qemu/hw/ppc/spapr_nvdimm.c
Juan Quintela 99b16e8ee4 migration: Use vmstate_register_any()
This are the easiest cases, where we were already using
VMSTATE_INSTANCE_ID_ANY.

Reviewed-by: Stefan Berger <stefanb@linux.ibm.com>
Signed-off-by: Juan Quintela <quintela@redhat.com>
Message-ID: <20231020090731.28701-3-quintela@redhat.com>
2023-11-01 16:13:58 +01:00

929 lines
29 KiB
C

/*
* QEMU PAPR Storage Class Memory Interfaces
*
* Copyright (c) 2019-2020, IBM Corporation.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "qemu/osdep.h"
#include "qemu/cutils.h"
#include "qapi/error.h"
#include "hw/ppc/spapr_drc.h"
#include "hw/ppc/spapr_nvdimm.h"
#include "hw/mem/nvdimm.h"
#include "qemu/nvdimm-utils.h"
#include "hw/ppc/fdt.h"
#include "qemu/range.h"
#include "hw/ppc/spapr_numa.h"
#include "block/thread-pool.h"
#include "migration/vmstate.h"
#include "qemu/pmem.h"
#include "hw/qdev-properties.h"
/* DIMM health bitmap bitmap indicators. Taken from kernel's papr_scm.c */
/* SCM device is unable to persist memory contents */
#define PAPR_PMEM_UNARMED PPC_BIT(0)
/*
* The nvdimm size should be aligned to SCM block size.
* The SCM block size should be aligned to SPAPR_MEMORY_BLOCK_SIZE
* in order to have SCM regions not to overlap with dimm memory regions.
* The SCM devices can have variable block sizes. For now, fixing the
* block size to the minimum value.
*/
#define SPAPR_MINIMUM_SCM_BLOCK_SIZE SPAPR_MEMORY_BLOCK_SIZE
/* Have an explicit check for alignment */
QEMU_BUILD_BUG_ON(SPAPR_MINIMUM_SCM_BLOCK_SIZE % SPAPR_MEMORY_BLOCK_SIZE);
#define TYPE_SPAPR_NVDIMM "spapr-nvdimm"
OBJECT_DECLARE_TYPE(SpaprNVDIMMDevice, SPAPRNVDIMMClass, SPAPR_NVDIMM)
struct SPAPRNVDIMMClass {
/* private */
NVDIMMClass parent_class;
/* public */
void (*realize)(NVDIMMDevice *dimm, Error **errp);
void (*unrealize)(NVDIMMDevice *dimm, Error **errp);
};
bool spapr_nvdimm_validate(HotplugHandler *hotplug_dev, NVDIMMDevice *nvdimm,
uint64_t size, Error **errp)
{
const MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
const MachineState *ms = MACHINE(hotplug_dev);
PCDIMMDevice *dimm = PC_DIMM(nvdimm);
MemoryRegion *mr = host_memory_backend_get_memory(dimm->hostmem);
g_autofree char *uuidstr = NULL;
QemuUUID uuid;
int ret;
if (!mc->nvdimm_supported) {
error_setg(errp, "NVDIMM hotplug not supported for this machine");
return false;
}
if (!ms->nvdimms_state->is_enabled) {
error_setg(errp, "nvdimm device found but 'nvdimm=off' was set");
return false;
}
if (object_property_get_int(OBJECT(nvdimm), NVDIMM_LABEL_SIZE_PROP,
&error_abort) == 0) {
error_setg(errp, "PAPR requires NVDIMM devices to have label-size set");
return false;
}
if (size % SPAPR_MINIMUM_SCM_BLOCK_SIZE) {
error_setg(errp, "PAPR requires NVDIMM memory size (excluding label)"
" to be a multiple of %" PRIu64 "MB",
SPAPR_MINIMUM_SCM_BLOCK_SIZE / MiB);
return false;
}
uuidstr = object_property_get_str(OBJECT(nvdimm), NVDIMM_UUID_PROP,
&error_abort);
ret = qemu_uuid_parse(uuidstr, &uuid);
g_assert(!ret);
if (qemu_uuid_is_null(&uuid)) {
error_setg(errp, "NVDIMM device requires the uuid to be set");
return false;
}
if (object_dynamic_cast(OBJECT(nvdimm), TYPE_SPAPR_NVDIMM) &&
(memory_region_get_fd(mr) < 0)) {
error_setg(errp, "spapr-nvdimm device requires the "
"memdev %s to be of memory-backend-file type",
object_get_canonical_path_component(OBJECT(dimm->hostmem)));
return false;
}
return true;
}
void spapr_add_nvdimm(DeviceState *dev, uint64_t slot)
{
SpaprDrc *drc;
bool hotplugged = spapr_drc_hotplugged(dev);
drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PMEM, slot);
g_assert(drc);
/*
* pc_dimm_get_free_slot() provided a free slot at pre-plug. The
* corresponding DRC is thus assumed to be attachable.
