qemu/hw/ppc/spapr_drc.c
David Gibson 4f65ce00ab spapr: Abolish DRC set_configured method
DRConnectorClass has a set_configured method, however:
  * There is only one implementation, and only ever likely to be one
  * There's exactly one caller, and that's (now) local
  * The implementation is very straightforward

So abolish the method entirely, and just open-code what we need.

Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Laurent Vivier <lvivier@redhat.com>
Reviewed-by: Greg Kurz <groug@kaod.org>
Tested-by: Daniel Barboza <danielhb@linux.vnet.ibm.com>
2017-06-06 08:53:24 +10:00

1224 lines
41 KiB
C

/*
* QEMU SPAPR Dynamic Reconfiguration Connector Implementation
*
* Copyright IBM Corp. 2014
*
* Authors:
* Michael Roth <mdroth@linux.vnet.ibm.com>
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*/
#include "qemu/osdep.h"
#include "qapi/error.h"
#include "cpu.h"
#include "qemu/cutils.h"
#include "hw/ppc/spapr_drc.h"
#include "qom/object.h"
#include "hw/qdev.h"
#include "qapi/visitor.h"
#include "qemu/error-report.h"
#include "hw/ppc/spapr.h" /* for RTAS return codes */
#include "hw/pci-host/spapr.h" /* spapr_phb_remove_pci_device_cb callback */
#include "trace.h"
#define DRC_CONTAINER_PATH "/dr-connector"
#define DRC_INDEX_TYPE_SHIFT 28
#define DRC_INDEX_ID_MASK ((1ULL << DRC_INDEX_TYPE_SHIFT) - 1)
static sPAPRConfigureConnectorState *spapr_ccs_find(sPAPRMachineState *spapr,
uint32_t drc_index)
{
sPAPRConfigureConnectorState *ccs = NULL;
QTAILQ_FOREACH(ccs, &spapr->ccs_list, next) {
if (ccs->drc_index == drc_index) {
break;
}
}
return ccs;
}
static void spapr_ccs_add(sPAPRMachineState *spapr,
sPAPRConfigureConnectorState *ccs)
{
g_assert(!spapr_ccs_find(spapr, ccs->drc_index));
QTAILQ_INSERT_HEAD(&spapr->ccs_list, ccs, next);
}
static void spapr_ccs_remove(sPAPRMachineState *spapr,
sPAPRConfigureConnectorState *ccs)
{
QTAILQ_REMOVE(&spapr->ccs_list, ccs, next);
g_free(ccs);
}
static sPAPRDRConnectorTypeShift get_type_shift(sPAPRDRConnectorType type)
{
uint32_t shift = 0;
/* make sure this isn't SPAPR_DR_CONNECTOR_TYPE_ANY, or some
* other wonky value.
*/
g_assert(is_power_of_2(type));
while (type != (1 << shift)) {
shift++;
}
return shift;
}
static uint32_t get_index(sPAPRDRConnector *drc)
{
/* no set format for a drc index: it only needs to be globally
* unique. this is how we encode the DRC type on bare-metal
* however, so might as well do that here
*/
return (get_type_shift(drc->type) << DRC_INDEX_TYPE_SHIFT) |
(drc->id & DRC_INDEX_ID_MASK);
}
static uint32_t set_isolation_state(sPAPRDRConnector *drc,
sPAPRDRIsolationState state)
{
sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
trace_spapr_drc_set_isolation_state(get_index(drc), state);
if (state == SPAPR_DR_ISOLATION_STATE_UNISOLATED) {
/* cannot unisolate a non-existent resource, and, or resources
* which are in an 'UNUSABLE' allocation state. (PAPR 2.7, 13.5.3.5)
*/
if (!drc->dev ||
drc->allocation_state == SPAPR_DR_ALLOCATION_STATE_UNUSABLE) {
return RTAS_OUT_NO_SUCH_INDICATOR;
}
}
/*
* Fail any requests to ISOLATE the LMB DRC if this LMB doesn't
* belong to a DIMM device that is marked for removal.
*
* Currently the guest userspace tool drmgr that drives the memory
* hotplug/unplug will just try to remove a set of 'removable' LMBs
* in response to a hot unplug request that is based on drc-count.
* If the LMB being removed doesn't belong to a DIMM device that is
* actually being unplugged, fail the isolation request here.
