6d5e216de9
git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@1084 c046a42c-6fe2-441c-8c8c-71466251a162
1722 lines
48 KiB
C
1722 lines
48 KiB
C
/*
|
|
* Emulation of Linux signals
|
|
*
|
|
* Copyright (c) 2003 Fabrice Bellard
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
*/
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <stdarg.h>
|
|
#include <unistd.h>
|
|
#include <signal.h>
|
|
#include <errno.h>
|
|
#include <sys/ucontext.h>
|
|
|
|
#ifdef __ia64__
|
|
#undef uc_mcontext
|
|
#undef uc_sigmask
|
|
#undef uc_stack
|
|
#undef uc_link
|
|
#endif
|
|
|
|
#include "qemu.h"
|
|
|
|
//#define DEBUG_SIGNAL
|
|
|
|
#define MAX_SIGQUEUE_SIZE 1024
|
|
|
|
struct sigqueue {
|
|
struct sigqueue *next;
|
|
target_siginfo_t info;
|
|
};
|
|
|
|
struct emulated_sigaction {
|
|
struct target_sigaction sa;
|
|
int pending; /* true if signal is pending */
|
|
struct sigqueue *first;
|
|
struct sigqueue info; /* in order to always have memory for the
|
|
first signal, we put it here */
|
|
};
|
|
|
|
static struct emulated_sigaction sigact_table[TARGET_NSIG];
|
|
static struct sigqueue sigqueue_table[MAX_SIGQUEUE_SIZE]; /* siginfo queue */
|
|
static struct sigqueue *first_free; /* first free siginfo queue entry */
|
|
static int signal_pending; /* non zero if a signal may be pending */
|
|
|
|
static void host_signal_handler(int host_signum, siginfo_t *info,
|
|
void *puc);
|
|
|
|
static uint8_t host_to_target_signal_table[65] = {
|
|
[SIGHUP] = TARGET_SIGHUP,
|
|
[SIGINT] = TARGET_SIGINT,
|
|
[SIGQUIT] = TARGET_SIGQUIT,
|
|
[SIGILL] = TARGET_SIGILL,
|
|
[SIGTRAP] = TARGET_SIGTRAP,
|
|
[SIGABRT] = TARGET_SIGABRT,
|
|
/* [SIGIOT] = TARGET_SIGIOT,*/
|
|
[SIGBUS] = TARGET_SIGBUS,
|
|
[SIGFPE] = TARGET_SIGFPE,
|
|
[SIGKILL] = TARGET_SIGKILL,
|
|
[SIGUSR1] = TARGET_SIGUSR1,
|
|
[SIGSEGV] = TARGET_SIGSEGV,
|
|
[SIGUSR2] = TARGET_SIGUSR2,
|
|
[SIGPIPE] = TARGET_SIGPIPE,
|
|
[SIGALRM] = TARGET_SIGALRM,
|
|
[SIGTERM] = TARGET_SIGTERM,
|
|
#ifdef SIGSTKFLT
|
|
[SIGSTKFLT] = TARGET_SIGSTKFLT,
|
|
#endif
|
|
[SIGCHLD] = TARGET_SIGCHLD,
|
|
[SIGCONT] = TARGET_SIGCONT,
|
|
[SIGSTOP] = TARGET_SIGSTOP,
|
|
[SIGTSTP] = TARGET_SIGTSTP,
|
|
[SIGTTIN] = TARGET_SIGTTIN,
|
|
[SIGTTOU] = TARGET_SIGTTOU,
|
|
[SIGURG] = TARGET_SIGURG,
|
|
[SIGXCPU] = TARGET_SIGXCPU,
|
|
[SIGXFSZ] = TARGET_SIGXFSZ,
|
|
[SIGVTALRM] = TARGET_SIGVTALRM,
|
|
[SIGPROF] = TARGET_SIGPROF,
|
|
[SIGWINCH] = TARGET_SIGWINCH,
|
|
[SIGIO] = TARGET_SIGIO,
|
|
[SIGPWR] = TARGET_SIGPWR,
|
|
[SIGSYS] = TARGET_SIGSYS,
|
|
/* next signals stay the same */
|
|
};
|
|
static uint8_t target_to_host_signal_table[65];
|
|
|
|
static inline int host_to_target_signal(int sig)
|
|
{
|
|
return host_to_target_signal_table[sig];
|
|
}
|
|
|
|
static inline int target_to_host_signal(int sig)
|
|
{
|
|
return target_to_host_signal_table[sig];
|
|
}
|
|
|
|
static void host_to_target_sigset_internal(target_sigset_t *d,
|
|
const sigset_t *s)
|
|
{
|
|
int i;
|
|
unsigned long sigmask;
|
|
uint32_t target_sigmask;
|
|
|
|
sigmask = ((unsigned long *)s)[0];
|
|
target_sigmask = 0;
|
|
for(i = 0; i < 32; i++) {
|
|
if (sigmask & (1 << i))
|
|
target_sigmask |= 1 << (host_to_target_signal(i + 1) - 1);
|
|
}
|
|
#if TARGET_LONG_BITS == 32 && HOST_LONG_BITS == 32
|
|
d->sig[0] = target_sigmask;
|
|
for(i = 1;i < TARGET_NSIG_WORDS; i++) {
|
|
d->sig[i] = ((unsigned long *)s)[i];
|
|
}
|
|
#elif TARGET_LONG_BITS == 32 && HOST_LONG_BITS == 64 && TARGET_NSIG_WORDS == 2
|
|
d->sig[0] = target_sigmask;
|
|
d->sig[1] = sigmask >> 32;
|
|
#else
|
|
#error host_to_target_sigset
|
|
#endif
|
|
}
|
|
|
|
void host_to_target_sigset(target_sigset_t *d, const sigset_t *s)
|
|
{
|
|
target_sigset_t d1;
|
|
int i;
|
|
|
|
host_to_target_sigset_internal(&d1, s);
|
|
for(i = 0;i < TARGET_NSIG_WORDS; i++)
|
|
__put_user(d1.sig[i], &d->sig[i]);
|
|
}
|
|
|
|
void target_to_host_sigset_internal(sigset_t *d, const target_sigset_t *s)
|
|
{
|
|
int i;
|
|
unsigned long sigmask;
|
|
target_ulong target_sigmask;
|
|
|
|
target_sigmask = s->sig[0];
|
|
sigmask = 0;
|
|
for(i = 0; i < 32; i++) {
|
|
if (target_sigmask & (1 << i))
|
|
sigmask |= 1 << (target_to_host_signal(i + 1) - 1);
|
|
}
|
|
#if TARGET_LONG_BITS == 32 && HOST_LONG_BITS == 32
|
|
((unsigned long *)d)[0] = sigmask;
|
|
for(i = 1;i < TARGET_NSIG_WORDS; i++) {
|
|
((unsigned long *)d)[i] = s->sig[i];
|
|
}
|
|
#elif TARGET_LONG_BITS == 32 && HOST_LONG_BITS == 64 && TARGET_NSIG_WORDS == 2
|
|
((unsigned long *)d)[0] = sigmask | ((unsigned long)(s->sig[1]) << 32);
|
|
#else
|
|
#error target_to_host_sigset
|
|
#endif /* TARGET_LONG_BITS */
|
|
}
|
|
|
|
void target_to_host_sigset(sigset_t *d, const target_sigset_t *s)
|
|
{
|
|
target_sigset_t s1;
|
|
int i;
|
|
|
|
for(i = 0;i < TARGET_NSIG_WORDS; i++)
|
|
__get_user(s1.sig[i], &s->sig[i]);
|
|
target_to_host_sigset_internal(d, &s1);
|
|
}
|
|
|
|
void host_to_target_old_sigset(target_ulong *old_sigset,
|
|
const sigset_t *sigset)
|
|
{
|
|
target_sigset_t d;
|
|
host_to_target_sigset(&d, sigset);
|
|
*old_sigset = d.sig[0];
|
|
}
|
|
|
|
void target_to_host_old_sigset(sigset_t *sigset,
|
|
const target_ulong *old_sigset)
|
|
{
|
|
target_sigset_t d;
|
|
int i;
|
|
|
|
d.sig[0] = *old_sigset;
|
|
for(i = 1;i < TARGET_NSIG_WORDS; i++)
|
|
d.sig[i] = 0;
|
|
target_to_host_sigset(sigset, &d);
|
|
}
|
|
|
|
/* siginfo conversion */
|
|
|
|
static inline void host_to_target_siginfo_noswap(target_siginfo_t *tinfo,
|
|
const siginfo_t *info)
|
|
{
|
|
int sig;
|
|
sig = host_to_target_signal(info->si_signo);
|
|
tinfo->si_signo = sig;
|
|
tinfo->si_errno = 0;
|
|
tinfo->si_code = 0;
|
|
if (sig == SIGILL || sig == SIGFPE || sig == SIGSEGV ||
|
|
sig == SIGBUS || sig == SIGTRAP) {
|
|
/* should never come here, but who knows. The information for
|
|
the target is irrelevant */
|
|
tinfo->_sifields._sigfault._addr = 0;
|
|
} else if (sig >= TARGET_SIGRTMIN) {
|
|
