qemu/hw/net/can/ctucan_core.c
Jan Charvat aa406e8b7e hw/net/can: CTU CAN FD IP open hardware core emulation.
The implementation of the model of complete open-source/design/hardware
CAN FD controller. The IP core project has been started and is maintained
by Ondrej Ille at Czech Technical University in Prague.

CTU CAN FD project pages:
	https://gitlab.fel.cvut.cz/canbus/ctucanfd_ip_core

CAN bus CTU FEE Projects Listing page:
	http://canbus.pages.fel.cvut.cz/

The core is mapped to PCIe card same as on one of its real hardware
adaptations. The device implementing two CTU CAN FD ip cores
is instantiated after CAN bus definition

	-object can-bus,id=canbus0-bus

by QEMU parameters

	-device ctucan_pci,canbus0=canbus0-bus,canbus1=canbus0-bus

Signed-off-by: Jan Charvat <charvj10@fel.cvut.cz>
Signed-off-by: Pavel Pisa <pisa@cmp.felk.cvut.cz>
Message-Id: <23e3ca4dcb2cc9900991016910a6cab7686c0e31.1600069689.git.pisa@cmp.felk.cvut.cz>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-09-30 19:11:37 +02:00

697 lines
20 KiB
C

/*
* CTU CAN FD PCI device emulation
* http://canbus.pages.fel.cvut.cz/
*
* Copyright (c) 2019 Jan Charvat (jancharvat.charvat@gmail.com)
*
* Based on Kvaser PCI CAN device (SJA1000 based) emulation implemented by
* Jin Yang and Pavel Pisa
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "chardev/char.h"
#include "hw/irq.h"
#include "migration/vmstate.h"
#include "net/can_emu.h"
#include "ctucan_core.h"
#ifndef DEBUG_CAN
#define DEBUG_CAN 0
#endif /*DEBUG_CAN*/
#define DPRINTF(fmt, ...) \
do { \
if (DEBUG_CAN) { \
qemu_log("[ctucan]: " fmt , ## __VA_ARGS__); \
} \
} while (0)
static void ctucan_buff2frame(const uint8_t *buff, qemu_can_frame *frame)
{
frame->can_id = 0;
frame->can_dlc = 0;
frame->flags = 0;
if (buff == NULL) {
return;
}
{
union ctu_can_fd_frame_form_w frame_form_w;
union ctu_can_fd_identifier_w identifier_w;
unsigned int ide;
uint32_t w;
w = le32_to_cpu(*(uint32_t *)buff);
frame_form_w = (union ctu_can_fd_frame_form_w)w;
frame->can_dlc = can_dlc2len(frame_form_w.s.dlc);
w = le32_to_cpu(*(uint32_t *)(buff + 4));
identifier_w = (union ctu_can_fd_identifier_w)w;
ide = frame_form_w.s.ide;
if (ide) {
frame->can_id = (identifier_w.s.identifier_base << 18) |
identifier_w.s.identifier_ext;
frame->can_id |= QEMU_CAN_EFF_FLAG;
} else {
frame->can_id = identifier_w.s.identifier_base;
}
if (frame_form_w.s.esi_rsv) {
frame->flags |= QEMU_CAN_FRMF_ESI;
}
if (frame_form_w.s.rtr) {
frame->can_id |= QEMU_CAN_RTR_FLAG;
}
if (frame_form_w.s.fdf) { /*CAN FD*/
frame->flags |= QEMU_CAN_FRMF_TYPE_FD;
if (frame_form_w.s.brs) {
frame->flags |= QEMU_CAN_FRMF_BRS;
}
}
}
memcpy(frame->data, buff + 0x10, 0x40);
}
