5122b431c6
Signed-off-by: Juan Quintela <quintela@redhat.com> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
516 lines
14 KiB
C
516 lines
14 KiB
C
/*
|
|
* QEMU 8253/8254 interval timer emulation
|
|
*
|
|
* Copyright (c) 2003-2004 Fabrice Bellard
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
#include "hw.h"
|
|
#include "pc.h"
|
|
#include "isa.h"
|
|
#include "qemu-timer.h"
|
|
|
|
//#define DEBUG_PIT
|
|
|
|
#define RW_STATE_LSB 1
|
|
#define RW_STATE_MSB 2
|
|
#define RW_STATE_WORD0 3
|
|
#define RW_STATE_WORD1 4
|
|
|
|
typedef struct PITChannelState {
|
|
int count; /* can be 65536 */
|
|
uint16_t latched_count;
|
|
uint8_t count_latched;
|
|
uint8_t status_latched;
|
|
uint8_t status;
|
|
uint8_t read_state;
|
|
uint8_t write_state;
|
|
uint8_t write_latch;
|
|
uint8_t rw_mode;
|
|
uint8_t mode;
|
|
uint8_t bcd; /* not supported */
|
|
uint8_t gate; /* timer start */
|
|
int64_t count_load_time;
|
|
/* irq handling */
|
|
int64_t next_transition_time;
|
|
QEMUTimer *irq_timer;
|
|
qemu_irq irq;
|
|
} PITChannelState;
|
|
|
|
struct PITState {
|
|
PITChannelState channels[3];
|
|
};
|
|
|
|
static PITState pit_state;
|
|
|
|
static void pit_irq_timer_update(PITChannelState *s, int64_t current_time);
|
|
|
|
static int pit_get_count(PITChannelState *s)
|
|
{
|
|
uint64_t d;
|
|
int counter;
|
|
|
|
d = muldiv64(qemu_get_clock(vm_clock) - s->count_load_time, PIT_FREQ, ticks_per_sec);
|
|
switch(s->mode) {
|
|
case 0:
|
|
case 1:
|
|
case 4:
|
|
case 5:
|
|
counter = (s->count - d) & 0xffff;
|
|
break;
|
|
case 3:
|
|
/* XXX: may be incorrect for odd counts */
|
|
counter = s->count - ((2 * d) % s->count);
|
|
break;
|
|
default:
|
|
counter = s->count - (d % s->count);
|
|
break;
|
|
}
|
|
return counter;
|
|
}
|
|
|
|
/* get pit output bit */
|
|
static int pit_get_out1(PITChannelState *s, int64_t current_time)
|
|
{
|
|
uint64_t d;
|
|
int out;
|
|
|
|
d = muldiv64(current_time - s->count_load_time, PIT_FREQ, ticks_per_sec);
|
|
switch(s->mode) {
|
|
default:
|
|
case 0:
|
|
out = (d >= s->count);
|
|
break;
|
|
case 1:
|
|
out = (d < s->count);
|
|
break;
|
|
case 2:
|
|
if ((d % s->count) == 0 && d != 0)
|
|
out = 1;
|
|
else
|
|
out = 0;
|
|
break;
|
|
case 3:
|
|
out = (d % s->count) < ((s->count + 1) >> 1);
|
|
break;
|
|
case 4:
|
|
case 5:
|
|
out = (d == s->count);
|
|
break;
|
|
}
|
|
return out;
|
|
}
|
|
|
|
int pit_get_out(PITState *pit, int channel, int64_t current_time)
|
|
{
|
|
PITChannelState *s = &pit->channels[channel];
|
|
return pit_get_out1(s, current_time);
|
|
}
|
|
|
|
/* return -1 if no transition will occur. */
|
|
static int64_t pit_get_next_transition_time(PITChannelState *s,
|
|
int64_t current_time)
|
|
{
|
|
uint64_t d, next_time, base;
|
|
int period2;
|
|
|
|
d = muldiv64(current_time - s->count_load_time, PIT_FREQ, ticks_per_sec);
|
|
switch(s->mode) {
|
|
default:
|
|
case 0:
|
|
case 1:
|
|
if (d < s->count)
|
|
next_time = s->count;
|
|
else
|
|
return -1;
|
|
break;
|
|
case 2:
|
|
base = (d / s->count) * s->count;
|
|
if ((d - base) == 0 && d != 0)
|
|
next_time = base + s->count;
|
|
else
|
|