tinfo->_sifields._rt._pid = info->si_pid;
|
|
tinfo->_sifields._rt._uid = info->si_uid;
|
|
/* XXX: potential problem if 64 bit */
|
|
tinfo->_sifields._rt._sigval.sival_ptr =
|
|
(target_ulong)info->si_value.sival_ptr;
|
|
}
|
|
}
|
|
|
|
static void tswap_siginfo(target_siginfo_t *tinfo,
|
|
const target_siginfo_t *info)
|
|
{
|
|
int sig;
|
|
sig = info->si_signo;
|
|
tinfo->si_signo = tswap32(sig);
|
|
tinfo->si_errno = tswap32(info->si_errno);
|
|
tinfo->si_code = tswap32(info->si_code);
|
|
if (sig == SIGILL || sig == SIGFPE || sig == SIGSEGV ||
|
|
sig == SIGBUS || sig == SIGTRAP) {
|
|
tinfo->_sifields._sigfault._addr =
|
|
tswapl(info->_sifields._sigfault._addr);
|
|
} else if (sig >= TARGET_SIGRTMIN) {
|
|
tinfo->_sifields._rt._pid = tswap32(info->_sifields._rt._pid);
|
|
tinfo->_sifields._rt._uid = tswap32(info->_sifields._rt._uid);
|
|
tinfo->_sifields._rt._sigval.sival_ptr =
|
|
tswapl(info->_sifields._rt._sigval.sival_ptr);
|
|
}
|
|
}
|
|
|
|
|
|
void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info)
|
|
{
|
|
host_to_target_siginfo_noswap(tinfo, info);
|
|
tswap_siginfo(tinfo, tinfo);
|
|
}
|
|
|
|
/* XXX: we support only POSIX RT signals are used. */
|
|
/* XXX: find a solution for 64 bit (additionnal malloced data is needed) */
|
|
void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo)
|
|
{
|
|
info->si_signo = tswap32(tinfo->si_signo);
|
|
info->si_errno = tswap32(tinfo->si_errno);
|
|
info->si_code = tswap32(tinfo->si_code);
|
|
info->si_pid = tswap32(tinfo->_sifields._rt._pid);
|
|
info->si_uid = tswap32(tinfo->_sifields._rt._uid);
|
|
info->si_value.sival_ptr =
|
|
(void *)tswapl(tinfo->_sifields._rt._sigval.sival_ptr);
|
|
}
|
|
|
|
void signal_init(void)
|
|
{
|
|
struct sigaction act;
|
|
int i, j;
|
|
|
|
/* generate signal conversion tables */
|
|
for(i = 1; i <= 64; i++) {
|
|
if (host_to_target_signal_table[i] == 0)
|
|
host_to_target_signal_table[i] = i;
|
|
}
|
|
for(i = 1; i <= 64; i++) {
|
|
j = host_to_target_signal_table[i];
|
|
target_to_host_signal_table[j] = i;
|
|
}
|
|
|
|
/* set all host signal handlers. ALL signals are blocked during
|
|
the handlers to serialize them. */
|
|
sigfillset(&act.sa_mask);
|
|
act.sa_flags = SA_SIGINFO;
|
|
act.sa_sigaction = host_signal_handler;
|
|
for(i = 1; i < NSIG; i++) {
|
|
sigaction(i, &act, NULL);
|
|
}
|
|
|
|
memset(sigact_table, 0, sizeof(sigact_table));
|
|
|
|
first_free = &sigqueue_table[0];
|
|
for(i = 0; i < MAX_SIGQUEUE_SIZE - 1; i++)
|
|
sigqueue_table[i].next = &sigqueue_table[i + 1];
|
|
sigqueue_table[MAX_SIGQUEUE_SIZE - 1].next = NULL;
|
|
}
|
|
|
|
/* signal queue handling */
|
|
|
|
static inline struct sigqueue *alloc_sigqueue(void)
|
|
{
|
|
struct sigqueue *q = first_free;
|
|
if (!q)
|
|
return NULL;
|
|
first_free = q->next;
|
|
return q;
|
|
}
|
|
|
|
static inline void free_sigqueue(struct sigqueue *q)
|
|
{
|
|
q->next = first_free;
|
|
first_free = q;
|
|
}
|
|
|
|
/* abort execution with signal */
|
|
void __attribute((noreturn)) force_sig(int sig)
|
|
{
|
|
int host_sig;
|
|
host_sig = target_to_host_signal(sig);
|
|
fprintf(stderr, "qemu: uncaught target signal %d (%s) - exiting\n",
|
|
sig, strsignal(host_sig));
|
|
#if 1
|
|
_exit(-host_sig);
|
|
#else
|
|
{
|
|
struct sigaction act;
|
|
sigemptyset(&act.sa_mask);
|
|
act.sa_flags = SA_SIGINFO;
|
|
act.sa_sigaction = SIG_DFL;
|
|
sigaction(SIGABRT, &act, NULL);
|
|
abort();
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/* queue a signal so that it will be send to the virtual CPU as soon
|
|
as possible */
|
|
int queue_signal(int sig, target_siginfo_t *info)
|
|
{
|
|
struct emulated_sigaction *k;
|
|
struct sigqueue *q, **pq;
|
|
target_ulong handler;
|
|
|
|
#if defined(DEBUG_SIGNAL)
|
|
fprintf(stderr, "queue_signal: sig=%d\n",
|
|
sig);
|
|
#endif
|
|
k = &sigact_table[sig - 1];
|
|
handler = k->sa._sa_handler;
|
|
if (handler == TARGET_SIG_DFL) {
|
|
/* default handler : ignore some signal. The other are fatal */
|
|
if (sig != TARGET_SIGCHLD &&
|
|
sig != TARGET_SIGURG &&
|
|
sig != TARGET_SIGWINCH) {
|
|
force_sig(sig);
|
|
} else {
|
|
return 0; /* indicate ignored */
|
|
}
|
|
} else if (handler == TARGET_SIG_IGN) {
|
|
/* ignore signal */
|
|
return 0;
|
|
} else if (handler == TARGET_SIG_ERR) {
|
|
force_sig(sig);
|
|
} else {
|
|
pq = &k->first;
|
|
if (sig < TARGET_SIGRTMIN) {
|
|
/* if non real time signal, we queue exactly one signal */
|
|
if (!k->pending)
|
|
q = &k->info;
|
|
else
|
|
return 0;
|
|
} else {
|
|
if (!k->pending) {
|
|
/* first signal */
|
|
q = &k->info;
|
|
} else {
|
|
q = alloc_sigqueue();
|
|
if (!q)
|
|
return -EAGAIN;
|
|
while (*pq != NULL)
|
|
pq = &(*pq)->next;
|
|
}
|
|
}
|
|
*pq = q;
|
|
q->info = *info;
|
|
q->next = NULL;
|
|
k->pending = 1;
|
|
/* signal that a new signal is pending */
|
|
signal_pending = 1;
|
|
return 1; /* indicates that the signal was queued */
|
|
}
|
|
}
|
|
|
|
static void host_signal_handler(int host_signum, siginfo_t *info,
|
|
void *puc)
|
|
{
|
|
int sig;
|
|
target_siginfo_t tinfo;
|
|
|
|
/* the CPU emulator uses some host signals to detect exceptions,
|
|
we we forward to it some signals */
|
|
if (host_signum == SIGSEGV || host_signum == SIGBUS
|
|
#if defined(TARGET_I386) && defined(USE_CODE_COPY)
|
|
|| host_signum == SIGFPE
|
|
#endif
|
|
) {
|
|
if (cpu_signal_handler(host_signum, info, puc))
|
|
return;
|
|
}
|
|
|
|
/* get target signal number */
|
|
sig = host_to_target_signal(host_signum);
|
|
if (sig < 1 || sig > TARGET_NSIG)
|
|
return;
|
|
#if defined(DEBUG_SIGNAL)
|
|
fprintf(stderr, "qemu: got signal %d\n", sig);
|
|
#endif
|
|
host_to_target_siginfo_noswap(&tinfo, info);
|
|
if (queue_signal(sig, &tinfo) == 1) {
|
|
/* interrupt the virtual CPU as soon as possible */
|
|
cpu_interrupt(global_env, CPU_INTERRUPT_EXIT);
|
|
}
|
|
}
|
|
|
|
int do_sigaction(int sig, const struct target_sigaction *act,
|
|
struct target_sigaction *oact)