static int ctucan_frame2buff(const qemu_can_frame *frame, uint8_t *buff)
{
unsigned int bytes_cnt = -1;
memset(buff, 0, CTUCAN_MSG_MAX_LEN * sizeof(*buff));
if (frame == NULL) {
return bytes_cnt;
}
{
union ctu_can_fd_frame_form_w frame_form_w;
union ctu_can_fd_identifier_w identifier_w;
frame_form_w.u32 = 0;
identifier_w.u32 = 0;
bytes_cnt = frame->can_dlc;
bytes_cnt = (bytes_cnt + 3) & ~3;
bytes_cnt += 16;
frame_form_w.s.rwcnt = (bytes_cnt >> 2) - 1;
frame_form_w.s.dlc = can_len2dlc(frame->can_dlc);
if (frame->can_id & QEMU_CAN_EFF_FLAG) {
frame_form_w.s.ide = 1;
identifier_w.s.identifier_base =
(frame->can_id & 0x1FFC0000) >> 18;
identifier_w.s.identifier_ext = frame->can_id & 0x3FFFF;
} else {
identifier_w.s.identifier_base = frame->can_id & 0x7FF;
}
if (frame->flags & QEMU_CAN_FRMF_ESI) {
frame_form_w.s.esi_rsv = 1;
}
if (frame->can_id & QEMU_CAN_RTR_FLAG) {
frame_form_w.s.rtr = 1;
}
if (frame->flags & QEMU_CAN_FRMF_TYPE_FD) { /*CAN FD*/
frame_form_w.s.fdf = 1;
if (frame->flags & QEMU_CAN_FRMF_BRS) {
frame_form_w.s.brs = 1;
}
}
*(uint32_t *)buff = cpu_to_le32(frame_form_w.u32);
*(uint32_t *)(buff + 4) = cpu_to_le32(identifier_w.u32);
}
memcpy(buff + 0x10, frame->data, 0x40);
return bytes_cnt;
}
static void ctucan_update_irq(CtuCanCoreState *s)
{
union ctu_can_fd_int_stat int_rq;
int_rq.u32 = 0;
if (s->rx_status_rx_settings.s.rxfrc) {
int_rq.s.rbnei = 1;
}
int_rq.u32 &= ~s->int_mask.u32;
s->int_stat.u32 |= int_rq.u32;
if (s->int_stat.u32 & s->int_ena.u32) {
qemu_irq_raise(s->irq);
} else {
qemu_irq_lower(s->irq);
}
}
static void ctucan_update_txnf(CtuCanCoreState *s)
{
int i;
int txnf;
unsigned int buff_st;
txnf = 0;
for (i = 0; i < CTUCAN_CORE_TXBUF_NUM; i++) {
buff_st = (s->tx_status.u32 >> (i * 4)) & 0xf;
if (buff_st == TXT_ETY) {
txnf = 1;
}
}
s->status.s.txnf = txnf;
}
void ctucan_hardware_reset(CtuCanCoreState *s)
{
DPRINTF("Hardware reset in progress!!!\n");
int i;
unsigned int buff_st;
uint32_t buff_st_mask;
s->tx_status.u32 = 0;
for (i = 0; i < CTUCAN_CORE_TXBUF_NUM; i++) {
buff_st_mask = 0xf << (i * 4);
buff_st = TXT_ETY;
s->tx_status.u32 = (s->tx_status.u32 & ~buff_st_mask) |
(buff_st << (i * 4));
}
s->status.s.idle = 1;
ctucan_update_txnf(s);
s->rx_status_rx_settings.u32 = 0;
s->rx_tail_pos = 0;
s->rx_cnt = 0;
s->rx_frame_rem = 0;
/* Flush RX buffer */
s->rx_tail_pos = 0;
s->rx_cnt = 0;
s->rx_frame_rem = 0;
/* Set on progdokum reset value */
s->mode_settings.u32 = 0;
s->mode_settings.s.fde = 1;
s->int_stat.u32 = 0;
s->int_ena.u32 = 0;
s->int_mask.u32 = 0;
s->rx_status_rx_settings.u32 = 0;
s->rx_status_rx_settings.s.rxe = 0;
s->rx_fr_ctr.u32 = 0;
s->tx_fr_ctr.u32 = 0;
s->yolo_reg.s.yolo_val = 3735928559;
qemu_irq_lower(s->irq);
}
