qemu/hw/esp.c
pbrook 3dc1cb3428 ESP DMA fix.
git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@2110 c046a42c-6fe2-441c-8c8c-71466251a162
2006-08-15 22:57:33 +00:00

599 lines
15 KiB
C

/*
* QEMU ESP emulation
*
* Copyright (c) 2005-2006 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "vl.h"
/* debug ESP card */
//#define DEBUG_ESP
#ifdef DEBUG_ESP
#define DPRINTF(fmt, args...) \
do { printf("ESP: " fmt , ##args); } while (0)
#define pic_set_irq(irq, level) \
do { printf("ESP: set_irq(%d): %d\n", (irq), (level)); pic_set_irq((irq),(level));} while (0)
#else
#define DPRINTF(fmt, args...)
#endif
#define ESPDMA_REGS 4
#define ESPDMA_MAXADDR (ESPDMA_REGS * 4 - 1)
#define ESP_MAXREG 0x3f
#define TI_BUFSZ 32
#define DMA_VER 0xa0000000
#define DMA_INTR 1
#define DMA_INTREN 0x10
#define DMA_WRITE_MEM 0x100
#define DMA_LOADED 0x04000000
typedef struct ESPState ESPState;
struct ESPState {
BlockDriverState **bd;
uint8_t rregs[ESP_MAXREG];
uint8_t wregs[ESP_MAXREG];
int irq;
uint32_t espdmaregs[ESPDMA_REGS];
uint32_t ti_size;
uint32_t ti_rptr, ti_wptr;
uint8_t ti_buf[TI_BUFSZ];
int sense;
int dma;
SCSIDevice *scsi_dev[MAX_DISKS];
SCSIDevice *current_dev;
uint8_t cmdbuf[TI_BUFSZ];
int cmdlen;
int do_cmd;
uint32_t dma_left;
uint8_t async_buf[TARGET_PAGE_SIZE];
uint32_t async_ptr;
uint32_t async_len;
};
#define STAT_DO 0x00
#define STAT_DI 0x01
#define STAT_CD 0x02
#define STAT_ST 0x03
#define STAT_MI 0x06
#define STAT_MO 0x07
#define STAT_TC 0x10
#define STAT_PE 0x20
#define STAT_GE 0x40
#define STAT_IN 0x80
#define INTR_FC 0x08
#define INTR_BS 0x10
#define INTR_DC 0x20
#define INTR_RST 0x80
#define SEQ_0 0x0
#define SEQ_CD 0x4
static int get_cmd(ESPState *s, uint8_t *buf)
{
uint32_t dmaptr, dmalen;
int target;
dmalen = s->wregs[0] | (s->wregs[1] << 8);
target = s->wregs[4] & 7;
DPRINTF("get_cmd: len %d target %d\n", dmalen, target);
if (s->dma) {
dmaptr = iommu_translate(s->espdmaregs[1]);
DPRINTF("DMA Direction: %c, addr 0x%8.8x\n",
s->espdmaregs[0] & DMA_WRITE_MEM ? 'w': 'r', dmaptr);
cpu_physical_memory_read(dmaptr, buf, dmalen);
} else {
buf[0] = 0;
memcpy(&buf[1], s->ti_buf, dmalen);
dmalen++;
}
s->ti_size = 0;
s->ti_rptr = 0;
s->ti_wptr = 0;
if (target >= 4 || !s->scsi_dev[target]) {
// No such drive
s->rregs[4] = STAT_IN;
s->rregs[5] = INTR_DC;
s->rregs[6] = SEQ_0;
s->espdmaregs[0] |= DMA_INTR;
pic_set_irq(s->irq, 1);
return 0;
}
s->current_dev = s->scsi_dev[target];
return dmalen;
}
static void do_cmd(ESPState *s, uint8_t *buf)
{
int32_t datalen;
int lun;
DPRINTF("do_cmd: busid 0x%x\n", buf[0]);
lun = buf[0] & 7;
datalen = scsi_send_command(s->current_dev, 0, &buf[1], lun);
if (datalen == 0) {
s->ti_size = 0;
} else {
s->rregs[4] = STAT_IN | STAT_TC;
if (datalen > 0) {
s->rregs[4] |= STAT_DI;
s->ti_size = datalen;
} else {
s->rregs[4] |= STAT_DO;
s->ti_size = -datalen;
}
}
s->rregs[5] = INTR_BS | INTR_FC;
s->rregs[6] = SEQ_CD;
s->espdmaregs[0] |= DMA_INTR;
pic_set_irq(s->irq, 1);
}
static void handle_satn(ESPState *s)
{
uint8_t buf[32];
int len;
len = get_cmd(s, buf);
