qemu/hw/pci-host/pnv_phb4.c
Philippe Mathieu-Daudé 0374cbd2f1 hw/pci-host: Use the PCI_BUILD_BDF() macro from 'hw/pci/pci.h'
We already have a generic PCI_BUILD_BDF() macro in "hw/pci/pci.h"
to pack these values, use it.

Signed-off-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Acked-by: David Gibson <david@gibson.dropbear.id.au>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Message-Id: <20201012124506.3406909-3-philmd@redhat.com>
2021-01-04 23:24:44 +01:00

1435 lines
43 KiB
C

/*
* QEMU PowerPC PowerNV (POWER9) PHB4 model
*
* Copyright (c) 2018-2020, IBM Corporation.
*
* This code is licensed under the GPL version 2 or later. See the
* COPYING file in the top-level directory.
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "qapi/visitor.h"
#include "qapi/error.h"
#include "qemu-common.h"
#include "monitor/monitor.h"
#include "target/ppc/cpu.h"
#include "hw/pci-host/pnv_phb4_regs.h"
#include "hw/pci-host/pnv_phb4.h"
#include "hw/pci/pcie_host.h"
#include "hw/pci/pcie_port.h"
#include "hw/ppc/pnv.h"
#include "hw/ppc/pnv_xscom.h"
#include "hw/irq.h"
#include "hw/qdev-properties.h"
#include "qom/object.h"
#define phb_error(phb, fmt, ...) \
qemu_log_mask(LOG_GUEST_ERROR, "phb4[%d:%d]: " fmt "\n", \
(phb)->chip_id, (phb)->phb_id, ## __VA_ARGS__)
/*
* QEMU version of the GETFIELD/SETFIELD macros
*
* These are common with the PnvXive model.
*/
static inline uint64_t GETFIELD(uint64_t mask, uint64_t word)
{
return (word & mask) >> ctz64(mask);
}
static inline uint64_t SETFIELD(uint64_t mask, uint64_t word,
uint64_t value)
{
return (word & ~mask) | ((value << ctz64(mask)) & mask);
}
static PCIDevice *pnv_phb4_find_cfg_dev(PnvPHB4 *phb)
{
PCIHostState *pci = PCI_HOST_BRIDGE(phb);
uint64_t addr = phb->regs[PHB_CONFIG_ADDRESS >> 3];
uint8_t bus, devfn;
if (!(addr >> 63)) {
return NULL;
}
bus = (addr >> 52) & 0xff;
devfn = (addr >> 44) & 0xff;
/* We don't access the root complex this way */
if (bus == 0 && devfn == 0) {
return NULL;
}
return pci_find_device(pci->bus, bus, devfn);
}
/*
* The CONFIG_DATA register expects little endian accesses, but as the
* region is big endian, we have to swap the value.
*/
static void pnv_phb4_config_write(PnvPHB4 *phb, unsigned off,
unsigned size, uint64_t val)
{
uint32_t cfg_addr, limit;
PCIDevice *pdev;
pdev = pnv_phb4_find_cfg_dev(phb);
if (!pdev) {
return;
}
cfg_addr = (phb->regs[PHB_CONFIG_ADDRESS >> 3] >> 32) & 0xffc;
cfg_addr |= off;
limit = pci_config_size(pdev);
if (limit <= cfg_addr) {
/*
* conventional pci device can be behind pcie-to-pci bridge.
* 256 <= addr < 4K has no effects.
*/
return;
}
switch (size) {
case 1:
break;
case 2:
val = bswap16(val);
break;
case 4:
val = bswap32(val);
break;
default:
g_assert_not_reached();
}
pci_host_config_write_common(pdev, cfg_addr, limit, val, size);
}
static uint64_t pnv_phb4_config_read(PnvPHB4 *phb, unsigned off,
unsigned size)
{
uint32_t cfg_addr, limit;
PCIDevice *pdev;
uint64_t val;
pdev = pnv_phb4_find_cfg_dev(phb);
if (!pdev) {
return ~0ull;
}
cfg_addr = (phb->regs[PHB_CONFIG_ADDRESS >> 3] >> 32) & 0xffc;
cfg_addr |= off;
limit = pci_config_size(pdev);
if (limit <= cfg_addr) {
/*
* conventional pci device can be behind pcie-to-pci bridge.
* 256 <= addr < 4K has no effects.
*/
return ~0ull;
}
val = pci_host_config_read_common(pdev, cfg_addr, limit, size);
switch (size) {
case 1:
return val;
case 2:
return bswap16(val);
case 4:
return bswap32(val);
default:
g_assert_not_reached();
}
}
/*
* Root complex register accesses are memory mapped.
*/
static void pnv_phb4_rc_config_write(PnvPHB4 *phb, unsigned off,
unsigned size, uint64_t val)
{
PCIHostState *pci = PCI_HOST_BRIDGE(phb);
PCIDevice *pdev;
if (size != 4) {
phb_error(phb, "rc_config_write invalid size %d\n", size);
return;
}
pdev = pci_find_device(pci->bus, 0, 0);
assert(pdev);
pci_host_config_write_common(pdev, off, PHB_RC_CONFIG_SIZE,
bswap32(val), 4);
}
static uint64_t pnv_phb4_rc_config_read(PnvPHB4 *phb, unsigned off,
unsigned size)
{
PCIHostState *pci = PCI_HOST_BRIDGE(phb);
PCIDevice *pdev;
uint64_t val;
if (size != 4) {
phb_error(phb, "rc_config_read invalid size %d\n", size);
return ~0ull;
}
pdev = pci_find_device(pci->bus, 0, 0);
assert(pdev);
val = pci_host_config_read_common(pdev, off, PHB_RC_CONFIG_SIZE, 4);
return bswap32(val);
}
static void pnv_phb4_check_mbt(PnvPHB4 *phb, uint32_t index)
{