|
|
{
|
|
struct emulated_sigaction *k;
|
|
struct sigaction act1;
|
|
int host_sig;
|
|
|
|
if (sig < 1 || sig > TARGET_NSIG)
|
|
return -EINVAL;
|
|
k = &sigact_table[sig - 1];
|
|
#if defined(DEBUG_SIGNAL)
|
|
fprintf(stderr, "sigaction sig=%d act=0x%08x, oact=0x%08x\n",
|
|
sig, (int)act, (int)oact);
|
|
#endif
|
|
if (oact) {
|
|
oact->_sa_handler = tswapl(k->sa._sa_handler);
|
|
oact->sa_flags = tswapl(k->sa.sa_flags);
|
|
oact->sa_restorer = tswapl(k->sa.sa_restorer);
|
|
oact->sa_mask = k->sa.sa_mask;
|
|
}
|
|
if (act) {
|
|
k->sa._sa_handler = tswapl(act->_sa_handler);
|
|
k->sa.sa_flags = tswapl(act->sa_flags);
|
|
k->sa.sa_restorer = tswapl(act->sa_restorer);
|
|
k->sa.sa_mask = act->sa_mask;
|
|
|
|
/* we update the host linux signal state */
|
|
host_sig = target_to_host_signal(sig);
|
|
if (host_sig != SIGSEGV && host_sig != SIGBUS) {
|
|
sigfillset(&act1.sa_mask);
|
|
act1.sa_flags = SA_SIGINFO;
|
|
if (k->sa.sa_flags & TARGET_SA_RESTART)
|
|
act1.sa_flags |= SA_RESTART;
|
|
/* NOTE: it is important to update the host kernel signal
|
|
ignore state to avoid getting unexpected interrupted
|
|
syscalls */
|
|
if (k->sa._sa_handler == TARGET_SIG_IGN) {
|
|
act1.sa_sigaction = (void *)SIG_IGN;
|
|
} else if (k->sa._sa_handler == TARGET_SIG_DFL) {
|
|
act1.sa_sigaction = (void *)SIG_DFL;
|
|
} else {
|
|
act1.sa_sigaction = host_signal_handler;
|
|
}
|
|
sigaction(host_sig, &act1, NULL);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#ifndef offsetof
|
|
#define offsetof(type, field) ((size_t) &((type *)0)->field)
|
|
#endif
|
|
|
|
static inline int copy_siginfo_to_user(target_siginfo_t *tinfo,
|
|
const target_siginfo_t *info)
|
|
{
|
|
tswap_siginfo(tinfo, info);
|
|
return 0;
|
|
}
|
|
|
|
#ifdef TARGET_I386
|
|
|
|
/* from the Linux kernel */
|
|
|
|
struct target_fpreg {
|
|
uint16_t significand[4];
|
|
uint16_t exponent;
|
|
};
|
|
|
|
struct target_fpxreg {
|
|
uint16_t significand[4];
|
|
uint16_t exponent;
|
|
uint16_t padding[3];
|
|
};
|
|
|
|
struct target_xmmreg {
|
|
target_ulong element[4];
|
|
};
|
|
|
|
struct target_fpstate {
|
|
/* Regular FPU environment */
|
|
target_ulong cw;
|
|
target_ulong sw;
|
|
target_ulong tag;
|
|
target_ulong ipoff;
|
|
target_ulong cssel;
|
|
target_ulong dataoff;
|
|
target_ulong datasel;
|
|
struct target_fpreg _st[8];
|
|
uint16_t status;
|
|
uint16_t magic; /* 0xffff = regular FPU data only */
|
|
|
|
/* FXSR FPU environment */
|
|
target_ulong _fxsr_env[6]; /* FXSR FPU env is ignored */
|
|
target_ulong mxcsr;
|
|
target_ulong reserved;
|
|
struct target_fpxreg _fxsr_st[8]; /* FXSR FPU reg data is ignored */
|
|
struct target_xmmreg _xmm[8];
|
|
target_ulong padding[56];
|
|
};
|
|
|
|
#define X86_FXSR_MAGIC 0x0000
|
|
|
|
struct target_sigcontext {
|
|
uint16_t gs, __gsh;
|
|
uint16_t fs, __fsh;
|
|
uint16_t es, __esh;
|
|
uint16_t ds, __dsh;
|
|
target_ulong edi;
|
|
target_ulong esi;
|
|
target_ulong ebp;
|
|
target_ulong esp;
|
|
target_ulong ebx;
|
|
target_ulong edx;
|
|
target_ulong ecx;
|
|
target_ulong eax;
|
|
target_ulong trapno;
|
|
target_ulong err;
|
|
target_ulong eip;
|
|
uint16_t cs, __csh;
|
|
target_ulong eflags;
|
|
target_ulong esp_at_signal;
|
|
uint16_t ss, __ssh;
|
|
target_ulong fpstate; /* pointer */
|
|
target_ulong oldmask;
|
|
target_ulong cr2;
|
|
};
|
|
|
|
typedef struct target_sigaltstack {
|
|
target_ulong ss_sp;
|
|
int ss_flags;
|
|
target_ulong ss_size;
|
|
} target_stack_t;
|
|
|
|
struct target_ucontext {
|
|
target_ulong uc_flags;
|
|
target_ulong uc_link;
|
|
target_stack_t uc_stack;
|
|
struct target_sigcontext uc_mcontext;
|
|
target_sigset_t uc_sigmask; /* mask last for extensibility */
|
|
};
|
|
|
|
struct sigframe
|
|
{
|
|
target_ulong pretcode;
|
|
int sig;
|
|
struct target_sigcontext sc;
|
|
struct target_fpstate fpstate;
|
|
target_ulong extramask[TARGET_NSIG_WORDS-1];
|
|
char retcode[8];
|
|
};
|
|
|
|
struct rt_sigframe
|
|
{
|
|
target_ulong pretcode;
|
|
int sig;
|
|
target_ulong pinfo;
|
|
target_ulong puc;
|
|
struct target_siginfo info;
|
|
struct target_ucontext uc;
|
|
struct target_fpstate fpstate;
|
|
char retcode[8];
|
|
};
|
|
|
|
/*
|
|
* Set up a signal frame.
|
|
*/
|
|
|
|
/* XXX: save x87 state */
|
|
static int
|
|
setup_sigcontext(struct target_sigcontext *sc, struct target_fpstate *fpstate,
|
|
CPUX86State *env, unsigned long mask)
|
|
{
|
|
int err = 0;
|
|
|
|
err |= __put_user(env->segs[R_GS].selector, (unsigned int *)&sc->gs);
|
|
err |= __put_user(env->segs[R_FS].selector, (unsigned int *)&sc->fs);
|
|
err |= __put_user(env->segs[R_ES].selector, (unsigned int *)&sc->es);
|
|
err |= __put_user(env->segs[R_DS].selector, (unsigned int *)&sc->ds);
|
|
err |= __put_user(env->regs[R_EDI], &sc->edi);
|
|
err |= __put_user(env->regs[R_ESI], &sc->esi);
|
|
err |= __put_user(env->regs[R_EBP], &sc->ebp);
|
|
err |= __put_user(env->regs[R_ESP], &sc->esp);
|
|
err |= __put_user(env->regs[R_EBX], &sc->ebx);
|
|
err |= __put_user(env->regs[R_EDX], &sc->edx);
|
|
err |= __put_user(env->regs[R_ECX], &sc->ecx);
|
|
err |= __put_user(env->regs[R_EAX], &sc->eax);
|
|
err |= __put_user(env->exception_index, &sc->trapno);
|
|
err |= __put_user(env->error_code, &sc->err);
|
|
err |= __put_user(env->eip, &sc->eip);
|
|
err |= __put_user(env->segs[R_CS].selector, (unsigned int *)&sc->cs);
|
|
err |= __put_user(env->eflags, &sc->eflags);
|
|
err |= __put_user(env->regs[R_ESP], &sc->esp_at_signal);
|
|
err |= __put_user(env->segs[R_SS].selector, (unsigned int *)&sc->ss);
|
|
|
|
cpu_x86_fsave(env, (void *)fpstate, 1);
|
|
fpstate->status = fpstate->sw;
|
|
err |= __put_user(0xffff, &fpstate->magic);
|
|
err |= __put_user(fpstate, &sc->fpstate);
|
|
|
|
/* non-iBCS2 extensions.. */
|
|
err |= __put_user(mask, &sc->oldmask);
|
|
err |= __put_user(env->cr[2], &sc->cr2);
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Determine which stack to use..
