qemu/hw/dma/pl330.c
Philippe Mathieu-Daudé 7210ddb45f hw/dma/pl330: Use qemu_hexdump_line to avoid sprintf
sprintf() is deprecated on Darwin since macOS 13.0 / XCode 14.1.
Using qemu_hexdump_line both fixes the deprecation warning and
simplifies the code base.

Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Pierrick Bouvier <pierrick.bouvier@linaro.org>
Message-Id: <20240412073346.458116-11-richard.henderson@linaro.org>
2024-06-05 12:14:20 -07:00

1699 lines
49 KiB
C

/*
* ARM PrimeCell PL330 DMA Controller
*
* Copyright (c) 2009 Samsung Electronics.
* Contributed by Kirill Batuzov <batuzovk@ispras.ru>
* Copyright (c) 2012 Peter A.G. Crosthwaite (peter.crosthwaite@petalogix.com)
* Copyright (c) 2012 PetaLogix Pty Ltd.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; version 2 or later.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/cutils.h"
#include "hw/irq.h"
#include "hw/qdev-properties.h"
#include "hw/sysbus.h"
#include "migration/vmstate.h"
#include "qapi/error.h"
#include "qemu/timer.h"
#include "sysemu/dma.h"
#include "qemu/log.h"
#include "qemu/module.h"
#include "trace.h"
#include "qom/object.h"
#ifndef PL330_ERR_DEBUG
#define PL330_ERR_DEBUG 0
#endif
#define PL330_PERIPH_NUM 32
#define PL330_MAX_BURST_LEN 128
#define PL330_INSN_MAXSIZE 6
#define PL330_FIFO_OK 0
#define PL330_FIFO_STALL 1
#define PL330_FIFO_ERR (-1)
#define PL330_FAULT_UNDEF_INSTR (1 << 0)
#define PL330_FAULT_OPERAND_INVALID (1 << 1)
#define PL330_FAULT_DMAGO_ERR (1 << 4)
#define PL330_FAULT_EVENT_ERR (1 << 5)
#define PL330_FAULT_CH_PERIPH_ERR (1 << 6)
#define PL330_FAULT_CH_RDWR_ERR (1 << 7)
#define PL330_FAULT_ST_DATA_UNAVAILABLE (1 << 12)
#define PL330_FAULT_FIFOEMPTY_ERR (1 << 13)
#define PL330_FAULT_INSTR_FETCH_ERR (1 << 16)
#define PL330_FAULT_DATA_WRITE_ERR (1 << 17)
#define PL330_FAULT_DATA_READ_ERR (1 << 18)
#define PL330_FAULT_DBG_INSTR (1 << 30)
#define PL330_FAULT_LOCKUP_ERR (1 << 31)
#define PL330_UNTAGGED 0xff
#define PL330_SINGLE 0x0
#define PL330_BURST 0x1
#define PL330_WATCHDOG_LIMIT 1024
/* IOMEM mapped registers */
#define PL330_REG_DSR 0x000
#define PL330_REG_DPC 0x004
#define PL330_REG_INTEN 0x020
#define PL330_REG_INT_EVENT_RIS 0x024
#define PL330_REG_INTMIS 0x028
#define PL330_REG_INTCLR 0x02C
#define PL330_REG_FSRD 0x030
#define PL330_REG_FSRC 0x034
#define PL330_REG_FTRD 0x038
#define PL330_REG_FTR_BASE 0x040
#define PL330_REG_CSR_BASE 0x100
#define PL330_REG_CPC_BASE 0x104
#define PL330_REG_CHANCTRL 0x400
#define PL330_REG_DBGSTATUS 0xD00
#define PL330_REG_DBGCMD 0xD04
#define PL330_REG_DBGINST0 0xD08
#define PL330_REG_DBGINST1 0xD0C
#define PL330_REG_CR0_BASE 0xE00
#define PL330_REG_PERIPH_ID 0xFE0
#define PL330_IOMEM_SIZE 0x1000
#define CFG_BOOT_ADDR 2
#define CFG_INS 3
#define CFG_PNS 4
#define CFG_CRD 5
static const uint32_t pl330_id[] = {
0x30, 0x13, 0x24, 0x00, 0x0D, 0xF0, 0x05, 0xB1
};
/* DMA channel states as they are described in PL330 Technical Reference Manual
* Most of them will not be used in emulation.
