to an
* instantiatable CPU type.
* @parse_features: Callback to parse command line arguments.
* @reset_dump_flags: #CPUDumpFlags to use for reset logging.
* @has_work: Callback for checking if there is work to do.
* @do_interrupt: Callback for interrupt handling.
* @do_unaligned_access: Callback for unaligned access handling, if
* the target defines #TARGET_ALIGNED_ONLY.
* @do_transaction_failed: Callback for handling failed memory transactions
* (ie bus faults or external aborts; not MMU faults)
* @virtio_is_big_endian: Callback to return %true if a CPU which supports
* runtime configurable endianness is currently big-endian. Non-configurable
* CPUs can use the default implementation of this method. This method should
* not be used by any callers other than the pre-1.0 virtio devices.
* @memory_rw_debug: Callback for GDB memory access.
* @dump_state: Callback for dumping state.
* @dump_statistics: Callback for dumping statistics.
* @get_arch_id: Callback for getting architecture-dependent CPU ID.
* @get_paging_enabled: Callback for inquiring whether paging is enabled.
* @get_memory_mapping: Callback for obtaining the memory mappings.
* @set_pc: Callback for setting the Program Counter register. This
* should have the semantics used by the target architecture when
* setting the PC from a source such as an ELF file entry point;
* for example on Arm it will also set the Thumb mode bit based
* on the least significant bit of the new PC value.
* If the target behaviour here is anything other than "set
* the PC register to the value passed in" then the target must
* also implement the synchronize_from_tb hook.
* @synchronize_from_tb: Callback for synchronizing state from a TCG
* #TranslationBlock. This is called when we abandon execution
* of a TB before starting it, and must set all parts of the CPU
* state which the previous TB in the chain may not have updated.
* This always includes at least the program counter; some targets
* will need to do more. If this hook is not implemented then the
* default is to call @set_pc(tb->pc).
* @tlb_fill: Callback for handling a softmmu tlb miss or user-only
* address fault. For system mode, if the access is valid, call
* tlb_set_page and return true; if the access is invalid, and
* probe is true, return false; otherwise raise an exception and
* do not return. For user-only mode, always raise an exception
* and do not return.
* @get_phys_page_debug: Callback for obtaining a physical address.
* @get_phys_page_attrs_debug: Callback for obtaining a physical address and the
* associated memory transaction attributes to use for the access.
* CPUs which use memory transaction attributes should implement this
* instead of get_phys_page_debug.
* @asidx_from_attrs: Callback to return the CPU AddressSpace to use for
* a memory access with the specified memory transaction attributes.
* @gdb_read_register: Callback for letting GDB read a register.
* @gdb_write_register: Callback for letting GDB write a register.
* @debug_check_watchpoint: Callback: return true if the architectural
* watchpoint whose address has matched should really fire.
* @debug_excp_handler: Callback for handling debug exceptions.
* @write_elf64_note: Callback for writing a CPU-specific ELF note to a
* 64-bit VM coredump.
* @write_elf32_qemunote: Callback for writing a CPU- and QEMU-specific ELF
* note to a 32-bit VM coredump.
* @write_elf32_note: Callback for writing a CPU-specific ELF note to a
* 32-bit VM coredump.
* @write_elf32_qemunote: Callback for writing a CPU- and QEMU-specific ELF
* note to a 32-bit VM coredump.
* @vmsd: State description for migration.
* @gdb_num_core_regs: Number of core registers accessible to GDB.
* @gdb_core_xml_file: File name for core registers GDB XML description.
* @gdb_stop_before_watchpoint: Indicates whether GDB expects the CPU to stop
* before the insn which triggers a watchpoint rather than after it.
* @gdb_arch_name: Optional callback that returns the architecture name known
* to GDB. The caller must free the returned string with g_free.
* @gdb_get_dynamic_xml: Callback to return dynamically generated XML for the
* gdb stub. Returns a pointer to the XML contents for the specified XML file
* or NULL if the CPU doesn't have a dynamically generated content for it.
* @cpu_exec_enter: Callback for cpu_exec preparation.
* @cpu_exec_exit: Callback for cpu_exec cleanup.
* @cpu_exec_interrupt: Callback for processing interrupts in cpu_exec.
* @disas_set_info: Setup architecture specific components of disassembly info
* @adjust_watchpoint_address: Perform a target-specific adjustment to an
* address before attempting to match it against watchpoints.
*
* Represents a CPU family or model.