|
|
*/
|
|
|
|
static inline void *
|
|
get_sigframe(struct emulated_sigaction *ka, CPUX86State *env, size_t frame_size)
|
|
{
|
|
unsigned long esp;
|
|
|
|
/* Default to using normal stack */
|
|
esp = env->regs[R_ESP];
|
|
#if 0
|
|
/* This is the X/Open sanctioned signal stack switching. */
|
|
if (ka->sa.sa_flags & SA_ONSTACK) {
|
|
if (sas_ss_flags(esp) == 0)
|
|
esp = current->sas_ss_sp + current->sas_ss_size;
|
|
}
|
|
|
|
/* This is the legacy signal stack switching. */
|
|
else
|
|
#endif
|
|
if ((env->segs[R_SS].selector & 0xffff) != __USER_DS &&
|
|
!(ka->sa.sa_flags & TARGET_SA_RESTORER) &&
|
|
ka->sa.sa_restorer) {
|
|
esp = (unsigned long) ka->sa.sa_restorer;
|
|
}
|
|
return (void *)((esp - frame_size) & -8ul);
|
|
}
|
|
|
|
static void setup_frame(int sig, struct emulated_sigaction *ka,
|
|
target_sigset_t *set, CPUX86State *env)
|
|
{
|
|
struct sigframe *frame;
|
|
int i, err = 0;
|
|
|
|
frame = get_sigframe(ka, env, sizeof(*frame));
|
|
|
|
if (!access_ok(VERIFY_WRITE, frame, sizeof(*frame)))
|
|
goto give_sigsegv;
|
|
err |= __put_user((/*current->exec_domain
|
|
&& current->exec_domain->signal_invmap
|
|
&& sig < 32
|
|
? current->exec_domain->signal_invmap[sig]
|
|
: */ sig),
|
|
&frame->sig);
|
|
if (err)
|
|
goto give_sigsegv;
|
|
|
|
setup_sigcontext(&frame->sc, &frame->fpstate, env, set->sig[0]);
|
|
if (err)
|
|
goto give_sigsegv;
|
|
|
|
for(i = 1; i < TARGET_NSIG_WORDS; i++) {
|
|
if (__put_user(set->sig[i], &frame->extramask[i - 1]))
|
|
goto give_sigsegv;
|
|
}
|
|
|
|
/* Set up to return from userspace. If provided, use a stub
|
|
already in userspace. */
|
|
if (ka->sa.sa_flags & TARGET_SA_RESTORER) {
|
|
err |= __put_user(ka->sa.sa_restorer, &frame->pretcode);
|
|
} else {
|
|
err |= __put_user(frame->retcode, &frame->pretcode);
|
|
/* This is popl %eax ; movl $,%eax ; int $0x80 */
|
|
err |= __put_user(0xb858, (short *)(frame->retcode+0));
|
|
err |= __put_user(TARGET_NR_sigreturn, (int *)(frame->retcode+2));
|
|
err |= __put_user(0x80cd, (short *)(frame->retcode+6));
|
|
}
|
|
|
|
if (err)
|
|
goto give_sigsegv;
|
|
|
|
/* Set up registers for signal handler */
|
|
env->regs[R_ESP] = (unsigned long) frame;
|
|
env->eip = (unsigned long) ka->sa._sa_handler;
|
|
|
|
cpu_x86_load_seg(env, R_DS, __USER_DS);
|
|
cpu_x86_load_seg(env, R_ES, __USER_DS);
|
|
cpu_x86_load_seg(env, R_SS, __USER_DS);
|
|
cpu_x86_load_seg(env, R_CS, __USER_CS);
|
|
env->eflags &= ~TF_MASK;
|
|
|
|
return;
|
|
|
|
give_sigsegv:
|
|
if (sig == TARGET_SIGSEGV)
|
|
ka->sa._sa_handler = TARGET_SIG_DFL;
|
|
force_sig(TARGET_SIGSEGV /* , current */);
|
|
}
|
|
|
|
static void setup_rt_frame(int sig, struct emulated_sigaction *ka,
|
|
target_siginfo_t *info,
|
|
target_sigset_t *set, CPUX86State *env)
|
|
{
|
|
struct rt_sigframe *frame;
|
|
int i, err = 0;
|
|
|
|
frame = get_sigframe(ka, env, sizeof(*frame));
|
|
|
|
if (!access_ok(VERIFY_WRITE, frame, sizeof(*frame)))
|
|
goto give_sigsegv;
|
|
|
|
err |= __put_user((/*current->exec_domain
|
|
&& current->exec_domain->signal_invmap
|
|
&& sig < 32
|
|
? current->exec_domain->signal_invmap[sig]
|
|
: */sig),
|
|
&frame->sig);
|
|
err |= __put_user((target_ulong)&frame->info, &frame->pinfo);
|
|
err |= __put_user((target_ulong)&frame->uc, &frame->puc);
|
|
err |= copy_siginfo_to_user(&frame->info, info);
|
|
if (err)
|
|
goto give_sigsegv;
|
|
|
|
/* Create the ucontext. */
|
|
err |= __put_user(0, &frame->uc.uc_flags);
|
|
err |= __put_user(0, &frame->uc.uc_link);
|
|
err |= __put_user(/*current->sas_ss_sp*/ 0, &frame->uc.uc_stack.ss_sp);
|
|
err |= __put_user(/* sas_ss_flags(regs->esp) */ 0,
|
|
&frame->uc.uc_stack.ss_flags);
|
|
err |= __put_user(/* current->sas_ss_size */ 0, &frame->uc.uc_stack.ss_size);
|
|
err |= setup_sigcontext(&frame->uc.uc_mcontext, &frame->fpstate,
|
|
env, set->sig[0]);
|
|
for(i = 0; i < TARGET_NSIG_WORDS; i++) {
|
|
if (__put_user(set->sig[i], &frame->uc.uc_sigmask.sig[i]))
|
|
goto give_sigsegv;
|
|
}
|
|
|
|
/* Set up to return from userspace. If provided, use a stub
|
|
already in userspace. */
|
|
if (ka->sa.sa_flags & TARGET_SA_RESTORER) {
|
|
err |= __put_user(ka->sa.sa_restorer, &frame->pretcode);
|
|
} else {
|
|
err |= __put_user(frame->retcode, &frame->pretcode);
|
|
/* This is movl $,%eax ; int $0x80 */
|
|
err |= __put_user(0xb8, (char *)(frame->retcode+0));
|
|
err |= __put_user(TARGET_NR_rt_sigreturn, (int *)(frame->retcode+1));
|
|
err |= __put_user(0x80cd, (short *)(frame->retcode+5));
|
|
}
|
|
|
|
if (err)
|
|
goto give_sigsegv;
|
|
|
|
/* Set up registers for signal handler */
|
|
env->regs[R_ESP] = (unsigned long) frame;
|
|
env->eip = (unsigned long) ka->sa._sa_handler;
|
|
|
|
cpu_x86_load_seg(env, R_DS, __USER_DS);
|
|
cpu_x86_load_seg(env, R_ES, __USER_DS);
|
|
cpu_x86_load_seg(env, R_SS, __USER_DS);
|
|
cpu_x86_load_seg(env, R_CS, __USER_CS);
|
|
env->eflags &= ~TF_MASK;
|
|
|
|
return;
|
|
|
|
give_sigsegv:
|
|
if (sig == TARGET_SIGSEGV)
|
|
ka->sa._sa_handler = TARGET_SIG_DFL;
|
|
force_sig(TARGET_SIGSEGV /* , current */);
|
|
}
|
|
|
|
static int
|
|
restore_sigcontext(CPUX86State *env, struct target_sigcontext *sc, int *peax)
|
|
{
|
|
unsigned int err = 0;
|
|
|
|
cpu_x86_load_seg(env, R_GS, lduw(&sc->gs));
|
|
cpu_x86_load_seg(env, R_FS, lduw(&sc->fs));
|
|
cpu_x86_load_seg(env, R_ES, lduw(&sc->es));
|
|
cpu_x86_load_seg(env, R_DS, lduw(&sc->ds));
|
|
|
|
env->regs[R_EDI] = ldl(&sc->edi);
|
|
env->regs[R_ESI] = ldl(&sc->esi);
|
|
env->regs[R_EBP] = ldl(&sc->ebp);
|
|
env->regs[R_ESP] = ldl(&sc->esp);
|
|
env->regs[R_EBX] = ldl(&sc->ebx);
|
|
env->regs[R_EDX] = ldl(&sc->edx);
|
|
env->regs[R_ECX] = ldl(&sc->ecx);
|
|
env->eip = ldl(&sc->eip);
|
|
|
|
cpu_x86_load_seg(env, R_CS, lduw(&sc->cs) | 3);
|
|
cpu_x86_load_seg(env, R_SS, lduw(&sc->ss) | 3);
|
|
|
|
{
|
|
unsigned int tmpflags;
|
|
tmpflags = ldl(&sc->eflags);
|
|
env->eflags = (env->eflags & ~0x40DD5) | (tmpflags & 0x40DD5);
|
|
// regs->orig_eax = -1; /* disable syscall checks */
|
|
}
|
|
|
|
{
|
|
struct _fpstate * buf;
|
|
buf = (void *)ldl(&sc->fpstate);
|
|
if (buf) {
|
|
#if 0
|
|
if (verify_area(VERIFY_READ, buf, sizeof(*buf)))
|
|
goto badframe;
|
|
#endif
|
|
cpu_x86_frstor(env, (void *)buf, 1);
|
|
}
|
|
}
|
|
|
|
*peax = ldl(&sc->eax);
|
|
return err;
|
|
#if 0
|
|
badframe:
|
|
return 1;
|
|
#endif
|
|
}
|
|
|
|
long do_sigreturn(CPUX86State *env)
|
|
{
|
|
