qemu/target/arm/vec_helper.c
Richard Henderson 16fcfdc732 target/arm: Implement SVE dot product (indexed)
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Message-id: 20180627043328.11531-34-richard.henderson@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
2018-06-29 15:11:15 +01:00

769 lines
25 KiB
C

/*
* ARM AdvSIMD / SVE Vector Operations
*
* Copyright (c) 2018 Linaro
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "exec/helper-proto.h"
#include "tcg/tcg-gvec-desc.h"
#include "fpu/softfloat.h"
/* Note that vector data is stored in host-endian 64-bit chunks,
so addressing units smaller than that needs a host-endian fixup. */
#ifdef HOST_WORDS_BIGENDIAN
#define H1(x) ((x) ^ 7)
#define H2(x) ((x) ^ 3)
#define H4(x) ((x) ^ 1)
#else
#define H1(x) (x)
#define H2(x) (x)
#define H4(x) (x)
#endif
#define SET_QC() env->vfp.xregs[ARM_VFP_FPSCR] |= CPSR_Q
static void clear_tail(void *vd, uintptr_t opr_sz, uintptr_t max_sz)
{
uint64_t *d = vd + opr_sz;
uintptr_t i;
for (i = opr_sz; i < max_sz; i += 8) {
*d++ = 0;
}
}
/* Signed saturating rounding doubling multiply-accumulate high half, 16-bit */
static uint16_t inl_qrdmlah_s16(CPUARMState *env, int16_t src1,
int16_t src2, int16_t src3)
{
/* Simplify:
* = ((a3 << 16) + ((e1 * e2) << 1) + (1 << 15)) >> 16
* = ((a3 << 15) + (e1 * e2) + (1 << 14)) >> 15
*/
int32_t ret = (int32_t)src1 * src2;
ret = ((int32_t)src3 << 15) + ret + (1 << 14);
ret >>= 15;
if (ret != (int16_t)ret) {
SET_QC();
ret = (ret < 0 ? -0x8000 : 0x7fff);
}
return ret;
}
uint32_t HELPER(neon_qrdmlah_s16)(CPUARMState *env, uint32_t src1,
uint32_t src2, uint32_t src3)
{
uint16_t e1 = inl_qrdmlah_s16(env, src1, src2, src3);
uint16_t e2 = inl_qrdmlah_s16(env, src1 >> 16, src2 >> 16, src3 >> 16);
return deposit32(e1, 16, 16, e2);
}
void HELPER(gvec_qrdmlah_s16)(void *vd, void *vn, void *vm,
void *ve, uint32_t desc)
{
uintptr_t opr_sz = simd_oprsz(desc);
int16_t *d = vd;
int16_t *n = vn;
int16_t *m = vm;
CPUARMState *env = ve;
uintptr_t i;
for (i = 0; i < opr_sz / 2; ++i) {
d[i] = inl_qrdmlah_s16(env, n[i], m[i], d[i]);
}
clear_tail(d, opr_sz, simd_maxsz(desc));
}
/* Signed saturating rounding doubling multiply-subtract high half, 16-bit */
static uint16_t inl_qrdmlsh_s16(CPUARMState *env, int16_t src1,
int16_t src2, int16_t src3)
{
/* Similarly, using subtraction:
* = ((a3 << 16) - ((e1 * e2) << 1) + (1 << 15)) >> 16
* = ((a3 << 15) - (e1 * e2) + (1 << 14)) >> 15
*/
int32_t ret = (int32_t)src1 * src2;
ret = ((int32_t)src3 << 15) - ret + (1 << 14);
ret >>= 15;
if (ret != (int16_t)ret) {
SET_QC();
ret = (ret < 0 ? -0x8000 : 0x7fff);
}
return ret;
}
uint32_t HELPER(neon_qrdmlsh_s16)(CPUARMState *env, uint32_t src1,
uint32_t src2, uint32_t src3)
{
uint16_t e1 = inl_qrdmlsh_s16(env, src1, src2, src3);
uint16_t e2 = inl_qrdmlsh_s16(env, src1 >> 16, src2 >> 16, src3 >> 16);