*/
typedef struct CPUClass {
/*< private >*/
DeviceClass parent_class;
/*< public >*/
ObjectClass *(*class_by_name)(const char *cpu_model);
void (*parse_features)(const char *typename, char *str, Error **errp);
int reset_dump_flags;
bool (*has_work)(CPUState *cpu);
void (*do_interrupt)(CPUState *cpu);
void (*do_unaligned_access)(CPUState *cpu, vaddr addr,
MMUAccessType access_type,
int mmu_idx, uintptr_t retaddr);
void (*do_transaction_failed)(CPUState *cpu, hwaddr physaddr, vaddr addr,
unsigned size, MMUAccessType access_type,
int mmu_idx, MemTxAttrs attrs,
MemTxResult response, uintptr_t retaddr);
bool (*virtio_is_big_endian)(CPUState *cpu);
int (*memory_rw_debug)(CPUState *cpu, vaddr addr,
uint8_t *buf, int len, bool is_write);
void (*dump_state)(CPUState *cpu, FILE *, int flags);
GuestPanicInformation* (*get_crash_info)(CPUState *cpu);
void (*dump_statistics)(CPUState *cpu, int flags);
int64_t (*get_arch_id)(CPUState *cpu);
bool (*get_paging_enabled)(const CPUState *cpu);
void (*get_memory_mapping)(CPUState *cpu, MemoryMappingList *list,
Error **errp);
void (*set_pc)(CPUState *cpu, vaddr value);
void (*synchronize_from_tb)(CPUState *cpu, struct TranslationBlock *tb);
bool (*tlb_fill)(CPUState *cpu, vaddr address, int size,
MMUAccessType access_type, int mmu_idx,
bool probe, uintptr_t retaddr);
hwaddr (*get_phys_page_debug)(CPUState *cpu, vaddr addr);
hwaddr (*get_phys_page_attrs_debug)(CPUState *cpu, vaddr addr,
MemTxAttrs *attrs);
int (*asidx_from_attrs)(CPUState *cpu, MemTxAttrs attrs);
int (*gdb_read_register)(CPUState *cpu, GByteArray *buf, int reg);
int (*gdb_write_register)(CPUState *cpu, uint8_t *buf, int reg);
bool (*debug_check_watchpoint)(CPUState *cpu, CPUWatchpoint *wp);
void (*debug_excp_handler)(CPUState *cpu);
int (*write_elf64_note)(WriteCoreDumpFunction f, CPUState *cpu,
int cpuid, void *opaque);
int (*write_elf64_qemunote)(WriteCoreDumpFunction f, CPUState *cpu,
void *opaque);
int (*write_elf32_note)(WriteCoreDumpFunction f, CPUState *cpu,
int cpuid, void *opaque);
int (*write_elf32_qemunote)(WriteCoreDumpFunction f, CPUState *cpu,
void *opaque);
const VMStateDescription *vmsd;
const char *gdb_core_xml_file;
gchar * (*gdb_arch_name)(CPUState *cpu);
const char * (*gdb_get_dynamic_xml)(CPUState *cpu, const char *xmlname);
void (*cpu_exec_enter)(CPUState *cpu);
void (*cpu_exec_exit)(CPUState *cpu);
bool (*cpu_exec_interrupt)(CPUState *cpu, int interrupt_request);
void (*disas_set_info)(CPUState *cpu, disassemble_info *info);
vaddr (*adjust_watchpoint_address)(CPUState *cpu, vaddr addr, int len);
void (*tcg_initialize)(void);
/* Keep non-pointer data at the end to minimize holes. */
int gdb_num_core_regs;
bool gdb_stop_before_watchpoint;
} CPUClass;
/*
* Low 16 bits: number of cycles left, used only in icount mode.
* High 16 bits: Set to -1 to force TCG to stop executing linked TBs
* for this CPU and return to its top level loop (even in non-icount mode).
* This allows a single read-compare-cbranch-write sequence to test
* for both decrementer underflow and exceptions.