*/
typedef enum {
pl330_chan_stopped = 0,
pl330_chan_executing = 1,
pl330_chan_cache_miss = 2,
pl330_chan_updating_pc = 3,
pl330_chan_waiting_event = 4,
pl330_chan_at_barrier = 5,
pl330_chan_queue_busy = 6,
pl330_chan_waiting_periph = 7,
pl330_chan_killing = 8,
pl330_chan_completing = 9,
pl330_chan_fault_completing = 14,
pl330_chan_fault = 15,
} PL330ChanState;
typedef struct PL330State PL330State;
typedef struct PL330Chan {
uint32_t src;
uint32_t dst;
uint32_t pc;
uint32_t control;
uint32_t status;
uint32_t lc[2];
uint32_t fault_type;
uint32_t watchdog_timer;
bool ns;
uint8_t request_flag;
uint8_t wakeup;
uint8_t wfp_sbp;
uint8_t state;
uint8_t stall;
bool is_manager;
PL330State *parent;
uint8_t tag;
} PL330Chan;
static const VMStateDescription vmstate_pl330_chan = {
.name = "pl330_chan",
.version_id = 1,
.minimum_version_id = 1,
.fields = (const VMStateField[]) {
VMSTATE_UINT32(src, PL330Chan),
VMSTATE_UINT32(dst, PL330Chan),
VMSTATE_UINT32(pc, PL330Chan),
VMSTATE_UINT32(control, PL330Chan),
VMSTATE_UINT32(status, PL330Chan),
VMSTATE_UINT32_ARRAY(lc, PL330Chan, 2),
VMSTATE_UINT32(fault_type, PL330Chan),
VMSTATE_UINT32(watchdog_timer, PL330Chan),
VMSTATE_BOOL(ns, PL330Chan),
VMSTATE_UINT8(request_flag, PL330Chan),
VMSTATE_UINT8(wakeup, PL330Chan),
VMSTATE_UINT8(wfp_sbp, PL330Chan),
VMSTATE_UINT8(state, PL330Chan),
VMSTATE_UINT8(stall, PL330Chan),
VMSTATE_END_OF_LIST()
}
};
typedef struct PL330Fifo {
uint8_t *buf;
uint8_t *tag;
uint32_t head;
uint32_t num;
uint32_t buf_size;
} PL330Fifo;
static const VMStateDescription vmstate_pl330_fifo = {
.name = "pl330_chan",
.version_id = 1,
.minimum_version_id = 1,
.fields = (const VMStateField[]) {
VMSTATE_VBUFFER_UINT32(buf, PL330Fifo, 1, NULL, buf_size),
VMSTATE_VBUFFER_UINT32(tag, PL330Fifo, 1, NULL, buf_size),
VMSTATE_UINT32(head, PL330Fifo),
VMSTATE_UINT32(num, PL330Fifo),
VMSTATE_UINT32(buf_size, PL330Fifo),
VMSTATE_END_OF_LIST()
}
};
typedef struct PL330QueueEntry {
uint32_t addr;
uint32_t len;
uint8_t n;
bool inc;
bool z;
uint8_t tag;
uint8_t seqn;
} PL330QueueEntry;
static const VMStateDescription vmstate_pl330_queue_entry = {
.name = "pl330_queue_entry",
.version_id = 1,
.minimum_version_id = 1,
.fields = (const VMStateField[]) {
VMSTATE_UINT32(addr, PL330QueueEntry),
VMSTATE_UINT32(len, PL330QueueEntry),
VMSTATE_UINT8(n, PL330QueueEntry),
VMSTATE_BOOL(inc, PL330QueueEntry),
VMSTATE_BOOL(z, PL330QueueEntry),
VMSTATE_UINT8(tag, PL330QueueEntry),
VMSTATE_UINT8(seqn, PL330QueueEntry),
VMSTATE_END_OF_LIST()
}
};
typedef struct PL330Queue {
PL330State *parent;
PL330QueueEntry *queue;
uint32_t queue_size;
} PL330Queue;
static const VMStateDescription vmstate_pl330_queue = {
.name = "pl330_queue",
.version_id = 2,
.minimum_version_id = 2,
.fields = (const VMStateField[]) {
VMSTATE_STRUCT_VARRAY_POINTER_UINT32(queue, PL330Queue, queue_size,
vmstate_pl330_queue_entry,
PL330QueueEntry),
VMSTATE_END_OF_LIST()
}
};
struct PL330State {
SysBusDevice parent_obj;
MemoryRegion iomem;
qemu_irq irq_abort;
qemu_irq *irq;
/* Config registers. cfg[5] = CfgDn. */
uint32_t cfg[6];
#define EVENT_SEC_STATE 3
#define PERIPH_SEC_STATE 4
/* cfg 0 bits and pieces */
