7fdef0d4f2
Signed-off-by: Claudio Fontana <cfontana@suse.de> Reviewed-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Message-Id: <20201212155530.23098-4-cfontana@suse.de> Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
1144 lines
30 KiB
C
1144 lines
30 KiB
C
/*
|
|
* QEMU HAX support
|
|
*
|
|
* Copyright IBM, Corp. 2008
|
|
* Red Hat, Inc. 2008
|
|
*
|
|
* Authors:
|
|
* Anthony Liguori <aliguori@us.ibm.com>
|
|
* Glauber Costa <gcosta@redhat.com>
|
|
*
|
|
* Copyright (c) 2011 Intel Corporation
|
|
* Written by:
|
|
* Jiang Yunhong<yunhong.jiang@intel.com>
|
|
* Xin Xiaohui<xiaohui.xin@intel.com>
|
|
* Zhang Xiantao<xiantao.zhang@intel.com>
|
|
*
|
|
* This work is licensed under the terms of the GNU GPL, version 2 or later.
|
|
* See the COPYING file in the top-level directory.
|
|
*
|
|
*/
|
|
|
|
/*
|
|
* HAX common code for both windows and darwin
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "cpu.h"
|
|
#include "exec/address-spaces.h"
|
|
|
|
#include "qemu-common.h"
|
|
#include "sysemu/accel.h"
|
|
#include "sysemu/reset.h"
|
|
#include "sysemu/runstate.h"
|
|
#include "hw/boards.h"
|
|
|
|
#include "hax-cpus.h"
|
|
|
|
#define DEBUG_HAX 0
|
|
|
|
#define DPRINTF(fmt, ...) \
|
|
do { \
|
|
if (DEBUG_HAX) { \
|
|
fprintf(stdout, fmt, ## __VA_ARGS__); \
|
|
} \
|
|
} while (0)
|
|
|
|
/* Current version */
|
|
const uint32_t hax_cur_version = 0x4; /* API v4: unmapping and MMIO moves */
|
|
/* Minimum HAX kernel version */
|
|
const uint32_t hax_min_version = 0x4; /* API v4: supports unmapping */
|
|
|
|
static bool hax_allowed;
|
|
|
|
struct hax_state hax_global;
|
|
|
|
static void hax_vcpu_sync_state(CPUArchState *env, int modified);
|
|
static int hax_arch_get_registers(CPUArchState *env);
|
|
|
|
int hax_enabled(void)
|
|
{
|
|
return hax_allowed;
|
|
}
|
|
|
|
int valid_hax_tunnel_size(uint16_t size)
|
|
{
|
|
return size >= sizeof(struct hax_tunnel);
|
|
}
|
|
|
|
hax_fd hax_vcpu_get_fd(CPUArchState *env)
|
|
{
|
|
struct hax_vcpu_state *vcpu = env_cpu(env)->hax_vcpu;
|
|
if (!vcpu) {
|
|
return HAX_INVALID_FD;
|
|
}
|
|
return vcpu->fd;
|
|
}
|
|
|
|
static int hax_get_capability(struct hax_state *hax)
|
|
{
|
|
int ret;
|
|
struct hax_capabilityinfo capinfo, *cap = &capinfo;
|
|
|
|
ret = hax_capability(hax, cap);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
|
|
if ((cap->wstatus & HAX_CAP_WORKSTATUS_MASK) == HAX_CAP_STATUS_NOTWORKING) {
|
|
if (cap->winfo & HAX_CAP_FAILREASON_VT) {
|
|
DPRINTF
|
|
("VTX feature is not enabled, HAX driver will not work.\n");
|
|
} else if (cap->winfo & HAX_CAP_FAILREASON_NX) {
|
|
DPRINTF
|
|
("NX feature is not enabled, HAX driver will not work.\n");
|
|
}
|
|
return -ENXIO;
|
|
|
|
}
|
|
|
|
if (!(cap->winfo & HAX_CAP_UG)) {
|
|
fprintf(stderr, "UG mode is not supported by the hardware.\n");
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
hax->supports_64bit_ramblock = !!(cap->winfo & HAX_CAP_64BIT_RAMBLOCK);
|
|
|
|
if (cap->wstatus & HAX_CAP_MEMQUOTA) {
|
|
if (cap->mem_quota < hax->mem_quota) {
|
|
fprintf(stderr, "The VM memory needed exceeds the driver limit.\n");
|
|
return -ENOSPC;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int hax_version_support(struct hax_state *hax)
|
|
{
|
|
int ret;
|
|
struct hax_module_version version;
|
|
|
|
ret = hax_mod_version(hax, &version);
|
|
if (ret < 0) {
|
|
return 0;
|
|
}
|
|
|
|
if (hax_min_version > version.cur_version) {
|
|
fprintf(stderr, "Incompatible HAX module version %d,",
|
|
version.cur_version);
|
|
fprintf(stderr, "requires minimum version %d\n", hax_min_version);
|
|
return 0;
|
|
}
|
|
if (hax_cur_version < version.compat_version) {
|
|
fprintf(stderr, "Incompatible QEMU HAX API version %x,",
|
|
hax_cur_version);
|
|
fprintf(stderr, "requires minimum HAX API version %x\n",