*/
typedef union IcountDecr {
uint32_t u32;
struct {
#ifdef HOST_WORDS_BIGENDIAN
uint16_t high;
uint16_t low;
#else
uint16_t low;
uint16_t high;
#endif
} u16;
} IcountDecr;
typedef struct CPUBreakpoint {
vaddr pc;
int flags; /* BP_* */
QTAILQ_ENTRY(CPUBreakpoint) entry;
} CPUBreakpoint;
struct CPUWatchpoint {
vaddr vaddr;
vaddr len;
vaddr hitaddr;
MemTxAttrs hitattrs;
int flags; /* BP_* */
QTAILQ_ENTRY(CPUWatchpoint) entry;
};
struct KVMState;
struct kvm_run;
struct hax_vcpu_state;
#define TB_JMP_CACHE_BITS 12
#define TB_JMP_CACHE_SIZE (1 << TB_JMP_CACHE_BITS)
/* work queue */
/* The union type allows passing of 64 bit target pointers on 32 bit
* hosts in a single parameter
*/
typedef union {
int host_int;
unsigned long host_ulong;
void *host_ptr;
vaddr target_ptr;
} run_on_cpu_data;
#define RUN_ON_CPU_HOST_PTR(p) ((run_on_cpu_data){.host_ptr = (p)})
#define RUN_ON_CPU_HOST_INT(i) ((run_on_cpu_data){.host_int = (i)})
#define RUN_ON_CPU_HOST_ULONG(ul) ((run_on_cpu_data){.host_ulong = (ul)})
#define RUN_ON_CPU_TARGET_PTR(v) ((run_on_cpu_data){.target_ptr = (v)})
#define RUN_ON_CPU_NULL RUN_ON_CPU_HOST_PTR(NULL)
typedef void (*run_on_cpu_func)(CPUState *cpu, run_on_cpu_data data);
struct qemu_work_item;
#define CPU_UNSET_NUMA_NODE_ID -1
#define CPU_TRACE_DSTATE_MAX_EVENTS 32
/**
* CPUState:
* @cpu_index: CPU index (informative).
* @cluster_index: Identifies which cluster this CPU is in.
* For boards which don't define clusters or for "loose" CPUs not assigned
* to a cluster this will be UNASSIGNED_CLUSTER_INDEX; otherwise it will
* be the same as the cluster-id property of the CPU object's TYPE_CPU_CLUSTER
* QOM parent.
* @nr_cores: Number of cores within this CPU package.
* @nr_threads: Number of threads within this CPU.
* @running: #true if CPU is currently running (lockless).
* @has_waiter: #true if a CPU is currently waiting for the cpu_exec_end;
* valid under cpu_list_lock.
* @created: Indicates whether the CPU thread has been successfully created.
* @interrupt_request: Indicates a pending interrupt request.
* @halted: Nonzero if the CPU is in suspended state.
* @stop: Indicates a pending stop request.
* @stopped: Indicates the CPU has been artificially stopped.
* @unplug: Indicates a pending CPU unplug request.
* @crash_occurred: Indicates the OS reported a crash (panic) for this CPU
* @singlestep_enabled: Flags for single-stepping.
* @icount_extra: Instructions until next timer event.
* @can_do_io: Nonzero if memory-mapped IO is safe. Deterministic execution
* requires that IO only be performed on the last instruction of a TB
* so that interrupts take effect immediately.
* @cpu_ases: Pointer to array of CPUAddressSpaces (which define the
* AddressSpaces this CPU has)
* @num_ases: number of CPUAddressSpaces in @cpu_ases
* @as: Pointer to the first AddressSpace, for the convenience of targets which
* only have a single AddressSpace
* @env_ptr: Pointer to subclass-specific CPUArchState field.
* @icount_decr_ptr: Pointer to IcountDecr field within subclass.
* @gdb_regs: Additional GDB registers.
* @gdb_num_regs: Number of total registers accessible to GDB.
* @gdb_num_g_regs: Number of registers in GDB 'g' packets.
* @next_cpu: Next CPU sharing TB cache.
* @opaque: User data.
* @mem_io_pc: Host Program Counter at which the memory was accessed.
* @kvm_fd: vCPU file descriptor for KVM.
* @work_mutex: Lock to prevent multiple access to queued_work_*.
* @queued_work_first: First asynchronous work pending.
* @trace_dstate_delayed: Delayed changes to trace_dstate (includes all changes
* to @trace_dstate).
* @trace_dstate: Dynamic tracing state of events for this vCPU (bitmask).
* @plugin_mask: Plugin event bitmap. Modified only via async work.
* @ignore_memory_transaction_failures: Cached copy of the MachineState
* flag of the same name: allows the board to suppress calling of the
* CPU do_transaction_failed hook function.
*
* State of one CPU core or thread.