static void ctucan_send_ready_buffers(CtuCanCoreState *s)
{
qemu_can_frame frame;
uint8_t *pf;
int buff2tx_idx;
uint32_t tx_prio_max;
unsigned int buff_st;
uint32_t buff_st_mask;
if (!s->mode_settings.s.ena) {
return;
}
do {
union ctu_can_fd_int_stat int_stat;
int i;
buff2tx_idx = -1;
tx_prio_max = 0;
for (i = 0; i < CTUCAN_CORE_TXBUF_NUM; i++) {
uint32_t prio;
buff_st_mask = 0xf << (i * 4);
buff_st = (s->tx_status.u32 >> (i * 4)) & 0xf;
if (buff_st != TXT_RDY) {
continue;
}
prio = (s->tx_priority.u32 >> (i * 4)) & 0x7;
if (tx_prio_max < prio) {
tx_prio_max = prio;
buff2tx_idx = i;
}
}
if (buff2tx_idx == -1) {
break;
}
buff_st_mask = 0xf << (buff2tx_idx * 4);
buff_st = (s->tx_status.u32 >> (buff2tx_idx * 4)) & 0xf;
int_stat.u32 = 0;
buff_st = TXT_RDY;
pf = s->tx_buffer[buff2tx_idx].data;
ctucan_buff2frame(pf, &frame);
s->status.s.idle = 0;
s->status.s.txs = 1;
can_bus_client_send(&s->bus_client, &frame, 1);
s->status.s.idle = 1;
s->status.s.txs = 0;
s->tx_fr_ctr.s.tx_fr_ctr_val++;
buff_st = TXT_TOK;
int_stat.s.txi = 1;
int_stat.s.txbhci = 1;
s->int_stat.u32 |= int_stat.u32 & ~s->int_mask.u32;
s->tx_status.u32 = (s->tx_status.u32 & ~buff_st_mask) |
(buff_st << (buff2tx_idx * 4));
} while (1);
}
#define CTUCAN_CORE_TXBUFF_SPAN \
(CTU_CAN_FD_TXTB2_DATA_1 - CTU_CAN_FD_TXTB1_DATA_1)
void ctucan_mem_write(CtuCanCoreState *s, hwaddr addr, uint64_t val,
unsigned size)
{
int i;
DPRINTF("write 0x%02llx addr 0x%02x\n",
(unsigned long long)val, (unsigned int)addr);
if (addr > CTUCAN_CORE_MEM_SIZE) {
return;
}
if (addr >= CTU_CAN_FD_TXTB1_DATA_1) {
int buff_num;
addr -= CTU_CAN_FD_TXTB1_DATA_1;
buff_num = addr / CTUCAN_CORE_TXBUFF_SPAN;
addr %= CTUCAN_CORE_TXBUFF_SPAN;
if (buff_num < CTUCAN_CORE_TXBUF_NUM) {
uint32_t *bufp = (uint32_t *)(s->tx_buffer[buff_num].data + addr);
*bufp = cpu_to_le32(val);
}
} else {
switch (addr & ~3) {
case CTU_CAN_FD_MODE:
s->mode_settings.u32 = (uint32_t)val;
if (s->mode_settings.s.rst) {
ctucan_hardware_reset(s);
s->mode_settings.s.rst = 0;
}
break;
case CTU_CAN_FD_COMMAND:
{
union ctu_can_fd_command command;
command.u32 = (uint32_t)val;
if (command.s.cdo) {
s->status.s.dor = 0;
}
if (command.s.rrb) {
s->rx_tail_pos = 0;
s->rx_cnt = 0;
s->rx_frame_rem = 0;
s->rx_status_rx_settings.s.rxfrc = 0;
}
if (command.s.txfcrst) {
s->tx_fr_ctr.s.tx_fr_ctr_val = 0;
}
if (command.s.rxfcrst) {
s->rx_fr_ctr.s.rx_fr_ctr_val = 0;
}
break;
}
case CTU_CAN_FD_INT_STAT:
s->int_stat.u32 &= ~(uint32_t)val;
break;
case CTU_CAN_FD_INT_ENA_SET:
s->int_ena.u32 |= (uint32_t)val;
break;
case CTU_CAN_FD_INT_ENA_CLR:
s->int_ena.u32 &= ~(uint32_t)val;
break;
case CTU_CAN_FD_INT_MASK_SET:
s->int_mask.u32 |= (uint32_t)val;
break;
case CTU_CAN_FD_INT_MASK_CLR:
s->int_mask.u32 &= ~(uint32_t)val;