if (len)
do_cmd(s, buf);
}
static void handle_satn_stop(ESPState *s)
{
s->cmdlen = get_cmd(s, s->cmdbuf);
if (s->cmdlen) {
DPRINTF("Set ATN & Stop: cmdlen %d\n", s->cmdlen);
s->do_cmd = 1;
s->espdmaregs[1] += s->cmdlen;
s->rregs[4] = STAT_IN | STAT_TC | STAT_CD;
s->rregs[5] = INTR_BS | INTR_FC;
s->rregs[6] = SEQ_CD;
s->espdmaregs[0] |= DMA_INTR;
pic_set_irq(s->irq, 1);
}
}
static void write_response(ESPState *s)
{
uint32_t dmaptr;
DPRINTF("Transfer status (sense=%d)\n", s->sense);
s->ti_buf[0] = s->sense;
s->ti_buf[1] = 0;
if (s->dma) {
dmaptr = iommu_translate(s->espdmaregs[1]);
DPRINTF("DMA Direction: %c\n",
s->espdmaregs[0] & DMA_WRITE_MEM ? 'w': 'r');
cpu_physical_memory_write(dmaptr, s->ti_buf, 2);
s->rregs[4] = STAT_IN | STAT_TC | STAT_ST;
s->rregs[5] = INTR_BS | INTR_FC;
s->rregs[6] = SEQ_CD;
} else {
s->ti_size = 2;
s->ti_rptr = 0;
s->ti_wptr = 0;
s->rregs[7] = 2;
}
s->espdmaregs[0] |= DMA_INTR;
pic_set_irq(s->irq, 1);
}
static void esp_do_dma(ESPState *s)
{
uint32_t dmaptr, minlen, len, from, to;
int to_device;
to_device = (s->espdmaregs[0] & DMA_WRITE_MEM) == 0;
from = s->espdmaregs[1];
minlen = s->dma_left;
to = from + minlen;
dmaptr = iommu_translate(s->espdmaregs[1]);
if ((from & TARGET_PAGE_MASK) != (to & TARGET_PAGE_MASK)) {
len = TARGET_PAGE_SIZE - (from & ~TARGET_PAGE_MASK);
} else {
len = to - from;
}
DPRINTF("DMA address p %08x v %08x len %08x, from %08x, to %08x\n", dmaptr, s->espdmaregs[1], len, from, to);
if (s->do_cmd) {
s->espdmaregs[1] += len;
s->ti_size -= len;
DPRINTF("command len %d + %d\n", s->cmdlen, len);
cpu_physical_memory_read(dmaptr, &s->cmdbuf[s->cmdlen], len);
s->ti_size = 0;
s->cmdlen = 0;
s->do_cmd = 0;
do_cmd(s, s->cmdbuf);
return;
} else {
s->async_len = len;
s->dma_left -= len;
if (to_device) {
s->async_ptr = -1;
cpu_physical_memory_read(dmaptr, s->async_buf, len);
scsi_write_data(s->current_dev, s->async_buf, len);
} else {
s->async_ptr = dmaptr;
scsi_read_data(s->current_dev, s->async_buf, len);
}
}
}
static void esp_command_complete(void *opaque, uint32_t reason, int sense)
{
ESPState *s = (ESPState *)opaque;
s->ti_size -= s->async_len;
s->espdmaregs[1] += s->async_len;
if (s->async_ptr != (uint32_t)-1) {
cpu_physical_memory_write(s->async_ptr, s->async_buf, s->async_len);
}
if (reason == SCSI_REASON_DONE) {
DPRINTF("SCSI Command complete\n");
if (s->ti_size != 0)
DPRINTF("SCSI command completed unexpectedly\n");
s->ti_size = 0;
if (sense)
DPRINTF("Command failed\n");
s->sense = sense;
} else {
DPRINTF("transfer %d/%d\n", s->dma_left, s->ti_size);
}
if (s->dma_left) {
esp_do_dma(s);
} else {
if (s->ti_size) {
s->rregs[4] |= STAT_IN | STAT_TC;
} else {
s->rregs[4] = STAT_IN | STAT_TC | STAT_ST;
}
s->rregs[5] = INTR_BS;
s->rregs[6] = 0;
s->rregs[7] = 0;
s->espdmaregs[0] |= DMA_INTR;
pic_set_irq(s->irq, 1);
}
}
static void handle_ti(ESPState *s)
{
uint32_t dmalen, minlen;
dmalen = s->wregs[0] | (s->wregs[1] << 8);
if (dmalen==0) {
dmalen=0x10000;
}
if (s->do_cmd)
minlen = (dmalen < 32) ? dmalen : 32;
else