struct sigframe *frame = (struct sigframe *)(env->regs[R_ESP] - 8);
|
|
target_sigset_t target_set;
|
|
sigset_t set;
|
|
int eax, i;
|
|
|
|
#if defined(DEBUG_SIGNAL)
|
|
fprintf(stderr, "do_sigreturn\n");
|
|
#endif
|
|
/* set blocked signals */
|
|
if (__get_user(target_set.sig[0], &frame->sc.oldmask))
|
|
goto badframe;
|
|
for(i = 1; i < TARGET_NSIG_WORDS; i++) {
|
|
if (__get_user(target_set.sig[i], &frame->extramask[i - 1]))
|
|
goto badframe;
|
|
}
|
|
|
|
target_to_host_sigset_internal(&set, &target_set);
|
|
sigprocmask(SIG_SETMASK, &set, NULL);
|
|
|
|
/* restore registers */
|
|
if (restore_sigcontext(env, &frame->sc, &eax))
|
|
goto badframe;
|
|
return eax;
|
|
|
|
badframe:
|
|
force_sig(TARGET_SIGSEGV);
|
|
return 0;
|
|
}
|
|
|
|
long do_rt_sigreturn(CPUX86State *env)
|
|
{
|
|
struct rt_sigframe *frame = (struct rt_sigframe *)(env->regs[R_ESP] - 4);
|
|
sigset_t set;
|
|
// stack_t st;
|
|
int eax;
|
|
|
|
#if 0
|
|
if (verify_area(VERIFY_READ, frame, sizeof(*frame)))
|
|
goto badframe;
|
|
#endif
|
|
target_to_host_sigset(&set, &frame->uc.uc_sigmask);
|
|
sigprocmask(SIG_SETMASK, &set, NULL);
|
|
|
|
if (restore_sigcontext(env, &frame->uc.uc_mcontext, &eax))
|
|
goto badframe;
|
|
|
|
#if 0
|
|
if (__copy_from_user(&st, &frame->uc.uc_stack, sizeof(st)))
|
|
goto badframe;
|
|
/* It is more difficult to avoid calling this function than to
|
|
call it and ignore errors. */
|
|
do_sigaltstack(&st, NULL, regs->esp);
|
|
#endif
|
|
return eax;
|
|
|
|
badframe:
|
|
force_sig(TARGET_SIGSEGV);
|
|
return 0;
|
|
}
|
|
|
|
#elif defined(TARGET_ARM)
|
|
|
|
struct target_sigcontext {
|
|
target_ulong trap_no;
|
|
target_ulong error_code;
|
|
target_ulong oldmask;
|
|
target_ulong arm_r0;
|
|
target_ulong arm_r1;
|
|
target_ulong arm_r2;
|
|
target_ulong arm_r3;
|
|
target_ulong arm_r4;
|
|
target_ulong arm_r5;
|
|
target_ulong arm_r6;
|
|
target_ulong arm_r7;
|
|
target_ulong arm_r8;
|
|
target_ulong arm_r9;
|
|
target_ulong arm_r10;
|
|
target_ulong arm_fp;
|
|
target_ulong arm_ip;
|
|
target_ulong arm_sp;
|
|
target_ulong arm_lr;
|
|
target_ulong arm_pc;
|
|
target_ulong arm_cpsr;
|
|
target_ulong fault_address;
|
|
};
|
|
|
|
typedef struct target_sigaltstack {
|
|
target_ulong ss_sp;
|
|
int ss_flags;
|
|
target_ulong ss_size;
|
|
} target_stack_t;
|
|
|
|
struct target_ucontext {
|
|
target_ulong uc_flags;
|
|
target_ulong uc_link;
|
|
target_stack_t uc_stack;
|
|
struct target_sigcontext uc_mcontext;
|
|
target_sigset_t uc_sigmask; /* mask last for extensibility */
|
|
};
|
|
|
|
struct sigframe
|
|
{
|
|
struct target_sigcontext sc;
|
|
target_ulong extramask[TARGET_NSIG_WORDS-1];
|
|
target_ulong retcode;
|
|
};
|
|
|
|
struct rt_sigframe
|
|
{
|
|
struct target_siginfo *pinfo;
|
|
void *puc;
|
|
struct target_siginfo info;
|
|
struct target_ucontext uc;
|
|
target_ulong retcode;
|
|
};
|
|
|
|
#define TARGET_CONFIG_CPU_32 1
|
|
|
|
/*
|
|
* For ARM syscalls, we encode the syscall number into the instruction.
|
|
*/
|
|
#define SWI_SYS_SIGRETURN (0xef000000|(TARGET_NR_sigreturn + ARM_SYSCALL_BASE))
|
|
#define SWI_SYS_RT_SIGRETURN (0xef000000|(TARGET_NR_rt_sigreturn + ARM_SYSCALL_BASE))
|
|
|
|
/*
|
|
* For Thumb syscalls, we pass the syscall number via r7. We therefore
|
|
* need two 16-bit instructions.
|
|
*/
|
|
#define SWI_THUMB_SIGRETURN (0xdf00 << 16 | 0x2700 | (TARGET_NR_sigreturn))
|
|
#define SWI_THUMB_RT_SIGRETURN (0xdf00 << 16 | 0x2700 | (TARGET_NR_rt_sigreturn))
|
|
|
|
static const target_ulong retcodes[4] = {
|
|
SWI_SYS_SIGRETURN, SWI_THUMB_SIGRETURN,
|
|
SWI_SYS_RT_SIGRETURN, SWI_THUMB_RT_SIGRETURN
|
|
};
|
|
|
|
|
|
#define __put_user_error(x,p,e) __put_user(x, p)
|
|
#define __get_user_error(x,p,e) __get_user(x, p)
|
|
|
|
static inline int valid_user_regs(CPUState *regs)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
setup_sigcontext(struct target_sigcontext *sc, /*struct _fpstate *fpstate,*/
|
|
CPUState *env, unsigned long mask)
|
|
{
|
|
int err = 0;
|
|
|
|
__put_user_error(env->regs[0], &sc->arm_r0, err);
|
|
__put_user_error(env->regs[1], &sc->arm_r1, err);
|
|
__put_user_error(env->regs[2], &sc->arm_r2, err);
|
|
__put_user_error(env->regs[3], &sc->arm_r3, err);
|
|
__put_user_error(env->regs[4], &sc->arm_r4, err);
|
|
__put_user_error(env->regs[5], &sc->arm_r5, err);
|
|
__put_user_error(env->regs[6], &sc->arm_r6, err);
|
|
__put_user_error(env->regs[7], &sc->arm_r7, err);
|
|
__put_user_error(env->regs[8], &sc->arm_r8, err);
|
|
__put_user_error(env->regs[9], &sc->arm_r9, err);
|
|
__put_user_error(env->regs[10], &sc->arm_r10, err);
|
|
__put_user_error(env->regs[11], &sc->arm_fp, err);
|
|
__put_user_error(env->regs[12], &sc->arm_ip, err);
|
|
__put_user_error(env->regs[13], &sc->arm_sp, err);
|
|
__put_user_error(env->regs[14], &sc->arm_lr, err);
|
|
__put_user_error(env->regs[15], &sc->arm_pc, err);
|
|
#ifdef TARGET_CONFIG_CPU_32
|
|
__put_user_error(env->cpsr, &sc->arm_cpsr, err);
|
|
#endif
|
|
|
|
__put_user_error(/* current->thread.trap_no */ 0, &sc->trap_no, err);
|
|
__put_user_error(/* current->thread.error_code */ 0, &sc->error_code, err);
|
|
__put_user_error(/* current->thread.address */ 0, &sc->fault_address, err);
|
|
__put_user_error(mask, &sc->oldmask, err);
|
|
|
|
return err;
|
|
}
|
|
|
|
static inline void *
|
|
get_sigframe(struct emulated_sigaction *ka, CPUState *regs, int framesize)
|
|
{
|
|
unsigned long sp = regs->regs[13];
|
|
|
|
#if 0
|
|
/*
|
|
* This is the X/Open sanctioned signal stack switching.
|
|
*/
|
|
if ((ka->sa.sa_flags & SA_ONSTACK) && !sas_ss_flags(sp))
|
|
sp = current->sas_ss_sp + current->sas_ss_size;
|
|
#endif
|
|
/*
|
|
* ATPCS B01 mandates 8-byte alignment
|
|
*/
|
|
return (void *)((sp - framesize) & ~7);
|
|
}
|
|
|
|
static int
|
|
setup_return(CPUState *env, struct emulated_sigaction *ka,
|
|
target_ulong *rc, void *frame, int usig)
|
|
{
|
|
target_ulong handler = (target_ulong)ka->sa._sa_handler;
|
|
target_ulong retcode;
|
|
int thumb = 0;
|
|
#if defined(TARGET_CONFIG_CPU_32)
|
|
target_ulong cpsr = env->cpsr;
|
|
|
|
#if 0
|
|
/*
|
|
* Maybe we need to deliver a 32-bit signal to a 26-bit task.
|
|
*/
|
|
if (ka->sa.sa_flags & SA_THIRTYTWO)
|
|
cpsr = (cpsr & ~MODE_MASK) | USR_MODE;
|
|
|
|
#ifdef CONFIG_ARM_THUMB
|
|
if (elf_hwcap & HWCAP_THUMB) {
|
|
/*
|
|
* The LSB of the handler determines if we're going to
|
|
* be using THUMB or ARM mode for this signal handler.