*/
struct CPUState {
/*< private >*/
DeviceState parent_obj;
/*< public >*/
int nr_cores;
int nr_threads;
struct QemuThread *thread;
#ifdef _WIN32
HANDLE hThread;
#endif
int thread_id;
bool running, has_waiter;
struct QemuCond *halt_cond;
bool thread_kicked;
bool created;
bool stop;
bool stopped;
bool unplug;
bool crash_occurred;
bool exit_request;
bool in_exclusive_context;
uint32_t cflags_next_tb;
/* updates protected by BQL */
uint32_t interrupt_request;
int singlestep_enabled;
int64_t icount_budget;
int64_t icount_extra;
uint64_t random_seed;
sigjmp_buf jmp_env;
QemuMutex work_mutex;
struct qemu_work_item *queued_work_first, *queued_work_last;
CPUAddressSpace *cpu_ases;
int num_ases;
AddressSpace *as;
MemoryRegion *memory;
void *env_ptr; /* CPUArchState */
IcountDecr *icount_decr_ptr;
/* Accessed in parallel; all accesses must be atomic */
struct TranslationBlock *tb_jmp_cache[TB_JMP_CACHE_SIZE];
struct GDBRegisterState *gdb_regs;
int gdb_num_regs;
int gdb_num_g_regs;
QTAILQ_ENTRY(CPUState) node;
/* ice debug support */
QTAILQ_HEAD(, CPUBreakpoint) breakpoints;
QTAILQ_HEAD(, CPUWatchpoint) watchpoints;
CPUWatchpoint *watchpoint_hit;
void *opaque;
/* In order to avoid passing too many arguments to the MMIO helpers,
* we store some rarely used information in the CPU context.
*/
uintptr_t mem_io_pc;
int kvm_fd;
struct KVMState *kvm_state;
struct kvm_run *kvm_run;
/* Used for events with 'vcpu' and *without* the 'disabled' properties */
DECLARE_BITMAP(trace_dstate_delayed, CPU_TRACE_DSTATE_MAX_EVENTS);
DECLARE_BITMAP(trace_dstate, CPU_TRACE_DSTATE_MAX_EVENTS);
DECLARE_BITMAP(plugin_mask, QEMU_PLUGIN_EV_MAX);
GArray *plugin_mem_cbs;
/* TODO Move common fields from CPUArchState here. */
int cpu_index;
int cluster_index;
uint32_t halted;
uint32_t can_do_io;
int32_t exception_index;
/* shared by kvm, hax and hvf */
bool vcpu_dirty;
/* Used to keep track of an outstanding cpu throttle thread for migration
* autoconverge
*/
bool throttle_thread_scheduled;
bool ignore_memory_transaction_failures;
struct hax_vcpu_state *hax_vcpu;
int hvf_fd;
/* track IOMMUs whose translations we've cached in the TCG TLB */
GArray *iommu_notifiers;
};
typedef QTAILQ_HEAD(CPUTailQ, CPUState) CPUTailQ;
extern CPUTailQ cpus;
#define first_cpu QTAILQ_FIRST_RCU(&cpus)
#define CPU_NEXT(cpu) QTAILQ_NEXT_RCU(cpu, node)
#define CPU_FOREACH(cpu) QTAILQ_FOREACH_RCU(cpu, &cpus, node)
#define CPU_FOREACH_SAFE(cpu, next_cpu) \
QTAILQ_FOREACH_SAFE_RCU(cpu, &cpus, node, next_cpu)
extern __thread CPUState *current_cpu;
static inline void cpu_tb_jmp_cache_clear(CPUState *cpu)
{
unsigned int i;
for (i = 0; i < TB_JMP_CACHE_SIZE; i++) {
atomic_set(&cpu->tb_jmp_cache[i], NULL);
}
}
/**
* qemu_tcg_mttcg_enabled:
* Check whether we are running MultiThread TCG or not.
*
* Returns: %true if we are in MTTCG mode %false otherwise.
*/
extern bool mttcg_enabled;
#define qemu_tcg_mttcg_enabled() (mttcg_enabled)
/**
* cpu_paging_enabled:
* @cpu: The CPU whose state is to be inspected.
*
* Returns: %true if paging is enabled, %false otherwise.
*/
bool cpu_paging_enabled(const CPUState *cpu);
/**
* cpu_get_memory_mapping:
* @cpu: The CPU whose memory mappings are to be obtained.
* @list: Where to write the memory mappings to.
* @errp: Pointer for reporting an #Error.