uint64_t base, start, size, mbe0, mbe1;
MemoryRegion *parent;
char name[64];
/* Unmap first */
if (memory_region_is_mapped(&phb->mr_mmio[index])) {
/* Should we destroy it in RCU friendly way... ? */
memory_region_del_subregion(phb->mr_mmio[index].container,
&phb->mr_mmio[index]);
}
/* Get table entry */
mbe0 = phb->ioda_MBT[(index << 1)];
mbe1 = phb->ioda_MBT[(index << 1) + 1];
if (!(mbe0 & IODA3_MBT0_ENABLE)) {
return;
}
/* Grab geometry from registers */
base = GETFIELD(IODA3_MBT0_BASE_ADDR, mbe0) << 12;
size = GETFIELD(IODA3_MBT1_MASK, mbe1) << 12;
size |= 0xff00000000000000ull;
size = ~size + 1;
/* Calculate PCI side start address based on M32/M64 window type */
if (mbe0 & IODA3_MBT0_TYPE_M32) {
start = phb->regs[PHB_M32_START_ADDR >> 3];
if ((start + size) > 0x100000000ull) {
phb_error(phb, "M32 set beyond 4GB boundary !");
size = 0x100000000 - start;
}
} else {
start = base | (phb->regs[PHB_M64_UPPER_BITS >> 3]);
}
/* TODO: Figure out how to implemet/decode AOMASK */
/* Check if it matches an enabled MMIO region in the PEC stack */
if (memory_region_is_mapped(&phb->stack->mmbar0) &&
base >= phb->stack->mmio0_base &&
(base + size) <= (phb->stack->mmio0_base + phb->stack->mmio0_size)) {
parent = &phb->stack->mmbar0;
base -= phb->stack->mmio0_base;
} else if (memory_region_is_mapped(&phb->stack->mmbar1) &&
base >= phb->stack->mmio1_base &&
(base + size) <= (phb->stack->mmio1_base + phb->stack->mmio1_size)) {
parent = &phb->stack->mmbar1;
base -= phb->stack->mmio1_base;
} else {
phb_error(phb, "PHB MBAR %d out of parent bounds", index);
return;
}
/* Create alias (better name ?) */
snprintf(name, sizeof(name), "phb4-mbar%d", index);
memory_region_init_alias(&phb->mr_mmio[index], OBJECT(phb), name,
&phb->pci_mmio, start, size);
memory_region_add_subregion(parent, base, &phb->mr_mmio[index]);
}
static void pnv_phb4_check_all_mbt(PnvPHB4 *phb)
{
uint64_t i;
uint32_t num_windows = phb->big_phb ? PNV_PHB4_MAX_MMIO_WINDOWS :
PNV_PHB4_MIN_MMIO_WINDOWS;
for (i = 0; i < num_windows; i++) {
pnv_phb4_check_mbt(phb, i);
}
}
static uint64_t *pnv_phb4_ioda_access(PnvPHB4 *phb,
unsigned *out_table, unsigned *out_idx)
{
uint64_t adreg = phb->regs[PHB_IODA_ADDR >> 3];
unsigned int index = GETFIELD(PHB_IODA_AD_TADR, adreg);
unsigned int table = GETFIELD(PHB_IODA_AD_TSEL, adreg);
unsigned int mask;
uint64_t *tptr = NULL;
switch (table) {
case IODA3_TBL_LIST:
tptr = phb->ioda_LIST;
mask = 7;
break;
case IODA3_TBL_MIST:
tptr = phb->ioda_MIST;
mask = phb->big_phb ? PNV_PHB4_MAX_MIST : (PNV_PHB4_MAX_MIST >> 1);
mask -= 1;
break;
case IODA3_TBL_RCAM:
mask = phb->big_phb ? 127 : 63;
break;
case IODA3_TBL_MRT:
mask = phb->big_phb ? 15 : 7;
break;
case IODA3_TBL_PESTA:
case IODA3_TBL_PESTB:
mask = phb->big_phb ? PNV_PHB4_MAX_PEs : (PNV_PHB4_MAX_PEs >> 1);
mask -= 1;
break;
case IODA3_TBL_TVT:
tptr = phb->ioda_TVT;
mask = phb->big_phb ? PNV_PHB4_MAX_TVEs : (PNV_PHB4_MAX_TVEs >> 1);
mask -= 1;
break;
case IODA3_TBL_TCR:
case IODA3_TBL_TDR:
mask = phb->big_phb ? 1023 : 511;
break;
case IODA3_TBL_MBT:
tptr = phb->ioda_MBT;
mask = phb->big_phb ? PNV_PHB4_MAX_MBEs : (PNV_PHB4_MAX_MBEs >> 1);
mask -= 1;
break;
case IODA3_TBL_MDT:
tptr = phb->ioda_MDT;
mask = phb->big_phb ? PNV_PHB4_MAX_PEs : (PNV_PHB4_MAX_PEs >> 1);
mask -= 1;
break;
case IODA3_TBL_PEEV:
tptr = phb->ioda_PEEV;
mask = phb->big_phb ? PNV_PHB4_MAX_PEEVs : (PNV_PHB4_MAX_PEEVs >> 1);
mask -= 1;
break;
default:
phb_error(phb, "invalid IODA table %d", table);
return NULL;
}
index &= mask;
if (out_idx) {
*out_idx = index;
}
if (out_table) {
*out_table = table;
}
if (tptr) {
tptr += index;
}
if (adreg & PHB_IODA_AD_AUTOINC) {
index = (index + 1) & mask;
adreg = SETFIELD(PHB_IODA_AD_TADR, adreg, index);
}
phb->regs[PHB_IODA_ADDR >> 3] = adreg;
return tptr;
}
static uint64_t pnv_phb4_ioda_read(PnvPHB4 *phb)
{
unsigned table, idx;
uint64_t *tptr;
tptr = pnv_phb4_ioda_access(phb, &table, &idx);
if (!tptr) {
/* Special PESTA case */
if (table == IODA3_TBL_PESTA) {
return ((uint64_t)(phb->ioda_PEST_AB[idx] & 1)) << 63;
} else if (table == IODA3_TBL_PESTB) {
return ((uint64_t)(phb->ioda_PEST_AB[idx] & 2)) << 62;
}
/* Return 0 on unsupported tables, not ff's */
return 0;
}
return *tptr;
}
static void pnv_phb4_ioda_write(PnvPHB4 *phb, uint64_t val)
{
unsigned table, idx;
uint64_t *tptr;
tptr = pnv_phb4_ioda_access(phb, &table, &idx);
if (!tptr) {
/* Special PESTA case */