|
|
version.compat_version);
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
int hax_vcpu_create(int id)
|
|
{
|
|
struct hax_vcpu_state *vcpu = NULL;
|
|
int ret;
|
|
|
|
if (!hax_global.vm) {
|
|
fprintf(stderr, "vcpu %x created failed, vm is null\n", id);
|
|
return -1;
|
|
}
|
|
|
|
if (hax_global.vm->vcpus[id]) {
|
|
fprintf(stderr, "vcpu %x allocated already\n", id);
|
|
return 0;
|
|
}
|
|
|
|
vcpu = g_new0(struct hax_vcpu_state, 1);
|
|
|
|
ret = hax_host_create_vcpu(hax_global.vm->fd, id);
|
|
if (ret) {
|
|
fprintf(stderr, "Failed to create vcpu %x\n", id);
|
|
goto error;
|
|
}
|
|
|
|
vcpu->vcpu_id = id;
|
|
vcpu->fd = hax_host_open_vcpu(hax_global.vm->id, id);
|
|
if (hax_invalid_fd(vcpu->fd)) {
|
|
fprintf(stderr, "Failed to open the vcpu\n");
|
|
ret = -ENODEV;
|
|
goto error;
|
|
}
|
|
|
|
hax_global.vm->vcpus[id] = vcpu;
|
|
|
|
ret = hax_host_setup_vcpu_channel(vcpu);
|
|
if (ret) {
|
|
fprintf(stderr, "Invalid hax tunnel size\n");
|
|
ret = -EINVAL;
|
|
goto error;
|
|
}
|
|
return 0;
|
|
|
|
error:
|
|
/* vcpu and tunnel will be closed automatically */
|
|
if (vcpu && !hax_invalid_fd(vcpu->fd)) {
|
|
hax_close_fd(vcpu->fd);
|
|
}
|
|
|
|
hax_global.vm->vcpus[id] = NULL;
|
|
g_free(vcpu);
|
|
return -1;
|
|
}
|
|
|
|
int hax_vcpu_destroy(CPUState *cpu)
|
|
{
|
|
struct hax_vcpu_state *vcpu = cpu->hax_vcpu;
|
|
|
|
if (!hax_global.vm) {
|
|
fprintf(stderr, "vcpu %x destroy failed, vm is null\n", vcpu->vcpu_id);
|
|
return -1;
|
|
}
|
|
|
|
if (!vcpu) {
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* 1. The hax_tunnel is also destroyed when vcpu is destroyed
|
|
* 2. close fd will cause hax module vcpu be cleaned
|
|
*/
|
|
hax_close_fd(vcpu->fd);
|
|
hax_global.vm->vcpus[vcpu->vcpu_id] = NULL;
|
|
g_free(vcpu);
|
|
return 0;
|
|
}
|
|
|
|
int hax_init_vcpu(CPUState *cpu)
|
|
{
|
|
int ret;
|
|
|
|
ret = hax_vcpu_create(cpu->cpu_index);
|
|
if (ret < 0) {
|
|
fprintf(stderr, "Failed to create HAX vcpu\n");
|
|
exit(-1);
|
|
}
|
|
|
|
cpu->hax_vcpu = hax_global.vm->vcpus[cpu->cpu_index];
|
|
cpu->vcpu_dirty = true;
|
|
qemu_register_reset(hax_reset_vcpu_state, (CPUArchState *) (cpu->env_ptr));
|
|
|
|
return ret;
|
|
}
|
|
|
|
struct hax_vm *hax_vm_create(struct hax_state *hax, int max_cpus)
|
|
{
|
|
struct hax_vm *vm;
|
|
int vm_id = 0, ret, i;
|
|
|
|
if (hax_invalid_fd(hax->fd)) {
|
|
return NULL;
|
|
}
|
|
|
|
if (hax->vm) {
|
|
return hax->vm;
|
|
}
|
|
|
|
if (max_cpus > HAX_MAX_VCPU) {
|
|
fprintf(stderr, "Maximum VCPU number QEMU supported is %d\n", HAX_MAX_VCPU);
|
|
return NULL;
|
|
}
|
|
|
|
vm = g_new0(struct hax_vm, 1);
|
|
|
|
ret = hax_host_create_vm(hax, &vm_id);
|
|
if (ret) {
|
|
fprintf(stderr, "Failed to create vm %x\n", ret);
|
|
goto error;
|
|
}
|
|
vm->id = vm_id;
|
|
vm->fd = hax_host_open_vm(hax, vm_id);
|
|
if (hax_invalid_fd(vm->fd)) {
|
|
fprintf(stderr, "Failed to open vm %d\n", vm_id);
|
|
goto error;
|
|
}
|
|
|
|
vm->numvcpus = max_cpus;
|
|
vm->vcpus = g_new0(struct hax_vcpu_state *, vm->numvcpus);
|
|
for (i = 0; i < vm->numvcpus; i++) {
|
|
vm->vcpus[i] = NULL;
|
|
}
|
|
|
|
hax->vm = vm;
|
|
return vm;
|
|
|
|
error:
|
|
g_free(vm);
|
|
hax->vm = NULL;
|
|
return NULL;
|
|
}
|
|
|
|
int hax_vm_destroy(struct hax_vm *vm)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < vm->numvcpus; i++)
|
|
if (vm->vcpus[i]) {
|
|
fprintf(stderr, "VCPU should be cleaned before vm clean\n");
|
|
return -1;
|
|
}
|
|
hax_close_fd(vm->fd);
|
|
vm->numvcpus = 0;
|
|
g_free(vm->vcpus);
|
|
g_free(vm);
|
|
hax_global.vm = NULL;
|
|
return 0;
|
|
}
|
|
|
|
static int hax_init(ram_addr_t ram_size, int max_cpus)
|
|
{
|
|
struct hax_state *hax = NULL;
|
|
struct hax_qemu_version qversion;
|
|
int ret;
|
|
|
|
hax = &hax_global;
|
|
|
|
