qemu/target/arm/cpregs.h
Richard Henderson 696ba37718 target/arm: Handle cpreg registration for missing EL
More gracefully handle cpregs when EL2 and/or EL3 are missing.
If the reg is entirely inaccessible, do not register it at all.
If the reg is for EL2, and EL3 is present but EL2 is not,
either discard, squash to res0, const, or keep unchanged.

Per rule RJFFP, mark the 4 aarch32 hypervisor access registers
with ARM_CP_EL3_NO_EL2_KEEP, and mark all of the EL2 address
translation and tlb invalidation "regs" ARM_CP_EL3_NO_EL2_UNDEF.
Mark the 2 virtualization processor id regs ARM_CP_EL3_NO_EL2_C_NZ.

This will simplify cpreg registration for conditional arm features.

Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20220506180242.216785-2-richard.henderson@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
2022-05-09 11:47:53 +01:00

465 lines
18 KiB
C

/*
* QEMU ARM CP Register access and descriptions
*
* Copyright (c) 2022 Linaro Ltd
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see
* <http://www.gnu.org/licenses/gpl-2.0.html>
*/
#ifndef TARGET_ARM_CPREGS_H
#define TARGET_ARM_CPREGS_H
/*
* ARMCPRegInfo type field bits:
*/
enum {
/*
* Register must be handled specially during translation.
* The method is one of the values below:
*/
ARM_CP_SPECIAL_MASK = 0x000f,
/* Special: no change to PE state: writes ignored, reads ignored. */
ARM_CP_NOP = 0x0001,
/* Special: sysreg is WFI, for v5 and v6. */
ARM_CP_WFI = 0x0002,
/* Special: sysreg is NZCV. */
ARM_CP_NZCV = 0x0003,
/* Special: sysreg is CURRENTEL. */
ARM_CP_CURRENTEL = 0x0004,
/* Special: sysreg is DC ZVA or similar. */
ARM_CP_DC_ZVA = 0x0005,
ARM_CP_DC_GVA = 0x0006,
ARM_CP_DC_GZVA = 0x0007,
/* Flag: reads produce resetvalue; writes ignored. */
ARM_CP_CONST = 1 << 4,
/* Flag: For ARM_CP_STATE_AA32, sysreg is 64-bit. */
ARM_CP_64BIT = 1 << 5,
/*
* Flag: TB should not be ended after a write to this register
* (the default is that the TB ends after cp writes).
*/
ARM_CP_SUPPRESS_TB_END = 1 << 6,
/*
* Flag: Permit a register definition to override a previous definition
* for the same (cp, is64, crn, crm, opc1, opc2) tuple: either the new
* or the old must have the ARM_CP_OVERRIDE bit set.
*/
ARM_CP_OVERRIDE = 1 << 7,
/*
* Flag: Register is an alias view of some underlying state which is also
* visible via another register, and that the other register is handling
* migration and reset; registers marked ARM_CP_ALIAS will not be migrated
* but may have their state set by syncing of register state from KVM.
*/
ARM_CP_ALIAS = 1 << 8,
/*
* Flag: Register does I/O and therefore its accesses need to be marked
* with gen_io_start() and also end the TB. In particular, registers which
* implement clocks or timers require this.
*/
ARM_CP_IO = 1 << 9,
/*
* Flag: Register has no underlying state and does not support raw access
* for state saving/loading; it will not be used for either migration or
* KVM state synchronization. Typically this is for "registers" which are
* actually used as instructions for cache maintenance and so on.
*/
ARM_CP_NO_RAW = 1 << 10,
/*
* Flag: The read or write hook might raise an exception; the generated
* code will synchronize the CPU state before calling the hook so that it
* is safe for the hook to call raise_exception().
*/
ARM_CP_RAISES_EXC = 1 << 11,
/*
* Flag: Writes to the sysreg might change the exception level - typically
* on older ARM chips. For those cases we need to re-read the new el when
* recomputing the translation flags.
*/
ARM_CP_NEWEL = 1 << 12,
/*
* Flag: Access check for this sysreg is identical to accessing FPU state
* from an instruction: use translation fp_access_check().
