22437b4de9
Because non-embedded aarch64 is expected to have AdvSIMD enabled, merely double-check with the compiler flags for __ARM_NEON and don't bother with a runtime check. Otherwise, model the loop after the x86 SSE2 function. Use UMAXV for the vector reduction. This is 3 cycles on cortex-a76 and 2 cycles on neoverse-n1. Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org> Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
316 lines
8.6 KiB
C
316 lines
8.6 KiB
C
/*
|
|
* Simple C functions to supplement the C library
|
|
*
|
|
* Copyright (c) 2006 Fabrice Bellard
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
#include "qemu/osdep.h"
|
|
#include "qemu/cutils.h"
|
|
#include "qemu/bswap.h"
|
|
#include "host/cpuinfo.h"
|
|
|
|
typedef bool (*biz_accel_fn)(const void *, size_t);
|
|
|
|
static bool buffer_is_zero_int_lt256(const void *buf, size_t len)
|
|
{
|
|
uint64_t t;
|
|
const uint64_t *p, *e;
|
|
|
|
/*
|
|
* Use unaligned memory access functions to handle
|
|
* the beginning and end of the buffer.
|
|
*/
|
|
if (unlikely(len <= 8)) {
|
|
return (ldl_he_p(buf) | ldl_he_p(buf + len - 4)) == 0;
|
|
}
|
|
|
|
t = ldq_he_p(buf) | ldq_he_p(buf + len - 8);
|
|
p = QEMU_ALIGN_PTR_DOWN(buf + 8, 8);
|
|
e = QEMU_ALIGN_PTR_DOWN(buf + len - 1, 8);
|
|
|
|
/* Read 0 to 31 aligned words from the middle. */
|
|
while (p < e) {
|
|
t |= *p++;
|
|
}
|
|
return t == 0;
|
|
}
|
|
|
|
static bool buffer_is_zero_int_ge256(const void *buf, size_t len)
|
|
{
|
|
/*
|
|
* Use unaligned memory access functions to handle
|
|
* the beginning and end of the buffer.
|
|
*/
|
|
uint64_t t = ldq_he_p(buf) | ldq_he_p(buf + len - 8);
|
|
const uint64_t *p = QEMU_ALIGN_PTR_DOWN(buf + 8, 8);
|
|
const uint64_t *e = QEMU_ALIGN_PTR_DOWN(buf + len - 1, 8);
|
|
|
|
/* Collect a partial block at the tail end. */
|
|
t |= e[-7] | e[-6] | e[-5] | e[-4] | e[-3] | e[-2] | e[-1];
|
|
|
|
/*
|
|
* Loop over 64 byte blocks.
|
|
* With the head and tail removed, e - p >= 30,
|
|
* so the loop must iterate at least 3 times.
|
|
*/
|
|
do {
|
|
if (t) {
|
|
return false;
|
|
}
|
|
t = p[0] | p[1] | p[2] | p[3] | p[4] | p[5] | p[6] | p[7];
|
|
p += 8;
|
|
} while (p < e - 7);
|
|
|
|
return t == 0;
|
|
}
|
|
|
|
#if defined(CONFIG_AVX2_OPT) || defined(__SSE2__)
|
|
#include <immintrin.h>
|
|
|
|
/* Helper for preventing the compiler from reassociating
|
|
chains of binary vector operations. */
|
|
#define SSE_REASSOC_BARRIER(vec0, vec1) asm("" : "+x"(vec0), "+x"(vec1))
|
|
|
|
/* Note that these vectorized functions may assume len >= 256. */
|
|
|
|
static bool __attribute__((target("sse2")))
|
|
buffer_zero_sse2(const void *buf, size_t len)
|
|
{
|
|
/* Unaligned loads at head/tail. */
|
|
__m128i v = *(__m128i_u *)(buf);
|
|
__m128i w = *(__m128i_u *)(buf + len - 16);
|
|
/* Align head/tail to 16-byte boundaries. */
|
|
const __m128i *p = QEMU_ALIGN_PTR_DOWN(buf + 16, 16);
|
|
const __m128i *e = QEMU_ALIGN_PTR_DOWN(buf + len - 1, 16);
|
|
__m128i zero = { 0 };
|
|
|
|
/* Collect a partial block at tail end. */
|
|
v |= e[-1]; w |= e[-2];
|
|
SSE_REASSOC_BARRIER(v, w);
|
|
v |= e[-3]; w |= e[-4];
|
|
SSE_REASSOC_BARRIER(v, w);
|
|
v |= e[-5]; w |= e[-6];
|
|
SSE_REASSOC_BARRIER(v, w);
|
|
v |= e[-7]; v |= w;
|
|
|
|
/*
|
|
* Loop over complete 128-byte blocks.