memset(hax, 0, sizeof(struct hax_state));
|
|
hax->mem_quota = ram_size;
|
|
|
|
hax->fd = hax_mod_open();
|
|
if (hax_invalid_fd(hax->fd)) {
|
|
hax->fd = 0;
|
|
ret = -ENODEV;
|
|
goto error;
|
|
}
|
|
|
|
ret = hax_get_capability(hax);
|
|
|
|
if (ret) {
|
|
if (ret != -ENOSPC) {
|
|
ret = -EINVAL;
|
|
}
|
|
goto error;
|
|
}
|
|
|
|
if (!hax_version_support(hax)) {
|
|
ret = -EINVAL;
|
|
goto error;
|
|
}
|
|
|
|
hax->vm = hax_vm_create(hax, max_cpus);
|
|
if (!hax->vm) {
|
|
fprintf(stderr, "Failed to create HAX VM\n");
|
|
ret = -EINVAL;
|
|
goto error;
|
|
}
|
|
|
|
hax_memory_init();
|
|
|
|
qversion.cur_version = hax_cur_version;
|
|
qversion.min_version = hax_min_version;
|
|
hax_notify_qemu_version(hax->vm->fd, &qversion);
|
|
|
|
return ret;
|
|
error:
|
|
if (hax->vm) {
|
|
hax_vm_destroy(hax->vm);
|
|
}
|
|
if (hax->fd) {
|
|
hax_mod_close(hax);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int hax_accel_init(MachineState *ms)
|
|
{
|
|
int ret = hax_init(ms->ram_size, (int)ms->smp.max_cpus);
|
|
|
|
if (ret && (ret != -ENOSPC)) {
|
|
fprintf(stderr, "No accelerator found.\n");
|
|
} else {
|
|
fprintf(stdout, "HAX is %s and emulator runs in %s mode.\n",
|
|
!ret ? "working" : "not working",
|
|
!ret ? "fast virt" : "emulation");
|
|
}
|
|
if (ret == 0) {
|
|
cpus_register_accel(&hax_cpus);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int hax_handle_fastmmio(CPUArchState *env, struct hax_fastmmio *hft)
|
|
{
|
|
if (hft->direction < 2) {
|
|
cpu_physical_memory_rw(hft->gpa, &hft->value, hft->size,
|
|
hft->direction);
|
|
} else {
|
|
/*
|
|
* HAX API v4 supports transferring data between two MMIO addresses,
|
|
* hft->gpa and hft->gpa2 (instructions such as MOVS require this):
|
|
* hft->direction == 2: gpa ==> gpa2
|
|
*/
|
|
uint64_t value;
|
|
cpu_physical_memory_read(hft->gpa, &value, hft->size);
|
|
cpu_physical_memory_write(hft->gpa2, &value, hft->size);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int hax_handle_io(CPUArchState *env, uint32_t df, uint16_t port,
|
|
int direction, int size, int count, void *buffer)
|
|
{
|
|
uint8_t *ptr;
|
|
int i;
|
|
MemTxAttrs attrs = { 0 };
|
|
|
|
if (!df) {
|
|
ptr = (uint8_t *) buffer;
|
|
} else {
|
|
ptr = buffer + size * count - size;
|
|
}
|
|
for (i = 0; i < count; i++) {
|
|
address_space_rw(&address_space_io, port, attrs,
|
|
ptr, size, direction == HAX_EXIT_IO_OUT);
|
|
if (!df) {
|
|
ptr += size;
|
|
} else {
|
|
ptr -= size;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int hax_vcpu_interrupt(CPUArchState *env)
|
|
{
|
|
CPUState *cpu = env_cpu(env);
|
|
struct hax_vcpu_state *vcpu = cpu->hax_vcpu;
|
|
struct hax_tunnel *ht = vcpu->tunnel;
|
|
|
|
/*
|
|
* Try to inject an interrupt if the guest can accept it
|
|
* Unlike KVM, HAX kernel check for the eflags, instead of qemu
|
|
*/
|
|
if (ht->ready_for_interrupt_injection &&
|
|
(cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
|
|
int irq;
|
|
|
|
irq = cpu_get_pic_interrupt(env);
|
|
if (irq >= 0) {
|
|
hax_inject_interrupt(env, irq);
|
|
cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
|
|
}
|
|
}
|
|
|
|
/* If we have an interrupt but the guest is not ready to receive an
|
|
* interrupt, request an interrupt window exit. This will
|
|
* cause a return to userspace as soon as the guest is ready to
|
|
* receive interrupts. */
|
|
if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
|
|
ht->request_interrupt_window = 1;
|
|
} else {
|
|
ht->request_interrupt_window = 0;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void hax_raise_event(CPUState *cpu)
|
|
{
|
|
struct hax_vcpu_state *vcpu = cpu->hax_vcpu;
|
|
|
|
if (!vcpu) {
|
|
return;
|
|
}
|
|
vcpu->tunnel->user_event_pending = 1;
|
|
}
|
|
|
|
/*
|
|
* Ask hax kernel module to run the CPU for us till:
|
|
* 1. Guest crash or shutdown
|
|
* 2. Need QEMU's emulation like guest execute MMIO instruction
|
|
* 3. Guest execute HLT
|
|
* 4. QEMU have Signal/event pending
|
|
* 5. An unknown VMX exit happens
|
|
*/
|
|
static int hax_vcpu_hax_exec(CPUArchState *env)
|
|
{
|
|
int ret = 0;
|
|
CPUState *cpu = env_cpu(env);
|
|
X86CPU *x86_cpu = X86_CPU(cpu);
|
|
struct hax_vcpu_state *vcpu = cpu->hax_vcpu;
|
|
struct hax_tunnel *ht = vcpu->tunnel;
|
|
|
|
if (!hax_enabled()) {
|
|
DPRINTF("Trying to vcpu execute at eip:" TARGET_FMT_lx "\n", env->eip);
|
|
return 0;
|
|
}
|
|
|
|
if (cpu->interrupt_request & CPU_INTERRUPT_POLL) {
|
|
cpu->interrupt_request &= ~CPU_INTERRUPT_POLL;
|
|
apic_poll_irq(x86_cpu->apic_state);
|
|
}
|
|
|
|
/* After a vcpu is halted (either because it is an AP and has just been
|
|
* reset, or because it has executed the HLT instruction), it will not be
|
|
* run (hax_vcpu_run()) until it is unhalted. The next few if blocks check
|
|
* for events that may change the halted state of this vcpu:
|
|
* a) Maskable interrupt, when RFLAGS.IF is 1;
|
|
* Note: env->eflags may not reflect the current RFLAGS state, because
|
|
* it is not updated after each hax_vcpu_run(). We cannot afford
|
|
* to fail to recognize any unhalt-by-maskable-interrupt event
|
|
* (in which case the vcpu will halt forever), and yet we cannot
|
|
* afford the overhead of hax_vcpu_sync_state(). The current
|
|
* solution is to err on the side of caution and have the HLT
|
|
* handler (see case HAX_EXIT_HLT below) unconditionally set the
|
|
* IF_MASK bit in env->eflags, which, in effect, disables the
|
|
* RFLAGS.IF check.
|
|
* b) NMI;
|
|
* c) INIT signal;
|
|
* d) SIPI signal.
|
|
*/
|
|
if (((cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
|
|
(env->eflags & IF_MASK)) ||
|
|
(cpu->interrupt_request & CPU_INTERRUPT_NMI)) {
|
|
cpu->halted = 0;
|
|
}
|
|
|
|
if (cpu->interrupt_request & CPU_INTERRUPT_INIT) {
|
|
DPRINTF("\nhax_vcpu_hax_exec: handling INIT for %d\n",
|
|
cpu->cpu_index);
|
|
do_cpu_init(x86_cpu);
|
|
hax_vcpu_sync_state(env, 1);
|
|
}
|
|
|
|
if (cpu->interrupt_request & CPU_INTERRUPT_SIPI) {
|
|
DPRINTF("hax_vcpu_hax_exec: handling SIPI for %d\n",
|
|
cpu->cpu_index);
|
|
hax_vcpu_sync_state(env, 0);
|
|
do_cpu_sipi(x86_cpu);
|
|
hax_vcpu_sync_state(env, 1);
|
|
}
|
|
|
|
if (cpu->halted) {
|
|
/* If this vcpu is halted, we must not ask HAXM to run it. Instead, we
|
|
* break out of hax_smp_cpu_exec() as if this vcpu had executed HLT.
|
|
* That way, this vcpu thread will be trapped in qemu_wait_io_event(),
|
|
* until the vcpu is unhalted.
|
|
*/
|
|
cpu->exception_index = EXCP_HLT;
|
|
return 0;
|
|
}
|
|
|
|
do {
|
|
int hax_ret;
|
|
|
|
if (cpu->exit_request) {
|
|
ret = 1;
|
|
break;
|
|
}
|
|
|
|
hax_vcpu_interrupt(env);
|
|
|
|
qemu_mutex_unlock_iothread();
|
|
cpu_exec_start(cpu);
|
|
hax_ret = hax_vcpu_run(vcpu);
|
|
cpu_exec_end(cpu);
|
|
qemu_mutex_lock_iothread();
|
|
|
|
/* Simply continue the vcpu_run if system call interrupted */
|
|
if (hax_ret == -EINTR || hax_ret == -EAGAIN) {
|
|
DPRINTF("io window interrupted\n");
|
|
continue;
|
|
}
|
|
|
|
if (hax_ret < 0) {
|
|
fprintf(stderr, "vcpu run failed for vcpu %x\n", vcpu->vcpu_id);
|
|
abort();
|
|
}
|
|
switch (ht->_exit_status) {
|
|
case HAX_EXIT_IO:
|
|
ret = hax_handle_io(env, ht->pio._df, ht->pio._port,
|
|
ht->pio._direction,
|
|
ht->pio._size, ht->pio._count, vcpu->iobuf);
|
|
break;
|
|
case HAX_EXIT_FAST_MMIO:
|
|
ret = hax_handle_fastmmio(env, (struct hax_fastmmio *) vcpu->iobuf);
|
|
break;
|
|
/* Guest state changed, currently only for shutdown */
|
|
case HAX_EXIT_STATECHANGE:
|
|
fprintf(stdout, "VCPU shutdown request\n");
|
|
qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
|
|
hax_vcpu_sync_state(env, 0);