*/
spapr_drc_attach(drc, dev);
if (hotplugged) {
spapr_hotplug_req_add_by_index(drc);
}
}
static int spapr_dt_nvdimm(SpaprMachineState *spapr, void *fdt,
int parent_offset, NVDIMMDevice *nvdimm)
{
int child_offset;
char *buf;
SpaprDrc *drc;
uint32_t drc_idx;
uint32_t node = object_property_get_uint(OBJECT(nvdimm), PC_DIMM_NODE_PROP,
&error_abort);
uint64_t slot = object_property_get_uint(OBJECT(nvdimm), PC_DIMM_SLOT_PROP,
&error_abort);
uint64_t lsize = nvdimm->label_size;
uint64_t size = object_property_get_int(OBJECT(nvdimm), PC_DIMM_SIZE_PROP,
NULL);
drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PMEM, slot);
g_assert(drc);
drc_idx = spapr_drc_index(drc);
buf = g_strdup_printf("ibm,pmemory@%x", drc_idx);
child_offset = fdt_add_subnode(fdt, parent_offset, buf);
g_free(buf);
_FDT(child_offset);
_FDT((fdt_setprop_cell(fdt, child_offset, "reg", drc_idx)));
_FDT((fdt_setprop_string(fdt, child_offset, "compatible", "ibm,pmemory")));
_FDT((fdt_setprop_string(fdt, child_offset, "device_type", "ibm,pmemory")));
spapr_numa_write_associativity_dt(spapr, fdt, child_offset, node);
buf = qemu_uuid_unparse_strdup(&nvdimm->uuid);
_FDT((fdt_setprop_string(fdt, child_offset, "ibm,unit-guid", buf)));
g_free(buf);
_FDT((fdt_setprop_cell(fdt, child_offset, "ibm,my-drc-index", drc_idx)));
_FDT((fdt_setprop_u64(fdt, child_offset, "ibm,block-size",
SPAPR_MINIMUM_SCM_BLOCK_SIZE)));
_FDT((fdt_setprop_u64(fdt, child_offset, "ibm,number-of-blocks",
size / SPAPR_MINIMUM_SCM_BLOCK_SIZE)));
_FDT((fdt_setprop_cell(fdt, child_offset, "ibm,metadata-size", lsize)));
_FDT((fdt_setprop_string(fdt, child_offset, "ibm,pmem-application",
"operating-system")));
_FDT(fdt_setprop(fdt, child_offset, "ibm,cache-flush-required", NULL, 0));
if (object_dynamic_cast(OBJECT(nvdimm), TYPE_SPAPR_NVDIMM)) {
bool is_pmem = false, pmem_override = false;
PCDIMMDevice *dimm = PC_DIMM(nvdimm);
HostMemoryBackend *hostmem = dimm->hostmem;
is_pmem = object_property_get_bool(OBJECT(hostmem), "pmem", NULL);
pmem_override = object_property_get_bool(OBJECT(nvdimm),
"pmem-override", NULL);
if (!is_pmem || pmem_override) {
_FDT(fdt_setprop(fdt, child_offset, "ibm,hcall-flush-required",
NULL, 0));
}
}
return child_offset;
}
int spapr_pmem_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
void *fdt, int *fdt_start_offset, Error **errp)
{
NVDIMMDevice *nvdimm = NVDIMM(drc->dev);
*fdt_start_offset = spapr_dt_nvdimm(spapr, fdt, 0, nvdimm);
return 0;
}
void spapr_dt_persistent_memory(SpaprMachineState *spapr, void *fdt)
{
int offset = fdt_subnode_offset(fdt, 0, "ibm,persistent-memory");
GSList *iter, *nvdimms = nvdimm_get_device_list();
if (offset < 0) {
offset = fdt_add_subnode(fdt, 0, "ibm,persistent-memory");
_FDT(offset);
_FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0x1)));
_FDT((fdt_setprop_cell(fdt, offset, "#size-cells", 0x0)));
_FDT((fdt_setprop_string(fdt, offset, "device_type",
