qemu/cpu-all.h
bellard d720b93d0b precise self modifying code support
git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@745 c046a42c-6fe2-441c-8c8c-71466251a162
2004-04-25 17:57:43 +00:00

723 lines
17 KiB
C

/*
* defines common to all virtual CPUs
*
* Copyright (c) 2003 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#ifndef CPU_ALL_H
#define CPU_ALL_H
#if defined(__arm__) || defined(__sparc__)
#define WORDS_ALIGNED
#endif
/* some important defines:
*
* WORDS_ALIGNED : if defined, the host cpu can only make word aligned
* memory accesses.
*
* WORDS_BIGENDIAN : if defined, the host cpu is big endian and
* otherwise little endian.
*
* (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
*
* TARGET_WORDS_BIGENDIAN : same for target cpu
*/
#include "bswap.h"
#if defined(WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
#define BSWAP_NEEDED
#endif
#ifdef BSWAP_NEEDED
static inline uint16_t tswap16(uint16_t s)
{
return bswap16(s);
}
static inline uint32_t tswap32(uint32_t s)
{
return bswap32(s);
}
static inline uint64_t tswap64(uint64_t s)
{
return bswap64(s);
}
static inline void tswap16s(uint16_t *s)
{
*s = bswap16(*s);
}
static inline void tswap32s(uint32_t *s)
{
*s = bswap32(*s);
}
static inline void tswap64s(uint64_t *s)
{
*s = bswap64(*s);
}
#else
static inline uint16_t tswap16(uint16_t s)
{
return s;
}
static inline uint32_t tswap32(uint32_t s)
{
return s;
}
static inline uint64_t tswap64(uint64_t s)
{
return s;
}
static inline void tswap16s(uint16_t *s)
{
}
static inline void tswap32s(uint32_t *s)
{
}
static inline void tswap64s(uint64_t *s)
{
}
#endif
#if TARGET_LONG_SIZE == 4
#define tswapl(s) tswap32(s)
#define tswapls(s) tswap32s((uint32_t *)(s))
#else
#define tswapl(s) tswap64(s)
#define tswapls(s) tswap64s((uint64_t *)(s))
#endif
/* NOTE: arm is horrible as double 32 bit words are stored in big endian ! */
typedef union {
double d;
#if !defined(WORDS_BIGENDIAN) && !defined(__arm__)
struct {
uint32_t lower;
uint32_t upper;
} l;
#else
struct {
uint32_t upper;
uint32_t lower;
} l;
#endif
uint64_t ll;
} CPU_DoubleU;
/* CPU memory access without any memory or io remapping */
/*
* the generic syntax for the memory accesses is:
*
* load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
*
* store: st{type}{size}{endian}_{access_type}(ptr, val)
*
* type is:
* (empty): integer access
* f : float access
*
* sign is:
* (empty): for floats or 32 bit size
* u : unsigned
* s : signed
*
* size is:
* b: 8 bits
* w: 16 bits
* l: 32 bits
* q: 64 bits
*
* endian is:
* (empty): target cpu endianness or 8 bit access
* r : reversed target cpu endianness (not implemented yet)
* be : big endian (not implemented yet)
* le : little endian (not implemented yet)
*
* access_type is:
* raw : host memory access
* user : user mode access using soft MMU
* kernel : kernel mode access using soft MMU
*/
static inline int ldub_raw(void *ptr)
{
return *(uint8_t *)ptr;
}
static inline int ldsb_raw(void *ptr)
{
return *(int8_t *)ptr;
}
static inline void stb_raw(void *ptr, int v)
{
*(uint8_t *)ptr = v;
}
/* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the
kernel handles unaligned load/stores may give better results, but
it is a system wide setting : bad */
#if !defined(TARGET_WORDS_BIGENDIAN) && (defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED))
/* conservative code for little endian unaligned accesses */
static inline int lduw_raw(void *ptr)
{
#ifdef __powerpc__
int val;
__asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
return val;
#else
uint8_t *p = ptr;
return p[0] | (p[1] << 8);
#endif
}
static inline int ldsw_raw(void *ptr)
{
#ifdef __powerpc__
int val;
__asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
return (int16_t)val;
#else
uint8_t *p = ptr;