return deposit32(e1, 16, 16, e2);
}
void HELPER(gvec_qrdmlsh_s16)(void *vd, void *vn, void *vm,
void *ve, uint32_t desc)
{
uintptr_t opr_sz = simd_oprsz(desc);
int16_t *d = vd;
int16_t *n = vn;
int16_t *m = vm;
CPUARMState *env = ve;
uintptr_t i;
for (i = 0; i < opr_sz / 2; ++i) {
d[i] = inl_qrdmlsh_s16(env, n[i], m[i], d[i]);
}
clear_tail(d, opr_sz, simd_maxsz(desc));
}
/* Signed saturating rounding doubling multiply-accumulate high half, 32-bit */
uint32_t HELPER(neon_qrdmlah_s32)(CPUARMState *env, int32_t src1,
int32_t src2, int32_t src3)
{
/* Simplify similarly to int_qrdmlah_s16 above. */
int64_t ret = (int64_t)src1 * src2;
ret = ((int64_t)src3 << 31) + ret + (1 << 30);
ret >>= 31;
if (ret != (int32_t)ret) {
SET_QC();
ret = (ret < 0 ? INT32_MIN : INT32_MAX);
}
return ret;
}
void HELPER(gvec_qrdmlah_s32)(void *vd, void *vn, void *vm,
void *ve, uint32_t desc)
{
uintptr_t opr_sz = simd_oprsz(desc);
int32_t *d = vd;
int32_t *n = vn;
int32_t *m = vm;
CPUARMState *env = ve;
uintptr_t i;
for (i = 0; i < opr_sz / 4; ++i) {
d[i] = helper_neon_qrdmlah_s32(env, n[i], m[i], d[i]);
}
clear_tail(d, opr_sz, simd_maxsz(desc));
}
/* Signed saturating rounding doubling multiply-subtract high half, 32-bit */
uint32_t HELPER(neon_qrdmlsh_s32)(CPUARMState *env, int32_t src1,
int32_t src2, int32_t src3)
{
/* Simplify similarly to int_qrdmlsh_s16 above. */
int64_t ret = (int64_t)src1 * src2;
ret = ((int64_t)src3 << 31) - ret + (1 << 30);
ret >>= 31;
if (ret != (int32_t)ret) {
SET_QC();
ret = (ret < 0 ? INT32_MIN : INT32_MAX);
}
return ret;
}
void HELPER(gvec_qrdmlsh_s32)(void *vd, void *vn, void *vm,
void *ve, uint32_t desc)
{
uintptr_t opr_sz = simd_oprsz(desc);
int32_t *d = vd;
int32_t *n = vn;
int32_t *m = vm;
CPUARMState *env = ve;
uintptr_t i;
for (i = 0; i < opr_sz / 4; ++i) {
d[i] = helper_neon_qrdmlsh_s32(env, n[i], m[i], d[i]);
}
clear_tail(d, opr_sz, simd_maxsz(desc));
}
/* Integer 8 and 16-bit dot-product.
*
* Note that for the loops herein, host endianness does not matter
* with respect to the ordering of data within the 64-bit lanes.
* All elements are treated equally, no matter where they are.
*/
void HELPER(gvec_sdot_b)(void *vd, void *vn, void *vm, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc);
uint32_t *d = vd;
int8_t *n = vn, *m = vm;
for (i = 0; i < opr_sz / 4; ++i) {
d[i] += n[i * 4 + 0] * m[i * 4 + 0]
+ n[i * 4 + 1] * m[i * 4 + 1]
+ n[i * 4 + 2] * m[i * 4 + 2]
+ n[i * 4 + 3] * m[i * 4 + 3];
}
clear_tail(d, opr_sz, simd_maxsz(desc));
}
void HELPER(gvec_udot_b)(void *vd, void *vn, void *vm, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc);
uint32_t *d = vd;
uint8_t *n = vn, *m = vm;
for (i = 0; i < opr_sz / 4; ++i) {
d[i] += n[i * 4 + 0] * m[i * 4 + 0]
+ n[i * 4 + 1] * m[i * 4 + 1]
+ n[i * 4 + 2] * m[i * 4 + 2]