"ibm,persistent-memory")));
}
/* Create DT entries for cold plugged NVDIMM devices */
for (iter = nvdimms; iter; iter = iter->next) {
NVDIMMDevice *nvdimm = iter->data;
spapr_dt_nvdimm(spapr, fdt, offset, nvdimm);
}
g_slist_free(nvdimms);
return;
}
static target_ulong h_scm_read_metadata(PowerPCCPU *cpu,
SpaprMachineState *spapr,
target_ulong opcode,
target_ulong *args)
{
uint32_t drc_index = args[0];
uint64_t offset = args[1];
uint64_t len = args[2];
SpaprDrc *drc = spapr_drc_by_index(drc_index);
NVDIMMDevice *nvdimm;
NVDIMMClass *ddc;
uint64_t data = 0;
uint8_t buf[8] = { 0 };
if (!drc || !drc->dev ||
spapr_drc_type(drc) != SPAPR_DR_CONNECTOR_TYPE_PMEM) {
return H_PARAMETER;
}
if (len != 1 && len != 2 &&
len != 4 && len != 8) {
return H_P3;
}
nvdimm = NVDIMM(drc->dev);
if ((offset + len < offset) ||
(nvdimm->label_size < len + offset)) {
return H_P2;
}
ddc = NVDIMM_GET_CLASS(nvdimm);
ddc->read_label_data(nvdimm, buf, len, offset);
switch (len) {
case 1:
data = ldub_p(buf);
break;
case 2:
data = lduw_be_p(buf);
break;
case 4:
data = ldl_be_p(buf);
break;
case 8:
data = ldq_be_p(buf);
break;
default:
g_assert_not_reached();
}
args[0] = data;
return H_SUCCESS;
}
static target_ulong h_scm_write_metadata(PowerPCCPU *cpu,
SpaprMachineState *spapr,
target_ulong opcode,
target_ulong *args)
{
uint32_t drc_index = args[0];
uint64_t offset = args[1];
uint64_t data = args[2];
uint64_t len = args[3];
SpaprDrc *drc = spapr_drc_by_index(drc_index);
NVDIMMDevice *nvdimm;
NVDIMMClass *ddc;
uint8_t buf[8] = { 0 };
if (!drc || !drc->dev ||
spapr_drc_type(drc) != SPAPR_DR_CONNECTOR_TYPE_PMEM) {
return H_PARAMETER;
}
if (len != 1 && len != 2 &&
len != 4 && len != 8) {
return H_P4;
}
nvdimm = NVDIMM(drc->dev);
if ((offset + len < offset) ||
(nvdimm->label_size < len + offset) ||
nvdimm->readonly) {
return H_P2;
}
switch (len) {
case 1:
if (data & 0xffffffffffffff00) {
return H_P2;
}
stb_p(buf, data);
break;
case 2:
if (data & 0xffffffffffff0000) {
return H_P2;
}
stw_be_p(buf, data);
break;
case 4:
if (data & 0xffffffff00000000) {
return H_P2;
}
stl_be_p(buf, data);
break;
case 8:
stq_be_p(buf, data);
break;
default:
g_assert_not_reached();
}
ddc = NVDIMM_GET_CLASS(nvdimm);
ddc->write_label_data(nvdimm, buf, len, offset);
return H_SUCCESS;
}
static target_ulong h_scm_bind_mem(PowerPCCPU *cpu, SpaprMachineState *spapr,
target_ulong opcode, target_ulong *args)
{
uint32_t drc_index = args[0];
uint64_t starting_idx = args[1];
uint64_t no_of_scm_blocks_to_bind = args[2];
uint64_t target_logical_mem_addr = args[3];
uint64_t continue_token = args[4];
uint64_t size;
uint64_t total_no_of_scm_blocks;
SpaprDrc *drc = spapr_drc_by_index(drc_index);
hwaddr addr;
NVDIMMDevice *nvdimm;
if (!drc || !drc->dev ||
spapr_drc_type(drc) != SPAPR_DR_CONNECTOR_TYPE_PMEM) {
return H_PARAMETER;
}
/*
* Currently continue token should be zero qemu has already bound
* everything and this hcall doesn't return H_BUSY.