if (table == IODA3_TBL_PESTA) {
phb->ioda_PEST_AB[idx] &= ~1;
phb->ioda_PEST_AB[idx] |= (val >> 63) & 1;
} else if (table == IODA3_TBL_PESTB) {
phb->ioda_PEST_AB[idx] &= ~2;
phb->ioda_PEST_AB[idx] |= (val >> 62) & 2;
}
return;
}
/* Handle side effects */
switch (table) {
case IODA3_TBL_LIST:
break;
case IODA3_TBL_MIST: {
/* Special mask for MIST partial write */
uint64_t adreg = phb->regs[PHB_IODA_ADDR >> 3];
uint32_t mmask = GETFIELD(PHB_IODA_AD_MIST_PWV, adreg);
uint64_t v = *tptr;
if (mmask == 0) {
mmask = 0xf;
}
if (mmask & 8) {
v &= 0x0000ffffffffffffull;
v |= 0xcfff000000000000ull & val;
}
if (mmask & 4) {
v &= 0xffff0000ffffffffull;
v |= 0x0000cfff00000000ull & val;
}
if (mmask & 2) {
v &= 0xffffffff0000ffffull;
v |= 0x00000000cfff0000ull & val;
}
if (mmask & 1) {
v &= 0xffffffffffff0000ull;
v |= 0x000000000000cfffull & val;
}
*tptr = val;
break;
}
case IODA3_TBL_MBT:
*tptr = val;
/* Copy accross the valid bit to the other half */
phb->ioda_MBT[idx ^ 1] &= 0x7fffffffffffffffull;
phb->ioda_MBT[idx ^ 1] |= 0x8000000000000000ull & val;
/* Update mappings */
pnv_phb4_check_mbt(phb, idx >> 1);
break;
default:
*tptr = val;
}
}
static void pnv_phb4_rtc_invalidate(PnvPHB4 *phb, uint64_t val)
{
PnvPhb4DMASpace *ds;
/* Always invalidate all for now ... */
QLIST_FOREACH(ds, &phb->dma_spaces, list) {
ds->pe_num = PHB_INVALID_PE;
}
}
static void pnv_phb4_update_msi_regions(PnvPhb4DMASpace *ds)
{
uint64_t cfg = ds->phb->regs[PHB_PHB4_CONFIG >> 3];
if (cfg & PHB_PHB4C_32BIT_MSI_EN) {
if (!memory_region_is_mapped(MEMORY_REGION(&ds->msi32_mr))) {
memory_region_add_subregion(MEMORY_REGION(&ds->dma_mr),
0xffff0000, &ds->msi32_mr);
}
} else {
if (memory_region_is_mapped(MEMORY_REGION(&ds->msi32_mr))) {
memory_region_del_subregion(MEMORY_REGION(&ds->dma_mr),
&ds->msi32_mr);
}
}
if (cfg & PHB_PHB4C_64BIT_MSI_EN) {
if (!memory_region_is_mapped(MEMORY_REGION(&ds->msi64_mr))) {
memory_region_add_subregion(MEMORY_REGION(&ds->dma_mr),
(1ull << 60), &ds->msi64_mr);
}
} else {
if (memory_region_is_mapped(MEMORY_REGION(&ds->msi64_mr))) {
memory_region_del_subregion(MEMORY_REGION(&ds->dma_mr),
&ds->msi64_mr);
}
}
}
static void pnv_phb4_update_all_msi_regions(PnvPHB4 *phb)
{
PnvPhb4DMASpace *ds;
QLIST_FOREACH(ds, &phb->dma_spaces, list) {
pnv_phb4_update_msi_regions(ds);
}
}
static void pnv_phb4_update_xsrc(PnvPHB4 *phb)
{
int shift, flags, i, lsi_base;
XiveSource *xsrc = &phb->xsrc;
/* The XIVE source characteristics can be set at run time */
if (phb->regs[PHB_CTRLR >> 3] & PHB_CTRLR_IRQ_PGSZ_64K) {
shift = XIVE_ESB_64K;
} else {
shift = XIVE_ESB_4K;
}
if (phb->regs[PHB_CTRLR >> 3] & PHB_CTRLR_IRQ_STORE_EOI) {
flags = XIVE_SRC_STORE_EOI;
} else {
flags = 0;
}
phb->xsrc.esb_shift = shift;
phb->xsrc.esb_flags = flags;
lsi_base = GETFIELD(PHB_LSI_SRC_ID, phb->regs[PHB_LSI_SOURCE_ID >> 3]);
lsi_base <<= 3;
/* TODO: handle reset values of PHB_LSI_SRC_ID */
if (!lsi_base) {
return;
}
/* TODO: need a xive_source_irq_reset_lsi() */
bitmap_zero(xsrc->lsi_map, xsrc->nr_irqs);
for (i = 0; i < xsrc->nr_irqs; i++) {
bool msi = (i < lsi_base || i >= (lsi_base + 8));
if (!msi) {
xive_source_irq_set_lsi(xsrc, i);
}
}
}
static void pnv_phb4_reg_write(void *opaque, hwaddr off, uint64_t val,
unsigned size)
{
PnvPHB4 *phb = PNV_PHB4(opaque);
bool changed;
/* Special case outbound configuration data */
if ((off & 0xfffc) == PHB_CONFIG_DATA) {
pnv_phb4_config_write(phb, off & 0x3, size, val);
return;
}
/* Special case RC configuration space */
if ((off & 0xf800) == PHB_RC_CONFIG_BASE) {
pnv_phb4_rc_config_write(phb, off & 0x7ff, size, val);
return;
}
/* Other registers are 64-bit only */
if (size != 8 || off & 0x7) {
phb_error(phb, "Invalid register access, offset: 0x%"PRIx64" size: %d",
off, size);
return;
}
/* Handle masking */
switch (off) {
case PHB_LSI_SOURCE_ID:
val &= PHB_LSI_SRC_ID;
break;
case PHB_M64_UPPER_BITS:
val &= 0xff00000000000000ull;
break;
/* TCE Kill */
case PHB_TCE_KILL:
/* Clear top 3 bits which HW does to indicate successful queuing */
val &= ~(PHB_TCE_KILL_ALL | PHB_TCE_KILL_PE | PHB_TCE_KILL_ONE);
break;
case PHB_Q_DMA_R:
/*
* This is enough logic to make SW happy but we aren't
* actually quiescing the DMAs
*/
if (val & PHB_Q_DMA_R_AUTORESET) {
val = 0;
} else {
val &= PHB_Q_DMA_R_QUIESCE_DMA;
}
break;
/* LEM stuff */
case PHB_LEM_FIR_AND_MASK:
phb->regs[PHB_LEM_FIR_ACCUM >> 3] &= val;