|
|
ret = 1;
|
|
break;
|
|
case HAX_EXIT_UNKNOWN_VMEXIT:
|
|
fprintf(stderr, "Unknown VMX exit %x from guest\n",
|
|
ht->_exit_reason);
|
|
qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
|
|
hax_vcpu_sync_state(env, 0);
|
|
cpu_dump_state(cpu, stderr, 0);
|
|
ret = -1;
|
|
break;
|
|
case HAX_EXIT_HLT:
|
|
if (!(cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
|
|
!(cpu->interrupt_request & CPU_INTERRUPT_NMI)) {
|
|
/* hlt instruction with interrupt disabled is shutdown */
|
|
env->eflags |= IF_MASK;
|
|
cpu->halted = 1;
|
|
cpu->exception_index = EXCP_HLT;
|
|
ret = 1;
|
|
}
|
|
break;
|
|
/* these situations will continue to hax module */
|
|
case HAX_EXIT_INTERRUPT:
|
|
case HAX_EXIT_PAUSED:
|
|
break;
|
|
case HAX_EXIT_MMIO:
|
|
/* Should not happen on UG system */
|
|
fprintf(stderr, "HAX: unsupported MMIO emulation\n");
|
|
ret = -1;
|
|
break;
|
|
case HAX_EXIT_REAL:
|
|
/* Should not happen on UG system */
|
|
fprintf(stderr, "HAX: unimplemented real mode emulation\n");
|
|
ret = -1;
|
|
break;
|
|
default:
|
|
fprintf(stderr, "Unknown exit %x from HAX\n", ht->_exit_status);
|
|
qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
|
|
hax_vcpu_sync_state(env, 0);
|
|
cpu_dump_state(cpu, stderr, 0);
|
|
ret = 1;
|
|
break;
|
|
}
|
|
} while (!ret);
|
|
|
|
if (cpu->exit_request) {
|
|
cpu->exit_request = 0;
|
|
cpu->exception_index = EXCP_INTERRUPT;
|
|
}
|
|
return ret < 0;
|
|
}
|
|
|
|
static void do_hax_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
|
|
{
|
|
CPUArchState *env = cpu->env_ptr;
|
|
|
|
hax_arch_get_registers(env);
|
|
cpu->vcpu_dirty = true;
|
|
}
|
|
|
|
void hax_cpu_synchronize_state(CPUState *cpu)
|
|
{
|
|
if (!cpu->vcpu_dirty) {
|
|
run_on_cpu(cpu, do_hax_cpu_synchronize_state, RUN_ON_CPU_NULL);
|
|
}
|
|
}
|
|
|
|
static void do_hax_cpu_synchronize_post_reset(CPUState *cpu,
|
|
run_on_cpu_data arg)
|
|
{
|
|
CPUArchState *env = cpu->env_ptr;
|
|
|
|
hax_vcpu_sync_state(env, 1);
|
|
cpu->vcpu_dirty = false;
|
|
}
|
|
|
|
void hax_cpu_synchronize_post_reset(CPUState *cpu)
|
|
{
|
|
run_on_cpu(cpu, do_hax_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
|
|
}
|
|
|
|
static void do_hax_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
|
|
{
|
|
CPUArchState *env = cpu->env_ptr;
|
|
|
|
hax_vcpu_sync_state(env, 1);
|
|
cpu->vcpu_dirty = false;
|
|
}
|
|
|
|
void hax_cpu_synchronize_post_init(CPUState *cpu)
|
|
{
|
|
run_on_cpu(cpu, do_hax_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
|
|
}
|
|
|
|
static void do_hax_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg)
|
|
{
|
|
cpu->vcpu_dirty = true;
|
|
}
|
|
|
|
void hax_cpu_synchronize_pre_loadvm(CPUState *cpu)
|
|
{
|
|
run_on_cpu(cpu, do_hax_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
|
|
}
|
|
|
|
int hax_smp_cpu_exec(CPUState *cpu)
|
|
{
|
|
CPUArchState *env = (CPUArchState *) (cpu->env_ptr);
|
|
int fatal;
|
|
int ret;
|
|
|
|
while (1) {
|
|
if (cpu->exception_index >= EXCP_INTERRUPT) {
|
|
ret = cpu->exception_index;
|
|
cpu->exception_index = -1;
|
|
break;
|
|
}
|
|
|
|
fatal = hax_vcpu_hax_exec(env);
|
|
|
|
if (fatal) {
|
|
fprintf(stderr, "Unsupported HAX vcpu return\n");
|
|
abort();
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void set_v8086_seg(struct segment_desc_t *lhs, const SegmentCache *rhs)
|
|
{
|
|
memset(lhs, 0, sizeof(struct segment_desc_t));
|
|
lhs->selector = rhs->selector;
|
|
lhs->base = rhs->base;
|
|
lhs->limit = rhs->limit;
|
|
lhs->type = 3;
|
|
lhs->present = 1;
|
|
lhs->dpl = 3;
|
|
lhs->operand_size = 0;
|
|
lhs->desc = 1;
|
|
lhs->long_mode = 0;
|
|
lhs->granularity = 0;
|
|
lhs->available = 0;
|
|
}
|
|
|
|
static void get_seg(SegmentCache *lhs, const struct segment_desc_t *rhs)
|
|
{
|
|
lhs->selector = rhs->selector;