+ n[i * 4 + 3] * m[i * 4 + 3];
}
clear_tail(d, opr_sz, simd_maxsz(desc));
}
void HELPER(gvec_sdot_h)(void *vd, void *vn, void *vm, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc);
uint64_t *d = vd;
int16_t *n = vn, *m = vm;
for (i = 0; i < opr_sz / 8; ++i) {
d[i] += (int64_t)n[i * 4 + 0] * m[i * 4 + 0]
+ (int64_t)n[i * 4 + 1] * m[i * 4 + 1]
+ (int64_t)n[i * 4 + 2] * m[i * 4 + 2]
+ (int64_t)n[i * 4 + 3] * m[i * 4 + 3];
}
clear_tail(d, opr_sz, simd_maxsz(desc));
}
void HELPER(gvec_udot_h)(void *vd, void *vn, void *vm, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc);
uint64_t *d = vd;
uint16_t *n = vn, *m = vm;
for (i = 0; i < opr_sz / 8; ++i) {
d[i] += (uint64_t)n[i * 4 + 0] * m[i * 4 + 0]
+ (uint64_t)n[i * 4 + 1] * m[i * 4 + 1]
+ (uint64_t)n[i * 4 + 2] * m[i * 4 + 2]
+ (uint64_t)n[i * 4 + 3] * m[i * 4 + 3];
}
clear_tail(d, opr_sz, simd_maxsz(desc));
}
void HELPER(gvec_sdot_idx_b)(void *vd, void *vn, void *vm, uint32_t desc)
{
intptr_t i, segend, opr_sz = simd_oprsz(desc), opr_sz_4 = opr_sz / 4;
intptr_t index = simd_data(desc);
uint32_t *d = vd;
int8_t *n = vn;
int8_t *m_indexed = (int8_t *)vm + index * 4;
/* Notice the special case of opr_sz == 8, from aa64/aa32 advsimd.
* Otherwise opr_sz is a multiple of 16.
*/
segend = MIN(4, opr_sz_4);
i = 0;
do {
int8_t m0 = m_indexed[i * 4 + 0];
int8_t m1 = m_indexed[i * 4 + 1];
int8_t m2 = m_indexed[i * 4 + 2];
int8_t m3 = m_indexed[i * 4 + 3];
do {
d[i] += n[i * 4 + 0] * m0
+ n[i * 4 + 1] * m1
+ n[i * 4 + 2] * m2
+ n[i * 4 + 3] * m3;
} while (++i < segend);
segend = i + 4;
} while (i < opr_sz_4);
clear_tail(d, opr_sz, simd_maxsz(desc));
}
void HELPER(gvec_udot_idx_b)(void *vd, void *vn, void *vm, uint32_t desc)
{
intptr_t i, segend, opr_sz = simd_oprsz(desc), opr_sz_4 = opr_sz / 4;
intptr_t index = simd_data(desc);
uint32_t *d = vd;
uint8_t *n = vn;
uint8_t *m_indexed = (uint8_t *)vm + index * 4;
/* Notice the special case of opr_sz == 8, from aa64/aa32 advsimd.
* Otherwise opr_sz is a multiple of 16.
*/
segend = MIN(4, opr_sz_4);
i = 0;
do {
uint8_t m0 = m_indexed[i * 4 + 0];
uint8_t m1 = m_indexed[i * 4 + 1];
uint8_t m2 = m_indexed[i * 4 + 2];
uint8_t m3 = m_indexed[i * 4 + 3];
do {
d[i] += n[i * 4 + 0] * m0
+ n[i * 4 + 1] * m1
+ n[i * 4 + 2] * m2
+ n[i * 4 + 3] * m3;
} while (++i < segend);
segend = i + 4;
} while (i < opr_sz_4);
clear_tail(d, opr_sz, simd_maxsz(desc));
}
void HELPER(gvec_sdot_idx_h)(void *vd, void *vn, void *vm, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc), opr_sz_8 = opr_sz / 8;
intptr_t index = simd_data(desc);
uint64_t *d = vd;
int16_t *n = vn;
int16_t *m_indexed = (int16_t *)vm + index * 4;
/* This is supported by SVE only, so opr_sz is always a multiple of 16.
* Process the entire segment all at once, writing back the results
* only after we've consumed all of the inputs.