break;
case CTU_CAN_FD_TX_COMMAND:
if (s->mode_settings.s.ena) {
union ctu_can_fd_tx_command tx_command;
union ctu_can_fd_tx_command mask;
unsigned int buff_st;
uint32_t buff_st_mask;
tx_command.u32 = (uint32_t)val;
mask.u32 = 0;
mask.s.txb1 = 1;
for (i = 0; i < CTUCAN_CORE_TXBUF_NUM; i++) {
if (!(tx_command.u32 & (mask.u32 << i))) {
continue;
}
buff_st_mask = 0xf << (i * 4);
buff_st = (s->tx_status.u32 >> (i * 4)) & 0xf;
if (tx_command.s.txca) {
if (buff_st == TXT_RDY) {
buff_st = TXT_ABT;
}
}
if (tx_command.s.txcr) {
if ((buff_st == TXT_TOK) || (buff_st == TXT_ERR) ||
(buff_st == TXT_ABT) || (buff_st == TXT_ETY))
buff_st = TXT_RDY;
}
if (tx_command.s.txce) {
if ((buff_st == TXT_TOK) || (buff_st == TXT_ERR) ||
(buff_st == TXT_ABT))
buff_st = TXT_ETY;
}
s->tx_status.u32 = (s->tx_status.u32 & ~buff_st_mask) |
(buff_st << (i * 4));
}
ctucan_send_ready_buffers(s);
ctucan_update_txnf(s);
}
break;
case CTU_CAN_FD_TX_PRIORITY:
s->tx_priority.u32 = (uint32_t)val;
break;
}
ctucan_update_irq(s);
}
return;
}
uint64_t ctucan_mem_read(CtuCanCoreState *s, hwaddr addr, unsigned size)
{
uint32_t val = 0;
DPRINTF("read addr 0x%02x ...\n", (unsigned int)addr);
if (addr > CTUCAN_CORE_MEM_SIZE) {
return 0;
}
switch (addr & ~3) {
case CTU_CAN_FD_DEVICE_ID:
{
union ctu_can_fd_device_id_version idver;
idver.u32 = 0;
idver.s.device_id = CTU_CAN_FD_ID;
idver.s.ver_major = 2;
idver.s.ver_minor = 2;
val = idver.u32;
}
break;
case CTU_CAN_FD_MODE:
val = s->mode_settings.u32;
break;
case CTU_CAN_FD_STATUS:
val = s->status.u32;
break;
case CTU_CAN_FD_INT_STAT:
val = s->int_stat.u32;
break;
case CTU_CAN_FD_INT_ENA_SET:
case CTU_CAN_FD_INT_ENA_CLR:
val = s->int_ena.u32;
break;
case CTU_CAN_FD_INT_MASK_SET:
case CTU_CAN_FD_INT_MASK_CLR:
val = s->int_mask.u32;
break;
case CTU_CAN_FD_RX_MEM_INFO:
s->rx_mem_info.u32 = 0;
s->rx_mem_info.s.rx_buff_size = CTUCAN_RCV_BUF_LEN >> 2;
s->rx_mem_info.s.rx_mem_free = (CTUCAN_RCV_BUF_LEN -
s->rx_cnt) >> 2;
val = s->rx_mem_info.u32;
break;
case CTU_CAN_FD_RX_POINTERS:
{
uint32_t rx_head_pos = s->rx_tail_pos + s->rx_cnt;
rx_head_pos %= CTUCAN_RCV_BUF_LEN;
s->rx_pointers.s.rx_wpp = rx_head_pos;
s->rx_pointers.s.rx_rpp = s->rx_tail_pos;
val = s->rx_pointers.u32;
break;
}
case CTU_CAN_FD_RX_STATUS:
case CTU_CAN_FD_RX_SETTINGS:
if (!s->rx_status_rx_settings.s.rxfrc) {
s->rx_status_rx_settings.s.rxe = 1;
} else {
s->rx_status_rx_settings.s.rxe = 0;
}
if (((s->rx_cnt + 3) & ~3) == CTUCAN_RCV_BUF_LEN) {
s->rx_status_rx_settings.s.rxf = 1;
} else {
s->rx_status_rx_settings.s.rxf = 0;
}
val = s->rx_status_rx_settings.u32;
break;
case CTU_CAN_FD_RX_DATA:
if (s->rx_cnt) {
memcpy(&val, s->rx_buff + s->rx_tail_pos, 4);
val = le32_to_cpu(val);