*/
void cpu_get_memory_mapping(CPUState *cpu, MemoryMappingList *list,
Error **errp);
/**
* cpu_write_elf64_note:
* @f: pointer to a function that writes memory to a file
* @cpu: The CPU whose memory is to be dumped
* @cpuid: ID number of the CPU
* @opaque: pointer to the CPUState struct
*/
int cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cpu,
int cpuid, void *opaque);
/**
* cpu_write_elf64_qemunote:
* @f: pointer to a function that writes memory to a file
* @cpu: The CPU whose memory is to be dumped
* @cpuid: ID number of the CPU
* @opaque: pointer to the CPUState struct
*/
int cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
void *opaque);
/**
* cpu_write_elf32_note:
* @f: pointer to a function that writes memory to a file
* @cpu: The CPU whose memory is to be dumped
* @cpuid: ID number of the CPU
* @opaque: pointer to the CPUState struct
*/
int cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cpu,
int cpuid, void *opaque);
/**
* cpu_write_elf32_qemunote:
* @f: pointer to a function that writes memory to a file
* @cpu: The CPU whose memory is to be dumped
* @cpuid: ID number of the CPU
* @opaque: pointer to the CPUState struct
*/
int cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
void *opaque);
/**
* cpu_get_crash_info:
* @cpu: The CPU to get crash information for
*
* Gets the previously saved crash information.
* Caller is responsible for freeing the data.
*/
GuestPanicInformation *cpu_get_crash_info(CPUState *cpu);
/**
* CPUDumpFlags:
* @CPU_DUMP_CODE:
* @CPU_DUMP_FPU: dump FPU register state, not just integer
* @CPU_DUMP_CCOP: dump info about TCG QEMU's condition code optimization state
*/
enum CPUDumpFlags {
CPU_DUMP_CODE = 0x00010000,
CPU_DUMP_FPU = 0x00020000,
CPU_DUMP_CCOP = 0x00040000,
};
/**
* cpu_dump_state:
* @cpu: The CPU whose state is to be dumped.
* @f: If non-null, dump to this stream, else to current print sink.
*
* Dumps CPU state.
*/
void cpu_dump_state(CPUState *cpu, FILE *f, int flags);
/**
* cpu_dump_statistics:
* @cpu: The CPU whose state is to be dumped.
* @flags: Flags what to dump.
*
* Dump CPU statistics to the current monitor if we have one, else to
* stdout.
*/
void cpu_dump_statistics(CPUState *cpu, int flags);
#ifndef CONFIG_USER_ONLY
/**
* cpu_get_phys_page_attrs_debug:
* @cpu: The CPU to obtain the physical page address for.
* @addr: The virtual address.
* @attrs: Updated on return with the memory transaction attributes to use
* for this access.
*
* Obtains the physical page corresponding to a virtual one, together
* with the corresponding memory transaction attributes to use for the access.
* Use it only for debugging because no protection checks are done.
*
* Returns: Corresponding physical page address or -1 if no page found.
*/
static inline hwaddr cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
MemTxAttrs *attrs)
{
CPUClass *cc = CPU_GET_CLASS(cpu);
if (cc->get_phys_page_attrs_debug) {
return cc->get_phys_page_attrs_debug(cpu, addr, attrs);
}
/* Fallback for CPUs which don't implement the _attrs_ hook */
*attrs = MEMTXATTRS_UNSPECIFIED;
return cc->get_phys_page_debug(cpu, addr);
}
/**
* cpu_get_phys_page_debug:
* @cpu: The CPU to obtain the physical page address for.
* @addr: The virtual address.
*
* Obtains the physical page corresponding to a virtual one.
* Use it only for debugging because no protection checks are done.
*
* Returns: Corresponding physical page address or -1 if no page found.
*/
static inline hwaddr cpu_get_phys_page_debug(CPUState *cpu, vaddr addr)
{
MemTxAttrs attrs = {};
return cpu_get_phys_page_attrs_debug(cpu, addr, &attrs);
}
/** cpu_asidx_from_attrs:
* @cpu: CPU
* @attrs: memory transaction attributes
*
* Returns the address space index specifying the CPU AddressSpace
* to use for a memory access with the given transaction attributes.
*/
static inline int cpu_asidx_from_attrs(CPUState *cpu, MemTxAttrs attrs)
{
CPUClass *cc = CPU_GET_CLASS(cpu);
int ret = 0;
if (cc->asidx_from_attrs) {
ret = cc->asidx_from_attrs(cpu, attrs);
assert(ret < cpu->num_ases && ret >= 0);
}
return ret;
}
#endif
/**
* cpu_list_add:
* @cpu: The CPU to be added to the list of CPUs.
*/
void cpu_list_add(CPUState *cpu);
/**
* cpu_list_remove:
* @cpu: The CPU to be removed from the list of CPUs.
*/
void cpu_list_remove(CPUState *cpu);
/**
* cpu_reset:
* @cpu: The CPU whose state is to be reset.
*/
void cpu_reset(CPUState *cpu);
/**
* cpu_class_by_name:
* @typename: The CPU base type.