return (int16_t)(p[0] | (p[1] << 8));
#endif
}
static inline int ldl_raw(void *ptr)
{
#ifdef __powerpc__
int val;
__asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr));
return val;
#else
uint8_t *p = ptr;
return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
#endif
}
static inline uint64_t ldq_raw(void *ptr)
{
uint8_t *p = ptr;
uint32_t v1, v2;
v1 = ldl_raw(p);
v2 = ldl_raw(p + 4);
return v1 | ((uint64_t)v2 << 32);
}
static inline void stw_raw(void *ptr, int v)
{
#ifdef __powerpc__
__asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr));
#else
uint8_t *p = ptr;
p[0] = v;
p[1] = v >> 8;
#endif
}
static inline void stl_raw(void *ptr, int v)
{
#ifdef __powerpc__
__asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr));
#else
uint8_t *p = ptr;
p[0] = v;
p[1] = v >> 8;
p[2] = v >> 16;
p[3] = v >> 24;
#endif
}
static inline void stq_raw(void *ptr, uint64_t v)
{
uint8_t *p = ptr;
stl_raw(p, (uint32_t)v);
stl_raw(p + 4, v >> 32);
}
/* float access */
static inline float ldfl_raw(void *ptr)
{
union {
float f;
uint32_t i;
} u;
u.i = ldl_raw(ptr);
return u.f;
}
static inline void stfl_raw(void *ptr, float v)
{
union {
float f;
uint32_t i;
} u;
u.f = v;
stl_raw(ptr, u.i);
}
static inline double ldfq_raw(void *ptr)
{
CPU_DoubleU u;
u.l.lower = ldl_raw(ptr);
u.l.upper = ldl_raw(ptr + 4);
return u.d;
}
static inline void stfq_raw(void *ptr, double v)
{
CPU_DoubleU u;
u.d = v;
stl_raw(ptr, u.l.lower);
stl_raw(ptr + 4, u.l.upper);
}
#elif defined(TARGET_WORDS_BIGENDIAN) && (!defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED))
static inline int lduw_raw(void *ptr)
{
#if defined(__i386__)
int val;
asm volatile ("movzwl %1, %0\n"
"xchgb %b0, %h0\n"
: "=q" (val)
: "m" (*(uint16_t *)ptr));
return val;
#else
uint8_t *b = (uint8_t *) ptr;
return ((b[0] << 8) | b[1]);
#endif
}
static inline int ldsw_raw(void *ptr)
{
#if defined(__i386__)
int val;
asm volatile ("movzwl %1, %0\n"
"xchgb %b0, %h0\n"
: "=q" (val)
: "m" (*(uint16_t *)ptr));
return (int16_t)val;
#else
uint8_t *b = (uint8_t *) ptr;
return (int16_t)((b[0] << 8) | b[1]);
#endif
}
static inline int ldl_raw(void *ptr)
{
#if defined(__i386__)
int val;
asm volatile ("movl %1, %0\n"
"bswap %0\n"
: "=r" (val)
: "m" (*(uint32_t *)ptr));
return val;
#else
uint8_t *b = (uint8_t *) ptr;
return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
#endif
}
static inline uint64_t ldq_raw(void *ptr)
{
uint32_t a,b;
a = ldl_raw(ptr);
b = ldl_raw(ptr+4);
return (((uint64_t)a<<32)|b);
}
static inline void stw_raw(void *ptr, int v)
{
#if defined(__i386__)
asm volatile ("xchgb %b0, %h0\n"
"movw %w0, %1\n"
: "=q" (v)
: "m" (*(uint16_t *)ptr), "0" (v));
#else
uint8_t *d = (uint8_t *) ptr;
d[0] = v >> 8;
d[1] = v;
#endif
}
static inline void stl_raw(void *ptr, int v)
{
#if defined(__i386__)
asm volatile ("bswap %0\n"
"movl %0, %1\n"
: "=r" (v)
: "m" (*(uint32_t *)ptr), "0" (v));
#else
uint8_t *d = (uint8_t *) ptr;
d[0] = v >> 24;
d[1] = v >> 16;
d[2] = v >> 8;
d[3] = v;
#endif
}
static inline void stq_raw(void *ptr, uint64_t v)
{
stl_raw(ptr, v >> 32);
stl_raw(ptr + 4, v);
}
/* float access */
static inline float ldfl_raw(void *ptr)
{
union {
float f;
uint32_t i;
} u;
u.i = ldl_raw(ptr);
return u.f;
}
static inline void stfl_raw(void *ptr, float v)
{
union {
float f;
uint32_t i;
} u;
u.f = v;
stl_raw(ptr, u.i);
}
static inline double ldfq_raw(void *ptr)
{
CPU_DoubleU u;
u.l.upper = ldl_raw(ptr);
u.l.lower = ldl_raw(ptr + 4);
return u.d;
}
static inline void stfq_raw(void *ptr, double v)
{
CPU_DoubleU u;
u.d = v;
stl_raw(ptr, u.l.upper);
stl_raw(ptr + 4, u.l.lower);
}
#else
static inline int lduw_raw(void *ptr)
{
return *(uint16_t *)ptr;
}
static inline int ldsw_raw(void *ptr)
{
return *(int16_t *)ptr;
}
static inline int ldl_raw(void *ptr)
