qemu/hw/dma/xlnx-zdma.c
Richard Henderson 63e6b56450 hw/dma: Constify VMState
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20231221031652.119827-28-richard.henderson@linaro.org>
2023-12-29 11:17:30 +11:00

844 lines
27 KiB
C

/*
* QEMU model of the ZynqMP generic DMA
*
* Copyright (c) 2014 Xilinx Inc.
* Copyright (c) 2018 FEIMTECH AB
*
* Written by Edgar E. Iglesias <edgar.iglesias@xilinx.com>,
* Francisco Iglesias <francisco.iglesias@feimtech.se>
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "qemu/osdep.h"
#include "hw/dma/xlnx-zdma.h"
#include "hw/irq.h"
#include "hw/qdev-properties.h"
#include "migration/vmstate.h"
#include "qemu/bitops.h"
#include "qemu/log.h"
#include "qemu/module.h"
#include "qapi/error.h"
#ifndef XLNX_ZDMA_ERR_DEBUG
#define XLNX_ZDMA_ERR_DEBUG 0
#endif
REG32(ZDMA_ERR_CTRL, 0x0)
FIELD(ZDMA_ERR_CTRL, APB_ERR_RES, 0, 1)
REG32(ZDMA_CH_ISR, 0x100)
FIELD(ZDMA_CH_ISR, DMA_PAUSE, 11, 1)
FIELD(ZDMA_CH_ISR, DMA_DONE, 10, 1)
FIELD(ZDMA_CH_ISR, AXI_WR_DATA, 9, 1)
FIELD(ZDMA_CH_ISR, AXI_RD_DATA, 8, 1)
FIELD(ZDMA_CH_ISR, AXI_RD_DST_DSCR, 7, 1)
FIELD(ZDMA_CH_ISR, AXI_RD_SRC_DSCR, 6, 1)
FIELD(ZDMA_CH_ISR, IRQ_DST_ACCT_ERR, 5, 1)
FIELD(ZDMA_CH_ISR, IRQ_SRC_ACCT_ERR, 4, 1)
FIELD(ZDMA_CH_ISR, BYTE_CNT_OVRFL, 3, 1)
FIELD(ZDMA_CH_ISR, DST_DSCR_DONE, 2, 1)
FIELD(ZDMA_CH_ISR, SRC_DSCR_DONE, 1, 1)
FIELD(ZDMA_CH_ISR, INV_APB, 0, 1)
REG32(ZDMA_CH_IMR, 0x104)
FIELD(ZDMA_CH_IMR, DMA_PAUSE, 11, 1)
FIELD(ZDMA_CH_IMR, DMA_DONE, 10, 1)
FIELD(ZDMA_CH_IMR, AXI_WR_DATA, 9, 1)
FIELD(ZDMA_CH_IMR, AXI_RD_DATA, 8, 1)
FIELD(ZDMA_CH_IMR, AXI_RD_DST_DSCR, 7, 1)
FIELD(ZDMA_CH_IMR, AXI_RD_SRC_DSCR, 6, 1)
FIELD(ZDMA_CH_IMR, IRQ_DST_ACCT_ERR, 5, 1)
FIELD(ZDMA_CH_IMR, IRQ_SRC_ACCT_ERR, 4, 1)
FIELD(ZDMA_CH_IMR, BYTE_CNT_OVRFL, 3, 1)
FIELD(ZDMA_CH_IMR, DST_DSCR_DONE, 2, 1)
FIELD(ZDMA_CH_IMR, SRC_DSCR_DONE, 1, 1)
FIELD(ZDMA_CH_IMR, INV_APB, 0, 1)
REG32(ZDMA_CH_IEN, 0x108)
FIELD(ZDMA_CH_IEN, DMA_PAUSE, 11, 1)
FIELD(ZDMA_CH_IEN, DMA_DONE, 10, 1)
FIELD(ZDMA_CH_IEN, AXI_WR_DATA, 9, 1)
FIELD(ZDMA_CH_IEN, AXI_RD_DATA, 8, 1)
FIELD(ZDMA_CH_IEN, AXI_RD_DST_DSCR, 7, 1)
FIELD(ZDMA_CH_IEN, AXI_RD_SRC_DSCR, 6, 1)
FIELD(ZDMA_CH_IEN, IRQ_DST_ACCT_ERR, 5, 1)
FIELD(ZDMA_CH_IEN, IRQ_SRC_ACCT_ERR, 4, 1)
FIELD(ZDMA_CH_IEN, BYTE_CNT_OVRFL, 3, 1)
FIELD(ZDMA_CH_IEN, DST_DSCR_DONE, 2, 1)
FIELD(ZDMA_CH_IEN, SRC_DSCR_DONE, 1, 1)
FIELD(ZDMA_CH_IEN, INV_APB, 0, 1)
REG32(ZDMA_CH_IDS, 0x10c)
FIELD(ZDMA_CH_IDS, DMA_PAUSE, 11, 1)
FIELD(ZDMA_CH_IDS, DMA_DONE, 10, 1)
FIELD(ZDMA_CH_IDS, AXI_WR_DATA, 9, 1)
FIELD(ZDMA_CH_IDS, AXI_RD_DATA, 8, 1)
FIELD(ZDMA_CH_IDS, AXI_RD_DST_DSCR, 7, 1)
FIELD(ZDMA_CH_IDS, AXI_RD_SRC_DSCR, 6, 1)
FIELD(ZDMA_CH_IDS, IRQ_DST_ACCT_ERR, 5, 1)
FIELD(ZDMA_CH_IDS, IRQ_SRC_ACCT_ERR, 4, 1)
FIELD(ZDMA_CH_IDS, BYTE_CNT_OVRFL, 3, 1)
FIELD(ZDMA_CH_IDS, DST_DSCR_DONE, 2, 1)