return;
case PHB_LEM_FIR_OR_MASK:
phb->regs[PHB_LEM_FIR_ACCUM >> 3] |= val;
return;
case PHB_LEM_ERROR_AND_MASK:
phb->regs[PHB_LEM_ERROR_MASK >> 3] &= val;
return;
case PHB_LEM_ERROR_OR_MASK:
phb->regs[PHB_LEM_ERROR_MASK >> 3] |= val;
return;
case PHB_LEM_WOF:
val = 0;
break;
/* TODO: More regs ..., maybe create a table with masks... */
/* Read only registers */
case PHB_CPU_LOADSTORE_STATUS:
case PHB_ETU_ERR_SUMMARY:
case PHB_PHB4_GEN_CAP:
case PHB_PHB4_TCE_CAP:
case PHB_PHB4_IRQ_CAP:
case PHB_PHB4_EEH_CAP:
return;
}
/* Record whether it changed */
changed = phb->regs[off >> 3] != val;
/* Store in register cache first */
phb->regs[off >> 3] = val;
/* Handle side effects */
switch (off) {
case PHB_PHB4_CONFIG:
if (changed) {
pnv_phb4_update_all_msi_regions(phb);
}
break;
case PHB_M32_START_ADDR:
case PHB_M64_UPPER_BITS:
if (changed) {
pnv_phb4_check_all_mbt(phb);
}
break;
/* IODA table accesses */
case PHB_IODA_DATA0:
pnv_phb4_ioda_write(phb, val);
break;
/* RTC invalidation */
case PHB_RTC_INVALIDATE:
pnv_phb4_rtc_invalidate(phb, val);
break;
/* PHB Control (Affects XIVE source) */
case PHB_CTRLR:
case PHB_LSI_SOURCE_ID:
pnv_phb4_update_xsrc(phb);
break;
/* Silent simple writes */
case PHB_ASN_CMPM:
case PHB_CONFIG_ADDRESS:
case PHB_IODA_ADDR:
case PHB_TCE_KILL:
case PHB_TCE_SPEC_CTL:
case PHB_PEST_BAR:
case PHB_PELTV_BAR:
case PHB_RTT_BAR:
case PHB_LEM_FIR_ACCUM:
case PHB_LEM_ERROR_MASK:
case PHB_LEM_ACTION0:
case PHB_LEM_ACTION1:
case PHB_TCE_TAG_ENABLE:
case PHB_INT_NOTIFY_ADDR:
case PHB_INT_NOTIFY_INDEX:
case PHB_DMARD_SYNC:
break;
/* Noise on anything else */
default:
qemu_log_mask(LOG_UNIMP, "phb4: reg_write 0x%"PRIx64"=%"PRIx64"\n",
off, val);
}
}
static uint64_t pnv_phb4_reg_read(void *opaque, hwaddr off, unsigned size)
{
PnvPHB4 *phb = PNV_PHB4(opaque);
uint64_t val;
if ((off & 0xfffc) == PHB_CONFIG_DATA) {
return pnv_phb4_config_read(phb, off & 0x3, size);
}
/* Special case RC configuration space */
if ((off & 0xf800) == PHB_RC_CONFIG_BASE) {
return pnv_phb4_rc_config_read(phb, off & 0x7ff, size);
}
/* Other registers are 64-bit only */
if (size != 8 || off & 0x7) {
phb_error(phb, "Invalid register access, offset: 0x%"PRIx64" size: %d",
off, size);
return ~0ull;
}
/* Default read from cache */
val = phb->regs[off >> 3];
switch (off) {
case PHB_VERSION:
return phb->version;
/* Read-only */
case PHB_PHB4_GEN_CAP:
return 0xe4b8000000000000ull;
case PHB_PHB4_TCE_CAP:
return phb->big_phb ? 0x4008440000000400ull : 0x2008440000000200ull;
case PHB_PHB4_IRQ_CAP:
return phb->big_phb ? 0x0800000000001000ull : 0x0800000000000800ull;
case PHB_PHB4_EEH_CAP:
return phb->big_phb ? 0x2000000000000000ull : 0x1000000000000000ull;
/* IODA table accesses */
case PHB_IODA_DATA0:
return pnv_phb4_ioda_read(phb);
/* Link training always appears trained */
case PHB_PCIE_DLP_TRAIN_CTL:
/* TODO: Do something sensible with speed ? */
return PHB_PCIE_DLP_INBAND_PRESENCE | PHB_PCIE_DLP_TL_LINKACT;
/* DMA read sync: make it look like it's complete */
case PHB_DMARD_SYNC:
return PHB_DMARD_SYNC_COMPLETE;
/* Silent simple reads */
case PHB_LSI_SOURCE_ID:
case PHB_CPU_LOADSTORE_STATUS:
case PHB_ASN_CMPM:
case PHB_PHB4_CONFIG:
case PHB_M32_START_ADDR:
case PHB_CONFIG_ADDRESS:
case PHB_IODA_ADDR:
case PHB_RTC_INVALIDATE:
case PHB_TCE_KILL:
case PHB_TCE_SPEC_CTL:
case PHB_PEST_BAR:
case PHB_PELTV_BAR:
case PHB_RTT_BAR:
case PHB_M64_UPPER_BITS:
case PHB_CTRLR:
case PHB_LEM_FIR_ACCUM:
case PHB_LEM_ERROR_MASK:
case PHB_LEM_ACTION0:
case PHB_LEM_ACTION1:
case PHB_TCE_TAG_ENABLE:
case PHB_INT_NOTIFY_ADDR:
case PHB_INT_NOTIFY_INDEX:
case PHB_Q_DMA_R:
case PHB_ETU_ERR_SUMMARY:
break;
/* Noise on anything else */
default:
qemu_log_mask(LOG_UNIMP, "phb4: reg_read 0x%"PRIx64"=%"PRIx64"\n",
off, val);
}
return val;
}
static const MemoryRegionOps pnv_phb4_reg_ops = {
.read = pnv_phb4_reg_read,
.write = pnv_phb4_reg_write,
.valid.min_access_size = 1,
.valid.max_access_size = 8,
.impl.min_access_size = 1,
.impl.max_access_size = 8,
.endianness = DEVICE_BIG_ENDIAN,
};
static uint64_t pnv_phb4_xscom_read(void *opaque, hwaddr addr, unsigned size)
{
PnvPHB4 *phb = PNV_PHB4(opaque);
uint32_t reg = addr >> 3;
uint64_t val;
hwaddr offset;
switch (reg) {
case PHB_SCOM_HV_IND_ADDR:
return phb->scom_hv_ind_addr_reg;
case PHB_SCOM_HV_IND_DATA:
if (!(phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_VALID)) {