*/
if (drc->type == SPAPR_DR_CONNECTOR_TYPE_LMB) {
if ((state == SPAPR_DR_ISOLATION_STATE_ISOLATED) &&
!drc->awaiting_release) {
return RTAS_OUT_HW_ERROR;
}
}
drc->isolation_state = state;
if (drc->isolation_state == SPAPR_DR_ISOLATION_STATE_ISOLATED) {
/* if we're awaiting release, but still in an unconfigured state,
* it's likely the guest is still in the process of configuring
* the device and is transitioning the devices to an ISOLATED
* state as a part of that process. so we only complete the
* removal when this transition happens for a device in a
* configured state, as suggested by the state diagram from
* PAPR+ 2.7, 13.4
*/
if (drc->awaiting_release) {
if (drc->configured) {
trace_spapr_drc_set_isolation_state_finalizing(get_index(drc));
drck->detach(drc, DEVICE(drc->dev), NULL);
} else {
trace_spapr_drc_set_isolation_state_deferring(get_index(drc));
}
}
drc->configured = false;
}
return RTAS_OUT_SUCCESS;
}
static uint32_t set_indicator_state(sPAPRDRConnector *drc,
sPAPRDRIndicatorState state)
{
trace_spapr_drc_set_indicator_state(get_index(drc), state);
drc->indicator_state = state;
return RTAS_OUT_SUCCESS;
}
static uint32_t set_allocation_state(sPAPRDRConnector *drc,
sPAPRDRAllocationState state)
{
sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
trace_spapr_drc_set_allocation_state(get_index(drc), state);
if (state == SPAPR_DR_ALLOCATION_STATE_USABLE) {
/* if there's no resource/device associated with the DRC, there's
* no way for us to put it in an allocation state consistent with
* being 'USABLE'. PAPR 2.7, 13.5.3.4 documents that this should
* result in an RTAS return code of -3 / "no such indicator"
*/
if (!drc->dev) {
return RTAS_OUT_NO_SUCH_INDICATOR;
}
if (drc->awaiting_release && drc->awaiting_allocation) {
/* kernel is acknowledging a previous hotplug event
* while we are already removing it.
* it's safe to ignore awaiting_allocation here since we know the
* situation is predicated on the guest either already having done
* so (boot-time hotplug), or never being able to acquire in the
* first place (hotplug followed by immediate unplug).
*/
drc->awaiting_allocation_skippable = true;
return RTAS_OUT_NO_SUCH_INDICATOR;
}
}
if (drc->type != SPAPR_DR_CONNECTOR_TYPE_PCI) {
drc->allocation_state = state;
if (drc->awaiting_release &&
drc->allocation_state == SPAPR_DR_ALLOCATION_STATE_UNUSABLE) {
trace_spapr_drc_set_allocation_state_finalizing(get_index(drc));
drck->detach(drc, DEVICE(drc->dev), NULL);
} else if (drc->allocation_state == SPAPR_DR_ALLOCATION_STATE_USABLE) {
drc->awaiting_allocation = false;
}
}
return RTAS_OUT_SUCCESS;
}
static uint32_t get_type(sPAPRDRConnector *drc)
{
return drc->type;
}
static const char *get_name(sPAPRDRConnector *drc)
{
return drc->name;
}
/* has the guest been notified of device attachment? */
static void set_signalled(sPAPRDRConnector *drc)
{
drc->signalled = true;
}
/*
* dr-entity-sense sensor value
* returned via get-sensor-state RTAS calls
* as expected by state diagram in PAPR+ 2.7, 13.4
* based on the current allocation/indicator/power states
* for the DR connector.
*/
static uint32_t entity_sense(sPAPRDRConnector *drc, sPAPRDREntitySense *state)
{
if (drc->dev) {
if (drc->type != SPAPR_DR_CONNECTOR_TYPE_PCI &&
drc->allocation_state == SPAPR_DR_ALLOCATION_STATE_UNUSABLE) {
/* for logical DR, we return a state of UNUSABLE
* iff the allocation state UNUSABLE.
* Otherwise, report the state as USABLE/PRESENT,
* as we would for PCI.
*/
*state = SPAPR_DR_ENTITY_SENSE_UNUSABLE;
} else {
/* this assumes all PCI devices are assigned to
* a 'live insertion' power domain, where QEMU
* manages power state automatically as opposed
* to the guest. present, non-PCI resources are
* unaffected by power state.
*/
*state = SPAPR_DR_ENTITY_SENSE_PRESENT;
}
} else {
if (drc->type == SPAPR_DR_CONNECTOR_TYPE_PCI) {
/* PCI devices, and only PCI devices, use EMPTY
* in cases where we'd otherwise use UNUSABLE
*/
*state = SPAPR_DR_ENTITY_SENSE_EMPTY;
} else {
*state = SPAPR_DR_ENTITY_SENSE_UNUSABLE;
}
}
trace_spapr_drc_entity_sense(get_index(drc), *state);
return RTAS_OUT_SUCCESS;
}
static void prop_get_index(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(obj);
sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
uint32_t value = (uint32_t)drck->get_index(drc);
visit_type_uint32(v, name, &value, errp);
}
static void prop_get_type(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(obj);
sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
uint32_t value = (uint32_t)drck->get_type(drc);
visit_type_uint32(v, name, &value, errp);
}
static char *prop_get_name(Object *obj, Error **errp)
{
sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(obj);
sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
return g_strdup(drck->get_name(drc));
}
static void prop_get_entity_sense(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(obj);
sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
uint32_t value;
drck->entity_sense(drc, &value);
visit_type_uint32(v, name, &value, errp);
}
static void prop_get_fdt(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(obj);
Error *err = NULL;
int fdt_offset_next, fdt_offset, fdt_depth;
void *fdt;
if (!drc->fdt) {
visit_type_null(v, NULL, errp);
return;
}
fdt = drc->fdt;
fdt_offset = drc->fdt_start_offset;
fdt_depth = 0;
do {
const char *name = NULL;
const struct fdt_property *prop = NULL;
int prop_len = 0, name_len = 0;
uint32_t tag;
tag = fdt_next_tag(fdt, fdt_offset, &fdt_offset_next);
switch (tag) {
case FDT_BEGIN_NODE:
fdt_depth++;
name = fdt_get_name(fdt, fdt_offset, &name_len);
visit_start_struct(v, name, NULL, 0, &err);
if (err) {
error_propagate(errp, err);
return;
}
break;
case FDT_END_NODE:
/* shouldn't ever see an FDT_END_NODE before FDT_BEGIN_NODE */
g_assert(fdt_depth > 0);
visit_check_struct(v, &err);
visit_end_struct(v, NULL);
if (err) {
error_propagate(errp, err);
return;
}
fdt_depth--;
break;
case FDT_PROP: {
int i;
prop = fdt_get_property_by_offset(fdt, fdt_offset, &prop_len);
name = fdt_string(fdt, fdt32_to_cpu(prop->nameoff));
visit_start_list(v, name, NULL, 0, &err);
if (err) {
error_propagate(errp, err);
return;
}
for (i = 0; i < prop_len; i++) {
visit_type_uint8(v, NULL, (uint8_t *)&prop->data[i], &err);
if (err) {
error_propagate(errp, err);
return;
}
}
visit_check_list(v, &err);
visit_end_list(v, NULL);
if (err) {
error_propagate(errp, err);
return;
}
break;
}
default:
error_setg(&error_abort, "device FDT in unexpected state: %d", tag);
}
fdt_offset = fdt_offset_next;
} while (fdt_depth != 0);
}
static void attach(sPAPRDRConnector *drc, DeviceState *d, void *fdt,
int fdt_start_offset, bool coldplug, Error **errp)
{
trace_spapr_drc_attach(get_index(drc));
if (drc->isolation_state != SPAPR_DR_ISOLATION_STATE_ISOLATED) {
error_setg(errp, "an attached device is still awaiting release");
return;
}
if (drc->type == SPAPR_DR_CONNECTOR_TYPE_PCI) {
g_assert(drc->allocation_state == SPAPR_DR_ALLOCATION_STATE_USABLE);
}
g_assert(fdt || coldplug);
/* NOTE: setting initial isolation state to UNISOLATED means we can't
* detach unless guest has a userspace/kernel that moves this state
* back to ISOLATED in response to an unplug event, or this is done
* manually by the admin prior. if we force things while the guest
* may be accessing the device, we can easily crash the guest, so we
* we defer completion of removal in such cases to the reset() hook.
*/
if (drc->type == SPAPR_DR_CONNECTOR_TYPE_PCI) {
drc->isolation_state = SPAPR_DR_ISOLATION_STATE_UNISOLATED;
}
drc->indicator_state = SPAPR_DR_INDICATOR_STATE_ACTIVE;
drc->dev = d;
drc->fdt = fdt;
drc->fdt_start_offset = fdt_start_offset;
drc->configured = coldplug;
/* 'logical' DR resources such as memory/cpus are in some cases treated
* as a pool of resources from which the guest is free to choose from
* based on only a count. for resources that can be assigned in this
* fashion, we must assume the resource is signalled immediately
* since a single hotplug request might make an arbitrary number of
* such attached resources available to the guest, as opposed to
* 'physical' DR resources such as PCI where each device/resource is
* signalled individually.
*/
drc->signalled = (drc->type != SPAPR_DR_CONNECTOR_TYPE_PCI)
? true : coldplug;
if (drc->type != SPAPR_DR_CONNECTOR_TYPE_PCI) {
drc->awaiting_allocation = true;
}
object_property_add_link(OBJECT(drc), "device",
object_get_typename(OBJECT(drc->dev)),
(Object **)(&drc->dev),
NULL, 0, NULL);
}
static void detach(sPAPRDRConnector *drc, DeviceState *d, Error **errp)
{
trace_spapr_drc_detach(get_index(drc));
/* if we've signalled device presence to the guest, or if the guest
* has gone ahead and configured the device (via manually-executed
* device add via drmgr in guest, namely), we need to wait
* for the guest to quiesce the device before completing detach.
* Otherwise, we can assume the guest hasn't seen it and complete the
* detach immediately. Note that there is a small race window
* just before, or during, configuration, which is this context
* refers mainly to fetching the device tree via RTAS.
* During this window the device access will be arbitrated by
* associated DRC, which will simply fail the RTAS calls as invalid.
* This is recoverable within guest and current implementations of
* drmgr should be able to cope.