FIELD(ZDMA_CH_IDS, SRC_DSCR_DONE, 1, 1)
FIELD(ZDMA_CH_IDS, INV_APB, 0, 1)
REG32(ZDMA_CH_CTRL0, 0x110)
FIELD(ZDMA_CH_CTRL0, OVR_FETCH, 7, 1)
FIELD(ZDMA_CH_CTRL0, POINT_TYPE, 6, 1)
FIELD(ZDMA_CH_CTRL0, MODE, 4, 2)
FIELD(ZDMA_CH_CTRL0, RATE_CTRL, 3, 1)
FIELD(ZDMA_CH_CTRL0, CONT_ADDR, 2, 1)
FIELD(ZDMA_CH_CTRL0, CONT, 1, 1)
REG32(ZDMA_CH_CTRL1, 0x114)
FIELD(ZDMA_CH_CTRL1, DST_ISSUE, 5, 5)
FIELD(ZDMA_CH_CTRL1, SRC_ISSUE, 0, 5)
REG32(ZDMA_CH_FCI, 0x118)
FIELD(ZDMA_CH_FCI, PROG_CELL_CNT, 2, 2)
FIELD(ZDMA_CH_FCI, SIDE, 1, 1)
FIELD(ZDMA_CH_FCI, EN, 0, 1)
REG32(ZDMA_CH_STATUS, 0x11c)
FIELD(ZDMA_CH_STATUS, STATE, 0, 2)
REG32(ZDMA_CH_DATA_ATTR, 0x120)
FIELD(ZDMA_CH_DATA_ATTR, ARBURST, 26, 2)
FIELD(ZDMA_CH_DATA_ATTR, ARCACHE, 22, 4)
FIELD(ZDMA_CH_DATA_ATTR, ARQOS, 18, 4)
FIELD(ZDMA_CH_DATA_ATTR, ARLEN, 14, 4)
FIELD(ZDMA_CH_DATA_ATTR, AWBURST, 12, 2)
FIELD(ZDMA_CH_DATA_ATTR, AWCACHE, 8, 4)
FIELD(ZDMA_CH_DATA_ATTR, AWQOS, 4, 4)
FIELD(ZDMA_CH_DATA_ATTR, AWLEN, 0, 4)
REG32(ZDMA_CH_DSCR_ATTR, 0x124)
FIELD(ZDMA_CH_DSCR_ATTR, AXCOHRNT, 8, 1)
FIELD(ZDMA_CH_DSCR_ATTR, AXCACHE, 4, 4)
FIELD(ZDMA_CH_DSCR_ATTR, AXQOS, 0, 4)
REG32(ZDMA_CH_SRC_DSCR_WORD0, 0x128)
REG32(ZDMA_CH_SRC_DSCR_WORD1, 0x12c)
FIELD(ZDMA_CH_SRC_DSCR_WORD1, MSB, 0, 17)
REG32(ZDMA_CH_SRC_DSCR_WORD2, 0x130)
FIELD(ZDMA_CH_SRC_DSCR_WORD2, SIZE, 0, 30)
REG32(ZDMA_CH_SRC_DSCR_WORD3, 0x134)
FIELD(ZDMA_CH_SRC_DSCR_WORD3, CMD, 3, 2)
FIELD(ZDMA_CH_SRC_DSCR_WORD3, INTR, 2, 1)
FIELD(ZDMA_CH_SRC_DSCR_WORD3, TYPE, 1, 1)
FIELD(ZDMA_CH_SRC_DSCR_WORD3, COHRNT, 0, 1)
REG32(ZDMA_CH_DST_DSCR_WORD0, 0x138)
REG32(ZDMA_CH_DST_DSCR_WORD1, 0x13c)
FIELD(ZDMA_CH_DST_DSCR_WORD1, MSB, 0, 17)
REG32(ZDMA_CH_DST_DSCR_WORD2, 0x140)
FIELD(ZDMA_CH_DST_DSCR_WORD2, SIZE, 0, 30)
REG32(ZDMA_CH_DST_DSCR_WORD3, 0x144)
FIELD(ZDMA_CH_DST_DSCR_WORD3, INTR, 2, 1)
FIELD(ZDMA_CH_DST_DSCR_WORD3, TYPE, 1, 1)
FIELD(ZDMA_CH_DST_DSCR_WORD3, COHRNT, 0, 1)
REG32(ZDMA_CH_WR_ONLY_WORD0, 0x148)
REG32(ZDMA_CH_WR_ONLY_WORD1, 0x14c)
REG32(ZDMA_CH_WR_ONLY_WORD2, 0x150)
REG32(ZDMA_CH_WR_ONLY_WORD3, 0x154)
REG32(ZDMA_CH_SRC_START_LSB, 0x158)
REG32(ZDMA_CH_SRC_START_MSB, 0x15c)
FIELD(ZDMA_CH_SRC_START_MSB, ADDR, 0, 17)
REG32(ZDMA_CH_DST_START_LSB, 0x160)
REG32(ZDMA_CH_DST_START_MSB, 0x164)
FIELD(ZDMA_CH_DST_START_MSB, ADDR, 0, 17)
REG32(ZDMA_CH_RATE_CTRL, 0x18c)
FIELD(ZDMA_CH_RATE_CTRL, CNT, 0, 12)
REG32(ZDMA_CH_SRC_CUR_PYLD_LSB, 0x168)
REG32(ZDMA_CH_SRC_CUR_PYLD_MSB, 0x16c)
FIELD(ZDMA_CH_SRC_CUR_PYLD_MSB, ADDR, 0, 17)
REG32(ZDMA_CH_DST_CUR_PYLD_LSB, 0x170)
REG32(ZDMA_CH_DST_CUR_PYLD_MSB, 0x174)
FIELD(ZDMA_CH_DST_CUR_PYLD_MSB, ADDR, 0, 17)
REG32(ZDMA_CH_SRC_CUR_DSCR_LSB, 0x178)
REG32(ZDMA_CH_SRC_CUR_DSCR_MSB, 0x17c)
FIELD(ZDMA_CH_SRC_CUR_DSCR_MSB, ADDR, 0, 17)
REG32(ZDMA_CH_DST_CUR_DSCR_LSB, 0x180)
REG32(ZDMA_CH_DST_CUR_DSCR_MSB, 0x184)
FIELD(ZDMA_CH_DST_CUR_DSCR_MSB, ADDR, 0, 17)