* @cpu_model: The model string without any parameters.
*
* Looks up a CPU #ObjectClass matching name @cpu_model.
*
* Returns: A #CPUClass or %NULL if not matching class is found.
*/
ObjectClass *cpu_class_by_name(const char *typename, const char *cpu_model);
/**
* cpu_create:
* @typename: The CPU type.
*
* Instantiates a CPU and realizes the CPU.
*
* Returns: A #CPUState or %NULL if an error occurred.
*/
CPUState *cpu_create(const char *typename);
/**
* parse_cpu_option:
* @cpu_option: The -cpu option including optional parameters.
*
* processes optional parameters and registers them as global properties
*
* Returns: type of CPU to create or prints error and terminates process
* if an error occurred.
*/
const char *parse_cpu_option(const char *cpu_option);
/**
* cpu_has_work:
* @cpu: The vCPU to check.
*
* Checks whether the CPU has work to do.
*
* Returns: %true if the CPU has work, %false otherwise.
*/
static inline bool cpu_has_work(CPUState *cpu)
{
CPUClass *cc = CPU_GET_CLASS(cpu);
g_assert(cc->has_work);
return cc->has_work(cpu);
}
/**
* qemu_cpu_is_self:
* @cpu: The vCPU to check against.
*
* Checks whether the caller is executing on the vCPU thread.
*
* Returns: %true if called from @cpu's thread, %false otherwise.
*/
bool qemu_cpu_is_self(CPUState *cpu);
/**
* qemu_cpu_kick:
* @cpu: The vCPU to kick.
*
* Kicks @cpu's thread.
*/
void qemu_cpu_kick(CPUState *cpu);
/**
* cpu_is_stopped:
* @cpu: The CPU to check.
*
* Checks whether the CPU is stopped.
*
* Returns: %true if run state is not running or if artificially stopped;
* %false otherwise.
*/
bool cpu_is_stopped(CPUState *cpu);
/**
* do_run_on_cpu:
* @cpu: The vCPU to run on.
* @func: The function to be executed.
* @data: Data to pass to the function.
* @mutex: Mutex to release while waiting for @func to run.
*
* Used internally in the implementation of run_on_cpu.
*/
void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data,
QemuMutex *mutex);
/**
* run_on_cpu:
* @cpu: The vCPU to run on.
* @func: The function to be executed.
* @data: Data to pass to the function.
*
* Schedules the function @func for execution on the vCPU @cpu.
*/
void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
/**
* async_run_on_cpu:
* @cpu: The vCPU to run on.
* @func: The function to be executed.
* @data: Data to pass to the function.
*
* Schedules the function @func for execution on the vCPU @cpu asynchronously.
*/
void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
/**
* async_safe_run_on_cpu:
* @cpu: The vCPU to run on.
* @func: The function to be executed.
* @data: Data to pass to the function.
*
* Schedules the function @func for execution on the vCPU @cpu asynchronously,
* while all other vCPUs are sleeping.
*
* Unlike run_on_cpu and async_run_on_cpu, the function is run outside the
* BQL.
*/
void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
/**
* cpu_in_exclusive_context()
* @cpu: The vCPU to check
*
* Returns true if @cpu is an exclusive context, for example running
* something which has previously been queued via async_safe_run_on_cpu().
*/
static inline bool cpu_in_exclusive_context(const CPUState *cpu)
{
return cpu->in_exclusive_context;
}
/**
* qemu_get_cpu:
* @index: The CPUState@cpu_index value of the CPU to obtain.
*
* Gets a CPU matching @index.
*
* Returns: The CPU or %NULL if there is no matching CPU.
*/
CPUState *qemu_get_cpu(int index);
/**
* cpu_exists:
* @id: Guest-exposed CPU ID to lookup.
*
* Search for CPU with specified ID.
*
* Returns: %true - CPU is found, %false - CPU isn't found.
*/
bool cpu_exists(int64_t id);
/**
* cpu_by_arch_id:
* @id: Guest-exposed CPU ID of the CPU to obtain.
*
* Get a CPU with matching @id.
*
* Returns: The CPU or %NULL if there is no matching CPU.
*/
CPUState *cpu_by_arch_id(int64_t id);
/**
* cpu_throttle_set:
* @new_throttle_pct: Percent of sleep time. Valid range is 1 to 99.
*
* Throttles all vcpus by forcing them to sleep for the given percentage of
* time. A throttle_percentage of 25 corresponds to a 75% duty cycle roughly.
* (example: 10ms sleep for every 30ms awake).