*/
if (!drc->signalled && !drc->configured) {
/* if the guest hasn't seen the device we can't rely on it to
* set it back to an isolated state via RTAS, so do it here manually
*/
drc->isolation_state = SPAPR_DR_ISOLATION_STATE_ISOLATED;
}
if (drc->isolation_state != SPAPR_DR_ISOLATION_STATE_ISOLATED) {
trace_spapr_drc_awaiting_isolated(get_index(drc));
drc->awaiting_release = true;
return;
}
if (drc->type != SPAPR_DR_CONNECTOR_TYPE_PCI &&
drc->allocation_state != SPAPR_DR_ALLOCATION_STATE_UNUSABLE) {
trace_spapr_drc_awaiting_unusable(get_index(drc));
drc->awaiting_release = true;
return;
}
if (drc->awaiting_allocation) {
if (!drc->awaiting_allocation_skippable) {
drc->awaiting_release = true;
trace_spapr_drc_awaiting_allocation(get_index(drc));
return;
}
}
drc->indicator_state = SPAPR_DR_INDICATOR_STATE_INACTIVE;
/* Calling release callbacks based on drc->type. */
switch (drc->type) {
case SPAPR_DR_CONNECTOR_TYPE_CPU:
spapr_core_release(drc->dev);
break;
case SPAPR_DR_CONNECTOR_TYPE_PCI:
spapr_phb_remove_pci_device_cb(drc->dev);
break;
case SPAPR_DR_CONNECTOR_TYPE_LMB:
spapr_lmb_release(drc->dev);
break;
case SPAPR_DR_CONNECTOR_TYPE_PHB:
case SPAPR_DR_CONNECTOR_TYPE_VIO:
default:
g_assert(false);
}
drc->awaiting_release = false;
drc->awaiting_allocation_skippable = false;
g_free(drc->fdt);
drc->fdt = NULL;
drc->fdt_start_offset = 0;
object_property_del(OBJECT(drc), "device", NULL);
drc->dev = NULL;
}
static bool release_pending(sPAPRDRConnector *drc)
{
return drc->awaiting_release;
}
static void reset(DeviceState *d)
{
sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(d);
sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
sPAPRDREntitySense state;
trace_spapr_drc_reset(drck->get_index(drc));
/* immediately upon reset we can safely assume DRCs whose devices
* are pending removal can be safely removed, and that they will
* subsequently be left in an ISOLATED state. move the DRC to this
* state in these cases (which will in turn complete any pending
* device removals)
*/
if (drc->awaiting_release) {
drck->set_isolation_state(drc, SPAPR_DR_ISOLATION_STATE_ISOLATED);
/* generally this should also finalize the removal, but if the device
* hasn't yet been configured we normally defer removal under the
* assumption that this transition is taking place as part of device
* configuration. so check if we're still waiting after this, and
* force removal if we are
*/
if (drc->awaiting_release) {
drck->detach(drc, DEVICE(drc->dev), NULL);
}
/* non-PCI devices may be awaiting a transition to UNUSABLE */
if (drc->type != SPAPR_DR_CONNECTOR_TYPE_PCI &&
drc->awaiting_release) {
drck->set_allocation_state(drc, SPAPR_DR_ALLOCATION_STATE_UNUSABLE);
}
}
drck->entity_sense(drc, &state);
if (state == SPAPR_DR_ENTITY_SENSE_PRESENT) {
drck->set_signalled(drc);
}
}
static bool spapr_drc_needed(void *opaque)
{
sPAPRDRConnector *drc = (sPAPRDRConnector *)opaque;
sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
bool rc = false;
sPAPRDREntitySense value;
drck->entity_sense(drc, &value);
/* If no dev is plugged in there is no need to migrate the DRC state */
if (value != SPAPR_DR_ENTITY_SENSE_PRESENT) {
return false;
}
/*
* If there is dev plugged in, we need to migrate the DRC state when
* it is different from cold-plugged state
*/
switch (drc->type) {
case SPAPR_DR_CONNECTOR_TYPE_PCI:
rc = !((drc->isolation_state == SPAPR_DR_ISOLATION_STATE_UNISOLATED) &&
(drc->allocation_state == SPAPR_DR_ALLOCATION_STATE_USABLE) &&
drc->configured && drc->signalled && !drc->awaiting_release);
break;
case SPAPR_DR_CONNECTOR_TYPE_CPU:
case SPAPR_DR_CONNECTOR_TYPE_LMB:
rc = !((drc->isolation_state == SPAPR_DR_ISOLATION_STATE_ISOLATED) &&
(drc->allocation_state == SPAPR_DR_ALLOCATION_STATE_UNUSABLE) &&
drc->configured && drc->signalled && !drc->awaiting_release);
break;
case SPAPR_DR_CONNECTOR_TYPE_PHB:
case SPAPR_DR_CONNECTOR_TYPE_VIO:
default:
g_assert(false);
}
return rc;
}
static const VMStateDescription vmstate_spapr_drc = {
.name = "spapr_drc",
.version_id = 1,
.minimum_version_id = 1,
.needed = spapr_drc_needed,
.fields = (VMStateField []) {
VMSTATE_UINT32(isolation_state, sPAPRDRConnector),
VMSTATE_UINT32(allocation_state, sPAPRDRConnector),
VMSTATE_UINT32(indicator_state, sPAPRDRConnector),
VMSTATE_BOOL(configured, sPAPRDRConnector),
VMSTATE_BOOL(awaiting_release, sPAPRDRConnector),
VMSTATE_BOOL(awaiting_allocation, sPAPRDRConnector),
VMSTATE_BOOL(signalled, sPAPRDRConnector),
VMSTATE_END_OF_LIST()
}
};
static void realize(DeviceState *d, Error **errp)
{
sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(d);
sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
Object *root_container;
char link_name[256];
gchar *child_name;
Error *err = NULL;
trace_spapr_drc_realize(drck->get_index(drc));
/* NOTE: we do this as part of realize/unrealize due to the fact
* that the guest will communicate with the DRC via RTAS calls
* referencing the global DRC index. By unlinking the DRC
* from DRC_CONTAINER_PATH/<drc_index> we effectively make it
* inaccessible by the guest, since lookups rely on this path
* existing in the composition tree
*/
root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
snprintf(link_name, sizeof(link_name), "%x", drck->get_index(drc));
child_name = object_get_canonical_path_component(OBJECT(drc));