REG32(ZDMA_CH_TOTAL_BYTE, 0x188)
REG32(ZDMA_CH_RATE_CNTL, 0x18c)
FIELD(ZDMA_CH_RATE_CNTL, CNT, 0, 12)
REG32(ZDMA_CH_IRQ_SRC_ACCT, 0x190)
FIELD(ZDMA_CH_IRQ_SRC_ACCT, CNT, 0, 8)
REG32(ZDMA_CH_IRQ_DST_ACCT, 0x194)
FIELD(ZDMA_CH_IRQ_DST_ACCT, CNT, 0, 8)
REG32(ZDMA_CH_DBG0, 0x198)
FIELD(ZDMA_CH_DBG0, CMN_BUF_FREE, 0, 9)
REG32(ZDMA_CH_DBG1, 0x19c)
FIELD(ZDMA_CH_DBG1, CMN_BUF_OCC, 0, 9)
REG32(ZDMA_CH_CTRL2, 0x200)
FIELD(ZDMA_CH_CTRL2, EN, 0, 1)
enum {
PT_REG = 0,
PT_MEM = 1,
};
enum {
CMD_HALT = 1,
CMD_STOP = 2,
};
enum {
RW_MODE_RW = 0,
RW_MODE_WO = 1,
RW_MODE_RO = 2,
};
enum {
DTYPE_LINEAR = 0,
DTYPE_LINKED = 1,
};
enum {
AXI_BURST_FIXED = 0,
AXI_BURST_INCR = 1,
};
static void zdma_ch_imr_update_irq(XlnxZDMA *s)
{
bool pending;
pending = s->regs[R_ZDMA_CH_ISR] & ~s->regs[R_ZDMA_CH_IMR];
qemu_set_irq(s->irq_zdma_ch_imr, pending);
}
static void zdma_ch_isr_postw(RegisterInfo *reg, uint64_t val64)
{
XlnxZDMA *s = XLNX_ZDMA(reg->opaque);
zdma_ch_imr_update_irq(s);
}
static uint64_t zdma_ch_ien_prew(RegisterInfo *reg, uint64_t val64)
{
XlnxZDMA *s = XLNX_ZDMA(reg->opaque);
uint32_t val = val64;
s->regs[R_ZDMA_CH_IMR] &= ~val;
zdma_ch_imr_update_irq(s);
return 0;
}
static uint64_t zdma_ch_ids_prew(RegisterInfo *reg, uint64_t val64)
{
XlnxZDMA *s = XLNX_ZDMA(reg->opaque);
uint32_t val = val64;
s->regs[R_ZDMA_CH_IMR] |= val;
zdma_ch_imr_update_irq(s);
return 0;
}
static void zdma_set_state(XlnxZDMA *s, XlnxZDMAState state)
{
s->state = state;
ARRAY_FIELD_DP32(s->regs, ZDMA_CH_STATUS, STATE, state);
/* Signal error if we have an error condition. */
if (s->error) {
ARRAY_FIELD_DP32(s->regs, ZDMA_CH_STATUS, STATE, 3);
}
}
static void zdma_src_done(XlnxZDMA *s)
{
unsigned int cnt;
cnt = ARRAY_FIELD_EX32(s->regs, ZDMA_CH_IRQ_SRC_ACCT, CNT);
cnt++;
ARRAY_FIELD_DP32(s->regs, ZDMA_CH_IRQ_SRC_ACCT, CNT, cnt);
ARRAY_FIELD_DP32(s->regs, ZDMA_CH_ISR, SRC_DSCR_DONE, true);
/* Did we overflow? */
if (cnt != ARRAY_FIELD_EX32(s->regs, ZDMA_CH_IRQ_SRC_ACCT, CNT)) {
ARRAY_FIELD_DP32(s->regs, ZDMA_CH_ISR, IRQ_SRC_ACCT_ERR, true);
}
zdma_ch_imr_update_irq(s);
}
static void zdma_dst_done(XlnxZDMA *s)
{
unsigned int cnt;
cnt = ARRAY_FIELD_EX32(s->regs, ZDMA_CH_IRQ_DST_ACCT, CNT);
cnt++;
ARRAY_FIELD_DP32(s->regs, ZDMA_CH_IRQ_DST_ACCT, CNT, cnt);
ARRAY_FIELD_DP32(s->regs, ZDMA_CH_ISR, DST_DSCR_DONE, true);
/* Did we overflow? */
if (cnt != ARRAY_FIELD_EX32(s->regs, ZDMA_CH_IRQ_DST_ACCT, CNT)) {
ARRAY_FIELD_DP32(s->regs, ZDMA_CH_ISR, IRQ_DST_ACCT_ERR, true);
}
zdma_ch_imr_update_irq(s);
}
static uint64_t zdma_get_regaddr64(XlnxZDMA *s, unsigned int basereg)
{
uint64_t addr;
addr = s->regs[basereg + 1];
addr <<= 32;
addr |= s->regs[basereg];
return addr;
}
static void zdma_put_regaddr64(XlnxZDMA *s, unsigned int basereg, uint64_t addr)
{
s->regs[basereg] = addr;
s->regs[basereg + 1] = addr >> 32;
}