phb_error(phb, "Invalid indirect address");
return ~0ull;
}
size = (phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_4B) ? 4 : 8;
offset = GETFIELD(PHB_SCOM_HV_IND_ADDR_ADDR, phb->scom_hv_ind_addr_reg);
val = pnv_phb4_reg_read(phb, offset, size);
if (phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_AUTOINC) {
offset += size;
offset &= 0x3fff;
phb->scom_hv_ind_addr_reg = SETFIELD(PHB_SCOM_HV_IND_ADDR_ADDR,
phb->scom_hv_ind_addr_reg,
offset);
}
return val;
case PHB_SCOM_ETU_LEM_FIR:
case PHB_SCOM_ETU_LEM_FIR_AND:
case PHB_SCOM_ETU_LEM_FIR_OR:
case PHB_SCOM_ETU_LEM_FIR_MSK:
case PHB_SCOM_ETU_LEM_ERR_MSK_AND:
case PHB_SCOM_ETU_LEM_ERR_MSK_OR:
case PHB_SCOM_ETU_LEM_ACT0:
case PHB_SCOM_ETU_LEM_ACT1:
case PHB_SCOM_ETU_LEM_WOF:
offset = ((reg - PHB_SCOM_ETU_LEM_FIR) << 3) + PHB_LEM_FIR_ACCUM;
return pnv_phb4_reg_read(phb, offset, size);
case PHB_SCOM_ETU_PMON_CONFIG:
case PHB_SCOM_ETU_PMON_CTR0:
case PHB_SCOM_ETU_PMON_CTR1:
case PHB_SCOM_ETU_PMON_CTR2:
case PHB_SCOM_ETU_PMON_CTR3:
offset = ((reg - PHB_SCOM_ETU_PMON_CONFIG) << 3) + PHB_PERFMON_CONFIG;
return pnv_phb4_reg_read(phb, offset, size);
default:
qemu_log_mask(LOG_UNIMP, "phb4: xscom_read 0x%"HWADDR_PRIx"\n", addr);
return ~0ull;
}
}
static void pnv_phb4_xscom_write(void *opaque, hwaddr addr,
uint64_t val, unsigned size)
{
PnvPHB4 *phb = PNV_PHB4(opaque);
uint32_t reg = addr >> 3;
hwaddr offset;
switch (reg) {
case PHB_SCOM_HV_IND_ADDR:
phb->scom_hv_ind_addr_reg = val & 0xe000000000001fff;
break;
case PHB_SCOM_HV_IND_DATA:
if (!(phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_VALID)) {
phb_error(phb, "Invalid indirect address");
break;
}
size = (phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_4B) ? 4 : 8;
offset = GETFIELD(PHB_SCOM_HV_IND_ADDR_ADDR, phb->scom_hv_ind_addr_reg);
pnv_phb4_reg_write(phb, offset, val, size);
if (phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_AUTOINC) {
offset += size;
offset &= 0x3fff;
phb->scom_hv_ind_addr_reg = SETFIELD(PHB_SCOM_HV_IND_ADDR_ADDR,
phb->scom_hv_ind_addr_reg,
offset);
}
break;
case PHB_SCOM_ETU_LEM_FIR:
case PHB_SCOM_ETU_LEM_FIR_AND:
case PHB_SCOM_ETU_LEM_FIR_OR:
case PHB_SCOM_ETU_LEM_FIR_MSK:
case PHB_SCOM_ETU_LEM_ERR_MSK_AND:
case PHB_SCOM_ETU_LEM_ERR_MSK_OR:
case PHB_SCOM_ETU_LEM_ACT0:
case PHB_SCOM_ETU_LEM_ACT1:
case PHB_SCOM_ETU_LEM_WOF:
offset = ((reg - PHB_SCOM_ETU_LEM_FIR) << 3) + PHB_LEM_FIR_ACCUM;
pnv_phb4_reg_write(phb, offset, val, size);
break;
case PHB_SCOM_ETU_PMON_CONFIG:
case PHB_SCOM_ETU_PMON_CTR0:
case PHB_SCOM_ETU_PMON_CTR1:
case PHB_SCOM_ETU_PMON_CTR2:
case PHB_SCOM_ETU_PMON_CTR3:
offset = ((reg - PHB_SCOM_ETU_PMON_CONFIG) << 3) + PHB_PERFMON_CONFIG;
pnv_phb4_reg_write(phb, offset, val, size);
break;
default:
qemu_log_mask(LOG_UNIMP, "phb4: xscom_write 0x%"HWADDR_PRIx
"=%"PRIx64"\n", addr, val);
}
}
const MemoryRegionOps pnv_phb4_xscom_ops = {
.read = pnv_phb4_xscom_read,
.write = pnv_phb4_xscom_write,
.valid.min_access_size = 8,
.valid.max_access_size = 8,
.impl.min_access_size = 8,
.impl.max_access_size = 8,
.endianness = DEVICE_BIG_ENDIAN,
};
static int pnv_phb4_map_irq(PCIDevice *pci_dev, int irq_num)
{
/* Check that out properly ... */
return irq_num & 3;
}
static void pnv_phb4_set_irq(void *opaque, int irq_num, int level)
{
PnvPHB4 *phb = PNV_PHB4(opaque);
uint32_t lsi_base;
/* LSI only ... */
if (irq_num > 3) {
phb_error(phb, "IRQ %x is not an LSI", irq_num);
}
lsi_base = GETFIELD(PHB_LSI_SRC_ID, phb->regs[PHB_LSI_SOURCE_ID >> 3]);
lsi_base <<= 3;
qemu_set_irq(phb->qirqs[lsi_base + irq_num], level);
}
static bool pnv_phb4_resolve_pe(PnvPhb4DMASpace *ds)
{
uint64_t rtt, addr;
uint16_t rte;
int bus_num;
int num_PEs;
/* Already resolved ? */
if (ds->pe_num != PHB_INVALID_PE) {
return true;
}
/* We need to lookup the RTT */
rtt = ds->phb->regs[PHB_RTT_BAR >> 3];
if (!(rtt & PHB_RTT_BAR_ENABLE)) {
phb_error(ds->phb, "DMA with RTT BAR disabled !");
/* Set error bits ? fence ? ... */
return false;
}
/* Read RTE */
bus_num = pci_bus_num(ds->bus);
addr = rtt & PHB_RTT_BASE_ADDRESS_MASK;
addr += 2 * PCI_BUILD_BDF(bus_num, ds->devfn);
if (dma_memory_read(&address_space_memory, addr, &rte, sizeof(rte))) {
phb_error(ds->phb, "Failed to read RTT entry at 0x%"PRIx64, addr);
/* Set error bits ? fence ? ... */
return false;
}
rte = be16_to_cpu(rte);
/* Fail upon reading of invalid PE# */
num_PEs = ds->phb->big_phb ? PNV_PHB4_MAX_PEs : (PNV_PHB4_MAX_PEs >> 1);