*/
for (i = 0; i < opr_sz_8 ; i += 2) {
uint64_t d0, d1;
d0 = n[i * 4 + 0] * (int64_t)m_indexed[i * 4 + 0];
d0 += n[i * 4 + 1] * (int64_t)m_indexed[i * 4 + 1];
d0 += n[i * 4 + 2] * (int64_t)m_indexed[i * 4 + 2];
d0 += n[i * 4 + 3] * (int64_t)m_indexed[i * 4 + 3];
d1 = n[i * 4 + 4] * (int64_t)m_indexed[i * 4 + 0];
d1 += n[i * 4 + 5] * (int64_t)m_indexed[i * 4 + 1];
d1 += n[i * 4 + 6] * (int64_t)m_indexed[i * 4 + 2];
d1 += n[i * 4 + 7] * (int64_t)m_indexed[i * 4 + 3];
d[i + 0] += d0;
d[i + 1] += d1;
}
clear_tail(d, opr_sz, simd_maxsz(desc));
}
void HELPER(gvec_udot_idx_h)(void *vd, void *vn, void *vm, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc), opr_sz_8 = opr_sz / 8;
intptr_t index = simd_data(desc);
uint64_t *d = vd;
uint16_t *n = vn;
uint16_t *m_indexed = (uint16_t *)vm + index * 4;
/* This is supported by SVE only, so opr_sz is always a multiple of 16.
* Process the entire segment all at once, writing back the results
* only after we've consumed all of the inputs.
*/
for (i = 0; i < opr_sz_8 ; i += 2) {
uint64_t d0, d1;
d0 = n[i * 4 + 0] * (uint64_t)m_indexed[i * 4 + 0];
d0 += n[i * 4 + 1] * (uint64_t)m_indexed[i * 4 + 1];
d0 += n[i * 4 + 2] * (uint64_t)m_indexed[i * 4 + 2];
d0 += n[i * 4 + 3] * (uint64_t)m_indexed[i * 4 + 3];
d1 = n[i * 4 + 4] * (uint64_t)m_indexed[i * 4 + 0];
d1 += n[i * 4 + 5] * (uint64_t)m_indexed[i * 4 + 1];
d1 += n[i * 4 + 6] * (uint64_t)m_indexed[i * 4 + 2];
d1 += n[i * 4 + 7] * (uint64_t)m_indexed[i * 4 + 3];
d[i + 0] += d0;
d[i + 1] += d1;
}
clear_tail(d, opr_sz, simd_maxsz(desc));
}
void HELPER(gvec_fcaddh)(void *vd, void *vn, void *vm,
void *vfpst, uint32_t desc)
{
uintptr_t opr_sz = simd_oprsz(desc);
float16 *d = vd;
float16 *n = vn;
float16 *m = vm;
float_status *fpst = vfpst;
uint32_t neg_real = extract32(desc, SIMD_DATA_SHIFT, 1);
uint32_t neg_imag = neg_real ^ 1;
uintptr_t i;
/* Shift boolean to the sign bit so we can xor to negate. */
neg_real <<= 15;
neg_imag <<= 15;
for (i = 0; i < opr_sz / 2; i += 2) {
float16 e0 = n[H2(i)];
float16 e1 = m[H2(i + 1)] ^ neg_imag;
float16 e2 = n[H2(i + 1)];
float16 e3 = m[H2(i)] ^ neg_real;
d[H2(i)] = float16_add(e0, e1, fpst);
d[H2(i + 1)] = float16_add(e2, e3, fpst);
}
clear_tail(d, opr_sz, simd_maxsz(desc));
}
void HELPER(gvec_fcadds)(void *vd, void *vn, void *vm,
void *vfpst, uint32_t desc)
{
uintptr_t opr_sz = simd_oprsz(desc);
float32 *d = vd;
float32 *n = vn;
float32 *m = vm;
float_status *fpst = vfpst;
uint32_t neg_real = extract32(desc, SIMD_DATA_SHIFT, 1);
uint32_t neg_imag = neg_real ^ 1;
uintptr_t i;
/* Shift boolean to the sign bit so we can xor to negate. */
neg_real <<= 31;
neg_imag <<= 31;
for (i = 0; i < opr_sz / 4; i += 2) {
float32 e0 = n[H4(i)];
float32 e1 = m[H4(i + 1)] ^ neg_imag;
float32 e2 = n[H4(i + 1)];
float32 e3 = m[H4(i)] ^ neg_real;
d[H4(i)] = float32_add(e0, e1, fpst);