static void zdma_load_descriptor_reg(XlnxZDMA *s, unsigned int reg,
XlnxZDMADescr *descr)
{
descr->addr = zdma_get_regaddr64(s, reg);
descr->size = s->regs[reg + 2];
descr->attr = s->regs[reg + 3];
}
static bool zdma_load_descriptor(XlnxZDMA *s, uint64_t addr,
XlnxZDMADescr *descr)
{
/* ZDMA descriptors must be aligned to their own size. */
if (addr % sizeof(XlnxZDMADescr)) {
qemu_log_mask(LOG_GUEST_ERROR,
"zdma: unaligned descriptor at %" PRIx64,
addr);
memset(descr, 0x0, sizeof(XlnxZDMADescr));
s->error = true;
return false;
}
descr->addr = address_space_ldq_le(&s->dma_as, addr, s->attr, NULL);
descr->size = address_space_ldl_le(&s->dma_as, addr + 8, s->attr, NULL);
descr->attr = address_space_ldl_le(&s->dma_as, addr + 12, s->attr, NULL);
return true;
}
static void zdma_load_src_descriptor(XlnxZDMA *s)
{
uint64_t src_addr;
unsigned int ptype = ARRAY_FIELD_EX32(s->regs, ZDMA_CH_CTRL0, POINT_TYPE);
if (ptype == PT_REG) {
zdma_load_descriptor_reg(s, R_ZDMA_CH_SRC_DSCR_WORD0, &s->dsc_src);
return;
}
src_addr = zdma_get_regaddr64(s, R_ZDMA_CH_SRC_CUR_DSCR_LSB);
if (!zdma_load_descriptor(s, src_addr, &s->dsc_src)) {
ARRAY_FIELD_DP32(s->regs, ZDMA_CH_ISR, AXI_RD_SRC_DSCR, true);
}
}
static void zdma_update_descr_addr(XlnxZDMA *s, bool type,
unsigned int basereg)
{
uint64_t addr, next;
if (type == DTYPE_LINEAR) {
addr = zdma_get_regaddr64(s, basereg);
next = addr + sizeof(s->dsc_dst);
} else {
addr = zdma_get_regaddr64(s, basereg);
addr += sizeof(s->dsc_dst);
next = address_space_ldq_le(&s->dma_as, addr, s->attr, NULL);
}
zdma_put_regaddr64(s, basereg, next);
}
static void zdma_load_dst_descriptor(XlnxZDMA *s)
{
uint64_t dst_addr;
unsigned int ptype = ARRAY_FIELD_EX32(s->regs, ZDMA_CH_CTRL0, POINT_TYPE);
bool dst_type;
if (ptype == PT_REG) {
zdma_load_descriptor_reg(s, R_ZDMA_CH_DST_DSCR_WORD0, &s->dsc_dst);
return;
}
dst_addr = zdma_get_regaddr64(s, R_ZDMA_CH_DST_CUR_DSCR_LSB);
if (!zdma_load_descriptor(s, dst_addr, &s->dsc_dst)) {
ARRAY_FIELD_DP32(s->regs, ZDMA_CH_ISR, AXI_RD_DST_DSCR, true);
}
/* Advance the descriptor pointer. */
dst_type = FIELD_EX32(s->dsc_dst.words[3], ZDMA_CH_DST_DSCR_WORD3, TYPE);
zdma_update_descr_addr(s, dst_type, R_ZDMA_CH_DST_CUR_DSCR_LSB);
}
static void zdma_write_dst(XlnxZDMA *s, uint8_t *buf, uint32_t len)
{
uint32_t dst_size, dlen;
bool dst_intr;
unsigned int ptype = ARRAY_FIELD_EX32(s->regs, ZDMA_CH_CTRL0, POINT_TYPE);
unsigned int rw_mode = ARRAY_FIELD_EX32(s->regs, ZDMA_CH_CTRL0, MODE);
unsigned int burst_type = ARRAY_FIELD_EX32(s->regs, ZDMA_CH_DATA_ATTR,
AWBURST);
/* FIXED burst types are only supported in simple dma mode. */
if (ptype != PT_REG) {
burst_type = AXI_BURST_INCR;
}
while (len) {
dst_size = FIELD_EX32(s->dsc_dst.words[2], ZDMA_CH_DST_DSCR_WORD2,
SIZE);
if (dst_size == 0 && ptype == PT_MEM) {
zdma_load_dst_descriptor(s);