*/
ARM_CP_FPU = 1 << 13,
/*
* Flag: Access check for this sysreg is identical to accessing SVE state
* from an instruction: use translation sve_access_check().
*/
ARM_CP_SVE = 1 << 14,
/* Flag: Do not expose in gdb sysreg xml. */
ARM_CP_NO_GDB = 1 << 15,
/*
* Flags: If EL3 but not EL2...
* - UNDEF: discard the cpreg,
* - KEEP: retain the cpreg as is,
* - C_NZ: set const on the cpreg, but retain resetvalue,
* - else: set const on the cpreg, zero resetvalue, aka RES0.
* See rule RJFFP in section D1.1.3 of DDI0487H.a.
*/
ARM_CP_EL3_NO_EL2_UNDEF = 1 << 16,
ARM_CP_EL3_NO_EL2_KEEP = 1 << 17,
ARM_CP_EL3_NO_EL2_C_NZ = 1 << 18,
};
/*
* Valid values for ARMCPRegInfo state field, indicating which of
* the AArch32 and AArch64 execution states this register is visible in.
* If the reginfo doesn't explicitly specify then it is AArch32 only.
* If the reginfo is declared to be visible in both states then a second
* reginfo is synthesised for the AArch32 view of the AArch64 register,
* such that the AArch32 view is the lower 32 bits of the AArch64 one.
* Note that we rely on the values of these enums as we iterate through
* the various states in some places.
*/
typedef enum {
ARM_CP_STATE_AA32 = 0,
ARM_CP_STATE_AA64 = 1,
ARM_CP_STATE_BOTH = 2,
} CPState;
/*
* ARM CP register secure state flags. These flags identify security state
* attributes for a given CP register entry.
* The existence of both or neither secure and non-secure flags indicates that
* the register has both a secure and non-secure hash entry. A single one of
* these flags causes the register to only be hashed for the specified
* security state.
* Although definitions may have any combination of the S/NS bits, each
* registered entry will only have one to identify whether the entry is secure
* or non-secure.
*/
typedef enum {
ARM_CP_SECSTATE_BOTH = 0, /* define one cpreg for each secstate */
ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */
ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */
} CPSecureState;
/*
* Access rights:
* We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
* defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
* PL2 (hyp). The other level which has Read and Write bits is Secure PL1
* (ie any of the privileged modes in Secure state, or Monitor mode).
* If a register is accessible in one privilege level it's always accessible
* in higher privilege levels too. Since "Secure PL1" also follows this rule
* (ie anything visible in PL2 is visible in S-PL1, some things are only
* visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
* terminology a little and call this PL3.
* In AArch64 things are somewhat simpler as the PLx bits line up exactly
* with the ELx exception levels.
*
* If access permissions for a register are more complex than can be
* described with these bits, then use a laxer set of restrictions, and
* do the more restrictive/complex check inside a helper function.
*/
typedef enum {
PL3_R = 0x80,
PL3_W = 0x40,
PL2_R = 0x20 | PL3_R,
PL2_W = 0x10 | PL3_W,
PL1_R = 0x08 | PL2_R,
PL1_W = 0x04 | PL2_W,
PL0_R = 0x02 | PL1_R,
PL0_W = 0x01 | PL1_W,
/*
* For user-mode some registers are accessible to EL0 via a kernel
* trap-and-emulate ABI. In this case we define the read permissions
* as actually being PL0_R. However some bits of any given register
* may still be masked.
*/
#ifdef CONFIG_USER_ONLY
PL0U_R = PL0_R,
#else
PL0U_R = PL1_R,
#endif
PL3_RW = PL3_R | PL3_W,
PL2_RW = PL2_R | PL2_W,
PL1_RW = PL1_R | PL1_W,
PL0_RW = PL0_R | PL0_W,
} CPAccessRights;
typedef enum CPAccessResult {
/* Access is permitted */
CP_ACCESS_OK = 0,
/*
* Combined with one of the following, the low 2 bits indicate the
* target exception level. If 0, the exception is taken to the usual
* target EL (EL1 or PL1 if in EL0, otherwise to the current EL).