d[H4(i + 1)] = float32_add(e2, e3, fpst);
}
clear_tail(d, opr_sz, simd_maxsz(desc));
}
void HELPER(gvec_fcaddd)(void *vd, void *vn, void *vm,
void *vfpst, uint32_t desc)
{
uintptr_t opr_sz = simd_oprsz(desc);
float64 *d = vd;
float64 *n = vn;
float64 *m = vm;
float_status *fpst = vfpst;
uint64_t neg_real = extract64(desc, SIMD_DATA_SHIFT, 1);
uint64_t neg_imag = neg_real ^ 1;
uintptr_t i;
/* Shift boolean to the sign bit so we can xor to negate. */
neg_real <<= 63;
neg_imag <<= 63;
for (i = 0; i < opr_sz / 8; i += 2) {
float64 e0 = n[i];
float64 e1 = m[i + 1] ^ neg_imag;
float64 e2 = n[i + 1];
float64 e3 = m[i] ^ neg_real;
d[i] = float64_add(e0, e1, fpst);
d[i + 1] = float64_add(e2, e3, fpst);
}
clear_tail(d, opr_sz, simd_maxsz(desc));
}
void HELPER(gvec_fcmlah)(void *vd, void *vn, void *vm,
void *vfpst, uint32_t desc)
{
uintptr_t opr_sz = simd_oprsz(desc);
float16 *d = vd;
float16 *n = vn;
float16 *m = vm;
float_status *fpst = vfpst;
intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
uint32_t neg_real = flip ^ neg_imag;
uintptr_t i;
/* Shift boolean to the sign bit so we can xor to negate. */
neg_real <<= 15;
neg_imag <<= 15;
for (i = 0; i < opr_sz / 2; i += 2) {
float16 e2 = n[H2(i + flip)];
float16 e1 = m[H2(i + flip)] ^ neg_real;
float16 e4 = e2;
float16 e3 = m[H2(i + 1 - flip)] ^ neg_imag;
d[H2(i)] = float16_muladd(e2, e1, d[H2(i)], 0, fpst);
d[H2(i + 1)] = float16_muladd(e4, e3, d[H2(i + 1)], 0, fpst);
}
clear_tail(d, opr_sz, simd_maxsz(desc));
}
void HELPER(gvec_fcmlah_idx)(void *vd, void *vn, void *vm,
void *vfpst, uint32_t desc)
{
uintptr_t opr_sz = simd_oprsz(desc);
float16 *d = vd;
float16 *n = vn;
float16 *m = vm;
float_status *fpst = vfpst;
intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
intptr_t index = extract32(desc, SIMD_DATA_SHIFT + 2, 2);
uint32_t neg_real = flip ^ neg_imag;
intptr_t elements = opr_sz / sizeof(float16);
intptr_t eltspersegment = 16 / sizeof(float16);
intptr_t i, j;
/* Shift boolean to the sign bit so we can xor to negate. */
neg_real <<= 15;
neg_imag <<= 15;
for (i = 0; i < elements; i += eltspersegment) {
float16 mr = m[H2(i + 2 * index + 0)];
float16 mi = m[H2(i + 2 * index + 1)];
float16 e1 = neg_real ^ (flip ? mi : mr);
float16 e3 = neg_imag ^ (flip ? mr : mi);
for (j = i; j < i + eltspersegment; j += 2) {
float16 e2 = n[H2(j + flip)];
float16 e4 = e2;
d[H2(j)] = float16_muladd(e2, e1, d[H2(j)], 0, fpst);
d[H2(j + 1)] = float16_muladd(e4, e3, d[H2(j + 1)], 0, fpst);
}
}
clear_tail(d, opr_sz, simd_maxsz(desc));
}
void HELPER(gvec_fcmlas)(void *vd, void *vn, void *vm,
void *vfpst, uint32_t desc)
{
uintptr_t opr_sz = simd_oprsz(desc);
float32 *d = vd;
float32 *n = vn;
float32 *m = vm;
float_status *fpst = vfpst;
intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
uint32_t neg_real = flip ^ neg_imag;
uintptr_t i;
/* Shift boolean to the sign bit so we can xor to negate. */