dst_size = FIELD_EX32(s->dsc_dst.words[2], ZDMA_CH_DST_DSCR_WORD2,
SIZE);
}
/* Match what hardware does by ignoring the dst_size and only using
* the src size for Simple register mode. */
if (ptype == PT_REG && rw_mode != RW_MODE_WO) {
dst_size = len;
}
dst_intr = FIELD_EX32(s->dsc_dst.words[3], ZDMA_CH_DST_DSCR_WORD3,
INTR);
dlen = len > dst_size ? dst_size : len;
if (burst_type == AXI_BURST_FIXED) {
if (dlen > (s->cfg.bus_width / 8)) {
dlen = s->cfg.bus_width / 8;
}
}
address_space_write(&s->dma_as, s->dsc_dst.addr, s->attr, buf, dlen);
if (burst_type == AXI_BURST_INCR) {
s->dsc_dst.addr += dlen;
}
dst_size -= dlen;
buf += dlen;
len -= dlen;
if (dst_size == 0 && dst_intr) {
zdma_dst_done(s);
}
/* Write back to buffered descriptor. */
s->dsc_dst.words[2] = FIELD_DP32(s->dsc_dst.words[2],
ZDMA_CH_DST_DSCR_WORD2,
SIZE,
dst_size);
}
}
static void zdma_process_descr(XlnxZDMA *s)
{
uint64_t src_addr;
uint32_t src_size, len;
unsigned int src_cmd;
bool src_intr, src_type;
unsigned int ptype = ARRAY_FIELD_EX32(s->regs, ZDMA_CH_CTRL0, POINT_TYPE);
unsigned int rw_mode = ARRAY_FIELD_EX32(s->regs, ZDMA_CH_CTRL0, MODE);
unsigned int burst_type = ARRAY_FIELD_EX32(s->regs, ZDMA_CH_DATA_ATTR,
ARBURST);
src_addr = s->dsc_src.addr;
src_size = FIELD_EX32(s->dsc_src.words[2], ZDMA_CH_SRC_DSCR_WORD2, SIZE);
src_cmd = FIELD_EX32(s->dsc_src.words[3], ZDMA_CH_SRC_DSCR_WORD3, CMD);
src_type = FIELD_EX32(s->dsc_src.words[3], ZDMA_CH_SRC_DSCR_WORD3, TYPE);
src_intr = FIELD_EX32(s->dsc_src.words[3], ZDMA_CH_SRC_DSCR_WORD3, INTR);
/* FIXED burst types and non-rw modes are only supported in
* simple dma mode.
*/
if (ptype != PT_REG) {
if (rw_mode != RW_MODE_RW) {
qemu_log_mask(LOG_GUEST_ERROR,
"zDMA: rw-mode=%d but not simple DMA mode.\n",
rw_mode);
}
if (burst_type != AXI_BURST_INCR) {
qemu_log_mask(LOG_GUEST_ERROR,
"zDMA: burst_type=%d but not simple DMA mode.\n",
burst_type);
}
burst_type = AXI_BURST_INCR;
rw_mode = RW_MODE_RW;
}
if (rw_mode == RW_MODE_WO) {
/* In Simple DMA Write-Only, we need to push DST size bytes
* regardless of what SRC size is set to. */
src_size = FIELD_EX32(s->dsc_dst.words[2], ZDMA_CH_DST_DSCR_WORD2,
SIZE);
memcpy(s->buf, &s->regs[R_ZDMA_CH_WR_ONLY_WORD0], s->cfg.bus_width / 8);
}
while (src_size) {
len = src_size > ARRAY_SIZE(s->buf) ? ARRAY_SIZE(s->buf) : src_size;
if (burst_type == AXI_BURST_FIXED) {
if (len > (s->cfg.bus_width / 8)) {
len = s->cfg.bus_width / 8;
}
}
if (rw_mode == RW_MODE_WO) {
if (len > s->cfg.bus_width / 8) {
len = s->cfg.bus_width / 8;
}
} else {
address_space_read(&s->dma_as, src_addr, s->attr, s->buf, len);
if (burst_type == AXI_BURST_INCR) {
src_addr += len;
}
}
if (rw_mode != RW_MODE_RO) {
zdma_write_dst(s, s->buf, len);
}
s->regs[R_ZDMA_CH_TOTAL_BYTE] += len;
src_size -= len;
}
ARRAY_FIELD_DP32(s->regs, ZDMA_CH_ISR, DMA_DONE, true);