*
* cpu_throttle_set can be called as needed to adjust new_throttle_pct.
* Once the throttling starts, it will remain in effect until cpu_throttle_stop
* is called.
*/
void cpu_throttle_set(int new_throttle_pct);
/**
* cpu_throttle_stop:
*
* Stops the vcpu throttling started by cpu_throttle_set.
*/
void cpu_throttle_stop(void);
/**
* cpu_throttle_active:
*
* Returns: %true if the vcpus are currently being throttled, %false otherwise.
*/
bool cpu_throttle_active(void);
/**
* cpu_throttle_get_percentage:
*
* Returns the vcpu throttle percentage. See cpu_throttle_set for details.
*
* Returns: The throttle percentage in range 1 to 99.
*/
int cpu_throttle_get_percentage(void);
#ifndef CONFIG_USER_ONLY
typedef void (*CPUInterruptHandler)(CPUState *, int);
extern CPUInterruptHandler cpu_interrupt_handler;
/**
* cpu_interrupt:
* @cpu: The CPU to set an interrupt on.
* @mask: The interrupts to set.
*
* Invokes the interrupt handler.
*/
static inline void cpu_interrupt(CPUState *cpu, int mask)
{
cpu_interrupt_handler(cpu, mask);
}
#else /* USER_ONLY */
void cpu_interrupt(CPUState *cpu, int mask);
#endif /* USER_ONLY */
#ifdef NEED_CPU_H
#ifdef CONFIG_SOFTMMU
static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr,
MMUAccessType access_type,
int mmu_idx, uintptr_t retaddr)
{
CPUClass *cc = CPU_GET_CLASS(cpu);
cc->do_unaligned_access(cpu, addr, access_type, mmu_idx, retaddr);
}
static inline void cpu_transaction_failed(CPUState *cpu, hwaddr physaddr,
vaddr addr, unsigned size,
MMUAccessType access_type,
int mmu_idx, MemTxAttrs attrs,
MemTxResult response,
uintptr_t retaddr)
{
CPUClass *cc = CPU_GET_CLASS(cpu);
if (!cpu->ignore_memory_transaction_failures && cc->do_transaction_failed) {
cc->do_transaction_failed(cpu, physaddr, addr, size, access_type,
mmu_idx, attrs, response, retaddr);
}
}
#endif
#endif /* NEED_CPU_H */
/**
* cpu_set_pc:
* @cpu: The CPU to set the program counter for.
* @addr: Program counter value.
*
* Sets the program counter for a CPU.
*/
static inline void cpu_set_pc(CPUState *cpu, vaddr addr)
{
CPUClass *cc = CPU_GET_CLASS(cpu);
cc->set_pc(cpu, addr);
}
/**
* cpu_reset_interrupt:
* @cpu: The CPU to clear the interrupt on.
* @mask: The interrupt mask to clear.
*
* Resets interrupts on the vCPU @cpu.
*/
void cpu_reset_interrupt(CPUState *cpu, int mask);
/**
* cpu_exit:
* @cpu: The CPU to exit.
*
* Requests the CPU @cpu to exit execution.
*/
void cpu_exit(CPUState *cpu);
/**
* cpu_resume:
* @cpu: The CPU to resume.
*
* Resumes CPU, i.e. puts CPU into runnable state.
*/
void cpu_resume(CPUState *cpu);
/**
* cpu_remove:
* @cpu: The CPU to remove.
*
* Requests the CPU to be removed.
*/
void cpu_remove(CPUState *cpu);
/**
* cpu_remove_sync:
* @cpu: The CPU to remove.
*
* Requests the CPU to be removed and waits till it is removed.
*/
void cpu_remove_sync(CPUState *cpu);
/**
* process_queued_cpu_work() - process all items on CPU work queue
* @cpu: The CPU which work queue to process.
*/
void process_queued_cpu_work(CPUState *cpu);
/**
* cpu_exec_start:
* @cpu: The CPU for the current thread.
*
* Record that a CPU has started execution and can be interrupted with
* cpu_exit.
*/
void cpu_exec_start(CPUState *cpu);
/**
* cpu_exec_end:
* @cpu: The CPU for the current thread.
*
* Record that a CPU has stopped execution and exclusive sections
* can be executed without interrupting it.
*/
void cpu_exec_end(CPUState *cpu);
/**
* start_exclusive:
*
* Wait for a concurrent exclusive section to end, and then start
* a section of work that is run while other CPUs are not running
* between cpu_exec_start and cpu_exec_end. CPUs that are running
* cpu_exec are exited immediately. CPUs that call cpu_exec_start
* during the exclusive section go to sleep until this CPU calls
* end_exclusive.