trace_spapr_drc_realize_child(drck->get_index(drc), child_name);
object_property_add_alias(root_container, link_name,
drc->owner, child_name, &err);
if (err) {
error_report_err(err);
object_unref(OBJECT(drc));
}
g_free(child_name);
vmstate_register(DEVICE(drc), drck->get_index(drc), &vmstate_spapr_drc,
drc);
trace_spapr_drc_realize_complete(drck->get_index(drc));
}
static void unrealize(DeviceState *d, Error **errp)
{
sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(d);
sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
Object *root_container;
char name[256];
Error *err = NULL;
trace_spapr_drc_unrealize(drck->get_index(drc));
root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
snprintf(name, sizeof(name), "%x", drck->get_index(drc));
object_property_del(root_container, name, &err);
if (err) {
error_report_err(err);
object_unref(OBJECT(drc));
}
}
sPAPRDRConnector *spapr_dr_connector_new(Object *owner,
sPAPRDRConnectorType type,
uint32_t id)
{
sPAPRDRConnector *drc =
SPAPR_DR_CONNECTOR(object_new(TYPE_SPAPR_DR_CONNECTOR));
char *prop_name;
g_assert(type);
drc->type = type;
drc->id = id;
drc->owner = owner;
prop_name = g_strdup_printf("dr-connector[%"PRIu32"]", get_index(drc));
object_property_add_child(owner, prop_name, OBJECT(drc), NULL);
object_property_set_bool(OBJECT(drc), true, "realized", NULL);
g_free(prop_name);
/* human-readable name for a DRC to encode into the DT
* description. this is mainly only used within a guest in place
* of the unique DRC index.
*
* in the case of VIO/PCI devices, it corresponds to a
* "location code" that maps a logical device/function (DRC index)
* to a physical (or virtual in the case of VIO) location in the
* system by chaining together the "location label" for each
* encapsulating component.
*
* since this is more to do with diagnosing physical hardware
* issues than guest compatibility, we choose location codes/DRC
* names that adhere to the documented format, but avoid encoding
* the entire topology information into the label/code, instead
* just using the location codes based on the labels for the
* endpoints (VIO/PCI adaptor connectors), which is basically
* just "C" followed by an integer ID.
*
* DRC names as documented by PAPR+ v2.7, 13.5.2.4
* location codes as documented by PAPR+ v2.7, 12.3.1.5
*/
switch (drc->type) {
case SPAPR_DR_CONNECTOR_TYPE_CPU:
drc->name = g_strdup_printf("CPU %d", id);
break;
case SPAPR_DR_CONNECTOR_TYPE_PHB:
drc->name = g_strdup_printf("PHB %d", id);
break;
case SPAPR_DR_CONNECTOR_TYPE_VIO:
case SPAPR_DR_CONNECTOR_TYPE_PCI:
drc->name = g_strdup_printf("C%d", id);
break;
case SPAPR_DR_CONNECTOR_TYPE_LMB:
drc->name = g_strdup_printf("LMB %d", id);
break;
default:
g_assert(false);
}
/* PCI slot always start in a USABLE state, and stay there */
if (drc->type == SPAPR_DR_CONNECTOR_TYPE_PCI) {
drc->allocation_state = SPAPR_DR_ALLOCATION_STATE_USABLE;
}
return drc;
}
static void spapr_dr_connector_instance_init(Object *obj)
{
sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(obj);
object_property_add_uint32_ptr(obj, "isolation-state",
&drc->isolation_state, NULL);
object_property_add_uint32_ptr(obj, "indicator-state",
&drc->indicator_state, NULL);
object_property_add_uint32_ptr(obj, "allocation-state",
&drc->allocation_state, NULL);
object_property_add_uint32_ptr(obj, "id", &drc->id, NULL);
object_property_add(obj, "index", "uint32", prop_get_index,
NULL, NULL, NULL, NULL);
object_property_add(obj, "connector_type", "uint32", prop_get_type,
NULL, NULL, NULL, NULL);
object_property_add_str(obj, "name", prop_get_name, NULL, NULL);
object_property_add(obj, "entity-sense", "uint32", prop_get_entity_sense,
NULL, NULL, NULL, NULL);
object_property_add(obj, "fdt", "struct", prop_get_fdt,
NULL, NULL, NULL, NULL);
}
static void spapr_dr_connector_class_init(ObjectClass *k, void *data)
{
DeviceClass *dk = DEVICE_CLASS(k);
sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
dk->reset = reset;
dk->realize = realize;
dk->unrealize = unrealize;
drck->set_isolation_state = set_isolation_state;
drck->set_indicator_state = set_indicator_state;
drck->set_allocation_state = set_allocation_state;
drck->get_index = get_index;
drck->get_type = get_type;
drck->get_name = get_name;
drck->entity_sense = entity_sense;
drck->attach = attach;
drck->detach = detach;
drck->release_pending = release_pending;
drck->set_signalled = set_signalled;
/*
* Reason: it crashes FIXME find and document the real reason
*/
dk->user_creatable = false;
}
static const TypeInfo spapr_dr_connector_info = {
.name = TYPE_SPAPR_DR_CONNECTOR,
.parent = TYPE_DEVICE,
.instance_size = sizeof(sPAPRDRConnector),
.instance_init = spapr_dr_connector_instance_init,
.class_size = sizeof(sPAPRDRConnectorClass),
.class_init = spapr_dr_connector_class_init,
};
/* helper functions for external users */
sPAPRDRConnector *spapr_dr_connector_by_index(uint32_t index)
{
Object *obj;
char name[256];
snprintf(name, sizeof(name), "%s/%x", DRC_CONTAINER_PATH, index);
obj = object_resolve_path(name, NULL);
return !obj ? NULL : SPAPR_DR_CONNECTOR(obj);
}
sPAPRDRConnector *spapr_dr_connector_by_id(sPAPRDRConnectorType type,
uint32_t id)
{
return spapr_dr_connector_by_index(
(get_type_shift(type) << DRC_INDEX_TYPE_SHIFT) |
(id & DRC_INDEX_ID_MASK));
}
/* generate a string the describes the DRC to encode into the
* device tree.