if (rte >= num_PEs) {
phb_error(ds->phb, "RTE for RID 0x%x invalid (%04x", ds->devfn, rte);
rte &= num_PEs - 1;
}
ds->pe_num = rte;
return true;
}
static void pnv_phb4_translate_tve(PnvPhb4DMASpace *ds, hwaddr addr,
bool is_write, uint64_t tve,
IOMMUTLBEntry *tlb)
{
uint64_t tta = GETFIELD(IODA3_TVT_TABLE_ADDR, tve);
int32_t lev = GETFIELD(IODA3_TVT_NUM_LEVELS, tve);
uint32_t tts = GETFIELD(IODA3_TVT_TCE_TABLE_SIZE, tve);
uint32_t tps = GETFIELD(IODA3_TVT_IO_PSIZE, tve);
/* Invalid levels */
if (lev > 4) {
phb_error(ds->phb, "Invalid #levels in TVE %d", lev);
return;
}
/* Invalid entry */
if (tts == 0) {
phb_error(ds->phb, "Access to invalid TVE");
return;
}
/* IO Page Size of 0 means untranslated, else use TCEs */
if (tps == 0) {
/* TODO: Handle boundaries */
/* Use 4k pages like q35 ... for now */
tlb->iova = addr & 0xfffffffffffff000ull;
tlb->translated_addr = addr & 0x0003fffffffff000ull;
tlb->addr_mask = 0xfffull;
tlb->perm = IOMMU_RW;
} else {
uint32_t tce_shift, tbl_shift, sh;
uint64_t base, taddr, tce, tce_mask;
/* Address bits per bottom level TCE entry */
tce_shift = tps + 11;
/* Address bits per table level */
tbl_shift = tts + 8;
/* Top level table base address */
base = tta << 12;
/* Total shift to first level */
sh = tbl_shift * lev + tce_shift;
/* TODO: Limit to support IO page sizes */
/* TODO: Multi-level untested */
while ((lev--) >= 0) {
/* Grab the TCE address */
taddr = base | (((addr >> sh) & ((1ul << tbl_shift) - 1)) << 3);
if (dma_memory_read(&address_space_memory, taddr, &tce,
sizeof(tce))) {
phb_error(ds->phb, "Failed to read TCE at 0x%"PRIx64, taddr);
return;
}
tce = be64_to_cpu(tce);
/* Check permission for indirect TCE */
if ((lev >= 0) && !(tce & 3)) {
phb_error(ds->phb, "Invalid indirect TCE at 0x%"PRIx64, taddr);
phb_error(ds->phb, " xlate %"PRIx64":%c TVE=%"PRIx64, addr,
is_write ? 'W' : 'R', tve);
phb_error(ds->phb, " tta=%"PRIx64" lev=%d tts=%d tps=%d",
tta, lev, tts, tps);
return;
}
sh -= tbl_shift;
base = tce & ~0xfffull;
}
/* We exit the loop with TCE being the final TCE */
tce_mask = ~((1ull << tce_shift) - 1);
tlb->iova = addr & tce_mask;
tlb->translated_addr = tce & tce_mask;
tlb->addr_mask = ~tce_mask;
tlb->perm = tce & 3;
if ((is_write & !(tce & 2)) || ((!is_write) && !(tce & 1))) {
phb_error(ds->phb, "TCE access fault at 0x%"PRIx64, taddr);
phb_error(ds->phb, " xlate %"PRIx64":%c TVE=%"PRIx64, addr,
is_write ? 'W' : 'R', tve);
phb_error(ds->phb, " tta=%"PRIx64" lev=%d tts=%d tps=%d",
tta, lev, tts, tps);
}
}
}
static IOMMUTLBEntry pnv_phb4_translate_iommu(IOMMUMemoryRegion *iommu,
hwaddr addr,
IOMMUAccessFlags flag,
int iommu_idx)
{
PnvPhb4DMASpace *ds = container_of(iommu, PnvPhb4DMASpace, dma_mr);
int tve_sel;
uint64_t tve, cfg;
IOMMUTLBEntry ret = {
.target_as = &address_space_memory,
.iova = addr,
.translated_addr = 0,
.addr_mask = ~(hwaddr)0,
.perm = IOMMU_NONE,
};
/* Resolve PE# */
if (!pnv_phb4_resolve_pe(ds)) {
phb_error(ds->phb, "Failed to resolve PE# for bus @%p (%d) devfn 0x%x",
ds->bus, pci_bus_num(ds->bus), ds->devfn);
return ret;
}
/* Check top bits */
switch (addr >> 60) {
case 00:
/* DMA or 32-bit MSI ? */
cfg = ds->phb->regs[PHB_PHB4_CONFIG >> 3];
if ((cfg & PHB_PHB4C_32BIT_MSI_EN) &&
((addr & 0xffffffffffff0000ull) == 0xffff0000ull)) {
phb_error(ds->phb, "xlate on 32-bit MSI region");
return ret;
}
/* Choose TVE XXX Use PHB4 Control Register */
tve_sel = (addr >> 59) & 1;
tve = ds->phb->ioda_TVT[ds->pe_num * 2 + tve_sel];
pnv_phb4_translate_tve(ds, addr, flag & IOMMU_WO, tve, &ret);
break;
case 01:
phb_error(ds->phb, "xlate on 64-bit MSI region");
break;
default:
phb_error(ds->phb, "xlate on unsupported address 0x%"PRIx64, addr);
}
return ret;
}
#define TYPE_PNV_PHB4_IOMMU_MEMORY_REGION "pnv-phb4-iommu-memory-region"
DECLARE_INSTANCE_CHECKER(IOMMUMemoryRegion, PNV_PHB4_IOMMU_MEMORY_REGION,
TYPE_PNV_PHB4_IOMMU_MEMORY_REGION)
static void pnv_phb4_iommu_memory_region_class_init(ObjectClass *klass,
void *data)
{
IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
imrc->translate = pnv_phb4_translate_iommu;
}
static const TypeInfo pnv_phb4_iommu_memory_region_info = {
.parent = TYPE_IOMMU_MEMORY_REGION,
.name = TYPE_PNV_PHB4_IOMMU_MEMORY_REGION,
.class_init = pnv_phb4_iommu_memory_region_class_init,
};
/*
* MSI/MSIX memory region implementation.
* The handler handles both MSI and MSIX.