*/
if (continue_token > 0) {
return H_P5;
}
/* Currently qemu assigns the address. */
if (target_logical_mem_addr != 0xffffffffffffffff) {
return H_OVERLAP;
}
nvdimm = NVDIMM(drc->dev);
size = object_property_get_uint(OBJECT(nvdimm),
PC_DIMM_SIZE_PROP, &error_abort);
total_no_of_scm_blocks = size / SPAPR_MINIMUM_SCM_BLOCK_SIZE;
if (starting_idx > total_no_of_scm_blocks) {
return H_P2;
}
if (((starting_idx + no_of_scm_blocks_to_bind) < starting_idx) ||
((starting_idx + no_of_scm_blocks_to_bind) > total_no_of_scm_blocks)) {
return H_P3;
}
addr = object_property_get_uint(OBJECT(nvdimm),
PC_DIMM_ADDR_PROP, &error_abort);
addr += starting_idx * SPAPR_MINIMUM_SCM_BLOCK_SIZE;
/* Already bound, Return target logical address in R5 */
args[1] = addr;
args[2] = no_of_scm_blocks_to_bind;
return H_SUCCESS;
}
typedef struct SpaprNVDIMMDeviceFlushState {
uint64_t continue_token;
int64_t hcall_ret;
uint32_t drcidx;
QLIST_ENTRY(SpaprNVDIMMDeviceFlushState) node;
} SpaprNVDIMMDeviceFlushState;
typedef struct SpaprNVDIMMDevice SpaprNVDIMMDevice;
struct SpaprNVDIMMDevice {
/* private */
NVDIMMDevice parent_obj;
bool hcall_flush_required;
uint64_t nvdimm_flush_token;
QLIST_HEAD(, SpaprNVDIMMDeviceFlushState) pending_nvdimm_flush_states;
QLIST_HEAD(, SpaprNVDIMMDeviceFlushState) completed_nvdimm_flush_states;
/* public */
/*
* The 'on' value for this property forced the qemu to enable the hcall
* flush for the nvdimm device even if the backend is a pmem
*/
bool pmem_override;
};
static int flush_worker_cb(void *opaque)
{
SpaprNVDIMMDeviceFlushState *state = opaque;
SpaprDrc *drc = spapr_drc_by_index(state->drcidx);
PCDIMMDevice *dimm;
HostMemoryBackend *backend;
int backend_fd;
g_assert(drc != NULL);
dimm = PC_DIMM(drc->dev);
backend = MEMORY_BACKEND(dimm->hostmem);
backend_fd = memory_region_get_fd(&backend->mr);
if (object_property_get_bool(OBJECT(backend), "pmem", NULL)) {
MemoryRegion *mr = host_memory_backend_get_memory(dimm->hostmem);
void *ptr = memory_region_get_ram_ptr(mr);
size_t size = object_property_get_uint(OBJECT(dimm), PC_DIMM_SIZE_PROP,
NULL);
/* flush pmem backend */
pmem_persist(ptr, size);
} else {
/* flush raw backing image */
if (qemu_fdatasync(backend_fd) < 0) {
error_report("papr_scm: Could not sync nvdimm to backend file: %s",
strerror(errno));
return H_HARDWARE;
}
}
return H_SUCCESS;
}
static void spapr_nvdimm_flush_completion_cb(void *opaque, int hcall_ret)
{
SpaprNVDIMMDeviceFlushState *state = opaque;
SpaprDrc *drc = spapr_drc_by_index(state->drcidx);
SpaprNVDIMMDevice *s_nvdimm;
g_assert(drc != NULL);
s_nvdimm = SPAPR_NVDIMM(drc->dev);
state->hcall_ret = hcall_ret;
QLIST_REMOVE(state, node);
QLIST_INSERT_HEAD(&s_nvdimm->completed_nvdimm_flush_states, state, node);
}
static int spapr_nvdimm_flush_post_load(void *opaque, int version_id)
{
SpaprNVDIMMDevice *s_nvdimm = (SpaprNVDIMMDevice *)opaque;
SpaprNVDIMMDeviceFlushState *state;