*
* as documented by PAPR+ v2.7, 13.5.2.6 and C.6.1
*/
static const char *spapr_drc_get_type_str(sPAPRDRConnectorType type)
{
switch (type) {
case SPAPR_DR_CONNECTOR_TYPE_CPU:
return "CPU";
case SPAPR_DR_CONNECTOR_TYPE_PHB:
return "PHB";
case SPAPR_DR_CONNECTOR_TYPE_VIO:
return "SLOT";
case SPAPR_DR_CONNECTOR_TYPE_PCI:
return "28";
case SPAPR_DR_CONNECTOR_TYPE_LMB:
return "MEM";
default:
g_assert(false);
}
return NULL;
}
/**
* spapr_drc_populate_dt
*
* @fdt: libfdt device tree
* @path: path in the DT to generate properties
* @owner: parent Object/DeviceState for which to generate DRC
* descriptions for
* @drc_type_mask: mask of sPAPRDRConnectorType values corresponding
* to the types of DRCs to generate entries for
*
* generate OF properties to describe DRC topology/indices to guests
*
* as documented in PAPR+ v2.1, 13.5.2
*/
int spapr_drc_populate_dt(void *fdt, int fdt_offset, Object *owner,
uint32_t drc_type_mask)
{
Object *root_container;
ObjectProperty *prop;
ObjectPropertyIterator iter;
uint32_t drc_count = 0;
GArray *drc_indexes, *drc_power_domains;
GString *drc_names, *drc_types;
int ret;
/* the first entry of each properties is a 32-bit integer encoding
* the number of elements in the array. we won't know this until
* we complete the iteration through all the matching DRCs, but
* reserve the space now and set the offsets accordingly so we
* can fill them in later.
*/
drc_indexes = g_array_new(false, true, sizeof(uint32_t));
drc_indexes = g_array_set_size(drc_indexes, 1);
drc_power_domains = g_array_new(false, true, sizeof(uint32_t));
drc_power_domains = g_array_set_size(drc_power_domains, 1);
drc_names = g_string_set_size(g_string_new(NULL), sizeof(uint32_t));
drc_types = g_string_set_size(g_string_new(NULL), sizeof(uint32_t));
/* aliases for all DRConnector objects will be rooted in QOM
* composition tree at DRC_CONTAINER_PATH
*/
root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
object_property_iter_init(&iter, root_container);
while ((prop = object_property_iter_next(&iter))) {
Object *obj;
sPAPRDRConnector *drc;
sPAPRDRConnectorClass *drck;
uint32_t drc_index, drc_power_domain;
if (!strstart(prop->type, "link<", NULL)) {
continue;
}
obj = object_property_get_link(root_container, prop->name, NULL);
drc = SPAPR_DR_CONNECTOR(obj);
drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
if (owner && (drc->owner != owner)) {
continue;
}
if ((drc->type & drc_type_mask) == 0) {
continue;
}
drc_count++;
/* ibm,drc-indexes */
drc_index = cpu_to_be32(drck->get_index(drc));
g_array_append_val(drc_indexes, drc_index);
/* ibm,drc-power-domains */
drc_power_domain = cpu_to_be32(-1);
g_array_append_val(drc_power_domains, drc_power_domain);
/* ibm,drc-names */
drc_names = g_string_append(drc_names, drck->get_name(drc));
drc_names = g_string_insert_len(drc_names, -1, "\0", 1);
/* ibm,drc-types */
drc_types = g_string_append(drc_types,
spapr_drc_get_type_str(drc->type));
drc_types = g_string_insert_len(drc_types, -1, "\0", 1);
}
/* now write the drc count into the space we reserved at the
* beginning of the arrays previously
*/
*(uint32_t *)drc_indexes->data = cpu_to_be32(drc_count);
*(uint32_t *)drc_power_domains->data = cpu_to_be32(drc_count);
*(uint32_t *)drc_names->str = cpu_to_be32(drc_count);
*(uint32_t *)drc_types->str = cpu_to_be32(drc_count);
ret = fdt_setprop(fdt, fdt_offset, "ibm,drc-indexes",
drc_indexes->data,
drc_indexes->len * sizeof(uint32_t));
if (ret) {
error_report("Couldn't create ibm,drc-indexes property");
goto out;
}
ret = fdt_setprop(fdt, fdt_offset, "ibm,drc-power-domains",
drc_power_domains->data,
drc_power_domains->len * sizeof(uint32_t));
if (ret) {
error_report("Couldn't finalize ibm,drc-power-domains property");