|
|
lhs->base = rhs->base;
|
|
lhs->limit = rhs->limit;
|
|
lhs->flags = (rhs->type << DESC_TYPE_SHIFT)
|
|
| (rhs->present * DESC_P_MASK)
|
|
| (rhs->dpl << DESC_DPL_SHIFT)
|
|
| (rhs->operand_size << DESC_B_SHIFT)
|
|
| (rhs->desc * DESC_S_MASK)
|
|
| (rhs->long_mode << DESC_L_SHIFT)
|
|
| (rhs->granularity * DESC_G_MASK) | (rhs->available * DESC_AVL_MASK);
|
|
}
|
|
|
|
static void set_seg(struct segment_desc_t *lhs, const SegmentCache *rhs)
|
|
{
|
|
unsigned flags = rhs->flags;
|
|
|
|
memset(lhs, 0, sizeof(struct segment_desc_t));
|
|
lhs->selector = rhs->selector;
|
|
lhs->base = rhs->base;
|
|
lhs->limit = rhs->limit;
|
|
lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
|
|
lhs->present = (flags & DESC_P_MASK) != 0;
|
|
lhs->dpl = rhs->selector & 3;
|
|
lhs->operand_size = (flags >> DESC_B_SHIFT) & 1;
|
|
lhs->desc = (flags & DESC_S_MASK) != 0;
|
|
lhs->long_mode = (flags >> DESC_L_SHIFT) & 1;
|
|
lhs->granularity = (flags & DESC_G_MASK) != 0;
|
|
lhs->available = (flags & DESC_AVL_MASK) != 0;
|
|
}
|
|
|
|
static void hax_getput_reg(uint64_t *hax_reg, target_ulong *qemu_reg, int set)
|
|
{
|
|
target_ulong reg = *hax_reg;
|
|
|
|
if (set) {
|
|
*hax_reg = *qemu_reg;
|
|
} else {
|
|
*qemu_reg = reg;
|
|
}
|
|
}
|
|
|
|
/* The sregs has been synced with HAX kernel already before this call */
|
|
static int hax_get_segments(CPUArchState *env, struct vcpu_state_t *sregs)
|
|
{
|
|
get_seg(&env->segs[R_CS], &sregs->_cs);
|
|
get_seg(&env->segs[R_DS], &sregs->_ds);
|
|
get_seg(&env->segs[R_ES], &sregs->_es);
|
|
get_seg(&env->segs[R_FS], &sregs->_fs);
|
|
get_seg(&env->segs[R_GS], &sregs->_gs);
|
|
get_seg(&env->segs[R_SS], &sregs->_ss);
|
|
|
|
get_seg(&env->tr, &sregs->_tr);
|
|
get_seg(&env->ldt, &sregs->_ldt);
|
|
env->idt.limit = sregs->_idt.limit;
|
|
env->idt.base = sregs->_idt.base;
|
|
env->gdt.limit = sregs->_gdt.limit;
|
|
env->gdt.base = sregs->_gdt.base;
|
|
return 0;
|
|
}
|
|
|
|
static int hax_set_segments(CPUArchState *env, struct vcpu_state_t *sregs)
|
|
{
|
|
if ((env->eflags & VM_MASK)) {
|
|
set_v8086_seg(&sregs->_cs, &env->segs[R_CS]);
|
|
set_v8086_seg(&sregs->_ds, &env->segs[R_DS]);
|
|
set_v8086_seg(&sregs->_es, &env->segs[R_ES]);
|
|
set_v8086_seg(&sregs->_fs, &env->segs[R_FS]);
|
|
set_v8086_seg(&sregs->_gs, &env->segs[R_GS]);
|
|
set_v8086_seg(&sregs->_ss, &env->segs[R_SS]);
|
|
} else {
|
|
set_seg(&sregs->_cs, &env->segs[R_CS]);
|
|
set_seg(&sregs->_ds, &env->segs[R_DS]);
|
|
set_seg(&sregs->_es, &env->segs[R_ES]);
|
|
set_seg(&sregs->_fs, &env->segs[R_FS]);
|
|
set_seg(&sregs->_gs, &env->segs[R_GS]);
|
|
set_seg(&sregs->_ss, &env->segs[R_SS]);
|
|
|
|
if (env->cr[0] & CR0_PE_MASK) {
|
|
/* force ss cpl to cs cpl */
|
|
sregs->_ss.selector = (sregs->_ss.selector & ~3) |
|
|
(sregs->_cs.selector & 3);
|
|
sregs->_ss.dpl = sregs->_ss.selector & 3;
|
|
}
|
|
}
|
|
|
|
set_seg(&sregs->_tr, &env->tr);
|
|
set_seg(&sregs->_ldt, &env->ldt);
|
|
sregs->_idt.limit = env->idt.limit;
|
|
sregs->_idt.base = env->idt.base;
|
|
sregs->_gdt.limit = env->gdt.limit;
|
|
sregs->_gdt.base = env->gdt.base;
|
|
return 0;
|
|
}
|
|
|
|
static int hax_sync_vcpu_register(CPUArchState *env, int set)
|
|
{
|
|
struct vcpu_state_t regs;
|
|
int ret;
|
|
memset(®s, 0, sizeof(struct vcpu_state_t));
|
|
|
|
if (!set) {
|
|
ret = hax_sync_vcpu_state(env, ®s, 0);
|
|
if (ret < 0) {
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/* generic register */
|
|
hax_getput_reg(®s._rax, &env->regs[R_EAX], set);
|
|
hax_getput_reg(®s._rbx, &env->regs[R_EBX], set);
|
|
hax_getput_reg(®s._rcx, &env->regs[R_ECX], set);
|
|
hax_getput_reg(®s._rdx, &env->regs[R_EDX], set);
|
|
hax_getput_reg(®s._rsi, &env->regs[R_ESI], set);
|
|
hax_getput_reg(®s._rdi, &env->regs[R_EDI], set);
|
|
hax_getput_reg(®s._rsp, &env->regs[R_ESP], set);