if (src_intr) {
zdma_src_done(s);
}
if (ptype == PT_REG || src_cmd == CMD_STOP) {
ARRAY_FIELD_DP32(s->regs, ZDMA_CH_CTRL2, EN, 0);
zdma_set_state(s, DISABLED);
}
if (src_cmd == CMD_HALT) {
zdma_set_state(s, PAUSED);
ARRAY_FIELD_DP32(s->regs, ZDMA_CH_ISR, DMA_PAUSE, 1);
ARRAY_FIELD_DP32(s->regs, ZDMA_CH_ISR, DMA_DONE, false);
zdma_ch_imr_update_irq(s);
return;
}
zdma_update_descr_addr(s, src_type, R_ZDMA_CH_SRC_CUR_DSCR_LSB);
}
static void zdma_run(XlnxZDMA *s)
{
while (s->state == ENABLED && !s->error) {
zdma_load_src_descriptor(s);
if (s->error) {
zdma_set_state(s, DISABLED);
} else {
zdma_process_descr(s);
}
}
zdma_ch_imr_update_irq(s);
}
static void zdma_update_descr_addr_from_start(XlnxZDMA *s)
{
uint64_t src_addr, dst_addr;
src_addr = zdma_get_regaddr64(s, R_ZDMA_CH_SRC_START_LSB);
zdma_put_regaddr64(s, R_ZDMA_CH_SRC_CUR_DSCR_LSB, src_addr);
dst_addr = zdma_get_regaddr64(s, R_ZDMA_CH_DST_START_LSB);
zdma_put_regaddr64(s, R_ZDMA_CH_DST_CUR_DSCR_LSB, dst_addr);
zdma_load_dst_descriptor(s);
}
static void zdma_ch_ctrlx_postw(RegisterInfo *reg, uint64_t val64)
{
XlnxZDMA *s = XLNX_ZDMA(reg->opaque);
if (ARRAY_FIELD_EX32(s->regs, ZDMA_CH_CTRL2, EN)) {
s->error = false;
if (s->state == PAUSED &&
ARRAY_FIELD_EX32(s->regs, ZDMA_CH_CTRL0, CONT)) {
if (ARRAY_FIELD_EX32(s->regs, ZDMA_CH_CTRL0, CONT_ADDR) == 1) {
zdma_update_descr_addr_from_start(s);
} else {
bool src_type = FIELD_EX32(s->dsc_src.words[3],
ZDMA_CH_SRC_DSCR_WORD3, TYPE);
zdma_update_descr_addr(s, src_type,
R_ZDMA_CH_SRC_CUR_DSCR_LSB);
}
ARRAY_FIELD_DP32(s->regs, ZDMA_CH_CTRL0, CONT, false);
zdma_set_state(s, ENABLED);
} else if (s->state == DISABLED) {
zdma_update_descr_addr_from_start(s);
zdma_set_state(s, ENABLED);
}
} else {
/* Leave Paused state? */
if (s->state == PAUSED &&
ARRAY_FIELD_EX32(s->regs, ZDMA_CH_CTRL0, CONT)) {
zdma_set_state(s, DISABLED);
}
}
zdma_run(s);
}
static RegisterAccessInfo zdma_regs_info[] = {
{ .name = "ZDMA_ERR_CTRL", .addr = A_ZDMA_ERR_CTRL,
.rsvd = 0xfffffffe,
},{ .name = "ZDMA_CH_ISR", .addr = A_ZDMA_CH_ISR,
.rsvd = 0xfffff000,
.w1c = 0xfff,
.post_write = zdma_ch_isr_postw,
},{ .name = "ZDMA_CH_IMR", .addr = A_ZDMA_CH_IMR,
.reset = 0xfff,
.rsvd = 0xfffff000,
.ro = 0xfff,
},{ .name = "ZDMA_CH_IEN", .addr = A_ZDMA_CH_IEN,
.rsvd = 0xfffff000,
.pre_write = zdma_ch_ien_prew,
},{ .name = "ZDMA_CH_IDS", .addr = A_ZDMA_CH_IDS,
.rsvd = 0xfffff000,
.pre_write = zdma_ch_ids_prew,
},{ .name = "ZDMA_CH_CTRL0", .addr = A_ZDMA_CH_CTRL0,
.reset = 0x80,
.rsvd = 0xffffff01,
.post_write = zdma_ch_ctrlx_postw,
},{ .name = "ZDMA_CH_CTRL1", .addr = A_ZDMA_CH_CTRL1,
.reset = 0x3ff,
.rsvd = 0xfffffc00,
},{ .name = "ZDMA_CH_FCI", .addr = A_ZDMA_CH_FCI,
.rsvd = 0xffffffc0,
},{ .name = "ZDMA_CH_STATUS", .addr = A_ZDMA_CH_STATUS,
.rsvd = 0xfffffffc,
.ro = 0x3,
},{ .name = "ZDMA_CH_DATA_ATTR", .addr = A_ZDMA_CH_DATA_ATTR,