HostMemoryBackend *backend = MEMORY_BACKEND(PC_DIMM(s_nvdimm)->hostmem);
bool is_pmem = object_property_get_bool(OBJECT(backend), "pmem", NULL);
bool pmem_override = object_property_get_bool(OBJECT(s_nvdimm),
"pmem-override", NULL);
bool dest_hcall_flush_required = pmem_override || !is_pmem;
if (!s_nvdimm->hcall_flush_required && dest_hcall_flush_required) {
error_report("The file backend for the spapr-nvdimm device %s at "
"source is a pmem, use pmem=on and pmem-override=off to "
"continue.", DEVICE(s_nvdimm)->id);
return -EINVAL;
}
if (s_nvdimm->hcall_flush_required && !dest_hcall_flush_required) {
error_report("The guest expects hcall-flush support for the "
"spapr-nvdimm device %s, use pmem_override=on to "
"continue.", DEVICE(s_nvdimm)->id);
return -EINVAL;
}
QLIST_FOREACH(state, &s_nvdimm->pending_nvdimm_flush_states, node) {
thread_pool_submit_aio(flush_worker_cb, state,
spapr_nvdimm_flush_completion_cb, state);
}
return 0;
}
static const VMStateDescription vmstate_spapr_nvdimm_flush_state = {
.name = "spapr_nvdimm_flush_state",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT64(continue_token, SpaprNVDIMMDeviceFlushState),
VMSTATE_INT64(hcall_ret, SpaprNVDIMMDeviceFlushState),
VMSTATE_UINT32(drcidx, SpaprNVDIMMDeviceFlushState),
VMSTATE_END_OF_LIST()
},
};
const VMStateDescription vmstate_spapr_nvdimm_states = {
.name = "spapr_nvdimm_states",
.version_id = 1,
.minimum_version_id = 1,
.post_load = spapr_nvdimm_flush_post_load,
.fields = (VMStateField[]) {
VMSTATE_BOOL(hcall_flush_required, SpaprNVDIMMDevice),
VMSTATE_UINT64(nvdimm_flush_token, SpaprNVDIMMDevice),
VMSTATE_QLIST_V(completed_nvdimm_flush_states, SpaprNVDIMMDevice, 1,
vmstate_spapr_nvdimm_flush_state,
SpaprNVDIMMDeviceFlushState, node),
VMSTATE_QLIST_V(pending_nvdimm_flush_states, SpaprNVDIMMDevice, 1,
vmstate_spapr_nvdimm_flush_state,
SpaprNVDIMMDeviceFlushState, node),
VMSTATE_END_OF_LIST()
},
};
/*
* Assign a token and reserve it for the new flush state.
*/
static SpaprNVDIMMDeviceFlushState *spapr_nvdimm_init_new_flush_state(
SpaprNVDIMMDevice *spapr_nvdimm)
{
SpaprNVDIMMDeviceFlushState *state;
state = g_malloc0(sizeof(*state));
spapr_nvdimm->nvdimm_flush_token++;
/* Token zero is presumed as no job pending. Assert on overflow to zero */
g_assert(spapr_nvdimm->nvdimm_flush_token != 0);
state->continue_token = spapr_nvdimm->nvdimm_flush_token;
QLIST_INSERT_HEAD(&spapr_nvdimm->pending_nvdimm_flush_states, state, node);
return state;
}
/*
* spapr_nvdimm_finish_flushes
* Waits for all pending flush requests to complete
* their execution and free the states
*/
void spapr_nvdimm_finish_flushes(void)
{
SpaprNVDIMMDeviceFlushState *state, *next;
GSList *list, *nvdimms;
/*
* Called on reset path, the main loop thread which calls
* the pending BHs has gotten out running in the reset path,
* finally reaching here. Other code path being guest
* h_client_architecture_support, that's early boot up.