if (!s->rx_frame_rem) {
union ctu_can_fd_frame_form_w frame_form_w;
frame_form_w.u32 = val;
s->rx_frame_rem = frame_form_w.s.rwcnt * 4 + 4;
}
s->rx_cnt -= 4;
s->rx_frame_rem -= 4;
if (!s->rx_frame_rem) {
s->rx_status_rx_settings.s.rxfrc--;
if (!s->rx_status_rx_settings.s.rxfrc) {
s->status.s.rxne = 0;
s->status.s.idle = 1;
s->status.s.rxs = 0;
}
}
s->rx_tail_pos = (s->rx_tail_pos + 4) % CTUCAN_RCV_BUF_LEN;
} else {
val = 0;
}
break;
case CTU_CAN_FD_TX_STATUS:
val = s->tx_status.u32;
break;
case CTU_CAN_FD_TX_PRIORITY:
val = s->tx_priority.u32;
break;
case CTU_CAN_FD_RX_FR_CTR:
val = s->rx_fr_ctr.s.rx_fr_ctr_val;
break;
case CTU_CAN_FD_TX_FR_CTR:
val = s->tx_fr_ctr.s.tx_fr_ctr_val;
break;
case CTU_CAN_FD_YOLO_REG:
val = s->yolo_reg.s.yolo_val;
break;
}
val >>= ((addr & 3) << 3);
if (size < 8) {
val &= ((uint64_t)1 << (size << 3)) - 1;
}
return val;
}
bool ctucan_can_receive(CanBusClientState *client)
{
CtuCanCoreState *s = container_of(client, CtuCanCoreState, bus_client);
if (!s->mode_settings.s.ena) {
return false;
}
return true; /* always return true, when operation mode */
}
ssize_t ctucan_receive(CanBusClientState *client, const qemu_can_frame *frames,
size_t frames_cnt)
{
CtuCanCoreState *s = container_of(client, CtuCanCoreState, bus_client);
static uint8_t rcv[CTUCAN_MSG_MAX_LEN];
int i;
int ret = -1;
const qemu_can_frame *frame = frames;
union ctu_can_fd_int_stat int_stat;
int_stat.u32 = 0;
if (frames_cnt <= 0) {
return 0;
}
ret = ctucan_frame2buff(frame, rcv);
if (s->rx_cnt + ret > CTUCAN_RCV_BUF_LEN) { /* Data overrun. */
s->status.s.dor = 1;
int_stat.s.doi = 1;
s->int_stat.u32 |= int_stat.u32 & ~s->int_mask.u32;
ctucan_update_irq(s);
DPRINTF("Receive FIFO overrun\n");
return ret;
}
s->status.s.idle = 0;
s->status.s.rxs = 1;
int_stat.s.rxi = 1;
if (((s->rx_cnt + 3) & ~3) == CTUCAN_RCV_BUF_LEN) {
int_stat.s.rxfi = 1;
}
s->int_stat.u32 |= int_stat.u32 & ~s->int_mask.u32;
s->rx_fr_ctr.s.rx_fr_ctr_val++;
s->rx_status_rx_settings.s.rxfrc++;
for (i = 0; i < ret; i++) {
s->rx_buff[(s->rx_tail_pos + s->rx_cnt) % CTUCAN_RCV_BUF_LEN] = rcv[i];
s->rx_cnt++;
}
s->status.s.rxne = 1;
ctucan_update_irq(s);
return 1;
}
static CanBusClientInfo ctucan_bus_client_info = {
.can_receive = ctucan_can_receive,
.receive = ctucan_receive,
};
int ctucan_connect_to_bus(CtuCanCoreState *s, CanBusState *bus)
{
s->bus_client.info = &ctucan_bus_client_info;
if (!bus) {
return -EINVAL;
}
if (can_bus_insert_client(bus, &s->bus_client) < 0) {
return -1;
}
return 0;
}
void ctucan_disconnect(CtuCanCoreState *s)
{
can_bus_remove_client(&s->bus_client);
}
int ctucan_init(CtuCanCoreState *s, qemu_irq irq)
{
s->irq = irq;
qemu_irq_lower(s->irq);
ctucan_hardware_reset(s);