.reset = 0x483d20f,
.rsvd = 0xf0000000,
},{ .name = "ZDMA_CH_DSCR_ATTR", .addr = A_ZDMA_CH_DSCR_ATTR,
.rsvd = 0xfffffe00,
},{ .name = "ZDMA_CH_SRC_DSCR_WORD0", .addr = A_ZDMA_CH_SRC_DSCR_WORD0,
},{ .name = "ZDMA_CH_SRC_DSCR_WORD1", .addr = A_ZDMA_CH_SRC_DSCR_WORD1,
.rsvd = 0xfffe0000,
},{ .name = "ZDMA_CH_SRC_DSCR_WORD2", .addr = A_ZDMA_CH_SRC_DSCR_WORD2,
.rsvd = 0xc0000000,
},{ .name = "ZDMA_CH_SRC_DSCR_WORD3", .addr = A_ZDMA_CH_SRC_DSCR_WORD3,
.rsvd = 0xffffffe0,
},{ .name = "ZDMA_CH_DST_DSCR_WORD0", .addr = A_ZDMA_CH_DST_DSCR_WORD0,
},{ .name = "ZDMA_CH_DST_DSCR_WORD1", .addr = A_ZDMA_CH_DST_DSCR_WORD1,
.rsvd = 0xfffe0000,
},{ .name = "ZDMA_CH_DST_DSCR_WORD2", .addr = A_ZDMA_CH_DST_DSCR_WORD2,
.rsvd = 0xc0000000,
},{ .name = "ZDMA_CH_DST_DSCR_WORD3", .addr = A_ZDMA_CH_DST_DSCR_WORD3,
.rsvd = 0xfffffffa,
},{ .name = "ZDMA_CH_WR_ONLY_WORD0", .addr = A_ZDMA_CH_WR_ONLY_WORD0,
},{ .name = "ZDMA_CH_WR_ONLY_WORD1", .addr = A_ZDMA_CH_WR_ONLY_WORD1,
},{ .name = "ZDMA_CH_WR_ONLY_WORD2", .addr = A_ZDMA_CH_WR_ONLY_WORD2,
},{ .name = "ZDMA_CH_WR_ONLY_WORD3", .addr = A_ZDMA_CH_WR_ONLY_WORD3,
},{ .name = "ZDMA_CH_SRC_START_LSB", .addr = A_ZDMA_CH_SRC_START_LSB,
},{ .name = "ZDMA_CH_SRC_START_MSB", .addr = A_ZDMA_CH_SRC_START_MSB,
.rsvd = 0xfffe0000,
},{ .name = "ZDMA_CH_DST_START_LSB", .addr = A_ZDMA_CH_DST_START_LSB,
},{ .name = "ZDMA_CH_DST_START_MSB", .addr = A_ZDMA_CH_DST_START_MSB,
.rsvd = 0xfffe0000,
},{ .name = "ZDMA_CH_SRC_CUR_PYLD_LSB", .addr = A_ZDMA_CH_SRC_CUR_PYLD_LSB,
.ro = 0xffffffff,
},{ .name = "ZDMA_CH_SRC_CUR_PYLD_MSB", .addr = A_ZDMA_CH_SRC_CUR_PYLD_MSB,
.rsvd = 0xfffe0000,
.ro = 0x1ffff,
},{ .name = "ZDMA_CH_DST_CUR_PYLD_LSB", .addr = A_ZDMA_CH_DST_CUR_PYLD_LSB,
.ro = 0xffffffff,
},{ .name = "ZDMA_CH_DST_CUR_PYLD_MSB", .addr = A_ZDMA_CH_DST_CUR_PYLD_MSB,
.rsvd = 0xfffe0000,
.ro = 0x1ffff,
},{ .name = "ZDMA_CH_SRC_CUR_DSCR_LSB", .addr = A_ZDMA_CH_SRC_CUR_DSCR_LSB,
.ro = 0xffffffff,
},{ .name = "ZDMA_CH_SRC_CUR_DSCR_MSB", .addr = A_ZDMA_CH_SRC_CUR_DSCR_MSB,
.rsvd = 0xfffe0000,
.ro = 0x1ffff,
},{ .name = "ZDMA_CH_DST_CUR_DSCR_LSB", .addr = A_ZDMA_CH_DST_CUR_DSCR_LSB,
.ro = 0xffffffff,
},{ .name = "ZDMA_CH_DST_CUR_DSCR_MSB", .addr = A_ZDMA_CH_DST_CUR_DSCR_MSB,
.rsvd = 0xfffe0000,
.ro = 0x1ffff,
},{ .name = "ZDMA_CH_TOTAL_BYTE", .addr = A_ZDMA_CH_TOTAL_BYTE,
.w1c = 0xffffffff,
},{ .name = "ZDMA_CH_RATE_CNTL", .addr = A_ZDMA_CH_RATE_CNTL,
.rsvd = 0xfffff000,
},{ .name = "ZDMA_CH_IRQ_SRC_ACCT", .addr = A_ZDMA_CH_IRQ_SRC_ACCT,
.rsvd = 0xffffff00,
.ro = 0xff,
.cor = 0xff,
},{ .name = "ZDMA_CH_IRQ_DST_ACCT", .addr = A_ZDMA_CH_IRQ_DST_ACCT,
.rsvd = 0xffffff00,
.ro = 0xff,
.cor = 0xff,
},{ .name = "ZDMA_CH_DBG0", .addr = A_ZDMA_CH_DBG0,
.rsvd = 0xfffffe00,
.ro = 0x1ff,
/*
* There's SW out there that will check the debug regs for free space.