{
return *(uint32_t *)ptr;
}
static inline uint64_t ldq_raw(void *ptr)
{
return *(uint64_t *)ptr;
}
static inline void stw_raw(void *ptr, int v)
{
*(uint16_t *)ptr = v;
}
static inline void stl_raw(void *ptr, int v)
{
*(uint32_t *)ptr = v;
}
static inline void stq_raw(void *ptr, uint64_t v)
{
*(uint64_t *)ptr = v;
}
/* float access */
static inline float ldfl_raw(void *ptr)
{
return *(float *)ptr;
}
static inline double ldfq_raw(void *ptr)
{
return *(double *)ptr;
}
static inline void stfl_raw(void *ptr, float v)
{
*(float *)ptr = v;
}
static inline void stfq_raw(void *ptr, double v)
{
*(double *)ptr = v;
}
#endif
/* MMU memory access macros */
#if defined(CONFIG_USER_ONLY)
/* if user mode, no other memory access functions */
#define ldub(p) ldub_raw(p)
#define ldsb(p) ldsb_raw(p)
#define lduw(p) lduw_raw(p)
#define ldsw(p) ldsw_raw(p)
#define ldl(p) ldl_raw(p)
#define ldq(p) ldq_raw(p)
#define ldfl(p) ldfl_raw(p)
#define ldfq(p) ldfq_raw(p)
#define stb(p, v) stb_raw(p, v)
#define stw(p, v) stw_raw(p, v)
#define stl(p, v) stl_raw(p, v)
#define stq(p, v) stq_raw(p, v)
#define stfl(p, v) stfl_raw(p, v)
#define stfq(p, v) stfq_raw(p, v)
#define ldub_code(p) ldub_raw(p)
#define ldsb_code(p) ldsb_raw(p)
#define lduw_code(p) lduw_raw(p)
#define ldsw_code(p) ldsw_raw(p)
#define ldl_code(p) ldl_raw(p)
#define ldub_kernel(p) ldub_raw(p)
#define ldsb_kernel(p) ldsb_raw(p)
#define lduw_kernel(p) lduw_raw(p)
#define ldsw_kernel(p) ldsw_raw(p)
#define ldl_kernel(p) ldl_raw(p)
#define ldfl_kernel(p) ldfl_raw(p)
#define ldfq_kernel(p) ldfq_raw(p)
#define stb_kernel(p, v) stb_raw(p, v)
#define stw_kernel(p, v) stw_raw(p, v)
#define stl_kernel(p, v) stl_raw(p, v)
#define stq_kernel(p, v) stq_raw(p, v)
#define stfl_kernel(p, v) stfl_raw(p, v)
#define stfq_kernel(p, vt) stfq_raw(p, v)
#endif /* defined(CONFIG_USER_ONLY) */
/* page related stuff */
#define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
#define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
#define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
extern unsigned long real_host_page_size;
extern unsigned long host_page_bits;
extern unsigned long host_page_size;
extern unsigned long host_page_mask;
#define HOST_PAGE_ALIGN(addr) (((addr) + host_page_size - 1) & host_page_mask)
/* same as PROT_xxx */
#define PAGE_READ 0x0001
#define PAGE_WRITE 0x0002
#define PAGE_EXEC 0x0004
#define PAGE_BITS (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
#define PAGE_VALID 0x0008
/* original state of the write flag (used when tracking self-modifying
code */
#define PAGE_WRITE_ORG 0x0010
void page_dump(FILE *f);
int page_get_flags(unsigned long address);
void page_set_flags(unsigned long start, unsigned long end, int flags);
void page_unprotect_range(uint8_t *data, unsigned long data_size);
#define SINGLE_CPU_DEFINES
#ifdef SINGLE_CPU_DEFINES
#if defined(TARGET_I386)
#define CPUState CPUX86State
#define cpu_init cpu_x86_init
#define cpu_exec cpu_x86_exec
#define cpu_gen_code cpu_x86_gen_code
#define cpu_interrupt cpu_x86_interrupt
#define cpu_signal_handler cpu_x86_signal_handler
#define cpu_dump_state cpu_x86_dump_state
#elif defined(TARGET_ARM)
#define CPUState CPUARMState
#define cpu_init cpu_arm_init
#define cpu_exec cpu_arm_exec
#define cpu_gen_code cpu_arm_gen_code
#define cpu_interrupt cpu_arm_interrupt
#define cpu_signal_handler cpu_arm_signal_handler
#define cpu_dump_state cpu_arm_dump_state
#elif defined(TARGET_SPARC)
#define CPUState CPUSPARCState
#define cpu_init cpu_sparc_init
#define cpu_exec cpu_sparc_exec
#define cpu_gen_code cpu_sparc_gen_code
#define cpu_interrupt cpu_sparc_interrupt
#define cpu_signal_handler cpu_sparc_signal_handler
#define cpu_dump_state cpu_sparc_dump_state
#elif defined(TARGET_PPC)