goto out;
}
ret = fdt_setprop(fdt, fdt_offset, "ibm,drc-names",
drc_names->str, drc_names->len);
if (ret) {
error_report("Couldn't finalize ibm,drc-names property");
goto out;
}
ret = fdt_setprop(fdt, fdt_offset, "ibm,drc-types",
drc_types->str, drc_types->len);
if (ret) {
error_report("Couldn't finalize ibm,drc-types property");
goto out;
}
out:
g_array_free(drc_indexes, true);
g_array_free(drc_power_domains, true);
g_string_free(drc_names, true);
g_string_free(drc_types, true);
return ret;
}
/*
* RTAS calls
*/
static bool sensor_type_is_dr(uint32_t sensor_type)
{
switch (sensor_type) {
case RTAS_SENSOR_TYPE_ISOLATION_STATE:
case RTAS_SENSOR_TYPE_DR:
case RTAS_SENSOR_TYPE_ALLOCATION_STATE:
return true;
}
return false;
}
static void rtas_set_indicator(PowerPCCPU *cpu, sPAPRMachineState *spapr,
uint32_t token, uint32_t nargs,
target_ulong args, uint32_t nret,
target_ulong rets)
{
uint32_t sensor_type;
uint32_t sensor_index;
uint32_t sensor_state;
uint32_t ret = RTAS_OUT_SUCCESS;
sPAPRDRConnector *drc;
sPAPRDRConnectorClass *drck;
if (nargs != 3 || nret != 1) {
ret = RTAS_OUT_PARAM_ERROR;
goto out;
}
sensor_type = rtas_ld(args, 0);
sensor_index = rtas_ld(args, 1);
sensor_state = rtas_ld(args, 2);
if (!sensor_type_is_dr(sensor_type)) {
goto out_unimplemented;
}
/* if this is a DR sensor we can assume sensor_index == drc_index */
drc = spapr_dr_connector_by_index(sensor_index);
if (!drc) {
trace_spapr_rtas_set_indicator_invalid(sensor_index);
ret = RTAS_OUT_PARAM_ERROR;
goto out;
}
drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
switch (sensor_type) {
case RTAS_SENSOR_TYPE_ISOLATION_STATE:
/* if the guest is configuring a device attached to this
* DRC, we should reset the configuration state at this
* point since it may no longer be reliable (guest released
* device and needs to start over, or unplug occurred so
* the FDT is no longer valid)
*/
if (sensor_state == SPAPR_DR_ISOLATION_STATE_ISOLATED) {
sPAPRConfigureConnectorState *ccs = spapr_ccs_find(spapr,
sensor_index);
if (ccs) {
spapr_ccs_remove(spapr, ccs);
}
}
ret = drck->set_isolation_state(drc, sensor_state);
break;
case RTAS_SENSOR_TYPE_DR:
ret = drck->set_indicator_state(drc, sensor_state);
break;
case RTAS_SENSOR_TYPE_ALLOCATION_STATE:
ret = drck->set_allocation_state(drc, sensor_state);
break;
default:
goto out_unimplemented;
}
out:
rtas_st(rets, 0, ret);
return;
out_unimplemented:
/* currently only DR-related sensors are implemented */
trace_spapr_rtas_set_indicator_not_supported(sensor_index, sensor_type);
rtas_st(rets, 0, RTAS_OUT_NOT_SUPPORTED);
}
static void rtas_get_sensor_state(PowerPCCPU *cpu, sPAPRMachineState *spapr,
uint32_t token, uint32_t nargs,
target_ulong args, uint32_t nret,
target_ulong rets)
{
uint32_t sensor_type;
uint32_t sensor_index;
uint32_t sensor_state = 0;
sPAPRDRConnector *drc;
sPAPRDRConnectorClass *drck;
uint32_t ret = RTAS_OUT_SUCCESS;
if (nargs != 2 || nret != 2) {
ret = RTAS_OUT_PARAM_ERROR;
goto out;
}
sensor_type = rtas_ld(args, 0);
sensor_index = rtas_ld(args, 1);
if (sensor_type != RTAS_SENSOR_TYPE_ENTITY_SENSE) {
/* currently only DR-related sensors are implemented */
trace_spapr_rtas_get_sensor_state_not_supported(sensor_index,
sensor_type);
ret = RTAS_OUT_NOT_SUPPORTED;
goto out;
}
drc = spapr_dr_connector_by_index(sensor_index);
if (!drc) {
trace_spapr_rtas_get_sensor_state_invalid(sensor_index);
ret = RTAS_OUT_PARAM_ERROR;
goto out;
}
drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
ret = drck->entity_sense(drc, &sensor_state);
out:
rtas_st(rets, 0, ret);
rtas_st(rets, 1, sensor_state);
}
/* configure-connector work area offsets, int32_t units for field
* indexes, bytes for field offset/len values.