*/
static void pnv_phb4_msi_write(void *opaque, hwaddr addr,
uint64_t data, unsigned size)
{
PnvPhb4DMASpace *ds = opaque;
PnvPHB4 *phb = ds->phb;
uint32_t src = ((addr >> 4) & 0xffff) | (data & 0x1f);
/* Resolve PE# */
if (!pnv_phb4_resolve_pe(ds)) {
phb_error(phb, "Failed to resolve PE# for bus @%p (%d) devfn 0x%x",
ds->bus, pci_bus_num(ds->bus), ds->devfn);
return;
}
/* TODO: Check it doesn't collide with LSIs */
if (src >= phb->xsrc.nr_irqs) {
phb_error(phb, "MSI %d out of bounds", src);
return;
}
/* TODO: check PE/MSI assignement */
qemu_irq_pulse(phb->qirqs[src]);
}
/* There is no .read as the read result is undefined by PCI spec */
static uint64_t pnv_phb4_msi_read(void *opaque, hwaddr addr, unsigned size)
{
PnvPhb4DMASpace *ds = opaque;
phb_error(ds->phb, "Invalid MSI read @ 0x%" HWADDR_PRIx, addr);
return -1;
}
static const MemoryRegionOps pnv_phb4_msi_ops = {
.read = pnv_phb4_msi_read,
.write = pnv_phb4_msi_write,
.endianness = DEVICE_LITTLE_ENDIAN
};
static PnvPhb4DMASpace *pnv_phb4_dma_find(PnvPHB4 *phb, PCIBus *bus, int devfn)
{
PnvPhb4DMASpace *ds;
QLIST_FOREACH(ds, &phb->dma_spaces, list) {
if (ds->bus == bus && ds->devfn == devfn) {
break;
}
}
return ds;
}
static AddressSpace *pnv_phb4_dma_iommu(PCIBus *bus, void *opaque, int devfn)
{
PnvPHB4 *phb = opaque;
PnvPhb4DMASpace *ds;
char name[32];
ds = pnv_phb4_dma_find(phb, bus, devfn);
if (ds == NULL) {
ds = g_malloc0(sizeof(PnvPhb4DMASpace));
ds->bus = bus;
ds->devfn = devfn;
ds->pe_num = PHB_INVALID_PE;
ds->phb = phb;
snprintf(name, sizeof(name), "phb4-%d.%d-iommu", phb->chip_id,
phb->phb_id);
memory_region_init_iommu(&ds->dma_mr, sizeof(ds->dma_mr),
TYPE_PNV_PHB4_IOMMU_MEMORY_REGION,
OBJECT(phb), name, UINT64_MAX);
address_space_init(&ds->dma_as, MEMORY_REGION(&ds->dma_mr),
name);
memory_region_init_io(&ds->msi32_mr, OBJECT(phb), &pnv_phb4_msi_ops,
ds, "msi32", 0x10000);
memory_region_init_io(&ds->msi64_mr, OBJECT(phb), &pnv_phb4_msi_ops,
ds, "msi64", 0x100000);
pnv_phb4_update_msi_regions(ds);
QLIST_INSERT_HEAD(&phb->dma_spaces, ds, list);
}
return &ds->dma_as;
}
static void pnv_phb4_instance_init(Object *obj)
{
PnvPHB4 *phb = PNV_PHB4(obj);
QLIST_INIT(&phb->dma_spaces);
/* XIVE interrupt source object */
object_initialize_child(obj, "source", &phb->xsrc, TYPE_XIVE_SOURCE);
/* Root Port */
object_initialize_child(obj, "root", &phb->root, TYPE_PNV_PHB4_ROOT_PORT);
qdev_prop_set_int32(DEVICE(&phb->root), "addr", PCI_DEVFN(0, 0));
qdev_prop_set_bit(DEVICE(&phb->root), "multifunction", false);
}
static void pnv_phb4_realize(DeviceState *dev, Error **errp)
{
PnvPHB4 *phb = PNV_PHB4(dev);
PCIHostState *pci = PCI_HOST_BRIDGE(dev);
XiveSource *xsrc = &phb->xsrc;
int nr_irqs;
char name[32];
assert(phb->stack);
/* Set the "big_phb" flag */
phb->big_phb = phb->phb_id == 0 || phb->phb_id == 3;
/* Controller Registers */
snprintf(name, sizeof(name), "phb4-%d.%d-regs", phb->chip_id,
phb->phb_id);
memory_region_init_io(&phb->mr_regs, OBJECT(phb), &pnv_phb4_reg_ops, phb,
name, 0x2000);
/*
* PHB4 doesn't support IO space. However, qemu gets very upset if
* we don't have an IO region to anchor IO BARs onto so we just
* initialize one which we never hook up to anything
*/
snprintf(name, sizeof(name), "phb4-%d.%d-pci-io", phb->chip_id,
phb->phb_id);
memory_region_init(&phb->pci_io, OBJECT(phb), name, 0x10000);
snprintf(name, sizeof(name), "phb4-%d.%d-pci-mmio", phb->chip_id,
phb->phb_id);
memory_region_init(&phb->pci_mmio, OBJECT(phb), name,
PCI_MMIO_TOTAL_SIZE);
pci->bus = pci_register_root_bus(dev, "root-bus",
pnv_phb4_set_irq, pnv_phb4_map_irq, phb,
&phb->pci_mmio, &phb->pci_io,
0, 4, TYPE_PNV_PHB4_ROOT_BUS);
pci_setup_iommu(pci->bus, pnv_phb4_dma_iommu, phb);
/* Add a single Root port */
qdev_prop_set_uint8(DEVICE(&phb->root), "chassis", phb->chip_id);
qdev_prop_set_uint16(DEVICE(&phb->root), "slot", phb->phb_id);
qdev_realize(DEVICE(&phb->root), BUS(pci->bus), &error_fatal);
/* Setup XIVE Source */
if (phb->big_phb) {
nr_irqs = PNV_PHB4_MAX_INTs;
} else {
nr_irqs = PNV_PHB4_MAX_INTs >> 1;
}
object_property_set_int(OBJECT(xsrc), "nr-irqs", nr_irqs, &error_fatal);
object_property_set_link(OBJECT(xsrc), "xive", OBJECT(phb), &error_fatal);
if (!qdev_realize(DEVICE(xsrc), NULL, errp)) {
return;
}
pnv_phb4_update_xsrc(phb);
phb->qirqs = qemu_allocate_irqs(xive_source_set_irq, xsrc, xsrc->nr_irqs);
}
static void pnv_phb4_reset(DeviceState *dev)
{
PnvPHB4 *phb = PNV_PHB4(dev);
PCIDevice *root_dev = PCI_DEVICE(&phb->root);
/*
* Configure PCI device id at reset using a property.