*/
CP_ACCESS_EL_MASK = 3,
/*
* Access fails due to a configurable trap or enable which would
* result in a categorized exception syndrome giving information about
* the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
* 0xc or 0x18).
*/
CP_ACCESS_TRAP = (1 << 2),
CP_ACCESS_TRAP_EL2 = CP_ACCESS_TRAP | 2,
CP_ACCESS_TRAP_EL3 = CP_ACCESS_TRAP | 3,
/*
* Access fails and results in an exception syndrome 0x0 ("uncategorized").
* Note that this is not a catch-all case -- the set of cases which may
* result in this failure is specifically defined by the architecture.
*/
CP_ACCESS_TRAP_UNCATEGORIZED = (2 << 2),
CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = CP_ACCESS_TRAP_UNCATEGORIZED | 2,
CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = CP_ACCESS_TRAP_UNCATEGORIZED | 3,
} CPAccessResult;
typedef struct ARMCPRegInfo ARMCPRegInfo;
/*
* Access functions for coprocessor registers. These cannot fail and
* may not raise exceptions.
*/
typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
uint64_t value);
/* Access permission check functions for coprocessor registers. */
typedef CPAccessResult CPAccessFn(CPUARMState *env,
const ARMCPRegInfo *opaque,
bool isread);
/* Hook function for register reset */
typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
#define CP_ANY 0xff
/* Definition of an ARM coprocessor register */
struct ARMCPRegInfo {
/* Name of register (useful mainly for debugging, need not be unique) */
const char *name;
/*
* Location of register: coprocessor number and (crn,crm,opc1,opc2)
* tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
* 'wildcard' field -- any value of that field in the MRC/MCR insn
* will be decoded to this register. The register read and write
* callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
* used by the program, so it is possible to register a wildcard and
* then behave differently on read/write if necessary.
* For 64 bit registers, only crm and opc1 are relevant; crn and opc2
* must both be zero.
* For AArch64-visible registers, opc0 is also used.
* Since there are no "coprocessors" in AArch64, cp is purely used as a
* way to distinguish (for KVM's benefit) guest-visible system registers
* from demuxed ones provided to preserve the "no side effects on
* KVM register read/write from QEMU" semantics. cp==0x13 is guest
* visible (to match KVM's encoding); cp==0 will be converted to
* cp==0x13 when the ARMCPRegInfo is registered, for convenience.
*/
uint8_t cp;
uint8_t crn;
uint8_t crm;
uint8_t opc0;
uint8_t opc1;
uint8_t opc2;
/* Execution state in which this register is visible: ARM_CP_STATE_* */
CPState state;
/* Register type: ARM_CP_* bits/values */
int type;
/* Access rights: PL*_[RW] */
CPAccessRights access;
/* Security state: ARM_CP_SECSTATE_* bits/values */
CPSecureState secure;
/*
* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
* this register was defined: can be used to hand data through to the
* register read/write functions, since they are passed the ARMCPRegInfo*.
*/
void *opaque;
/*
* Value of this register, if it is ARM_CP_CONST. Otherwise, if
* fieldoffset is non-zero, the reset value of the register.
*/
uint64_t resetvalue;
/*
* Offset of the field in CPUARMState for this register.
* This is not needed if either:
* 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
* 2. both readfn and writefn are specified
*/
ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
/*
* Offsets of the secure and non-secure fields in CPUARMState for the
* register if it is banked. These fields are only used during the static
* registration of a register. During hashing the bank associated
* with a given security state is copied to fieldoffset which is used from
* there on out.
*
* It is expected that register definitions use either fieldoffset or
* bank_fieldoffsets in the definition but not both. It is also expected
* that both bank offsets are set when defining a banked register. This
* use indicates that a register is banked.
*/
ptrdiff_t bank_fieldoffsets[2];
/*
* Function for making any access checks for this register in addition to
* those specified by the 'access' permissions bits. If NULL, no extra
* checks required. The access check is performed at runtime, not at
* translate time.
*/
CPAccessFn *accessfn;
/*
* Function for handling reads of this register. If NULL, then reads
* will be done by loading from the offset into CPUARMState specified
* by fieldoffset.