|
|
*/
|
|
thumb = handler & 1;
|
|
|
|
if (thumb)
|
|
cpsr |= T_BIT;
|
|
else
|
|
cpsr &= ~T_BIT;
|
|
}
|
|
#endif
|
|
#endif
|
|
#endif /* TARGET_CONFIG_CPU_32 */
|
|
|
|
if (ka->sa.sa_flags & TARGET_SA_RESTORER) {
|
|
retcode = (target_ulong)ka->sa.sa_restorer;
|
|
} else {
|
|
unsigned int idx = thumb;
|
|
|
|
if (ka->sa.sa_flags & TARGET_SA_SIGINFO)
|
|
idx += 2;
|
|
|
|
if (__put_user(retcodes[idx], rc))
|
|
return 1;
|
|
#if 0
|
|
flush_icache_range((target_ulong)rc,
|
|
(target_ulong)(rc + 1));
|
|
#endif
|
|
retcode = ((target_ulong)rc) + thumb;
|
|
}
|
|
|
|
env->regs[0] = usig;
|
|
env->regs[13] = (target_ulong)frame;
|
|
env->regs[14] = retcode;
|
|
env->regs[15] = handler & (thumb ? ~1 : ~3);
|
|
|
|
#ifdef TARGET_CONFIG_CPU_32
|
|
env->cpsr = cpsr;
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void setup_frame(int usig, struct emulated_sigaction *ka,
|
|
target_sigset_t *set, CPUState *regs)
|
|
{
|
|
struct sigframe *frame = get_sigframe(ka, regs, sizeof(*frame));
|
|
int i, err = 0;
|
|
|
|
err |= setup_sigcontext(&frame->sc, /*&frame->fpstate,*/ regs, set->sig[0]);
|
|
|
|
for(i = 1; i < TARGET_NSIG_WORDS; i++) {
|
|
if (__put_user(set->sig[i], &frame->extramask[i - 1]))
|
|
return;
|
|
}
|
|
|
|
if (err == 0)
|
|
err = setup_return(regs, ka, &frame->retcode, frame, usig);
|
|
// return err;
|
|
}
|
|
|
|
static void setup_rt_frame(int usig, struct emulated_sigaction *ka,
|
|
target_siginfo_t *info,
|
|
target_sigset_t *set, CPUState *env)
|
|
{
|
|
struct rt_sigframe *frame = get_sigframe(ka, env, sizeof(*frame));
|
|
int i, err = 0;
|
|
|
|
if (!access_ok(VERIFY_WRITE, frame, sizeof (*frame)))
|
|
return /* 1 */;
|
|
|
|
__put_user_error(&frame->info, (target_ulong *)&frame->pinfo, err);
|
|
__put_user_error(&frame->uc, (target_ulong *)&frame->puc, err);
|
|
err |= copy_siginfo_to_user(&frame->info, info);
|
|
|
|
/* Clear all the bits of the ucontext we don't use. */
|
|
err |= __clear_user(&frame->uc, offsetof(struct ucontext, uc_mcontext));
|
|
|
|
err |= setup_sigcontext(&frame->uc.uc_mcontext, /*&frame->fpstate,*/
|
|
env, set->sig[0]);
|
|
for(i = 0; i < TARGET_NSIG_WORDS; i++) {
|
|
if (__put_user(set->sig[i], &frame->uc.uc_sigmask.sig[i]))
|
|
return;
|
|
}
|
|
|
|
if (err == 0)
|
|
err = setup_return(env, ka, &frame->retcode, frame, usig);
|
|
|
|
if (err == 0) {
|
|
/*
|
|
* For realtime signals we must also set the second and third
|
|
* arguments for the signal handler.
|
|
* -- Peter Maydell <pmaydell@chiark.greenend.org.uk> 2000-12-06
|
|
*/
|
|
env->regs[1] = (target_ulong)frame->pinfo;
|
|
env->regs[2] = (target_ulong)frame->puc;
|
|
}
|
|
|
|
// return err;
|
|
}
|
|
|
|
static int
|
|
restore_sigcontext(CPUState *env, struct target_sigcontext *sc)
|
|
{
|
|
int err = 0;
|
|
|
|
__get_user_error(env->regs[0], &sc->arm_r0, err);
|
|
__get_user_error(env->regs[1], &sc->arm_r1, err);
|
|
__get_user_error(env->regs[2], &sc->arm_r2, err);
|
|
__get_user_error(env->regs[3], &sc->arm_r3, err);
|
|
__get_user_error(env->regs[4], &sc->arm_r4, err);
|
|
__get_user_error(env->regs[5], &sc->arm_r5, err);
|
|
__get_user_error(env->regs[6], &sc->arm_r6, err);
|
|
__get_user_error(env->regs[7], &sc->arm_r7, err);
|
|
__get_user_error(env->regs[8], &sc->arm_r8, err);
|
|
__get_user_error(env->regs[9], &sc->arm_r9, err);
|
|
__get_user_error(env->regs[10], &sc->arm_r10, err);
|
|
__get_user_error(env->regs[11], &sc->arm_fp, err);
|
|
__get_user_error(env->regs[12], &sc->arm_ip, err);
|
|
__get_user_error(env->regs[13], &sc->arm_sp, err);
|
|
__get_user_error(env->regs[14], &sc->arm_lr, err);
|
|
__get_user_error(env->regs[15], &sc->arm_pc, err);
|
|
#ifdef TARGET_CONFIG_CPU_32
|
|
__get_user_error(env->cpsr, &sc->arm_cpsr, err);
|
|
#endif
|
|
|
|
err |= !valid_user_regs(env);
|
|
|
|
return err;
|
|
}
|
|
|
|
long do_sigreturn(CPUState *env)
|
|
{
|
|
struct sigframe *frame;
|
|
target_sigset_t set;
|
|
sigset_t host_set;
|
|
int i;
|
|
|
|
/*
|
|
* Since we stacked the signal on a 64-bit boundary,
|
|
* then 'sp' should be word aligned here. If it's
|
|
* not, then the user is trying to mess with us.
|
|
*/
|
|
if (env->regs[13] & 7)
|
|
goto badframe;
|
|
|
|
frame = (struct sigframe *)env->regs[13];
|
|
|
|
#if 0
|
|
if (verify_area(VERIFY_READ, frame, sizeof (*frame)))
|
|
goto badframe;
|
|
#endif
|
|
if (__get_user(set.sig[0], &frame->sc.oldmask))
|
|
goto badframe;
|
|
for(i = 1; i < TARGET_NSIG_WORDS; i++) {
|
|
if (__get_user(set.sig[i], &frame->extramask[i - 1]))
|
|
goto badframe;
|
|
}
|
|
|
|
target_to_host_sigset_internal(&host_set, &set);
|
|
sigprocmask(SIG_SETMASK, &host_set, NULL);
|
|
|
|
if (restore_sigcontext(env, &frame->sc))
|
|
goto badframe;
|
|
|
|
#if 0
|
|
/* Send SIGTRAP if we're single-stepping */
|
|
if (ptrace_cancel_bpt(current))
|
|
send_sig(SIGTRAP, current, 1);
|
|
#endif
|
|
return env->regs[0];
|
|
|
|
badframe:
|
|
force_sig(SIGSEGV /* , current */);
|
|
return 0;
|
|
}
|
|
|
|
long do_rt_sigreturn(CPUState *env)
|
|
{
|
|
struct rt_sigframe *frame;
|
|
sigset_t host_set;
|
|
|
|
/*
|
|
* Since we stacked the signal on a 64-bit boundary,
|
|
* then 'sp' should be word aligned here. If it's
|
|
* not, then the user is trying to mess with us.
|
|
*/
|
|
if (env->regs[13] & 7)
|
|
goto badframe;
|
|
|
|
frame = (struct rt_sigframe *)env->regs[13];
|
|
|
|
#if 0
|
|
if (verify_area(VERIFY_READ, frame, sizeof (*frame)))
|
|
goto badframe;
|
|
#endif
|
|
target_to_host_sigset(&host_set, &frame->uc.uc_sigmask);
|
|
sigprocmask(SIG_SETMASK, &host_set, NULL);
|
|
|
|
if (restore_sigcontext(env, &frame->uc.uc_mcontext))
|
|
goto badframe;
|
|
|
|
#if 0
|
|
/* Send SIGTRAP if we're single-stepping */
|
|
if (ptrace_cancel_bpt(current))
|
|
send_sig(SIGTRAP, current, 1);
|
|
#endif
|
|
return env->regs[0];
|
|
|
|
badframe:
|
|
force_sig(SIGSEGV /* , current */);
|
|
return 0;
|
|
}
|
|
|
|
#elif defined(TARGET_SPARC)
|
|
#define __SUNOS_MAXWIN 31
|
|
|
|
/* This is what SunOS does, so shall I. */
|
|
struct target_sigcontext {
|
|
target_ulong sigc_onstack; /* state to restore */
|
|
|
|
target_ulong sigc_mask; /* sigmask to restore */
|
|
target_ulong sigc_sp; /* stack pointer */
|
|
target_ulong sigc_pc; /* program counter */
|
|
target_ulong sigc_npc; /* next program counter */
|
|
target_ulong sigc_psr; /* for condition codes etc */
|
|
target_ulong sigc_g1; /* User uses these two registers */
|
|
target_ulong sigc_o0; /* within the trampoline code. */
|
|
|
|
/* Now comes information regarding the users window set
|
|
* at the time of the signal.