neg_real <<= 31;
neg_imag <<= 31;
for (i = 0; i < opr_sz / 4; i += 2) {
float32 e2 = n[H4(i + flip)];
float32 e1 = m[H4(i + flip)] ^ neg_real;
float32 e4 = e2;
float32 e3 = m[H4(i + 1 - flip)] ^ neg_imag;
d[H4(i)] = float32_muladd(e2, e1, d[H4(i)], 0, fpst);
d[H4(i + 1)] = float32_muladd(e4, e3, d[H4(i + 1)], 0, fpst);
}
clear_tail(d, opr_sz, simd_maxsz(desc));
}
void HELPER(gvec_fcmlas_idx)(void *vd, void *vn, void *vm,
void *vfpst, uint32_t desc)
{
uintptr_t opr_sz = simd_oprsz(desc);
float32 *d = vd;
float32 *n = vn;
float32 *m = vm;
float_status *fpst = vfpst;
intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
intptr_t index = extract32(desc, SIMD_DATA_SHIFT + 2, 2);
uint32_t neg_real = flip ^ neg_imag;
intptr_t elements = opr_sz / sizeof(float32);
intptr_t eltspersegment = 16 / sizeof(float32);
intptr_t i, j;
/* Shift boolean to the sign bit so we can xor to negate. */
neg_real <<= 31;
neg_imag <<= 31;
for (i = 0; i < elements; i += eltspersegment) {
float32 mr = m[H4(i + 2 * index + 0)];
float32 mi = m[H4(i + 2 * index + 1)];
float32 e1 = neg_real ^ (flip ? mi : mr);
float32 e3 = neg_imag ^ (flip ? mr : mi);
for (j = i; j < i + eltspersegment; j += 2) {
float32 e2 = n[H4(j + flip)];
float32 e4 = e2;
d[H4(j)] = float32_muladd(e2, e1, d[H4(j)], 0, fpst);
d[H4(j + 1)] = float32_muladd(e4, e3, d[H4(j + 1)], 0, fpst);
}
}
clear_tail(d, opr_sz, simd_maxsz(desc));
}
void HELPER(gvec_fcmlad)(void *vd, void *vn, void *vm,
void *vfpst, uint32_t desc)
{
uintptr_t opr_sz = simd_oprsz(desc);
float64 *d = vd;
float64 *n = vn;
float64 *m = vm;
float_status *fpst = vfpst;
intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
uint64_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
uint64_t neg_real = flip ^ neg_imag;
uintptr_t i;
/* Shift boolean to the sign bit so we can xor to negate. */
neg_real <<= 63;
neg_imag <<= 63;
for (i = 0; i < opr_sz / 8; i += 2) {
float64 e2 = n[i + flip];
float64 e1 = m[i + flip] ^ neg_real;
float64 e4 = e2;
float64 e3 = m[i + 1 - flip] ^ neg_imag;
d[i] = float64_muladd(e2, e1, d[i], 0, fpst);
d[i + 1] = float64_muladd(e4, e3, d[i + 1], 0, fpst);
}
clear_tail(d, opr_sz, simd_maxsz(desc));
}
#define DO_2OP(NAME, FUNC, TYPE) \
void HELPER(NAME)(void *vd, void *vn, void *stat, uint32_t desc) \
{ \
intptr_t i, oprsz = simd_oprsz(desc); \
TYPE *d = vd, *n = vn; \
for (i = 0; i < oprsz / sizeof(TYPE); i++) { \
d[i] = FUNC(n[i], stat); \
} \
}
DO_2OP(gvec_frecpe_h, helper_recpe_f16, float16)
DO_2OP(gvec_frecpe_s, helper_recpe_f32, float32)
DO_2OP(gvec_frecpe_d, helper_recpe_f64, float64)
DO_2OP(gvec_frsqrte_h, helper_rsqrte_f16, float16)
DO_2OP(gvec_frsqrte_s, helper_rsqrte_f32, float32)
DO_2OP(gvec_frsqrte_d, helper_rsqrte_f64, float64)
#undef DO_2OP
/* Floating-point trigonometric starting value.
* See the ARM ARM pseudocode function FPTrigSMul.