next_time = base + s->count + 1;
|
|
break;
|
|
case 3:
|
|
base = (d / s->count) * s->count;
|
|
period2 = ((s->count + 1) >> 1);
|
|
if ((d - base) < period2)
|
|
next_time = base + period2;
|
|
else
|
|
next_time = base + s->count;
|
|
break;
|
|
case 4:
|
|
case 5:
|
|
if (d < s->count)
|
|
next_time = s->count;
|
|
else if (d == s->count)
|
|
next_time = s->count + 1;
|
|
else
|
|
return -1;
|
|
break;
|
|
}
|
|
/* convert to timer units */
|
|
next_time = s->count_load_time + muldiv64(next_time, ticks_per_sec, PIT_FREQ);
|
|
/* fix potential rounding problems */
|
|
/* XXX: better solution: use a clock at PIT_FREQ Hz */
|
|
if (next_time <= current_time)
|
|
next_time = current_time + 1;
|
|
return next_time;
|
|
}
|
|
|
|
/* val must be 0 or 1 */
|
|
void pit_set_gate(PITState *pit, int channel, int val)
|
|
{
|
|
PITChannelState *s = &pit->channels[channel];
|
|
|
|
switch(s->mode) {
|
|
default:
|
|
case 0:
|
|
case 4:
|
|
/* XXX: just disable/enable counting */
|
|
break;
|
|
case 1:
|
|
case 5:
|
|
if (s->gate < val) {
|
|
/* restart counting on rising edge */
|
|
s->count_load_time = qemu_get_clock(vm_clock);
|
|
pit_irq_timer_update(s, s->count_load_time);
|
|
}
|
|
break;
|
|
case 2:
|
|
case 3:
|
|
if (s->gate < val) {
|
|
/* restart counting on rising edge */
|
|
s->count_load_time = qemu_get_clock(vm_clock);
|
|
pit_irq_timer_update(s, s->count_load_time);
|
|
}
|
|
/* XXX: disable/enable counting */
|
|
break;
|
|
}
|
|
s->gate = val;
|
|
}
|
|
|
|
int pit_get_gate(PITState *pit, int channel)
|
|
{
|
|
PITChannelState *s = &pit->channels[channel];
|
|
return s->gate;
|
|
}
|
|
|
|
int pit_get_initial_count(PITState *pit, int channel)
|
|
{
|
|
PITChannelState *s = &pit->channels[channel];
|
|
return s->count;
|
|
}
|
|
|
|
int pit_get_mode(PITState *pit, int channel)
|
|
{
|
|
PITChannelState *s = &pit->channels[channel];
|
|
return s->mode;
|
|
}
|
|
|
|
static inline void pit_load_count(PITChannelState *s, int val)
|
|
{
|
|
if (val == 0)
|
|
val = 0x10000;
|
|
s->count_load_time = qemu_get_clock(vm_clock);
|
|
s->count = val;
|
|
pit_irq_timer_update(s, s->count_load_time);
|
|
}
|
|
|
|
/* if already latched, do not latch again */
|
|
static void pit_latch_count(PITChannelState *s)
|
|
{
|
|
if (!s->count_latched) {
|
|
s->latched_count = pit_get_count(s);
|
|
s->count_latched = s->rw_mode;
|
|
}
|
|
}
|
|
|
|
static void pit_ioport_write(void *opaque, uint32_t addr, uint32_t val)
|
|
{
|
|
PITState *pit = opaque;
|
|
int channel, access;
|
|
PITChannelState *s;
|
|
|
|
addr &= 3;
|
|
if (addr == 3) {
|
|
channel = val >> 6;
|
|
if (channel == 3) {
|
|
/* read back command */
|
|
for(channel = 0; channel < 3; channel++) {
|
|
s = &pit->channels[channel];
|
|
if (val & (2 << channel)) {
|
|
if (!(val & 0x20)) {
|
|
pit_latch_count(s);
|
|
}
|
|
if (!(val & 0x10) && !s->status_latched) {
|
|
/* status latch */
|
|
/* XXX: add BCD and null count */
|
|
s->status = (pit_get_out1(s, qemu_get_clock(vm_clock)) << 7) |
|
|
(s->rw_mode << 4) |
|
|
(s->mode << 1) |
|
|
s->bcd;
|
|
s->status_latched = 1;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
