qemu/target-xtensa/helper.c
Max Filippov 4e41d2f583 target-xtensa: implement CACHEATTR SR
In XEA1, the Options for Memory Protection and Translation and the
corresponding TLB management instructions are not available. Instead,
functionality similar to the Region Protection Option is available
through the cache attribute register. See ISA, A.2.14 for details.

Signed-off-by: Max Filippov <jcmvbkbc@gmail.com>
Signed-off-by: Blue Swirl <blauwirbel@gmail.com>
2012-12-08 18:48:26 +00:00

687 lines
21 KiB
C

/*
* Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the Open Source and Linux Lab nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "cpu.h"
#include "exec-all.h"
#include "gdbstub.h"
#include "host-utils.h"
#if !defined(CONFIG_USER_ONLY)
#include "hw/loader.h"
#endif
static struct XtensaConfigList *xtensa_cores;
void xtensa_register_core(XtensaConfigList *node)
{
node->next = xtensa_cores;
xtensa_cores = node;
}
static uint32_t check_hw_breakpoints(CPUXtensaState *env)
{
unsigned i;
for (i = 0; i < env->config->ndbreak; ++i) {
if (env->cpu_watchpoint[i] &&
env->cpu_watchpoint[i]->flags & BP_WATCHPOINT_HIT) {
return DEBUGCAUSE_DB | (i << DEBUGCAUSE_DBNUM_SHIFT);
}
}
return 0;
}
static void breakpoint_handler(CPUXtensaState *env)
{
if (env->watchpoint_hit) {
if (env->watchpoint_hit->flags & BP_CPU) {
uint32_t cause;
env->watchpoint_hit = NULL;
cause = check_hw_breakpoints(env);
if (cause) {
debug_exception_env(env, cause);
}
cpu_resume_from_signal(env, NULL);
}
}
}
XtensaCPU *cpu_xtensa_init(const char *cpu_model)
{
static int tcg_inited;
static int debug_handler_inited;
XtensaCPU *cpu;
CPUXtensaState *env;
const XtensaConfig *config = NULL;
XtensaConfigList *core = xtensa_cores;
for (; core; core = core->next)
if (strcmp(core->config->name, cpu_model) == 0) {
config = core->config;
break;
}
if (config == NULL) {
return NULL;
}
cpu = XTENSA_CPU(object_new(TYPE_XTENSA_CPU));
env = &cpu->env;
env->config = config;
if (!tcg_inited) {
tcg_inited = 1;
xtensa_translate_init();
}
if (!debug_handler_inited && tcg_enabled()) {
debug_handler_inited = 1;
cpu_set_debug_excp_handler(breakpoint_handler);
}
xtensa_irq_init(env);
qemu_init_vcpu(env);
return cpu;
}
void xtensa_cpu_list(FILE *f, fprintf_function cpu_fprintf)
{
XtensaConfigList *core = xtensa_cores;
cpu_fprintf(f, "Available CPUs:\n");
for (; core; core = core->next) {
cpu_fprintf(f, " %s\n", core->config->name);
}
}
hwaddr cpu_get_phys_page_debug(CPUXtensaState *env, target_ulong addr)
{
uint32_t paddr;
uint32_t page_size;
unsigned access;
if (xtensa_get_physical_addr(env, false, addr, 0, 0,
&paddr, &page_size, &access) == 0) {
return paddr;
}
if (xtensa_get_physical_addr(env, false, addr, 2, 0,
&paddr, &page_size, &access) == 0) {
return paddr;
}
return ~0;
}
static uint32_t relocated_vector(CPUXtensaState *env, uint32_t vector)
{
if (xtensa_option_enabled(env->config,
XTENSA_OPTION_RELOCATABLE_VECTOR)) {
return vector - env->config->vecbase + env->sregs[VECBASE];
} else {
return vector;
}
}
/*!
* Handle penging IRQ.
* For the high priority interrupt jump to the corresponding interrupt vector.
* For the level-1 interrupt convert it to either user, kernel or double
* exception with the 'level-1 interrupt' exception cause.