|
|
hax_getput_reg(®s._rbp, &env->regs[R_EBP], set);
|
|
#ifdef TARGET_X86_64
|
|
hax_getput_reg(®s._r8, &env->regs[8], set);
|
|
hax_getput_reg(®s._r9, &env->regs[9], set);
|
|
hax_getput_reg(®s._r10, &env->regs[10], set);
|
|
hax_getput_reg(®s._r11, &env->regs[11], set);
|
|
hax_getput_reg(®s._r12, &env->regs[12], set);
|
|
hax_getput_reg(®s._r13, &env->regs[13], set);
|
|
hax_getput_reg(®s._r14, &env->regs[14], set);
|
|
hax_getput_reg(®s._r15, &env->regs[15], set);
|
|
#endif
|
|
hax_getput_reg(®s._rflags, &env->eflags, set);
|
|
hax_getput_reg(®s._rip, &env->eip, set);
|
|
|
|
if (set) {
|
|
regs._cr0 = env->cr[0];
|
|
regs._cr2 = env->cr[2];
|
|
regs._cr3 = env->cr[3];
|
|
regs._cr4 = env->cr[4];
|
|
hax_set_segments(env, ®s);
|
|
} else {
|
|
env->cr[0] = regs._cr0;
|
|
env->cr[2] = regs._cr2;
|
|
env->cr[3] = regs._cr3;
|
|
env->cr[4] = regs._cr4;
|
|
hax_get_segments(env, ®s);
|
|
}
|
|
|
|
if (set) {
|
|
ret = hax_sync_vcpu_state(env, ®s, 1);
|
|
if (ret < 0) {
|
|
return -1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void hax_msr_entry_set(struct vmx_msr *item, uint32_t index,
|
|
uint64_t value)
|
|
{
|
|
item->entry = index;
|
|
item->value = value;
|
|
}
|
|
|
|
static int hax_get_msrs(CPUArchState *env)
|
|
{
|
|
struct hax_msr_data md;
|
|
struct vmx_msr *msrs = md.entries;
|
|
int ret, i, n;
|
|
|
|
n = 0;
|
|
msrs[n++].entry = MSR_IA32_SYSENTER_CS;
|
|
msrs[n++].entry = MSR_IA32_SYSENTER_ESP;
|
|
msrs[n++].entry = MSR_IA32_SYSENTER_EIP;
|
|
msrs[n++].entry = MSR_IA32_TSC;
|
|
#ifdef TARGET_X86_64
|
|
msrs[n++].entry = MSR_EFER;
|
|
msrs[n++].entry = MSR_STAR;
|
|
msrs[n++].entry = MSR_LSTAR;
|
|
msrs[n++].entry = MSR_CSTAR;
|
|
msrs[n++].entry = MSR_FMASK;
|
|
msrs[n++].entry = MSR_KERNELGSBASE;
|
|
#endif
|
|
md.nr_msr = n;
|
|
ret = hax_sync_msr(env, &md, 0);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
|
|
for (i = 0; i < md.done; i++) {
|
|
switch (msrs[i].entry) {
|
|
case MSR_IA32_SYSENTER_CS:
|
|
env->sysenter_cs = msrs[i].value;
|
|
break;
|
|
case MSR_IA32_SYSENTER_ESP:
|
|
env->sysenter_esp = msrs[i].value;
|
|
break;
|
|
case MSR_IA32_SYSENTER_EIP:
|
|
env->sysenter_eip = msrs[i].value;
|
|
break;
|
|
case MSR_IA32_TSC:
|
|
env->tsc = msrs[i].value;
|
|
break;
|
|
#ifdef TARGET_X86_64
|
|
case MSR_EFER:
|
|
env->efer = msrs[i].value;
|
|
break;
|
|
case MSR_STAR:
|
|
env->star = msrs[i].value;
|
|
break;
|
|
case MSR_LSTAR:
|
|
env->lstar = msrs[i].value;
|
|
break;
|
|
case MSR_CSTAR:
|
|
env->cstar = msrs[i].value;
|
|
break;
|
|
case MSR_FMASK:
|
|
env->fmask = msrs[i].value;
|
|
break;
|
|
case MSR_KERNELGSBASE:
|
|
env->kernelgsbase = msrs[i].value;
|
|
break;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int hax_set_msrs(CPUArchState *env)
|
|
{
|
|
struct hax_msr_data md;
|
|
struct vmx_msr *msrs;
|
|
msrs = md.entries;
|
|
int n = 0;
|
|
|
|
memset(&md, 0, sizeof(struct hax_msr_data));
|
|
hax_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
|
|
hax_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
|
|
hax_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
|
|
hax_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
|
|
#ifdef TARGET_X86_64
|
|
hax_msr_entry_set(&msrs[n++], MSR_EFER, env->efer);
|
|
hax_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
|
|
hax_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
|
|
hax_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
|
|
hax_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
|
|
hax_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
|
|
#endif
|
|
md.nr_msr = n;
|
|
md.done = 0;
|
|
|
|
return hax_sync_msr(env, &md, 1);
|
|
}
|
|
|
|
static int hax_get_fpu(CPUArchState *env)
|
|
{
|
|
struct fx_layout fpu;
|
|
int i, ret;
|
|
|
|