s = &pit->channels[channel];
|
|
access = (val >> 4) & 3;
|
|
if (access == 0) {
|
|
pit_latch_count(s);
|
|
} else {
|
|
s->rw_mode = access;
|
|
s->read_state = access;
|
|
s->write_state = access;
|
|
|
|
s->mode = (val >> 1) & 7;
|
|
s->bcd = val & 1;
|
|
/* XXX: update irq timer ? */
|
|
}
|
|
}
|
|
} else {
|
|
s = &pit->channels[addr];
|
|
switch(s->write_state) {
|
|
default:
|
|
case RW_STATE_LSB:
|
|
pit_load_count(s, val);
|
|
break;
|
|
case RW_STATE_MSB:
|
|
pit_load_count(s, val << 8);
|
|
break;
|
|
case RW_STATE_WORD0:
|
|
s->write_latch = val;
|
|
s->write_state = RW_STATE_WORD1;
|
|
break;
|
|
case RW_STATE_WORD1:
|
|
pit_load_count(s, s->write_latch | (val << 8));
|
|
s->write_state = RW_STATE_WORD0;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static uint32_t pit_ioport_read(void *opaque, uint32_t addr)
|
|
{
|
|
PITState *pit = opaque;
|
|
int ret, count;
|
|
PITChannelState *s;
|
|
|
|
addr &= 3;
|
|
s = &pit->channels[addr];
|
|
if (s->status_latched) {
|
|
s->status_latched = 0;
|
|
ret = s->status;
|
|
} else if (s->count_latched) {
|
|
switch(s->count_latched) {
|
|
default:
|
|
case RW_STATE_LSB:
|
|
ret = s->latched_count & 0xff;
|
|
s->count_latched = 0;
|
|
break;
|
|
case RW_STATE_MSB:
|
|
ret = s->latched_count >> 8;
|
|
s->count_latched = 0;
|
|
break;
|
|
case RW_STATE_WORD0:
|
|
ret = s->latched_count & 0xff;
|
|
s->count_latched = RW_STATE_MSB;
|
|
break;
|
|
}
|
|
} else {
|
|
switch(s->read_state) {
|
|
default:
|
|
case RW_STATE_LSB:
|
|
count = pit_get_count(s);
|
|
ret = count & 0xff;
|
|
break;
|
|
case RW_STATE_MSB:
|
|
count = pit_get_count(s);
|
|
ret = (count >> 8) & 0xff;
|
|
break;
|
|
case RW_STATE_WORD0:
|
|
count = pit_get_count(s);
|
|
ret = count & 0xff;
|
|
s->read_state = RW_STATE_WORD1;
|
|
break;
|
|
case RW_STATE_WORD1:
|
|
count = pit_get_count(s);
|
|
ret = (count >> 8) & 0xff;
|
|
s->read_state = RW_STATE_WORD0;
|
|
break;
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static void pit_irq_timer_update(PITChannelState *s, int64_t current_time)
|
|
{
|
|
int64_t expire_time;
|
|
int irq_level;
|
|
|
|
if (!s->irq_timer)
|
|
return;
|
|
expire_time = pit_get_next_transition_time(s, current_time);
|
|
irq_level = pit_get_out1(s, current_time);
|
|
qemu_set_irq(s->irq, irq_level);
|
|
#ifdef DEBUG_PIT
|
|
printf("irq_level=%d next_delay=%f\n",
|
|
irq_level,
|
|
(double)(expire_time - current_time) / ticks_per_sec);
|
|
#endif
|
|
s->next_transition_time = expire_time;
|
|
if (expire_time != -1)
|
|
qemu_mod_timer(s->irq_timer, expire_time);
|
|
else
|
|
qemu_del_timer(s->irq_timer);
|
|
}
|
|
|
|
static void pit_irq_timer(void *opaque)
|
|
{
|
|
PITChannelState *s = opaque;
|
|
|
|
pit_irq_timer_update(s, s->next_transition_time);
|
|
}
|
|
|
|
static const VMStateDescription vmstate_pit_channel = {
|
|
.name = "pit channel",
|
|
.version_id = 2,
|
|
.minimum_version_id = 2,
|
|
.minimum_version_id_old = 2,
|
|
.fields = (VMStateField []) {
|
|
VMSTATE_INT32(count, PITChannelState),
|
|
VMSTATE_UINT16(latched_count, PITChannelState),
|
|
VMSTATE_UINT8(count_latched, PITChannelState),
|
|