*/
nvdimms = nvdimm_get_device_list();
for (list = nvdimms; list; list = list->next) {
NVDIMMDevice *nvdimm = list->data;
if (object_dynamic_cast(OBJECT(nvdimm), TYPE_SPAPR_NVDIMM)) {
SpaprNVDIMMDevice *s_nvdimm = SPAPR_NVDIMM(nvdimm);
while (!QLIST_EMPTY(&s_nvdimm->pending_nvdimm_flush_states)) {
aio_poll(qemu_get_aio_context(), true);
}
QLIST_FOREACH_SAFE(state, &s_nvdimm->completed_nvdimm_flush_states,
node, next) {
QLIST_REMOVE(state, node);
g_free(state);
}
}
}
g_slist_free(nvdimms);
}
/*
* spapr_nvdimm_get_flush_status
* Fetches the status of the hcall worker and returns
* H_LONG_BUSY_ORDER_10_MSEC if the worker is still running.
*/
static int spapr_nvdimm_get_flush_status(SpaprNVDIMMDevice *s_nvdimm,
uint64_t token)
{
SpaprNVDIMMDeviceFlushState *state, *node;
QLIST_FOREACH(state, &s_nvdimm->pending_nvdimm_flush_states, node) {
if (state->continue_token == token) {
return H_LONG_BUSY_ORDER_10_MSEC;
}
}
QLIST_FOREACH_SAFE(state, &s_nvdimm->completed_nvdimm_flush_states,
node, node) {
if (state->continue_token == token) {
int ret = state->hcall_ret;
QLIST_REMOVE(state, node);
g_free(state);
return ret;
}
}
/* If not found in complete list too, invalid token */
return H_P2;
}
/*
* H_SCM_FLUSH
* Input: drc_index, continue-token
* Out: continue-token
* Return Value: H_SUCCESS, H_Parameter, H_P2, H_LONG_BUSY_ORDER_10_MSEC,
* H_UNSUPPORTED
*
* Given a DRC Index Flush the data to backend NVDIMM device. The hcall returns
* H_LONG_BUSY_ORDER_10_MSEC when the flush takes longer time and the hcall
* needs to be issued multiple times in order to be completely serviced. The
* continue-token from the output to be passed in the argument list of
* subsequent hcalls until the hcall is completely serviced at which point
* H_SUCCESS or other error is returned.
*/
static target_ulong h_scm_flush(PowerPCCPU *cpu, SpaprMachineState *spapr,
target_ulong opcode, target_ulong *args)
{
int ret;
uint32_t drc_index = args[0];
uint64_t continue_token = args[1];
SpaprDrc *drc = spapr_drc_by_index(drc_index);
PCDIMMDevice *dimm;
HostMemoryBackend *backend = NULL;
SpaprNVDIMMDeviceFlushState *state;
int fd;
if (!drc || !drc->dev ||
spapr_drc_type(drc) != SPAPR_DR_CONNECTOR_TYPE_PMEM) {
return H_PARAMETER;
}
dimm = PC_DIMM(drc->dev);
if (!object_dynamic_cast(OBJECT(dimm), TYPE_SPAPR_NVDIMM)) {
return H_PARAMETER;
}
if (continue_token == 0) {
bool is_pmem = false, pmem_override = false;
backend = MEMORY_BACKEND(dimm->hostmem);
fd = memory_region_get_fd(&backend->mr);
if (fd < 0) {
return H_UNSUPPORTED;
}
is_pmem = object_property_get_bool(OBJECT(backend), "pmem", NULL);
pmem_override = object_property_get_bool(OBJECT(dimm),
"pmem-override", NULL);
if (is_pmem && !pmem_override) {
return H_UNSUPPORTED;
}
state = spapr_nvdimm_init_new_flush_state(SPAPR_NVDIMM(dimm));
if (!state) {
return H_HARDWARE;
}
state->drcidx = drc_index;
thread_pool_submit_aio(flush_worker_cb, state,
spapr_nvdimm_flush_completion_cb, state);
continue_token = state->continue_token;
}