return 0;
}
const VMStateDescription vmstate_qemu_ctucan_tx_buffer = {
.name = "qemu_ctucan_tx_buffer",
.version_id = 1,
.minimum_version_id = 1,
.minimum_version_id_old = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT8_ARRAY(data, CtuCanCoreMsgBuffer, CTUCAN_CORE_MSG_MAX_LEN),
VMSTATE_END_OF_LIST()
}
};
static int ctucan_post_load(void *opaque, int version_id)
{
CtuCanCoreState *s = opaque;
ctucan_update_irq(s);
return 0;
}
/* VMState is needed for live migration of QEMU images */
const VMStateDescription vmstate_ctucan = {
.name = "ctucan",
.version_id = 1,
.minimum_version_id = 1,
.minimum_version_id_old = 1,
.post_load = ctucan_post_load,
.fields = (VMStateField[]) {
VMSTATE_UINT32(mode_settings.u32, CtuCanCoreState),
VMSTATE_UINT32(status.u32, CtuCanCoreState),
VMSTATE_UINT32(int_stat.u32, CtuCanCoreState),
VMSTATE_UINT32(int_ena.u32, CtuCanCoreState),
VMSTATE_UINT32(int_mask.u32, CtuCanCoreState),
VMSTATE_UINT32(brt.u32, CtuCanCoreState),
VMSTATE_UINT32(brt_fd.u32, CtuCanCoreState),
VMSTATE_UINT32(ewl_erp_fault_state.u32, CtuCanCoreState),
VMSTATE_UINT32(rec_tec.u32, CtuCanCoreState),
VMSTATE_UINT32(err_norm_err_fd.u32, CtuCanCoreState),
VMSTATE_UINT32(ctr_pres.u32, CtuCanCoreState),
VMSTATE_UINT32(filter_a_mask.u32, CtuCanCoreState),
VMSTATE_UINT32(filter_a_val.u32, CtuCanCoreState),
VMSTATE_UINT32(filter_b_mask.u32, CtuCanCoreState),
VMSTATE_UINT32(filter_b_val.u32, CtuCanCoreState),
VMSTATE_UINT32(filter_c_mask.u32, CtuCanCoreState),
VMSTATE_UINT32(filter_c_val.u32, CtuCanCoreState),
VMSTATE_UINT32(filter_ran_low.u32, CtuCanCoreState),
VMSTATE_UINT32(filter_ran_high.u32, CtuCanCoreState),
VMSTATE_UINT32(filter_control_filter_status.u32, CtuCanCoreState),
VMSTATE_UINT32(rx_mem_info.u32, CtuCanCoreState),
VMSTATE_UINT32(rx_pointers.u32, CtuCanCoreState),
VMSTATE_UINT32(rx_status_rx_settings.u32, CtuCanCoreState),
VMSTATE_UINT32(tx_status.u32, CtuCanCoreState),
VMSTATE_UINT32(tx_priority.u32, CtuCanCoreState),
VMSTATE_UINT32(err_capt_alc.u32, CtuCanCoreState),
VMSTATE_UINT32(trv_delay_ssp_cfg.u32, CtuCanCoreState),
VMSTATE_UINT32(rx_fr_ctr.u32, CtuCanCoreState),
VMSTATE_UINT32(tx_fr_ctr.u32, CtuCanCoreState),
VMSTATE_UINT32(debug_register.u32, CtuCanCoreState),
VMSTATE_UINT32(yolo_reg.u32, CtuCanCoreState),
VMSTATE_UINT32(timestamp_low.u32, CtuCanCoreState),
VMSTATE_UINT32(timestamp_high.u32, CtuCanCoreState),
VMSTATE_STRUCT_ARRAY(tx_buffer, CtuCanCoreState,
CTUCAN_CORE_TXBUF_NUM, 0, vmstate_qemu_ctucan_tx_buffer,
CtuCanCoreMsgBuffer),
VMSTATE_BUFFER(rx_buff, CtuCanCoreState),
VMSTATE_UINT32(rx_tail_pos, CtuCanCoreState),
VMSTATE_UINT32(rx_cnt, CtuCanCoreState),
VMSTATE_UINT32(rx_frame_rem, CtuCanCoreState),
VMSTATE_END_OF_LIST()
}
};