*/
static void handle_interrupt(CPUXtensaState *env)
{
int level = env->pending_irq_level;
if (level > xtensa_get_cintlevel(env) &&
level <= env->config->nlevel &&
(env->config->level_mask[level] &
env->sregs[INTSET] &
env->sregs[INTENABLE])) {
if (level > 1) {
env->sregs[EPC1 + level - 1] = env->pc;
env->sregs[EPS2 + level - 2] = env->sregs[PS];
env->sregs[PS] =
(env->sregs[PS] & ~PS_INTLEVEL) | level | PS_EXCM;
env->pc = relocated_vector(env,
env->config->interrupt_vector[level]);
} else {
env->sregs[EXCCAUSE] = LEVEL1_INTERRUPT_CAUSE;
if (env->sregs[PS] & PS_EXCM) {
if (env->config->ndepc) {
env->sregs[DEPC] = env->pc;
} else {
env->sregs[EPC1] = env->pc;
}
env->exception_index = EXC_DOUBLE;
} else {
env->sregs[EPC1] = env->pc;
env->exception_index =
(env->sregs[PS] & PS_UM) ? EXC_USER : EXC_KERNEL;
}
env->sregs[PS] |= PS_EXCM;
}
env->exception_taken = 1;
}
}
void do_interrupt(CPUXtensaState *env)
{
if (env->exception_index == EXC_IRQ) {
qemu_log_mask(CPU_LOG_INT,
"%s(EXC_IRQ) level = %d, cintlevel = %d, "
"pc = %08x, a0 = %08x, ps = %08x, "
"intset = %08x, intenable = %08x, "
"ccount = %08x\n",
__func__, env->pending_irq_level, xtensa_get_cintlevel(env),
env->pc, env->regs[0], env->sregs[PS],
env->sregs[INTSET], env->sregs[INTENABLE],
env->sregs[CCOUNT]);
handle_interrupt(env);
}
switch (env->exception_index) {
case EXC_WINDOW_OVERFLOW4:
case EXC_WINDOW_UNDERFLOW4:
case EXC_WINDOW_OVERFLOW8:
case EXC_WINDOW_UNDERFLOW8:
case EXC_WINDOW_OVERFLOW12:
case EXC_WINDOW_UNDERFLOW12:
case EXC_KERNEL:
case EXC_USER:
case EXC_DOUBLE:
case EXC_DEBUG:
qemu_log_mask(CPU_LOG_INT, "%s(%d) "
"pc = %08x, a0 = %08x, ps = %08x, ccount = %08x\n",
__func__, env->exception_index,
env->pc, env->regs[0], env->sregs[PS], env->sregs[CCOUNT]);
if (env->config->exception_vector[env->exception_index]) {
env->pc = relocated_vector(env,
env->config->exception_vector[env->exception_index]);
env->exception_taken = 1;
} else {
qemu_log("%s(pc = %08x) bad exception_index: %d\n",
__func__, env->pc, env->exception_index);
}
break;
case EXC_IRQ:
break;
default:
qemu_log("%s(pc = %08x) unknown exception_index: %d\n",
__func__, env->pc, env->exception_index);
break;
}
check_interrupts(env);
}
static void reset_tlb_mmu_all_ways(CPUXtensaState *env,
const xtensa_tlb *tlb, xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
{
unsigned wi, ei;
for (wi = 0; wi < tlb->nways; ++wi) {
for (ei = 0; ei < tlb->way_size[wi]; ++ei) {
entry[wi][ei].asid = 0;
entry[wi][ei].variable = true;
}
}
}
static void reset_tlb_mmu_ways56(CPUXtensaState *env,
const xtensa_tlb *tlb, xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
{
if (!tlb->varway56) {
static const xtensa_tlb_entry way5[] = {
{
.vaddr = 0xd0000000,
.paddr = 0,
.asid = 1,
.attr = 7,
.variable = false,
}, {
.vaddr = 0xd8000000,
.paddr = 0,
.asid = 1,
.attr = 3,
.variable = false,
}
};
static const xtensa_tlb_entry way6[] = {
{
.vaddr = 0xe0000000,
.paddr = 0xf0000000,
.asid = 1,
.attr = 7,
.variable = false,
}, {
.vaddr = 0xf0000000,
.paddr = 0xf0000000,
.asid = 1,
.attr = 3,
.variable = false,
}
};
memcpy(entry[5], way5, sizeof(way5));
memcpy(entry[6], way6, sizeof(way6));
} else {
uint32_t ei;
for (ei = 0; ei < 8; ++ei) {
entry[6][ei].vaddr = ei << 29;
entry[6][ei].paddr = ei << 29;
entry[6][ei].asid = 1;
entry[6][ei].attr = 3;
}
}
}
static void reset_tlb_region_way0(CPUXtensaState *env,
xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
{
unsigned ei;
for (ei = 0; ei < 8; ++ei) {
entry[0][ei].vaddr = ei << 29;
entry[0][ei].paddr = ei << 29;
entry[0][ei].asid = 1;
entry[0][ei].attr = 2;
entry[0][ei].variable = true;
}
}
void reset_mmu(CPUXtensaState *env)
{
if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
env->sregs[RASID] = 0x04030201;
env->sregs[ITLBCFG] = 0;
env->sregs[DTLBCFG] = 0;
env->autorefill_idx = 0;
reset_tlb_mmu_all_ways(env, &env->config->itlb, env->itlb);
reset_tlb_mmu_all_ways(env, &env->config->dtlb, env->dtlb);
reset_tlb_mmu_ways56(env, &env->config->itlb, env->itlb);
reset_tlb_mmu_ways56(env, &env->config->dtlb, env->dtlb);
} else {
reset_tlb_region_way0(env, env->itlb);
reset_tlb_region_way0(env, env->dtlb);
}
}
static unsigned get_ring(const CPUXtensaState *env, uint8_t asid)
{
unsigned i;
for (i = 0; i < 4; ++i) {
if (((env->sregs[RASID] >> i * 8) & 0xff) == asid) {
return i;
}
}
return 0xff;
}
/*!