*/
static float16 float16_ftsmul(float16 op1, uint16_t op2, float_status *stat)
{
float16 result = float16_mul(op1, op1, stat);
if (!float16_is_any_nan(result)) {
result = float16_set_sign(result, op2 & 1);
}
return result;
}
static float32 float32_ftsmul(float32 op1, uint32_t op2, float_status *stat)
{
float32 result = float32_mul(op1, op1, stat);
if (!float32_is_any_nan(result)) {
result = float32_set_sign(result, op2 & 1);
}
return result;
}
static float64 float64_ftsmul(float64 op1, uint64_t op2, float_status *stat)
{
float64 result = float64_mul(op1, op1, stat);
if (!float64_is_any_nan(result)) {
result = float64_set_sign(result, op2 & 1);
}
return result;
}
#define DO_3OP(NAME, FUNC, TYPE) \
void HELPER(NAME)(void *vd, void *vn, void *vm, void *stat, uint32_t desc) \
{ \
intptr_t i, oprsz = simd_oprsz(desc); \
TYPE *d = vd, *n = vn, *m = vm; \
for (i = 0; i < oprsz / sizeof(TYPE); i++) { \
d[i] = FUNC(n[i], m[i], stat); \
} \
}
DO_3OP(gvec_fadd_h, float16_add, float16)
DO_3OP(gvec_fadd_s, float32_add, float32)
DO_3OP(gvec_fadd_d, float64_add, float64)
DO_3OP(gvec_fsub_h, float16_sub, float16)
DO_3OP(gvec_fsub_s, float32_sub, float32)
DO_3OP(gvec_fsub_d, float64_sub, float64)
DO_3OP(gvec_fmul_h, float16_mul, float16)
DO_3OP(gvec_fmul_s, float32_mul, float32)
DO_3OP(gvec_fmul_d, float64_mul, float64)
DO_3OP(gvec_ftsmul_h, float16_ftsmul, float16)
DO_3OP(gvec_ftsmul_s, float32_ftsmul, float32)
DO_3OP(gvec_ftsmul_d, float64_ftsmul, float64)
#ifdef TARGET_AARCH64
DO_3OP(gvec_recps_h, helper_recpsf_f16, float16)
DO_3OP(gvec_recps_s, helper_recpsf_f32, float32)
DO_3OP(gvec_recps_d, helper_recpsf_f64, float64)
DO_3OP(gvec_rsqrts_h, helper_rsqrtsf_f16, float16)
DO_3OP(gvec_rsqrts_s, helper_rsqrtsf_f32, float32)
DO_3OP(gvec_rsqrts_d, helper_rsqrtsf_f64, float64)
#endif
#undef DO_3OP
/* For the indexed ops, SVE applies the index per 128-bit vector segment.
* For AdvSIMD, there is of course only one such vector segment.
*/
#define DO_MUL_IDX(NAME, TYPE, H) \
void HELPER(NAME)(void *vd, void *vn, void *vm, void *stat, uint32_t desc) \
{ \
intptr_t i, j, oprsz = simd_oprsz(desc), segment = 16 / sizeof(TYPE); \
intptr_t idx = simd_data(desc); \
TYPE *d = vd, *n = vn, *m = vm; \
for (i = 0; i < oprsz / sizeof(TYPE); i += segment) { \
TYPE mm = m[H(i + idx)]; \
for (j = 0; j < segment; j++) { \
d[i + j] = TYPE##_mul(n[i + j], mm, stat); \
} \
} \
}
DO_MUL_IDX(gvec_fmul_idx_h, float16, H2)
DO_MUL_IDX(gvec_fmul_idx_s, float32, H4)
DO_MUL_IDX(gvec_fmul_idx_d, float64, )
#undef DO_MUL_IDX
#define DO_FMLA_IDX(NAME, TYPE, H) \
void HELPER(NAME)(void *vd, void *vn, void *vm, void *va, \
void *stat, uint32_t desc) \
{ \
intptr_t i, j, oprsz = simd_oprsz(desc), segment = 16 / sizeof(TYPE); \
TYPE op1_neg = extract32(desc, SIMD_DATA_SHIFT, 1); \
intptr_t idx = desc >> (SIMD_DATA_SHIFT + 1); \
TYPE *d = vd, *n = vn, *m = vm, *a = va; \
op1_neg <<= (8 * sizeof(TYPE) - 1); \
for (i = 0; i < oprsz / sizeof(TYPE); i += segment) { \
TYPE mm = m[H(i + idx)]; \
for (j = 0; j < segment; j++) { \
d[i + j] = TYPE##_muladd(n[i + j] ^ op1_neg, \
mm, a[i + j], 0, stat); \
} \
} \
}
DO_FMLA_IDX(gvec_fmla_idx_h, float16, H2)
DO_FMLA_IDX(gvec_fmla_idx_s, float32, H4)
DO_FMLA_IDX(gvec_fmla_idx_d, float64, )
#undef DO_FMLA_IDX