|
|
* With the head and tail removed, e - p >= 14, so the loop
|
|
* must iterate at least once.
|
|
*/
|
|
do {
|
|
v = _mm_cmpeq_epi8(v, zero);
|
|
if (unlikely(_mm_movemask_epi8(v) != 0xFFFF)) {
|
|
return false;
|
|
}
|
|
v = p[0]; w = p[1];
|
|
SSE_REASSOC_BARRIER(v, w);
|
|
v |= p[2]; w |= p[3];
|
|
SSE_REASSOC_BARRIER(v, w);
|
|
v |= p[4]; w |= p[5];
|
|
SSE_REASSOC_BARRIER(v, w);
|
|
v |= p[6]; w |= p[7];
|
|
SSE_REASSOC_BARRIER(v, w);
|
|
v |= w;
|
|
p += 8;
|
|
} while (p < e - 7);
|
|
|
|
return _mm_movemask_epi8(_mm_cmpeq_epi8(v, zero)) == 0xFFFF;
|
|
}
|
|
|
|
#ifdef CONFIG_AVX2_OPT
|
|
static bool __attribute__((target("avx2")))
|
|
buffer_zero_avx2(const void *buf, size_t len)
|
|
{
|
|
/* Unaligned loads at head/tail. */
|
|
__m256i v = *(__m256i_u *)(buf);
|
|
__m256i w = *(__m256i_u *)(buf + len - 32);
|
|
/* Align head/tail to 32-byte boundaries. */
|
|
const __m256i *p = QEMU_ALIGN_PTR_DOWN(buf + 32, 32);
|
|
const __m256i *e = QEMU_ALIGN_PTR_DOWN(buf + len - 1, 32);
|
|
__m256i zero = { 0 };
|
|
|
|
/* Collect a partial block at tail end. */
|
|
v |= e[-1]; w |= e[-2];
|
|
SSE_REASSOC_BARRIER(v, w);
|
|
v |= e[-3]; w |= e[-4];
|
|
SSE_REASSOC_BARRIER(v, w);
|
|
v |= e[-5]; w |= e[-6];
|
|
SSE_REASSOC_BARRIER(v, w);
|
|
v |= e[-7]; v |= w;
|
|
|
|
/* Loop over complete 256-byte blocks. */
|
|
for (; p < e - 7; p += 8) {
|
|
/* PTEST is not profitable here. */
|
|
v = _mm256_cmpeq_epi8(v, zero);
|
|
if (unlikely(_mm256_movemask_epi8(v) != 0xFFFFFFFF)) {
|
|
return false;
|
|
}
|
|
v = p[0]; w = p[1];
|
|
SSE_REASSOC_BARRIER(v, w);
|
|
v |= p[2]; w |= p[3];
|
|
SSE_REASSOC_BARRIER(v, w);
|
|
v |= p[4]; w |= p[5];
|
|
SSE_REASSOC_BARRIER(v, w);
|
|
v |= p[6]; w |= p[7];
|
|
SSE_REASSOC_BARRIER(v, w);
|
|
v |= w;
|
|
}
|
|
|
|
return _mm256_movemask_epi8(_mm256_cmpeq_epi8(v, zero)) == 0xFFFFFFFF;
|
|
}
|
|
#endif /* CONFIG_AVX2_OPT */
|
|
|
|
static biz_accel_fn const accel_table[] = {
|
|
buffer_is_zero_int_ge256,
|
|
buffer_zero_sse2,
|
|
#ifdef CONFIG_AVX2_OPT
|
|
buffer_zero_avx2,
|
|
#endif
|
|
};
|
|
|
|
static unsigned best_accel(void)
|
|
{
|
|
unsigned info = cpuinfo_init();
|
|
|
|
#ifdef CONFIG_AVX2_OPT
|
|
if (info & CPUINFO_AVX2) {
|
|
return 2;
|
|
}
|
|
#endif
|
|
return info & CPUINFO_SSE2 ? 1 : 0;
|
|
}
|
|
|
|
#elif defined(__aarch64__) && defined(__ARM_NEON)
|
|
#include <arm_neon.h>
|
|
|
|
/*
|
|
* Helper for preventing the compiler from reassociating
|
|
* chains of binary vector operations.