* Lookup xtensa TLB for the given virtual address.
* See ISA, 4.6.2.2
*
* \param pwi: [out] way index
* \param pei: [out] entry index
* \param pring: [out] access ring
* \return 0 if ok, exception cause code otherwise
*/
int xtensa_tlb_lookup(const CPUXtensaState *env, uint32_t addr, bool dtlb,
uint32_t *pwi, uint32_t *pei, uint8_t *pring)
{
const xtensa_tlb *tlb = dtlb ?
&env->config->dtlb : &env->config->itlb;
const xtensa_tlb_entry (*entry)[MAX_TLB_WAY_SIZE] = dtlb ?
env->dtlb : env->itlb;
int nhits = 0;
unsigned wi;
for (wi = 0; wi < tlb->nways; ++wi) {
uint32_t vpn;
uint32_t ei;
split_tlb_entry_spec_way(env, addr, dtlb, &vpn, wi, &ei);
if (entry[wi][ei].vaddr == vpn && entry[wi][ei].asid) {
unsigned ring = get_ring(env, entry[wi][ei].asid);
if (ring < 4) {
if (++nhits > 1) {
return dtlb ?
LOAD_STORE_TLB_MULTI_HIT_CAUSE :
INST_TLB_MULTI_HIT_CAUSE;
}
*pwi = wi;
*pei = ei;
*pring = ring;
}
}
}
return nhits ? 0 :
(dtlb ? LOAD_STORE_TLB_MISS_CAUSE : INST_TLB_MISS_CAUSE);
}
/*!
* Convert MMU ATTR to PAGE_{READ,WRITE,EXEC} mask.
* See ISA, 4.6.5.10
*/
static unsigned mmu_attr_to_access(uint32_t attr)
{
unsigned access = 0;
if (attr < 12) {
access |= PAGE_READ;
if (attr & 0x1) {
access |= PAGE_EXEC;
}
if (attr & 0x2) {
access |= PAGE_WRITE;
}
switch (attr & 0xc) {
case 0:
access |= PAGE_CACHE_BYPASS;
break;
case 4:
access |= PAGE_CACHE_WB;
break;
case 8:
access |= PAGE_CACHE_WT;
break;
}
} else if (attr == 13) {
access |= PAGE_READ | PAGE_WRITE | PAGE_CACHE_ISOLATE;
}
return access;
}
/*!
* Convert region protection ATTR to PAGE_{READ,WRITE,EXEC} mask.
* See ISA, 4.6.3.3
*/
static unsigned region_attr_to_access(uint32_t attr)
{
static const unsigned access[16] = {
[0] = PAGE_READ | PAGE_WRITE | PAGE_CACHE_WT,
[1] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WT,
[2] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_BYPASS,
[3] = PAGE_EXEC | PAGE_CACHE_WB,
[4] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
[5] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
[14] = PAGE_READ | PAGE_WRITE | PAGE_CACHE_ISOLATE,
};
return access[attr & 0xf];
}
/*!
* Convert cacheattr to PAGE_{READ,WRITE,EXEC} mask.