ret = hax_sync_fpu(env, &fpu, 0);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
|
|
env->fpstt = (fpu.fsw >> 11) & 7;
|
|
env->fpus = fpu.fsw;
|
|
env->fpuc = fpu.fcw;
|
|
for (i = 0; i < 8; ++i) {
|
|
env->fptags[i] = !((fpu.ftw >> i) & 1);
|
|
}
|
|
memcpy(env->fpregs, fpu.st_mm, sizeof(env->fpregs));
|
|
|
|
for (i = 0; i < 8; i++) {
|
|
env->xmm_regs[i].ZMM_Q(0) = ldq_p(&fpu.mmx_1[i][0]);
|
|
env->xmm_regs[i].ZMM_Q(1) = ldq_p(&fpu.mmx_1[i][8]);
|
|
if (CPU_NB_REGS > 8) {
|
|
env->xmm_regs[i + 8].ZMM_Q(0) = ldq_p(&fpu.mmx_2[i][0]);
|
|
env->xmm_regs[i + 8].ZMM_Q(1) = ldq_p(&fpu.mmx_2[i][8]);
|
|
}
|
|
}
|
|
env->mxcsr = fpu.mxcsr;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int hax_set_fpu(CPUArchState *env)
|
|
{
|
|
struct fx_layout fpu;
|
|
int i;
|
|
|
|
memset(&fpu, 0, sizeof(fpu));
|
|
fpu.fsw = env->fpus & ~(7 << 11);
|
|
fpu.fsw |= (env->fpstt & 7) << 11;
|
|
fpu.fcw = env->fpuc;
|
|
|
|
for (i = 0; i < 8; ++i) {
|
|
fpu.ftw |= (!env->fptags[i]) << i;
|
|
}
|
|
|
|
memcpy(fpu.st_mm, env->fpregs, sizeof(env->fpregs));
|
|
for (i = 0; i < 8; i++) {
|
|
stq_p(&fpu.mmx_1[i][0], env->xmm_regs[i].ZMM_Q(0));
|
|
stq_p(&fpu.mmx_1[i][8], env->xmm_regs[i].ZMM_Q(1));
|
|
if (CPU_NB_REGS > 8) {
|
|
stq_p(&fpu.mmx_2[i][0], env->xmm_regs[i + 8].ZMM_Q(0));
|
|
stq_p(&fpu.mmx_2[i][8], env->xmm_regs[i + 8].ZMM_Q(1));
|
|
}
|
|
}
|
|
|
|
fpu.mxcsr = env->mxcsr;
|
|
|
|
return hax_sync_fpu(env, &fpu, 1);
|
|
}
|
|
|
|
static int hax_arch_get_registers(CPUArchState *env)
|
|
{
|
|
int ret;
|
|
|
|
ret = hax_sync_vcpu_register(env, 0);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
|
|
ret = hax_get_fpu(env);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
|
|
ret = hax_get_msrs(env);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
|
|
x86_update_hflags(env);
|
|
return 0;
|
|
}
|
|
|
|
static int hax_arch_set_registers(CPUArchState *env)
|
|
{
|
|
int ret;
|
|
ret = hax_sync_vcpu_register(env, 1);
|
|
|
|
if (ret < 0) {
|
|
fprintf(stderr, "Failed to sync vcpu reg\n");
|
|
return ret;
|
|
}
|
|
ret = hax_set_fpu(env);
|
|
if (ret < 0) {
|
|
fprintf(stderr, "FPU failed\n");
|
|
return ret;
|
|
}
|
|
ret = hax_set_msrs(env);
|
|
if (ret < 0) {
|
|
fprintf(stderr, "MSR failed\n");
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void hax_vcpu_sync_state(CPUArchState *env, int modified)
|
|
{
|
|
if (hax_enabled()) {
|
|
if (modified) {
|
|
hax_arch_set_registers(env);
|
|
} else {
|
|
hax_arch_get_registers(env);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* much simpler than kvm, at least in first stage because:
|
|
* We don't need consider the device pass-through, we don't need
|
|
* consider the framebuffer, and we may even remove the bios at all
|
|
*/
|
|
int hax_sync_vcpus(void)
|
|
{
|
|
if (hax_enabled()) {
|
|
CPUState *cpu;
|
|
|
|
cpu = first_cpu;
|
|
if (!cpu) {
|
|
return 0;
|
|
}
|
|
|
|
for (; cpu != NULL; cpu = CPU_NEXT(cpu)) {
|
|
int ret;
|
|
|
|
ret = hax_arch_set_registers(cpu->env_ptr);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void hax_reset_vcpu_state(void *opaque)
|
|
{
|
|
CPUState *cpu;
|
|
for (cpu = first_cpu; cpu != NULL; cpu = CPU_NEXT(cpu)) {
|
|
cpu->hax_vcpu->tunnel->user_event_pending = 0;
|
|
cpu->hax_vcpu->tunnel->ready_for_interrupt_injection = 0;
|
|
}
|
|
}
|
|
|
|
static void hax_accel_class_init(ObjectClass *oc, void *data)
|
|
{
|
|
AccelClass *ac = ACCEL_CLASS(oc);
|
|
ac->name = "HAX";
|
|
ac->init_machine = hax_accel_init;
|
|
ac->allowed = &hax_allowed;
|
|
}
|
|
|
|
static const TypeInfo hax_accel_type = {
|
|
.name = ACCEL_CLASS_NAME("hax"),
|
|
.parent = TYPE_ACCEL,
|
|
.class_init = hax_accel_class_init,
|
|
};
|
|
|
|
static void hax_type_init(void)
|
|
{
|
|
type_register_static(&hax_accel_type);
|
|
}
|
|
|
|
type_init(hax_type_init);
|