*/
CPReadFn *readfn;
/*
* Function for handling writes of this register. If NULL, then writes
* will be done by writing to the offset into CPUARMState specified
* by fieldoffset.
*/
CPWriteFn *writefn;
/*
* Function for doing a "raw" read; used when we need to copy
* coprocessor state to the kernel for KVM or out for
* migration. This only needs to be provided if there is also a
* readfn and it has side effects (for instance clear-on-read bits).
*/
CPReadFn *raw_readfn;
/*
* Function for doing a "raw" write; used when we need to copy KVM
* kernel coprocessor state into userspace, or for inbound
* migration. This only needs to be provided if there is also a
* writefn and it masks out "unwritable" bits or has write-one-to-clear
* or similar behaviour.
*/
CPWriteFn *raw_writefn;
/*
* Function for resetting the register. If NULL, then reset will be done
* by writing resetvalue to the field specified in fieldoffset. If
* fieldoffset is 0 then no reset will be done.
*/
CPResetFn *resetfn;
/*
* "Original" writefn and readfn.
* For ARMv8.1-VHE register aliases, we overwrite the read/write
* accessor functions of various EL1/EL0 to perform the runtime
* check for which sysreg should actually be modified, and then
* forwards the operation. Before overwriting the accessors,
* the original function is copied here, so that accesses that
* really do go to the EL1/EL0 version proceed normally.
* (The corresponding EL2 register is linked via opaque.)
*/
CPReadFn *orig_readfn;
CPWriteFn *orig_writefn;
};
/*
* Macros which are lvalues for the field in CPUARMState for the
* ARMCPRegInfo *ri.
*/
#define CPREG_FIELD32(env, ri) \
(*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
#define CPREG_FIELD64(env, ri) \
(*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, const ARMCPRegInfo *reg,
void *opaque);
static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
{
define_one_arm_cp_reg_with_opaque(cpu, regs, NULL);
}
void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs,
void *opaque, size_t len);
#define define_arm_cp_regs_with_opaque(CPU, REGS, OPAQUE) \
do { \
QEMU_BUILD_BUG_ON(ARRAY_SIZE(REGS) == 0); \
define_arm_cp_regs_with_opaque_len(CPU, REGS, OPAQUE, \
ARRAY_SIZE(REGS)); \
} while (0)
#define define_arm_cp_regs(CPU, REGS) \
define_arm_cp_regs_with_opaque(CPU, REGS, NULL)
const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
/*
* Definition of an ARM co-processor register as viewed from
* userspace. This is used for presenting sanitised versions of
* registers to userspace when emulating the Linux AArch64 CPU
* ID/feature ABI (advertised as HWCAP_CPUID).
*/
typedef struct ARMCPRegUserSpaceInfo {
/* Name of register */
const char *name;
/* Is the name actually a glob pattern */
bool is_glob;
/* Only some bits are exported to user space */
uint64_t exported_bits;
/* Fixed bits are applied after the mask */
uint64_t fixed_bits;
} ARMCPRegUserSpaceInfo;
void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len,
const ARMCPRegUserSpaceInfo *mods,
size_t mods_len);
#define modify_arm_cp_regs(REGS, MODS) \
do { \
QEMU_BUILD_BUG_ON(ARRAY_SIZE(REGS) == 0); \
QEMU_BUILD_BUG_ON(ARRAY_SIZE(MODS) == 0); \
modify_arm_cp_regs_with_len(REGS, ARRAY_SIZE(REGS), \
MODS, ARRAY_SIZE(MODS)); \
} while (0)
/* CPWriteFn that can be used to implement writes-ignored behaviour */
void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value);
/* CPReadFn that can be used for read-as-zero behaviour */
uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
/*
* CPResetFn that does nothing, for use if no reset is required even
* if fieldoffset is non zero.
*/
void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
/*
* Return true if this reginfo struct's field in the cpu state struct
* is 64 bits wide.
*/
static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
{
return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
}
static inline bool cp_access_ok(int current_el,
const ARMCPRegInfo *ri, int isread)
{
return (ri->access >> ((current_el * 2) + isread)) & 1;
}
/* Raw read of a coprocessor register (as needed for migration, etc) */
uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
#endif /* TARGET_ARM_CPREGS_H */