* See ISA, A.2.14 The Cache Attribute Register
*/
static unsigned cacheattr_attr_to_access(uint32_t attr)
{
static const unsigned access[16] = {
[0] = PAGE_READ | PAGE_WRITE | PAGE_CACHE_WT,
[1] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WT,
[2] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_BYPASS,
[3] = PAGE_EXEC | PAGE_CACHE_WB,
[4] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
[14] = PAGE_READ | PAGE_WRITE | PAGE_CACHE_ISOLATE,
};
return access[attr & 0xf];
}
static bool is_access_granted(unsigned access, int is_write)
{
switch (is_write) {
case 0:
return access & PAGE_READ;
case 1:
return access & PAGE_WRITE;
case 2:
return access & PAGE_EXEC;
default:
return 0;
}
}
static int get_pte(CPUXtensaState *env, uint32_t vaddr, uint32_t *pte);
static int get_physical_addr_mmu(CPUXtensaState *env, bool update_tlb,
uint32_t vaddr, int is_write, int mmu_idx,
uint32_t *paddr, uint32_t *page_size, unsigned *access,
bool may_lookup_pt)
{
bool dtlb = is_write != 2;
uint32_t wi;
uint32_t ei;
uint8_t ring;
uint32_t vpn;
uint32_t pte;
const xtensa_tlb_entry *entry = NULL;
xtensa_tlb_entry tmp_entry;
int ret = xtensa_tlb_lookup(env, vaddr, dtlb, &wi, &ei, &ring);
if ((ret == INST_TLB_MISS_CAUSE || ret == LOAD_STORE_TLB_MISS_CAUSE) &&
may_lookup_pt && get_pte(env, vaddr, &pte) == 0) {
ring = (pte >> 4) & 0x3;
wi = 0;
split_tlb_entry_spec_way(env, vaddr, dtlb, &vpn, wi, &ei);
if (update_tlb) {
wi = ++env->autorefill_idx & 0x3;
xtensa_tlb_set_entry(env, dtlb, wi, ei, vpn, pte);
env->sregs[EXCVADDR] = vaddr;
qemu_log("%s: autorefill(%08x): %08x -> %08x\n",
__func__, vaddr, vpn, pte);
} else {
xtensa_tlb_set_entry_mmu(env, &tmp_entry, dtlb, wi, ei, vpn, pte);
entry = &tmp_entry;
}
ret = 0;
}
if (ret != 0) {
return ret;
}
if (entry == NULL) {
entry = xtensa_tlb_get_entry(env, dtlb, wi, ei);
}
if (ring < mmu_idx) {
return dtlb ?
LOAD_STORE_PRIVILEGE_CAUSE :
INST_FETCH_PRIVILEGE_CAUSE;
}
*access = mmu_attr_to_access(entry->attr);
if (!is_access_granted(*access, is_write)) {
return dtlb ?
(is_write ?
STORE_PROHIBITED_CAUSE :
LOAD_PROHIBITED_CAUSE) :
INST_FETCH_PROHIBITED_CAUSE;
}
*paddr = entry->paddr | (vaddr & ~xtensa_tlb_get_addr_mask(env, dtlb, wi));
*page_size = ~xtensa_tlb_get_addr_mask(env, dtlb, wi) + 1;
return 0;
}
static int get_pte(CPUXtensaState *env, uint32_t vaddr, uint32_t *pte)
{
uint32_t paddr;
uint32_t page_size;
unsigned access;
uint32_t pt_vaddr =
(env->sregs[PTEVADDR] | (vaddr >> 10)) & 0xfffffffc;
int ret = get_physical_addr_mmu(env, false, pt_vaddr, 0, 0,
&paddr, &page_size, &access, false);
qemu_log("%s: trying autorefill(%08x) -> %08x\n", __func__,
vaddr, ret ? ~0 : paddr);
if (ret == 0) {
*pte = ldl_phys(paddr);
}
return ret;
}
static int get_physical_addr_region(CPUXtensaState *env,
uint32_t vaddr, int is_write, int mmu_idx,
uint32_t *paddr, uint32_t *page_size, unsigned *access)
{
bool dtlb = is_write != 2;
uint32_t wi = 0;
uint32_t ei = (vaddr >> 29) & 0x7;
const xtensa_tlb_entry *entry =
xtensa_tlb_get_entry(env, dtlb, wi, ei);
*access = region_attr_to_access(entry->attr);
if (!is_access_granted(*access, is_write)) {
return dtlb ?