VMSTATE_UINT8(status_latched, PITChannelState),
|
|
VMSTATE_UINT8(status, PITChannelState),
|
|
VMSTATE_UINT8(read_state, PITChannelState),
|
|
VMSTATE_UINT8(write_state, PITChannelState),
|
|
VMSTATE_UINT8(write_latch, PITChannelState),
|
|
VMSTATE_UINT8(rw_mode, PITChannelState),
|
|
VMSTATE_UINT8(mode, PITChannelState),
|
|
VMSTATE_UINT8(bcd, PITChannelState),
|
|
VMSTATE_UINT8(gate, PITChannelState),
|
|
VMSTATE_INT64(count_load_time, PITChannelState),
|
|
VMSTATE_INT64(next_transition_time, PITChannelState),
|
|
VMSTATE_END_OF_LIST()
|
|
}
|
|
};
|
|
|
|
static int pit_load_old(QEMUFile *f, void *opaque, int version_id)
|
|
{
|
|
PITState *pit = opaque;
|
|
PITChannelState *s;
|
|
int i;
|
|
|
|
if (version_id != 1)
|
|
return -EINVAL;
|
|
|
|
for(i = 0; i < 3; i++) {
|
|
s = &pit->channels[i];
|
|
s->count=qemu_get_be32(f);
|
|
qemu_get_be16s(f, &s->latched_count);
|
|
qemu_get_8s(f, &s->count_latched);
|
|
qemu_get_8s(f, &s->status_latched);
|
|
qemu_get_8s(f, &s->status);
|
|
qemu_get_8s(f, &s->read_state);
|
|
qemu_get_8s(f, &s->write_state);
|
|
qemu_get_8s(f, &s->write_latch);
|
|
qemu_get_8s(f, &s->rw_mode);
|
|
qemu_get_8s(f, &s->mode);
|
|
qemu_get_8s(f, &s->bcd);
|
|
qemu_get_8s(f, &s->gate);
|
|
s->count_load_time=qemu_get_be64(f);
|
|
if (s->irq_timer) {
|
|
s->next_transition_time=qemu_get_be64(f);
|
|
qemu_get_timer(f, s->irq_timer);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static const VMStateDescription vmstate_pit = {
|
|
.name = "i8254",
|
|
.version_id = 2,
|
|
.minimum_version_id = 2,
|
|
.minimum_version_id_old = 1,
|
|
.load_state_old = pit_load_old,
|
|
.fields = (VMStateField []) {
|
|
VMSTATE_STRUCT_ARRAY(channels, PITState, 3, 2, vmstate_pit_channel, PITChannelState),
|
|
VMSTATE_TIMER(channels[0].irq_timer, PITState),
|
|
VMSTATE_END_OF_LIST()
|
|
}
|
|
};
|
|
|
|
static void pit_reset(void *opaque)
|
|
{
|
|
PITState *pit = opaque;
|
|
PITChannelState *s;
|
|
int i;
|
|
|
|
for(i = 0;i < 3; i++) {
|
|
s = &pit->channels[i];
|
|
s->mode = 3;
|
|
s->gate = (i != 2);
|
|
pit_load_count(s, 0);
|
|
}
|
|
}
|
|
|
|
/* When HPET is operating in legacy mode, i8254 timer0 is disabled */
|
|
void hpet_pit_disable(void) {
|
|
PITChannelState *s;
|
|
s = &pit_state.channels[0];
|
|
if (s->irq_timer)
|
|
qemu_del_timer(s->irq_timer);
|
|
}
|
|
|
|
/* When HPET is reset or leaving legacy mode, it must reenable i8254
|
|
* timer 0
|
|
*/
|
|
|
|
void hpet_pit_enable(void)
|
|
{
|
|
PITState *pit = &pit_state;
|
|
PITChannelState *s;
|
|
s = &pit->channels[0];
|
|
s->mode = 3;
|
|
s->gate = 1;
|
|
pit_load_count(s, 0);
|
|
}
|
|
|
|
PITState *pit_init(int base, qemu_irq irq)
|
|
{
|
|
PITState *pit = &pit_state;
|
|
PITChannelState *s;
|
|
|
|
s = &pit->channels[0];
|
|
/* the timer 0 is connected to an IRQ */
|
|
s->irq_timer = qemu_new_timer(vm_clock, pit_irq_timer, s);
|
|
s->irq = irq;
|
|
|
|
vmstate_register(base, &vmstate_pit, pit);
|
|
qemu_register_reset(pit_reset, pit);
|
|
register_ioport_write(base, 4, 1, pit_ioport_write, pit);
|
|
register_ioport_read(base, 3, 1, pit_ioport_read, pit);
|
|
|
|
pit_reset(pit);
|
|
|
|
return pit;
|
|
}
|