*
* as documented by PAPR+ v2.7, 13.5.3.5
*/
#define CC_IDX_NODE_NAME_OFFSET 2
#define CC_IDX_PROP_NAME_OFFSET 2
#define CC_IDX_PROP_LEN 3
#define CC_IDX_PROP_DATA_OFFSET 4
#define CC_VAL_DATA_OFFSET ((CC_IDX_PROP_DATA_OFFSET + 1) * 4)
#define CC_WA_LEN 4096
static void configure_connector_st(target_ulong addr, target_ulong offset,
const void *buf, size_t len)
{
cpu_physical_memory_write(ppc64_phys_to_real(addr + offset),
buf, MIN(len, CC_WA_LEN - offset));
}
void spapr_ccs_reset_hook(void *opaque)
{
sPAPRMachineState *spapr = opaque;
sPAPRConfigureConnectorState *ccs, *ccs_tmp;
QTAILQ_FOREACH_SAFE(ccs, &spapr->ccs_list, next, ccs_tmp) {
spapr_ccs_remove(spapr, ccs);
}
}
static void rtas_ibm_configure_connector(PowerPCCPU *cpu,
sPAPRMachineState *spapr,
uint32_t token, uint32_t nargs,
target_ulong args, uint32_t nret,
target_ulong rets)
{
uint64_t wa_addr;
uint64_t wa_offset;
uint32_t drc_index;
sPAPRDRConnector *drc;
sPAPRConfigureConnectorState *ccs;
sPAPRDRCCResponse resp = SPAPR_DR_CC_RESPONSE_CONTINUE;
int rc;
if (nargs != 2 || nret != 1) {
rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
return;
}
wa_addr = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 0);
drc_index = rtas_ld(wa_addr, 0);
drc = spapr_dr_connector_by_index(drc_index);
if (!drc) {
trace_spapr_rtas_ibm_configure_connector_invalid(drc_index);
rc = RTAS_OUT_PARAM_ERROR;
goto out;
}
if (!drc->fdt) {
trace_spapr_rtas_ibm_configure_connector_missing_fdt(drc_index);
rc = SPAPR_DR_CC_RESPONSE_NOT_CONFIGURABLE;
goto out;
}
ccs = spapr_ccs_find(spapr, drc_index);
if (!ccs) {
ccs = g_new0(sPAPRConfigureConnectorState, 1);
ccs->fdt_offset = drc->fdt_start_offset;
ccs->drc_index = drc_index;
spapr_ccs_add(spapr, ccs);
}
do {
uint32_t tag;
const char *name;
const struct fdt_property *prop;
int fdt_offset_next, prop_len;
tag = fdt_next_tag(drc->fdt, ccs->fdt_offset, &fdt_offset_next);
switch (tag) {
case FDT_BEGIN_NODE:
ccs->fdt_depth++;
name = fdt_get_name(drc->fdt, ccs->fdt_offset, NULL);
/* provide the name of the next OF node */
wa_offset = CC_VAL_DATA_OFFSET;
rtas_st(wa_addr, CC_IDX_NODE_NAME_OFFSET, wa_offset);
configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1);
resp = SPAPR_DR_CC_RESPONSE_NEXT_CHILD;
break;
case FDT_END_NODE:
ccs->fdt_depth--;
if (ccs->fdt_depth == 0) {
sPAPRDRIsolationState state = drc->isolation_state;
/* done sending the device tree, don't need to track
* the state anymore
*/
trace_spapr_drc_set_configured(get_index(drc));
if (state == SPAPR_DR_ISOLATION_STATE_UNISOLATED) {
drc->configured = true;
} else {
/* guest should be not configuring an isolated device */
trace_spapr_drc_set_configured_skipping(get_index(drc));
}
spapr_ccs_remove(spapr, ccs);
ccs = NULL;
resp = SPAPR_DR_CC_RESPONSE_SUCCESS;
} else {
resp = SPAPR_DR_CC_RESPONSE_PREV_PARENT;
}
break;
case FDT_PROP:
prop = fdt_get_property_by_offset(drc->fdt, ccs->fdt_offset,
&prop_len);
name = fdt_string(drc->fdt, fdt32_to_cpu(prop->nameoff));
/* provide the name of the next OF property */
wa_offset = CC_VAL_DATA_OFFSET;
rtas_st(wa_addr, CC_IDX_PROP_NAME_OFFSET, wa_offset);
configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1);
/* provide the length and value of the OF property. data gets
* placed immediately after NULL terminator of the OF property's
* name string
*/
wa_offset += strlen(name) + 1,
rtas_st(wa_addr, CC_IDX_PROP_LEN, prop_len);
rtas_st(wa_addr, CC_IDX_PROP_DATA_OFFSET, wa_offset);
configure_connector_st(wa_addr, wa_offset, prop->data, prop_len);
resp = SPAPR_DR_CC_RESPONSE_NEXT_PROPERTY;
break;
case FDT_END:
resp = SPAPR_DR_CC_RESPONSE_ERROR;
default:
/* keep seeking for an actionable tag */
break;
}
if (ccs) {
ccs->fdt_offset = fdt_offset_next;
}
} while (resp == SPAPR_DR_CC_RESPONSE_CONTINUE);
rc = resp;
out:
rtas_st(rets, 0, rc);
}
static void spapr_drc_register_types(void)
{
type_register_static(&spapr_dr_connector_info);
spapr_rtas_register(RTAS_SET_INDICATOR, "set-indicator",
rtas_set_indicator);
spapr_rtas_register(RTAS_GET_SENSOR_STATE, "get-sensor-state",
rtas_get_sensor_state);
spapr_rtas_register(RTAS_IBM_CONFIGURE_CONNECTOR, "ibm,configure-connector",
rtas_ibm_configure_connector);
}
type_init(spapr_drc_register_types)