|
|
*/
|
|
target_ulong sigc_oswins; /* outstanding windows */
|
|
|
|
/* stack ptrs for each regwin buf */
|
|
char *sigc_spbuf[__SUNOS_MAXWIN];
|
|
|
|
/* Windows to restore after signal */
|
|
struct {
|
|
target_ulong locals[8];
|
|
target_ulong ins[8];
|
|
} sigc_wbuf[__SUNOS_MAXWIN];
|
|
};
|
|
/* A Sparc stack frame */
|
|
struct sparc_stackf {
|
|
target_ulong locals[8];
|
|
target_ulong ins[6];
|
|
struct sparc_stackf *fp;
|
|
target_ulong callers_pc;
|
|
char *structptr;
|
|
target_ulong xargs[6];
|
|
target_ulong xxargs[1];
|
|
};
|
|
|
|
typedef struct {
|
|
struct {
|
|
target_ulong psr;
|
|
target_ulong pc;
|
|
target_ulong npc;
|
|
target_ulong y;
|
|
target_ulong u_regs[16]; /* globals and ins */
|
|
} si_regs;
|
|
int si_mask;
|
|
} __siginfo_t;
|
|
|
|
typedef struct {
|
|
unsigned long si_float_regs [32];
|
|
unsigned long si_fsr;
|
|
unsigned long si_fpqdepth;
|
|
struct {
|
|
unsigned long *insn_addr;
|
|
unsigned long insn;
|
|
} si_fpqueue [16];
|
|
} __siginfo_fpu_t;
|
|
|
|
|
|
struct target_signal_frame {
|
|
struct sparc_stackf ss;
|
|
__siginfo_t info;
|
|
__siginfo_fpu_t *fpu_save;
|
|
target_ulong insns[2] __attribute__ ((aligned (8)));
|
|
target_ulong extramask[TARGET_NSIG_WORDS - 1];
|
|
target_ulong extra_size; /* Should be 0 */
|
|
__siginfo_fpu_t fpu_state;
|
|
};
|
|
struct target_rt_signal_frame {
|
|
struct sparc_stackf ss;
|
|
siginfo_t info;
|
|
target_ulong regs[20];
|
|
sigset_t mask;
|
|
__siginfo_fpu_t *fpu_save;
|
|
unsigned int insns[2];
|
|
stack_t stack;
|
|
unsigned int extra_size; /* Should be 0 */
|
|
__siginfo_fpu_t fpu_state;
|
|
};
|
|
|
|
#define UREG_O0 0
|
|
#define UREG_O6 6
|
|
#define UREG_I0 16
|
|
#define UREG_I1 17
|
|
#define UREG_I2 18
|
|
#define UREG_I6 22
|
|
#define UREG_I7 23
|
|
#define UREG_FP UREG_I6
|
|
#define UREG_SP UREG_O6
|
|
|
|
static inline void *get_sigframe(struct emulated_sigaction *sa, CPUState *env, unsigned long framesize)
|
|
{
|
|
unsigned long sp;
|
|
|
|
sp = env->regwptr[UREG_FP];
|
|
#if 0
|
|
|
|
/* This is the X/Open sanctioned signal stack switching. */
|
|
if (sa->sa_flags & TARGET_SA_ONSTACK) {
|
|
if (!on_sig_stack(sp) && !((current->sas_ss_sp + current->sas_ss_size) & 7))
|
|
sp = current->sas_ss_sp + current->sas_ss_size;
|
|
}
|
|
#endif
|
|
return (void *)(sp - framesize);
|
|
}
|
|
|
|
static int
|
|
setup___siginfo(__siginfo_t *si, CPUState *env, target_ulong mask)
|
|
{
|
|
int err = 0, i;
|
|
|
|
fprintf(stderr, "2.a %lx psr: %lx regs: %lx\n", si, env->psr, si->si_regs.psr);
|
|
err |= __put_user(env->psr, &si->si_regs.psr);
|
|
fprintf(stderr, "2.a1 pc:%lx\n", si->si_regs.pc);
|
|
err |= __put_user(env->pc, &si->si_regs.pc);
|
|
err |= __put_user(env->npc, &si->si_regs.npc);
|
|
err |= __put_user(env->y, &si->si_regs.y);
|
|
fprintf(stderr, "2.b\n");
|
|
for (i=0; i < 7; i++) {
|
|
err |= __put_user(env->gregs[i], &si->si_regs.u_regs[i]);
|
|
}
|
|
for (i=0; i < 7; i++) {
|
|
err |= __put_user(env->regwptr[i+16], &si->si_regs.u_regs[i+8]);
|
|
}
|
|
fprintf(stderr, "2.c\n");
|
|
err |= __put_user(mask, &si->si_mask);
|
|
return err;
|
|
}
|
|
static int
|
|
setup_sigcontext(struct target_sigcontext *sc, /*struct _fpstate *fpstate,*/
|
|
CPUState *env, unsigned long mask)
|
|
{
|
|
int err = 0;
|
|
|
|
err |= __put_user(mask, &sc->sigc_mask);
|
|
err |= __put_user(env->regwptr[UREG_SP], &sc->sigc_sp);
|
|
err |= __put_user(env->pc, &sc->sigc_pc);
|
|
err |= __put_user(env->npc, &sc->sigc_npc);
|
|
err |= __put_user(env->psr, &sc->sigc_psr);
|
|
err |= __put_user(env->gregs[1], &sc->sigc_g1);
|
|
err |= __put_user(env->regwptr[UREG_O0], &sc->sigc_o0);
|
|
|
|
return err;
|
|
}
|
|
#define NF_ALIGNEDSZ (((sizeof(struct target_signal_frame) + 7) & (~7)))
|
|
|
|
static void setup_frame(int sig, struct emulated_sigaction *ka,
|
|
target_sigset_t *set, CPUState *env)
|
|
{
|
|
struct target_signal_frame *sf;
|
|
int sigframe_size, err, i;
|
|
|
|
/* 1. Make sure everything is clean */
|
|
//synchronize_user_stack();
|
|
|
|
sigframe_size = NF_ALIGNEDSZ;
|
|
|
|
sf = (struct target_signal_frame *)
|
|
get_sigframe(ka, env, sigframe_size);
|
|
|
|
#if 0
|
|
if (invalid_frame_pointer(sf, sigframe_size))
|
|
goto sigill_and_return;
|
|
#endif
|
|
/* 2. Save the current process state */
|
|
err = setup___siginfo(&sf->info, env, set->sig[0]);
|
|
err |= __put_user(0, &sf->extra_size);
|
|
|
|
//err |= save_fpu_state(regs, &sf->fpu_state);
|
|
//err |= __put_user(&sf->fpu_state, &sf->fpu_save);
|
|
|
|
err |= __put_user(set->sig[0], &sf->info.si_mask);
|
|
for (i = 0; i < TARGET_NSIG_WORDS - 1; i++) {
|
|
err |= __put_user(set->sig[i + 1], &sf->extramask[i]);
|
|
}
|
|
|
|
for (i = 0; i < 7; i++) {
|
|
err |= __put_user(env->regwptr[i + 8], &sf->ss.locals[i]);
|
|
}
|
|
for (i = 0; i < 7; i++) {
|
|
err |= __put_user(env->regwptr[i + 16], &sf->ss.ins[i]);
|
|
}
|
|
//err |= __copy_to_user(sf, (char *) regs->u_regs[UREG_FP],
|
|
// sizeof(struct reg_window));
|
|
if (err)
|
|
goto sigsegv;
|
|
|
|
/* 3. signal handler back-trampoline and parameters */
|
|
env->regwptr[UREG_FP] = (target_ulong) sf;
|
|
env->regwptr[UREG_I0] = sig;
|
|
env->regwptr[UREG_I1] = (target_ulong) &sf->info;
|
|
env->regwptr[UREG_I2] = (target_ulong) &sf->info;
|
|
|
|
/* 4. signal handler */
|
|
env->pc = (unsigned long) ka->sa._sa_handler;
|
|
env->npc = (env->pc + 4);
|
|
/* 5. return to kernel instructions */
|
|
if (ka->sa.sa_restorer)
|
|
env->regwptr[UREG_I7] = (unsigned long)ka->sa.sa_restorer;
|
|
else {
|
|
env->regwptr[UREG_I7] = (unsigned long)(&(sf->insns[0]) - 2);
|
|
|
|
/* mov __NR_sigreturn, %g1 */
|
|
err |= __put_user(0x821020d8, &sf->insns[0]);
|
|
|
|
/* t 0x10 */
|
|
err |= __put_user(0x91d02010, &sf->insns[1]);
|
|
if (err)
|
|
goto sigsegv;
|
|
|
|
/* Flush instruction space. */
|
|
//flush_sig_insns(current->mm, (unsigned long) &(sf->insns[0]));
|
|
//tb_flush(env);
|
|
}
|
|
return;
|
|
|
|
sigill_and_return:
|
|
force_sig(TARGET_SIGILL);
|
|
sigsegv:
|
|
force_sig(TARGET_SIGSEGV);
|
|
}
|
|
static inline int
|
|
restore_fpu_state(CPUState *env, __siginfo_fpu_t *fpu)