*/
pci_config_set_vendor_id(root_dev->config, PCI_VENDOR_ID_IBM);
pci_config_set_device_id(root_dev->config, phb->device_id);
}
static const char *pnv_phb4_root_bus_path(PCIHostState *host_bridge,
PCIBus *rootbus)
{
PnvPHB4 *phb = PNV_PHB4(host_bridge);
snprintf(phb->bus_path, sizeof(phb->bus_path), "00%02x:%02x",
phb->chip_id, phb->phb_id);
return phb->bus_path;
}
static void pnv_phb4_xive_notify(XiveNotifier *xf, uint32_t srcno)
{
PnvPHB4 *phb = PNV_PHB4(xf);
uint64_t notif_port = phb->regs[PHB_INT_NOTIFY_ADDR >> 3];
uint32_t offset = phb->regs[PHB_INT_NOTIFY_INDEX >> 3];
uint64_t data = XIVE_TRIGGER_PQ | offset | srcno;
MemTxResult result;
address_space_stq_be(&address_space_memory, notif_port, data,
MEMTXATTRS_UNSPECIFIED, &result);
if (result != MEMTX_OK) {
phb_error(phb, "trigger failed @%"HWADDR_PRIx "\n", notif_port);
return;
}
}
static Property pnv_phb4_properties[] = {
DEFINE_PROP_UINT32("index", PnvPHB4, phb_id, 0),
DEFINE_PROP_UINT32("chip-id", PnvPHB4, chip_id, 0),
DEFINE_PROP_UINT64("version", PnvPHB4, version, 0),
DEFINE_PROP_UINT16("device-id", PnvPHB4, device_id, 0),
DEFINE_PROP_LINK("stack", PnvPHB4, stack, TYPE_PNV_PHB4_PEC_STACK,
PnvPhb4PecStack *),
DEFINE_PROP_END_OF_LIST(),
};
static void pnv_phb4_class_init(ObjectClass *klass, void *data)
{
PCIHostBridgeClass *hc = PCI_HOST_BRIDGE_CLASS(klass);
DeviceClass *dc = DEVICE_CLASS(klass);
XiveNotifierClass *xfc = XIVE_NOTIFIER_CLASS(klass);
hc->root_bus_path = pnv_phb4_root_bus_path;
dc->realize = pnv_phb4_realize;
device_class_set_props(dc, pnv_phb4_properties);
set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories);
dc->user_creatable = false;
dc->reset = pnv_phb4_reset;
xfc->notify = pnv_phb4_xive_notify;
}
static const TypeInfo pnv_phb4_type_info = {
.name = TYPE_PNV_PHB4,
.parent = TYPE_PCIE_HOST_BRIDGE,
.instance_init = pnv_phb4_instance_init,
.instance_size = sizeof(PnvPHB4),
.class_init = pnv_phb4_class_init,
.interfaces = (InterfaceInfo[]) {
{ TYPE_XIVE_NOTIFIER },
{ },
}
};
static void pnv_phb4_root_bus_class_init(ObjectClass *klass, void *data)
{
BusClass *k = BUS_CLASS(klass);
/*
* PHB4 has only a single root complex. Enforce the limit on the
* parent bus
*/
k->max_dev = 1;
}
static const TypeInfo pnv_phb4_root_bus_info = {
.name = TYPE_PNV_PHB4_ROOT_BUS,
.parent = TYPE_PCIE_BUS,
.class_init = pnv_phb4_root_bus_class_init,
.interfaces = (InterfaceInfo[]) {
{ INTERFACE_PCIE_DEVICE },
{ }
},
};
static void pnv_phb4_root_port_reset(DeviceState *dev)
{
PCIERootPortClass *rpc = PCIE_ROOT_PORT_GET_CLASS(dev);
PCIDevice *d = PCI_DEVICE(dev);
uint8_t *conf = d->config;
rpc->parent_reset(dev);
pci_byte_test_and_set_mask(conf + PCI_IO_BASE,
PCI_IO_RANGE_MASK & 0xff);
pci_byte_test_and_clear_mask(conf + PCI_IO_LIMIT,
PCI_IO_RANGE_MASK & 0xff);
pci_set_word(conf + PCI_MEMORY_BASE, 0);
pci_set_word(conf + PCI_MEMORY_LIMIT, 0xfff0);
pci_set_word(conf + PCI_PREF_MEMORY_BASE, 0x1);
pci_set_word(conf + PCI_PREF_MEMORY_LIMIT, 0xfff1);
pci_set_long(conf + PCI_PREF_BASE_UPPER32, 0x1); /* Hack */
pci_set_long(conf + PCI_PREF_LIMIT_UPPER32, 0xffffffff);
}
static void pnv_phb4_root_port_realize(DeviceState *dev, Error **errp)
{
PCIERootPortClass *rpc = PCIE_ROOT_PORT_GET_CLASS(dev);
Error *local_err = NULL;
rpc->parent_realize(dev, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
}
static void pnv_phb4_root_port_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
PCIERootPortClass *rpc = PCIE_ROOT_PORT_CLASS(klass);
dc->desc = "IBM PHB4 PCIE Root Port";
dc->user_creatable = false;
device_class_set_parent_realize(dc, pnv_phb4_root_port_realize,
&rpc->parent_realize);
device_class_set_parent_reset(dc, pnv_phb4_root_port_reset,
&rpc->parent_reset);
k->vendor_id = PCI_VENDOR_ID_IBM;
k->device_id = PNV_PHB4_DEVICE_ID;
k->revision = 0;
rpc->exp_offset = 0x48;
rpc->aer_offset = 0x100;
dc->reset = &pnv_phb4_root_port_reset;
}
static const TypeInfo pnv_phb4_root_port_info = {
.name = TYPE_PNV_PHB4_ROOT_PORT,
.parent = TYPE_PCIE_ROOT_PORT,
.instance_size = sizeof(PnvPHB4RootPort),
.class_init = pnv_phb4_root_port_class_init,
};
static void pnv_phb4_register_types(void)
{
type_register_static(&pnv_phb4_root_bus_info);
type_register_static(&pnv_phb4_root_port_info);
type_register_static(&pnv_phb4_type_info);
type_register_static(&pnv_phb4_iommu_memory_region_info);
}
type_init(pnv_phb4_register_types);
void pnv_phb4_update_regions(PnvPhb4PecStack *stack)
{
PnvPHB4 *phb = &stack->phb;
/* Unmap first always */
if (memory_region_is_mapped(&phb->mr_regs)) {
memory_region_del_subregion(&stack->phbbar, &phb->mr_regs);
}
if (memory_region_is_mapped(&phb->xsrc.esb_mmio)) {
memory_region_del_subregion(&stack->intbar, &phb->xsrc.esb_mmio);
}
/* Map registers if enabled */
if (memory_region_is_mapped(&stack->phbbar)) {
memory_region_add_subregion(&stack->phbbar, 0, &phb->mr_regs);
}
/* Map ESB if enabled */
if (memory_region_is_mapped(&stack->intbar)) {
memory_region_add_subregion(&stack->intbar, 0, &phb->xsrc.esb_mmio);
}
/* Check/update m32 */
pnv_phb4_check_all_mbt(phb);
}
void pnv_phb4_pic_print_info(PnvPHB4 *phb, Monitor *mon)
{
uint32_t offset = phb->regs[PHB_INT_NOTIFY_INDEX >> 3];
monitor_printf(mon, "PHB4[%x:%x] Source %08x .. %08x\n",
phb->chip_id, phb->phb_id,
offset, offset + phb->xsrc.nr_irqs - 1);
xive_source_pic_print_info(&phb->xsrc, 0, mon);
}