ret = spapr_nvdimm_get_flush_status(SPAPR_NVDIMM(dimm), continue_token);
if (H_IS_LONG_BUSY(ret)) {
args[0] = continue_token;
}
return ret;
}
static target_ulong h_scm_unbind_mem(PowerPCCPU *cpu, SpaprMachineState *spapr,
target_ulong opcode, target_ulong *args)
{
uint32_t drc_index = args[0];
uint64_t starting_scm_logical_addr = args[1];
uint64_t no_of_scm_blocks_to_unbind = args[2];
uint64_t continue_token = args[3];
uint64_t size_to_unbind;
Range blockrange = range_empty;
Range nvdimmrange = range_empty;
SpaprDrc *drc = spapr_drc_by_index(drc_index);
NVDIMMDevice *nvdimm;
uint64_t size, addr;
if (!drc || !drc->dev ||
spapr_drc_type(drc) != SPAPR_DR_CONNECTOR_TYPE_PMEM) {
return H_PARAMETER;
}
/* continue_token should be zero as this hcall doesn't return H_BUSY. */
if (continue_token > 0) {
return H_P4;
}
/* Check if starting_scm_logical_addr is block aligned */
if (!QEMU_IS_ALIGNED(starting_scm_logical_addr,
SPAPR_MINIMUM_SCM_BLOCK_SIZE)) {
return H_P2;
}
size_to_unbind = no_of_scm_blocks_to_unbind * SPAPR_MINIMUM_SCM_BLOCK_SIZE;
if (no_of_scm_blocks_to_unbind == 0 || no_of_scm_blocks_to_unbind !=
size_to_unbind / SPAPR_MINIMUM_SCM_BLOCK_SIZE) {
return H_P3;
}
nvdimm = NVDIMM(drc->dev);
size = object_property_get_int(OBJECT(nvdimm), PC_DIMM_SIZE_PROP,
&error_abort);
addr = object_property_get_int(OBJECT(nvdimm), PC_DIMM_ADDR_PROP,
&error_abort);
range_init_nofail(&nvdimmrange, addr, size);
range_init_nofail(&blockrange, starting_scm_logical_addr, size_to_unbind);
if (!range_contains_range(&nvdimmrange, &blockrange)) {
return H_P3;
}
args[1] = no_of_scm_blocks_to_unbind;
/* let unplug take care of actual unbind */
return H_SUCCESS;
}
#define H_UNBIND_SCOPE_ALL 0x1
#define H_UNBIND_SCOPE_DRC 0x2
static target_ulong h_scm_unbind_all(PowerPCCPU *cpu, SpaprMachineState *spapr,
target_ulong opcode, target_ulong *args)
{
uint64_t target_scope = args[0];
uint32_t drc_index = args[1];
uint64_t continue_token = args[2];
NVDIMMDevice *nvdimm;
uint64_t size;
uint64_t no_of_scm_blocks_unbound = 0;
/* continue_token should be zero as this hcall doesn't return H_BUSY. */
if (continue_token > 0) {
return H_P4;
}
if (target_scope == H_UNBIND_SCOPE_DRC) {
SpaprDrc *drc = spapr_drc_by_index(drc_index);
if (!drc || !drc->dev ||
spapr_drc_type(drc) != SPAPR_DR_CONNECTOR_TYPE_PMEM) {
return H_P2;
}
nvdimm = NVDIMM(drc->dev);
size = object_property_get_int(OBJECT(nvdimm), PC_DIMM_SIZE_PROP,
&error_abort);
no_of_scm_blocks_unbound = size / SPAPR_MINIMUM_SCM_BLOCK_SIZE;
} else if (target_scope == H_UNBIND_SCOPE_ALL) {
GSList *list, *nvdimms;
nvdimms = nvdimm_get_device_list();
for (list = nvdimms; list; list = list->next) {
nvdimm = list->data;
size = object_property_get_int(OBJECT(nvdimm), PC_DIMM_SIZE_PROP,
&error_abort);
no_of_scm_blocks_unbound += size / SPAPR_MINIMUM_SCM_BLOCK_SIZE;
}
g_slist_free(nvdimms);
} else {
return H_PARAMETER;
}
args[1] = no_of_scm_blocks_unbound;
/* let unplug take care of actual unbind */
return H_SUCCESS;
}