|
|
{
|
|
int err;
|
|
#if 0
|
|
#ifdef CONFIG_SMP
|
|
if (current->flags & PF_USEDFPU)
|
|
regs->psr &= ~PSR_EF;
|
|
#else
|
|
if (current == last_task_used_math) {
|
|
last_task_used_math = 0;
|
|
regs->psr &= ~PSR_EF;
|
|
}
|
|
#endif
|
|
current->used_math = 1;
|
|
current->flags &= ~PF_USEDFPU;
|
|
#endif
|
|
#if 0
|
|
if (verify_area (VERIFY_READ, fpu, sizeof(*fpu)))
|
|
return -EFAULT;
|
|
#endif
|
|
|
|
err = __copy_from_user(&env->fpr[0], &fpu->si_float_regs[0],
|
|
(sizeof(unsigned long) * 32));
|
|
err |= __get_user(env->fsr, &fpu->si_fsr);
|
|
#if 0
|
|
err |= __get_user(current->thread.fpqdepth, &fpu->si_fpqdepth);
|
|
if (current->thread.fpqdepth != 0)
|
|
err |= __copy_from_user(¤t->thread.fpqueue[0],
|
|
&fpu->si_fpqueue[0],
|
|
((sizeof(unsigned long) +
|
|
(sizeof(unsigned long *)))*16));
|
|
#endif
|
|
return err;
|
|
}
|
|
|
|
|
|
static void setup_rt_frame(int sig, struct emulated_sigaction *ka,
|
|
target_siginfo_t *info,
|
|
target_sigset_t *set, CPUState *env)
|
|
{
|
|
fprintf(stderr, "setup_rt_frame: not implemented\n");
|
|
}
|
|
|
|
long do_sigreturn(CPUState *env)
|
|
{
|
|
struct target_signal_frame *sf;
|
|
unsigned long up_psr, pc, npc;
|
|
target_sigset_t set;
|
|
__siginfo_fpu_t *fpu_save;
|
|
int err;
|
|
|
|
sf = (struct new_signal_frame *) env->regwptr[UREG_FP];
|
|
fprintf(stderr, "sigreturn sf: %lx\n", &sf);
|
|
|
|
/* 1. Make sure we are not getting garbage from the user */
|
|
#if 0
|
|
if (verify_area (VERIFY_READ, sf, sizeof (*sf)))
|
|
goto segv_and_exit;
|
|
#endif
|
|
|
|
if (((uint) sf) & 3)
|
|
goto segv_and_exit;
|
|
|
|
err = __get_user(pc, &sf->info.si_regs.pc);
|
|
err |= __get_user(npc, &sf->info.si_regs.npc);
|
|
|
|
fprintf(stderr, "pc: %lx npc %lx\n", pc, npc);
|
|
if ((pc | npc) & 3)
|
|
goto segv_and_exit;
|
|
|
|
/* 2. Restore the state */
|
|
up_psr = env->psr;
|
|
//err |= __copy_from_user(regs, &sf->info.si_regs, sizeof (struct pt_regs)
|
|
//);
|
|
/* User can only change condition codes and FPU enabling in %psr. */
|
|
env->psr = (up_psr & ~(PSR_ICC /* | PSR_EF */))
|
|
| (env->psr & (PSR_ICC /* | PSR_EF */));
|
|
fprintf(stderr, "psr: %lx\n", env->psr);
|
|
|
|
err |= __get_user(fpu_save, &sf->fpu_save);
|
|
|
|
if (fpu_save)
|
|
err |= restore_fpu_state(env, fpu_save);
|
|
|
|
/* This is pretty much atomic, no amount locking would prevent
|
|
* the races which exist anyways.
|
|
*/
|
|
err |= __get_user(set.sig[0], &sf->info.si_mask);
|
|
//err |= __copy_from_user(&set.sig[1], &sf->extramask,
|
|
// (_NSIG_WORDS-1) * sizeof(unsigned int));
|
|
|
|
if (err)
|
|
goto segv_and_exit;
|
|
|
|
#if 0
|
|
sigdelsetmask(&set, ~_BLOCKABLE);
|
|
spin_lock_irq(¤t->sigmask_lock);
|
|
current->blocked = set;
|
|
recalc_sigpending(current);
|
|
spin_unlock_irq(¤t->sigmask_lock);
|
|
#endif
|
|
fprintf(stderr, "returning %lx\n", env->regwptr[0]);
|
|
return env->regwptr[0];
|
|
|
|
segv_and_exit:
|
|
force_sig(TARGET_SIGSEGV);
|
|
}
|
|
|
|
long do_rt_sigreturn(CPUState *env)
|
|
{
|
|
fprintf(stderr, "do_rt_sigreturn: not implemented\n");
|
|
return -ENOSYS;
|
|
}
|
|
|
|
|
|
#else
|
|
|
|
static void setup_frame(int sig, struct emulated_sigaction *ka,
|
|
target_sigset_t *set, CPUState *env)
|
|
{
|
|
fprintf(stderr, "setup_frame: not implemented\n");
|
|
}
|
|
|
|
static void setup_rt_frame(int sig, struct emulated_sigaction *ka,
|
|
target_siginfo_t *info,
|
|
target_sigset_t *set, CPUState *env)
|
|
{
|
|
fprintf(stderr, "setup_rt_frame: not implemented\n");
|
|
}
|
|
|
|
long do_sigreturn(CPUState *env)
|
|
{
|
|
fprintf(stderr, "do_sigreturn: not implemented\n");
|
|
return -ENOSYS;
|
|
}
|
|
|
|
long do_rt_sigreturn(CPUState *env)
|
|
{
|
|
fprintf(stderr, "do_rt_sigreturn: not implemented\n");
|
|
return -ENOSYS;
|
|
}
|
|
|
|
#endif
|
|
|
|
void process_pending_signals(void *cpu_env)
|
|
{
|
|
int sig;
|
|
target_ulong handler;
|
|
sigset_t set, old_set;
|
|
target_sigset_t target_old_set;
|
|
struct emulated_sigaction *k;
|
|
struct sigqueue *q;
|
|
|
|
if (!signal_pending)
|
|
return;
|
|
|
|
k = sigact_table;
|
|
for(sig = 1; sig <= TARGET_NSIG; sig++) {
|
|
if (k->pending)
|
|
goto handle_signal;
|
|
k++;
|
|
}
|
|
/* if no signal is pending, just return */
|
|
signal_pending = 0;
|
|
return;
|
|
|
|
handle_signal:
|
|
#ifdef DEBUG_SIGNAL
|
|
fprintf(stderr, "qemu: process signal %d\n", sig);
|
|
#endif
|
|
/* dequeue signal */
|
|
q = k->first;
|
|
k->first = q->next;
|
|
if (!k->first)
|
|
k->pending = 0;
|
|
|
|
handler = k->sa._sa_handler;
|
|
if (handler == TARGET_SIG_DFL) {
|
|
/* default handler : ignore some signal. The other are fatal */
|
|
if (sig != TARGET_SIGCHLD &&
|
|
sig != TARGET_SIGURG &&
|
|
sig != TARGET_SIGWINCH) {
|
|
force_sig(sig);
|
|
}
|
|
} else if (handler == TARGET_SIG_IGN) {
|
|
/* ignore sig */
|
|
} else if (handler == TARGET_SIG_ERR) {
|
|
force_sig(sig);
|
|
} else {
|
|
/* compute the blocked signals during the handler execution */
|
|
target_to_host_sigset(&set, &k->sa.sa_mask);
|
|
/* SA_NODEFER indicates that the current signal should not be
|
|
blocked during the handler */
|
|
if (!(k->sa.sa_flags & TARGET_SA_NODEFER))
|
|
sigaddset(&set, target_to_host_signal(sig));
|
|
|
|
/* block signals in the handler using Linux */
|
|
sigprocmask(SIG_BLOCK, &set, &old_set);
|
|
/* save the previous blocked signal state to restore it at the
|
|
end of the signal execution (see do_sigreturn) */
|
|
host_to_target_sigset_internal(&target_old_set, &old_set);
|
|
|
|
/* if the CPU is in VM86 mode, we restore the 32 bit values */
|
|
#ifdef TARGET_I386
|
|
{
|
|
CPUX86State *env = cpu_env;
|
|
if (env->eflags & VM_MASK)
|
|
save_v86_state(env);
|
|
}
|
|
#endif
|
|
/* prepare the stack frame of the virtual CPU */
|
|
if (k->sa.sa_flags & TARGET_SA_SIGINFO)
|
|
setup_rt_frame(sig, k, &q->info, &target_old_set, cpu_env);
|
|
else
|
|
setup_frame(sig, k, &target_old_set, cpu_env);
|
|
if (k->sa.sa_flags & TARGET_SA_RESETHAND)
|
|
k->sa._sa_handler = TARGET_SIG_DFL;
|
|
}
|
|
if (q != &k->info)
|
|
free_sigqueue(q);
|
|
}
|
|
|
|
|