minlen = (dmalen < s->ti_size) ? dmalen : s->ti_size;
DPRINTF("Transfer Information len %d\n", minlen);
if (s->dma) {
s->dma_left = minlen;
s->rregs[4] &= ~STAT_TC;
esp_do_dma(s);
} else if (s->do_cmd) {
DPRINTF("command len %d\n", s->cmdlen);
s->ti_size = 0;
s->cmdlen = 0;
s->do_cmd = 0;
do_cmd(s, s->cmdbuf);
return;
}
}
static void esp_reset(void *opaque)
{
ESPState *s = opaque;
memset(s->rregs, 0, ESP_MAXREG);
memset(s->wregs, 0, ESP_MAXREG);
s->rregs[0x0e] = 0x4; // Indicate fas100a
memset(s->espdmaregs, 0, ESPDMA_REGS * 4);
s->ti_size = 0;
s->ti_rptr = 0;
s->ti_wptr = 0;
s->dma = 0;
s->do_cmd = 0;
}
static uint32_t esp_mem_readb(void *opaque, target_phys_addr_t addr)
{
ESPState *s = opaque;
uint32_t saddr;
saddr = (addr & ESP_MAXREG) >> 2;
DPRINTF("read reg[%d]: 0x%2.2x\n", saddr, s->rregs[saddr]);
switch (saddr) {
case 2:
// FIFO
if (s->ti_size > 0) {
s->ti_size--;
if ((s->rregs[4] & 6) == 0) {
/* Data in/out. */
scsi_read_data(s->current_dev, &s->rregs[2], 0);
} else {
s->rregs[2] = s->ti_buf[s->ti_rptr++];
}
pic_set_irq(s->irq, 1);
}
if (s->ti_size == 0) {
s->ti_rptr = 0;
s->ti_wptr = 0;
}
break;
case 5:
// interrupt
// Clear interrupt/error status bits
s->rregs[4] &= ~(STAT_IN | STAT_GE | STAT_PE);
pic_set_irq(s->irq, 0);
s->espdmaregs[0] &= ~DMA_INTR;
break;
default:
break;
}
return s->rregs[saddr];
}
static void esp_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
{
ESPState *s = opaque;
uint32_t saddr;
saddr = (addr & ESP_MAXREG) >> 2;
DPRINTF("write reg[%d]: 0x%2.2x -> 0x%2.2x\n", saddr, s->wregs[saddr], val);
switch (saddr) {
case 0:
case 1:
s->rregs[saddr] = val;
s->rregs[4] &= ~STAT_TC;
break;
case 2:
// FIFO
if (s->do_cmd) {
s->cmdbuf[s->cmdlen++] = val & 0xff;
} else if ((s->rregs[4] & 6) == 0) {
uint8_t buf;
buf = val & 0xff;
s->ti_size--;
scsi_write_data(s->current_dev, &buf, 0);
} else {
s->ti_size++;
s->ti_buf[s->ti_wptr++] = val & 0xff;
}
break;
case 3:
s->rregs[saddr] = val;
// Command
if (val & 0x80) {
s->dma = 1;
} else {
s->dma = 0;
}
switch(val & 0x7f) {
case 0:
DPRINTF("NOP (%2.2x)\n", val);
break;
case 1:
DPRINTF("Flush FIFO (%2.2x)\n", val);
//s->ti_size = 0;
s->rregs[5] = INTR_FC;
s->rregs[6] = 0;
break;
case 2:
DPRINTF("Chip reset (%2.2x)\n", val);
esp_reset(s);
break;
case 3:
DPRINTF("Bus reset (%2.2x)\n", val);
s->rregs[5] = INTR_RST;
if (!(s->wregs[8] & 0x40)) {
s->espdmaregs[0] |= DMA_INTR;
pic_set_irq(s->irq, 1);
}
break;
case 0x10:
handle_ti(s);
break;
case 0x11:
DPRINTF("Initiator Command Complete Sequence (%2.2x)\n", val);
write_response(s);
break;
case 0x12:
DPRINTF("Message Accepted (%2.2x)\n", val);
write_response(s);
s->rregs[5] = INTR_DC;
s->rregs[6] = 0;
break;
case 0x1a:
DPRINTF("Set ATN (%2.2x)\n", val);
break;
case 0x42:
DPRINTF("Set ATN (%2.2x)\n", val);
handle_satn(s);
break;
case 0x43:
DPRINTF("Set ATN & stop (%2.2x)\n", val);
handle_satn_stop(s);
break;
default:
DPRINTF("Unhandled ESP command (%2.2x)\n", val);
break;
}
break;
case 4 ... 7:
break;
case 8:
s->rregs[saddr] = val;
break;
case 9 ... 10:
break;
case 11:
s->rregs[saddr] = val & 0x15;
break;
case 12 ... 15:
s->rregs[saddr] = val;
break;
default:
break;
}
s->wregs[saddr] = val;
}
static CPUReadMemoryFunc *esp_mem_read[3] = {
esp_mem_readb,
esp_mem_readb,
esp_mem_readb,
};
static CPUWriteMemoryFunc *esp_mem_write[3] = {
esp_mem_writeb,
esp_mem_writeb,
esp_mem_writeb,
};
static uint32_t espdma_mem_readl(void *opaque, target_phys_addr_t addr)
{
ESPState *s = opaque;
uint32_t saddr;
saddr = (addr & ESPDMA_MAXADDR) >> 2;
DPRINTF("read dmareg[%d]: 0x%8.8x\n", saddr, s->espdmaregs[saddr]);
return s->espdmaregs[saddr];
}
static void espdma_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
{
ESPState *s = opaque;
uint32_t saddr;
saddr = (addr & ESPDMA_MAXADDR) >> 2;
DPRINTF("write dmareg[%d]: 0x%8.8x -> 0x%8.8x\n", saddr, s->espdmaregs[saddr], val);
switch (saddr) {
case 0:
if (!(val & DMA_INTREN))
pic_set_irq(s->irq, 0);
if (val & 0x80) {
esp_reset(s);
} else if (val & 0x40) {
val &= ~0x40;
} else if (val == 0)
val = 0x40;
val &= 0x0fffffff;
val |= DMA_VER;
break;
case 1:
s->espdmaregs[0] |= DMA_LOADED;
break;
default:
break;
}
s->espdmaregs[saddr] = val;
}
static CPUReadMemoryFunc *espdma_mem_read[3] = {
espdma_mem_readl,
espdma_mem_readl,
espdma_mem_readl,
};
static CPUWriteMemoryFunc *espdma_mem_write[3] = {
espdma_mem_writel,
espdma_mem_writel,
espdma_mem_writel,
};
static void esp_save(QEMUFile *f, void *opaque)
{
ESPState *s = opaque;
unsigned int i;
qemu_put_buffer(f, s->rregs, ESP_MAXREG);
qemu_put_buffer(f, s->wregs, ESP_MAXREG);
qemu_put_be32s(f, &s->irq);
for (i = 0; i < ESPDMA_REGS; i++)
qemu_put_be32s(f, &s->espdmaregs[i]);
qemu_put_be32s(f, &s->ti_size);
qemu_put_be32s(f, &s->ti_rptr);
qemu_put_be32s(f, &s->ti_wptr);
qemu_put_buffer(f, s->ti_buf, TI_BUFSZ);
qemu_put_be32s(f, &s->dma);
}
static int esp_load(QEMUFile *f, void *opaque, int version_id)
{
ESPState *s = opaque;
unsigned int i;
if (version_id != 1)
return -EINVAL;
qemu_get_buffer(f, s->rregs, ESP_MAXREG);
qemu_get_buffer(f, s->wregs, ESP_MAXREG);
qemu_get_be32s(f, &s->irq);
for (i = 0; i < ESPDMA_REGS; i++)
qemu_get_be32s(f, &s->espdmaregs[i]);
qemu_get_be32s(f, &s->ti_size);
qemu_get_be32s(f, &s->ti_rptr);
qemu_get_be32s(f, &s->ti_wptr);
qemu_get_buffer(f, s->ti_buf, TI_BUFSZ);
qemu_get_be32s(f, &s->dma);
return 0;
}
void esp_init(BlockDriverState **bd, int irq, uint32_t espaddr, uint32_t espdaddr)
{
ESPState *s;
int esp_io_memory, espdma_io_memory;
int i;
s = qemu_mallocz(sizeof(ESPState));
if (!s)
return;
s->bd = bd;
s->irq = irq;
esp_io_memory = cpu_register_io_memory(0, esp_mem_read, esp_mem_write, s);
cpu_register_physical_memory(espaddr, ESP_MAXREG*4, esp_io_memory);
espdma_io_memory = cpu_register_io_memory(0, espdma_mem_read, espdma_mem_write, s);
cpu_register_physical_memory(espdaddr, 16, espdma_io_memory);
esp_reset(s);
register_savevm("esp", espaddr, 1, esp_save, esp_load, s);
qemu_register_reset(esp_reset, s);
for (i = 0; i < MAX_DISKS; i++) {
if (bs_table[i]) {
s->scsi_dev[i] =
scsi_disk_init(bs_table[i], esp_command_complete, s);
}
}
}