* Claim that we always have 0x100 free.
*/
.reset = 0x100
},{ .name = "ZDMA_CH_DBG1", .addr = A_ZDMA_CH_DBG1,
.rsvd = 0xfffffe00,
.ro = 0x1ff,
},{ .name = "ZDMA_CH_CTRL2", .addr = A_ZDMA_CH_CTRL2,
.rsvd = 0xfffffffe,
.post_write = zdma_ch_ctrlx_postw,
}
};
static void zdma_reset(DeviceState *dev)
{
XlnxZDMA *s = XLNX_ZDMA(dev);
unsigned int i;
for (i = 0; i < ARRAY_SIZE(s->regs_info); ++i) {
register_reset(&s->regs_info[i]);
}
zdma_ch_imr_update_irq(s);
}
static uint64_t zdma_read(void *opaque, hwaddr addr, unsigned size)
{
XlnxZDMA *s = XLNX_ZDMA(opaque);
RegisterInfo *r = &s->regs_info[addr / 4];
if (!r->data) {
char *path = object_get_canonical_path(OBJECT(s));
qemu_log("%s: Decode error: read from %" HWADDR_PRIx "\n",
path,
addr);
g_free(path);
ARRAY_FIELD_DP32(s->regs, ZDMA_CH_ISR, INV_APB, true);
zdma_ch_imr_update_irq(s);
return 0;
}
return register_read(r, ~0, NULL, false);
}
static void zdma_write(void *opaque, hwaddr addr, uint64_t value,
unsigned size)
{
XlnxZDMA *s = XLNX_ZDMA(opaque);
RegisterInfo *r = &s->regs_info[addr / 4];
if (!r->data) {
char *path = object_get_canonical_path(OBJECT(s));
qemu_log("%s: Decode error: write to %" HWADDR_PRIx "=%" PRIx64 "\n",
path,
addr, value);
g_free(path);
ARRAY_FIELD_DP32(s->regs, ZDMA_CH_ISR, INV_APB, true);
zdma_ch_imr_update_irq(s);
return;
}
register_write(r, value, ~0, NULL, false);
}
static const MemoryRegionOps zdma_ops = {
.read = zdma_read,
.write = zdma_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.valid = {
.min_access_size = 4,
.max_access_size = 4,
},
};
static void zdma_realize(DeviceState *dev, Error **errp)
{
XlnxZDMA *s = XLNX_ZDMA(dev);
unsigned int i;
if (!s->dma_mr) {
error_setg(errp, TYPE_XLNX_ZDMA " 'dma' link not set");
return;
}
address_space_init(&s->dma_as, s->dma_mr, "zdma-dma");
for (i = 0; i < ARRAY_SIZE(zdma_regs_info); ++i) {
RegisterInfo *r = &s->regs_info[zdma_regs_info[i].addr / 4];
*r = (RegisterInfo) {
.data = (uint8_t *)&s->regs[
zdma_regs_info[i].addr / 4],
.data_size = sizeof(uint32_t),
.access = &zdma_regs_info[i],
.opaque = s,
};
}
s->attr = MEMTXATTRS_UNSPECIFIED;
}
static void zdma_init(Object *obj)
{
XlnxZDMA *s = XLNX_ZDMA(obj);
SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
memory_region_init_io(&s->iomem, obj, &zdma_ops, s,
TYPE_XLNX_ZDMA, ZDMA_R_MAX * 4);
sysbus_init_mmio(sbd, &s->iomem);
sysbus_init_irq(sbd, &s->irq_zdma_ch_imr);
}
static const VMStateDescription vmstate_zdma = {
.name = TYPE_XLNX_ZDMA,
.version_id = 1,
.minimum_version_id = 1,
.fields = (const VMStateField[]) {
VMSTATE_UINT32_ARRAY(regs, XlnxZDMA, ZDMA_R_MAX),
VMSTATE_UINT32(state, XlnxZDMA),
VMSTATE_UINT32_ARRAY(dsc_src.words, XlnxZDMA, 4),
VMSTATE_UINT32_ARRAY(dsc_dst.words, XlnxZDMA, 4),
VMSTATE_END_OF_LIST(),
}
};
static Property zdma_props[] = {
DEFINE_PROP_UINT32("bus-width", XlnxZDMA, cfg.bus_width, 64),
DEFINE_PROP_LINK("dma", XlnxZDMA, dma_mr,
TYPE_MEMORY_REGION, MemoryRegion *),
DEFINE_PROP_END_OF_LIST(),
};
static void zdma_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->reset = zdma_reset;
dc->realize = zdma_realize;
device_class_set_props(dc, zdma_props);
dc->vmsd = &vmstate_zdma;
}
static const TypeInfo zdma_info = {
.name = TYPE_XLNX_ZDMA,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(XlnxZDMA),
.class_init = zdma_class_init,
.instance_init = zdma_init,
};
static void zdma_register_types(void)
{
type_register_static(&zdma_info);
}
type_init(zdma_register_types)