static target_ulong h_scm_health(PowerPCCPU *cpu, SpaprMachineState *spapr,
target_ulong opcode, target_ulong *args)
{
NVDIMMDevice *nvdimm;
uint64_t hbitmap = 0;
uint32_t drc_index = args[0];
SpaprDrc *drc = spapr_drc_by_index(drc_index);
const uint64_t hbitmap_mask = PAPR_PMEM_UNARMED;
/* Ensure that the drc is valid & is valid PMEM dimm and is plugged in */
if (!drc || !drc->dev ||
spapr_drc_type(drc) != SPAPR_DR_CONNECTOR_TYPE_PMEM) {
return H_PARAMETER;
}
nvdimm = NVDIMM(drc->dev);
/* Update if the nvdimm is unarmed and send its status via health bitmaps */
if (object_property_get_bool(OBJECT(nvdimm), NVDIMM_UNARMED_PROP, NULL)) {
hbitmap |= PAPR_PMEM_UNARMED;
}
/* Update the out args with health bitmap/mask */
args[0] = hbitmap;
args[1] = hbitmap_mask;
return H_SUCCESS;
}
static void spapr_scm_register_types(void)
{
/* qemu/scm specific hcalls */
spapr_register_hypercall(H_SCM_READ_METADATA, h_scm_read_metadata);
spapr_register_hypercall(H_SCM_WRITE_METADATA, h_scm_write_metadata);
spapr_register_hypercall(H_SCM_BIND_MEM, h_scm_bind_mem);
spapr_register_hypercall(H_SCM_UNBIND_MEM, h_scm_unbind_mem);
spapr_register_hypercall(H_SCM_UNBIND_ALL, h_scm_unbind_all);
spapr_register_hypercall(H_SCM_HEALTH, h_scm_health);
spapr_register_hypercall(H_SCM_FLUSH, h_scm_flush);
}
type_init(spapr_scm_register_types)
static void spapr_nvdimm_realize(NVDIMMDevice *dimm, Error **errp)
{
SpaprNVDIMMDevice *s_nvdimm = SPAPR_NVDIMM(dimm);
HostMemoryBackend *backend = MEMORY_BACKEND(PC_DIMM(dimm)->hostmem);
bool is_pmem = object_property_get_bool(OBJECT(backend), "pmem", NULL);
bool pmem_override = object_property_get_bool(OBJECT(dimm), "pmem-override",
NULL);
if (!is_pmem || pmem_override) {
s_nvdimm->hcall_flush_required = true;
}
vmstate_register_any(NULL, &vmstate_spapr_nvdimm_states, dimm);
}
static void spapr_nvdimm_unrealize(NVDIMMDevice *dimm)
{
vmstate_unregister(NULL, &vmstate_spapr_nvdimm_states, dimm);
}
static Property spapr_nvdimm_properties[] = {
#ifdef CONFIG_LIBPMEM
DEFINE_PROP_BOOL("pmem-override", SpaprNVDIMMDevice, pmem_override, false),
#endif
DEFINE_PROP_END_OF_LIST(),
};
static void spapr_nvdimm_class_init(ObjectClass *oc, void *data)
{
DeviceClass *dc = DEVICE_CLASS(oc);
NVDIMMClass *nvc = NVDIMM_CLASS(oc);
nvc->realize = spapr_nvdimm_realize;
nvc->unrealize = spapr_nvdimm_unrealize;
device_class_set_props(dc, spapr_nvdimm_properties);
}
static void spapr_nvdimm_init(Object *obj)
{
SpaprNVDIMMDevice *s_nvdimm = SPAPR_NVDIMM(obj);
s_nvdimm->hcall_flush_required = false;
QLIST_INIT(&s_nvdimm->pending_nvdimm_flush_states);
QLIST_INIT(&s_nvdimm->completed_nvdimm_flush_states);
}
static TypeInfo spapr_nvdimm_info = {
.name = TYPE_SPAPR_NVDIMM,
.parent = TYPE_NVDIMM,
.class_init = spapr_nvdimm_class_init,
.class_size = sizeof(SPAPRNVDIMMClass),
.instance_size = sizeof(SpaprNVDIMMDevice),
.instance_init = spapr_nvdimm_init,
};
static void spapr_nvdimm_register_types(void)
{
type_register_static(&spapr_nvdimm_info);
}
type_init(spapr_nvdimm_register_types)