*/
void start_exclusive(void);
/**
* end_exclusive:
*
* Concludes an exclusive execution section started by start_exclusive.
*/
void end_exclusive(void);
/**
* qemu_init_vcpu:
* @cpu: The vCPU to initialize.
*
* Initializes a vCPU.
*/
void qemu_init_vcpu(CPUState *cpu);
#define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */
#define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */
#define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */
/**
* cpu_single_step:
* @cpu: CPU to the flags for.
* @enabled: Flags to enable.
*
* Enables or disables single-stepping for @cpu.
*/
void cpu_single_step(CPUState *cpu, int enabled);
/* Breakpoint/watchpoint flags */
#define BP_MEM_READ 0x01
#define BP_MEM_WRITE 0x02
#define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE)
#define BP_STOP_BEFORE_ACCESS 0x04
/* 0x08 currently unused */
#define BP_GDB 0x10
#define BP_CPU 0x20
#define BP_ANY (BP_GDB | BP_CPU)
#define BP_WATCHPOINT_HIT_READ 0x40
#define BP_WATCHPOINT_HIT_WRITE 0x80
#define BP_WATCHPOINT_HIT (BP_WATCHPOINT_HIT_READ | BP_WATCHPOINT_HIT_WRITE)
int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
CPUBreakpoint **breakpoint);
int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags);
void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint);
void cpu_breakpoint_remove_all(CPUState *cpu, int mask);
/* Return true if PC matches an installed breakpoint. */
static inline bool cpu_breakpoint_test(CPUState *cpu, vaddr pc, int mask)
{
CPUBreakpoint *bp;
if (unlikely(!QTAILQ_EMPTY(&cpu->breakpoints))) {
QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
if (bp->pc == pc && (bp->flags & mask)) {
return true;
}
}
}
return false;
}
#ifdef CONFIG_USER_ONLY
static inline int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
int flags, CPUWatchpoint **watchpoint)
{
return -ENOSYS;
}
static inline int cpu_watchpoint_remove(CPUState *cpu, vaddr addr,
vaddr len, int flags)
{
return -ENOSYS;
}
static inline void cpu_watchpoint_remove_by_ref(CPUState *cpu,
CPUWatchpoint *wp)
{
}
static inline void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
{
}
static inline void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
MemTxAttrs atr, int fl, uintptr_t ra)
{
}
static inline int cpu_watchpoint_address_matches(CPUState *cpu,
vaddr addr, vaddr len)
{
return 0;
}
#else
int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
int flags, CPUWatchpoint **watchpoint);
int cpu_watchpoint_remove(CPUState *cpu, vaddr addr,
vaddr len, int flags);
void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint);
void cpu_watchpoint_remove_all(CPUState *cpu, int mask);
void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
MemTxAttrs attrs, int flags, uintptr_t ra);
int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len);
#endif
/**
* cpu_get_address_space:
* @cpu: CPU to get address space from
* @asidx: index identifying which address space to get
*
* Return the requested address space of this CPU. @asidx
* specifies which address space to read.
*/
AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx);
void QEMU_NORETURN cpu_abort(CPUState *cpu, const char *fmt, ...)
GCC_FMT_ATTR(2, 3);
extern Property cpu_common_props[];
void cpu_exec_initfn(CPUState *cpu);
void cpu_exec_realizefn(CPUState *cpu, Error **errp);
void cpu_exec_unrealizefn(CPUState *cpu);
/**
* target_words_bigendian:
* Returns true if the (default) endianness of the target is big endian,
* false otherwise. Note that in target-specific code, you can use
* TARGET_WORDS_BIGENDIAN directly instead. On the other hand, common
* code should normally never need to know about the endianness of the
* target, so please do *not* use this function unless you know very well
* what you are doing!
*/
bool target_words_bigendian(void);
#ifdef NEED_CPU_H
#ifdef CONFIG_SOFTMMU
extern const VMStateDescription vmstate_cpu_common;
#else
#define vmstate_cpu_common vmstate_dummy
#endif
#define VMSTATE_CPU() { \
.name = "parent_obj", \
.size = sizeof(CPUState), \
.vmsd = &vmstate_cpu_common, \
.flags = VMS_STRUCT, \
.offset = 0, \
}
#endif /* NEED_CPU_H */
#define UNASSIGNED_CPU_INDEX -1
#define UNASSIGNED_CLUSTER_INDEX -1
#endif