|
|
*/
|
|
#define REASSOC_BARRIER(vec0, vec1) asm("" : "+w"(vec0), "+w"(vec1))
|
|
|
|
static bool buffer_is_zero_simd(const void *buf, size_t len)
|
|
{
|
|
uint32x4_t t0, t1, t2, t3;
|
|
|
|
/* Align head/tail to 16-byte boundaries. */
|
|
const uint32x4_t *p = QEMU_ALIGN_PTR_DOWN(buf + 16, 16);
|
|
const uint32x4_t *e = QEMU_ALIGN_PTR_DOWN(buf + len - 1, 16);
|
|
|
|
/* Unaligned loads at head/tail. */
|
|
t0 = vld1q_u32(buf) | vld1q_u32(buf + len - 16);
|
|
|
|
/* Collect a partial block at tail end. */
|
|
t1 = e[-7] | e[-6];
|
|
t2 = e[-5] | e[-4];
|
|
t3 = e[-3] | e[-2];
|
|
t0 |= e[-1];
|
|
REASSOC_BARRIER(t0, t1);
|
|
REASSOC_BARRIER(t2, t3);
|
|
t0 |= t1;
|
|
t2 |= t3;
|
|
REASSOC_BARRIER(t0, t2);
|
|
t0 |= t2;
|
|
|
|
/*
|
|
* Loop over complete 128-byte blocks.
|
|
* With the head and tail removed, e - p >= 14, so the loop
|
|
* must iterate at least once.
|
|
*/
|
|
do {
|
|
/*
|
|
* Reduce via UMAXV. Whatever the actual result,
|
|
* it will only be zero if all input bytes are zero.
|
|
*/
|
|
if (unlikely(vmaxvq_u32(t0) != 0)) {
|
|
return false;
|
|
}
|
|
|
|
t0 = p[0] | p[1];
|
|
t1 = p[2] | p[3];
|
|
t2 = p[4] | p[5];
|
|
t3 = p[6] | p[7];
|
|
REASSOC_BARRIER(t0, t1);
|
|
REASSOC_BARRIER(t2, t3);
|
|
t0 |= t1;
|
|
t2 |= t3;
|
|
REASSOC_BARRIER(t0, t2);
|
|
t0 |= t2;
|
|
p += 8;
|
|
} while (p < e - 7);
|
|
|
|
return vmaxvq_u32(t0) == 0;
|
|
}
|
|
|
|
#define best_accel() 1
|
|
static biz_accel_fn const accel_table[] = {
|
|
buffer_is_zero_int_ge256,
|
|
buffer_is_zero_simd,
|
|
};
|
|
#else
|
|
#define best_accel() 0
|
|
static biz_accel_fn const accel_table[1] = {
|
|
buffer_is_zero_int_ge256
|
|
};
|
|
#endif
|
|
|
|
static biz_accel_fn buffer_is_zero_accel;
|
|
static unsigned accel_index;
|
|
|
|
bool buffer_is_zero_ool(const void *buf, size_t len)
|
|
{
|
|
if (unlikely(len == 0)) {
|
|
return true;
|
|
}
|
|
if (!buffer_is_zero_sample3(buf, len)) {
|
|
return false;
|
|
}
|
|
/* All bytes are covered for any len <= 3. */
|
|
if (unlikely(len <= 3)) {
|
|
return true;
|
|
}
|
|
|
|
if (likely(len >= 256)) {
|
|
return buffer_is_zero_accel(buf, len);
|
|
}
|
|
return buffer_is_zero_int_lt256(buf, len);
|
|
}
|
|
|
|
bool buffer_is_zero_ge256(const void *buf, size_t len)
|
|
{
|
|
return buffer_is_zero_accel(buf, len);
|
|
}
|
|
|
|
bool test_buffer_is_zero_next_accel(void)
|
|
{
|
|
if (accel_index != 0) {
|
|
buffer_is_zero_accel = accel_table[--accel_index];
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static void __attribute__((constructor)) init_accel(void)
|
|
{
|
|
accel_index = best_accel();
|
|
buffer_is_zero_accel = accel_table[accel_index];
|
|
}
|