(is_write ?
STORE_PROHIBITED_CAUSE :
LOAD_PROHIBITED_CAUSE) :
INST_FETCH_PROHIBITED_CAUSE;
}
*paddr = entry->paddr | (vaddr & ~REGION_PAGE_MASK);
*page_size = ~REGION_PAGE_MASK + 1;
return 0;
}
/*!
* Convert virtual address to physical addr.
* MMU may issue pagewalk and change xtensa autorefill TLB way entry.
*
* \return 0 if ok, exception cause code otherwise
*/
int xtensa_get_physical_addr(CPUXtensaState *env, bool update_tlb,
uint32_t vaddr, int is_write, int mmu_idx,
uint32_t *paddr, uint32_t *page_size, unsigned *access)
{
if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
return get_physical_addr_mmu(env, update_tlb,
vaddr, is_write, mmu_idx, paddr, page_size, access, true);
} else if (xtensa_option_bits_enabled(env->config,
XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_PROTECTION) |
XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_TRANSLATION))) {
return get_physical_addr_region(env, vaddr, is_write, mmu_idx,
paddr, page_size, access);
} else {
*paddr = vaddr;
*page_size = TARGET_PAGE_SIZE;
*access = cacheattr_attr_to_access(
env->sregs[CACHEATTR] >> ((vaddr & 0xe0000000) >> 27));
return 0;
}
}
static void dump_tlb(FILE *f, fprintf_function cpu_fprintf,
CPUXtensaState *env, bool dtlb)
{
unsigned wi, ei;
const xtensa_tlb *conf =
dtlb ? &env->config->dtlb : &env->config->itlb;
unsigned (*attr_to_access)(uint32_t) =
xtensa_option_enabled(env->config, XTENSA_OPTION_MMU) ?
mmu_attr_to_access : region_attr_to_access;
for (wi = 0; wi < conf->nways; ++wi) {
uint32_t sz = ~xtensa_tlb_get_addr_mask(env, dtlb, wi) + 1;
const char *sz_text;
bool print_header = true;
if (sz >= 0x100000) {
sz >>= 20;
sz_text = "MB";
} else {
sz >>= 10;
sz_text = "KB";
}
for (ei = 0; ei < conf->way_size[wi]; ++ei) {
const xtensa_tlb_entry *entry =
xtensa_tlb_get_entry(env, dtlb, wi, ei);
if (entry->asid) {
static const char * const cache_text[8] = {
[PAGE_CACHE_BYPASS >> PAGE_CACHE_SHIFT] = "Bypass",
[PAGE_CACHE_WT >> PAGE_CACHE_SHIFT] = "WT",
[PAGE_CACHE_WB >> PAGE_CACHE_SHIFT] = "WB",
[PAGE_CACHE_ISOLATE >> PAGE_CACHE_SHIFT] = "Isolate",
};
unsigned access = attr_to_access(entry->attr);
unsigned cache_idx = (access & PAGE_CACHE_MASK) >>
PAGE_CACHE_SHIFT;
if (print_header) {
print_header = false;
cpu_fprintf(f, "Way %u (%d %s)\n", wi, sz, sz_text);
cpu_fprintf(f,
"\tVaddr Paddr ASID Attr RWX Cache\n"
"\t---------- ---------- ---- ---- --- -------\n");
}
cpu_fprintf(f,
"\t0x%08x 0x%08x 0x%02x 0x%02x %c%c%c %-7s\n",
entry->vaddr,
entry->paddr,
entry->asid,
entry->attr,
(access & PAGE_READ) ? 'R' : '-',
(access & PAGE_WRITE) ? 'W' : '-',
(access & PAGE_EXEC) ? 'X' : '-',
cache_text[cache_idx] ? cache_text[cache_idx] :
"Invalid");
}
}
}
}
void dump_mmu(FILE *f, fprintf_function cpu_fprintf, CPUXtensaState *env)
{
if (xtensa_option_bits_enabled(env->config,
XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_PROTECTION) |
XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_TRANSLATION) |
XTENSA_OPTION_BIT(XTENSA_OPTION_MMU))) {
cpu_fprintf(f, "ITLB:\n");
dump_tlb(f, cpu_fprintf, env, false);
cpu_fprintf(f, "\nDTLB:\n");
dump_tlb(f, cpu_fprintf, env, true);
} else {
cpu_fprintf(f, "No TLB for this CPU core\n");
}
}