#define CPUState CPUPPCState
#define cpu_init cpu_ppc_init
#define cpu_exec cpu_ppc_exec
#define cpu_gen_code cpu_ppc_gen_code
#define cpu_interrupt cpu_ppc_interrupt
#define cpu_signal_handler cpu_ppc_signal_handler
#define cpu_dump_state cpu_ppc_dump_state
#else
#error unsupported target CPU
#endif
#endif /* SINGLE_CPU_DEFINES */
void cpu_abort(CPUState *env, const char *fmt, ...);
extern CPUState *cpu_single_env;
extern int code_copy_enabled;
#define CPU_INTERRUPT_EXIT 0x01 /* wants exit from main loop */
#define CPU_INTERRUPT_HARD 0x02 /* hardware interrupt pending */
#define CPU_INTERRUPT_EXITTB 0x04 /* exit the current TB (use for x86 a20 case) */
void cpu_interrupt(CPUState *s, int mask);
int cpu_breakpoint_insert(CPUState *env, uint32_t pc);
int cpu_breakpoint_remove(CPUState *env, uint32_t pc);
void cpu_single_step(CPUState *env, int enabled);
/* Return the physical page corresponding to a virtual one. Use it
only for debugging because no protection checks are done. Return -1
if no page found. */
target_ulong cpu_get_phys_page_debug(CPUState *env, target_ulong addr);
#define CPU_LOG_TB_OUT_ASM (1 << 0)
#define CPU_LOG_TB_IN_ASM (1 << 1)
#define CPU_LOG_TB_OP (1 << 2)
#define CPU_LOG_TB_OP_OPT (1 << 3)
#define CPU_LOG_INT (1 << 4)
#define CPU_LOG_EXEC (1 << 5)
#define CPU_LOG_PCALL (1 << 6)
/* define log items */
typedef struct CPULogItem {
int mask;
const char *name;
const char *help;
} CPULogItem;
extern CPULogItem cpu_log_items[];
void cpu_set_log(int log_flags);
void cpu_set_log_filename(const char *filename);
int cpu_str_to_log_mask(const char *str);
/* IO ports API */
/* NOTE: as these functions may be even used when there is an isa
brige on non x86 targets, we always defined them */
#ifndef NO_CPU_IO_DEFS
void cpu_outb(CPUState *env, int addr, int val);
void cpu_outw(CPUState *env, int addr, int val);
void cpu_outl(CPUState *env, int addr, int val);
int cpu_inb(CPUState *env, int addr);
int cpu_inw(CPUState *env, int addr);
int cpu_inl(CPUState *env, int addr);
#endif
/* memory API */
extern int phys_ram_size;
extern int phys_ram_fd;
extern uint8_t *phys_ram_base;
extern uint8_t *phys_ram_dirty;
/* physical memory access */
#define IO_MEM_NB_ENTRIES 256
#define TLB_INVALID_MASK (1 << 3)
#define IO_MEM_SHIFT 4
#define IO_MEM_RAM (0 << IO_MEM_SHIFT) /* hardcoded offset */
#define IO_MEM_ROM (1 << IO_MEM_SHIFT) /* hardcoded offset */
#define IO_MEM_UNASSIGNED (2 << IO_MEM_SHIFT)
#define IO_MEM_CODE (3 << IO_MEM_SHIFT) /* used internally, never use directly */
#define IO_MEM_NOTDIRTY (4 << IO_MEM_SHIFT) /* used internally, never use directly */
typedef void CPUWriteMemoryFunc(uint32_t addr, uint32_t value);
typedef uint32_t CPUReadMemoryFunc(uint32_t addr);
void cpu_register_physical_memory(unsigned long start_addr, unsigned long size,
long phys_offset);
int cpu_register_io_memory(int io_index,
CPUReadMemoryFunc **mem_read,
CPUWriteMemoryFunc **mem_write);
void cpu_physical_memory_rw(target_ulong addr, uint8_t *buf,
int len, int is_write);
static inline void cpu_physical_memory_read(target_ulong addr, uint8_t *buf,
int len)
{
cpu_physical_memory_rw(addr, buf, len, 0);
}
static inline void cpu_physical_memory_write(target_ulong addr, const uint8_t *buf,
int len)
{
cpu_physical_memory_rw(addr, (uint8_t *)buf, len, 1);
}
int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
uint8_t *buf, int len, int is_write);
/* read dirty bit (return 0 or 1) */
static inline int cpu_physical_memory_is_dirty(target_ulong addr)
{
return phys_ram_dirty[addr >> TARGET_PAGE_BITS];
}
static inline void cpu_physical_memory_set_dirty(target_ulong addr)
{
phys_ram_dirty[addr >> TARGET_PAGE_BITS] = 1;
}
void cpu_physical_memory_reset_dirty(target_ulong start, target_ulong end);
#endif /* CPU_ALL_H */