uint32_t num_chnls;
uint8_t num_periph_req;
uint8_t num_events;
uint8_t mgr_ns_at_rst;
/* cfg 1 bits and pieces */
uint8_t i_cache_len;
uint8_t num_i_cache_lines;
/* CRD bits and pieces */
uint8_t data_width;
uint8_t wr_cap;
uint8_t wr_q_dep;
uint8_t rd_cap;
uint8_t rd_q_dep;
uint16_t data_buffer_dep;
PL330Chan manager;
PL330Chan *chan;
PL330Fifo fifo;
PL330Queue read_queue;
PL330Queue write_queue;
uint8_t *lo_seqn;
uint8_t *hi_seqn;
QEMUTimer *timer; /* is used for restore dma. */
uint32_t inten;
uint32_t int_status;
uint32_t ev_status;
uint32_t dbg[2];
uint8_t debug_status;
uint8_t num_faulting;
uint8_t periph_busy[PL330_PERIPH_NUM];
/* Memory region that DMA operation access */
MemoryRegion *mem_mr;
AddressSpace *mem_as;
};
#define TYPE_PL330 "pl330"
OBJECT_DECLARE_SIMPLE_TYPE(PL330State, PL330)
static const VMStateDescription vmstate_pl330 = {
.name = "pl330",
.version_id = 2,
.minimum_version_id = 2,
.fields = (const VMStateField[]) {
VMSTATE_STRUCT(manager, PL330State, 0, vmstate_pl330_chan, PL330Chan),
VMSTATE_STRUCT_VARRAY_POINTER_UINT32(chan, PL330State, num_chnls,
vmstate_pl330_chan, PL330Chan),
VMSTATE_VBUFFER_UINT32(lo_seqn, PL330State, 1, NULL, num_chnls),
VMSTATE_VBUFFER_UINT32(hi_seqn, PL330State, 1, NULL, num_chnls),
VMSTATE_STRUCT(fifo, PL330State, 0, vmstate_pl330_fifo, PL330Fifo),
VMSTATE_STRUCT(read_queue, PL330State, 0, vmstate_pl330_queue,
PL330Queue),
VMSTATE_STRUCT(write_queue, PL330State, 0, vmstate_pl330_queue,
PL330Queue),
VMSTATE_TIMER_PTR(timer, PL330State),
VMSTATE_UINT32(inten, PL330State),
VMSTATE_UINT32(int_status, PL330State),
VMSTATE_UINT32(ev_status, PL330State),
VMSTATE_UINT32_ARRAY(dbg, PL330State, 2),
VMSTATE_UINT8(debug_status, PL330State),
VMSTATE_UINT8(num_faulting, PL330State),
VMSTATE_UINT8_ARRAY(periph_busy, PL330State, PL330_PERIPH_NUM),
VMSTATE_END_OF_LIST()
}
};
typedef struct PL330InsnDesc {
/* OPCODE of the instruction */
uint8_t opcode;
/* Mask so we can select several sibling instructions, such as
DMALD, DMALDS and DMALDB */
uint8_t opmask;
/* Size of instruction in bytes */
uint8_t size;
/* Interpreter */
void (*exec)(PL330Chan *, uint8_t opcode, uint8_t *args, int len);
} PL330InsnDesc;
static void pl330_hexdump(uint8_t *buf, size_t size)
{
g_autoptr(GString) str = g_string_sized_new(64);
size_t b, len;
for (b = 0; b < size; b += len) {
len = MIN(16, size - b);
g_string_truncate(str, 0);
qemu_hexdump_line(str, buf + b, len, 1, 4);
trace_pl330_hexdump(b, str->str);
}
}
/* MFIFO Implementation
*
* MFIFO is implemented as a cyclic buffer of BUF_SIZE size. Tagged bytes are
* stored in this buffer. Data is stored in BUF field, tags - in the
* corresponding array elements of TAG field.
*/
/* Initialize queue. */
static void pl330_fifo_init(PL330Fifo *s, uint32_t size)
{
s->buf = g_malloc0(size);
s->tag = g_malloc0(size);
s->buf_size = size;
}
/* Cyclic increment */
static inline int pl330_fifo_inc(PL330Fifo *s, int x)
{
return (x + 1) % s->buf_size;
}
/* Number of empty bytes in MFIFO */
static inline int pl330_fifo_num_free(PL330Fifo *s)
{
return s->buf_size - s->num;
}
/* Push LEN bytes of data stored in BUF to MFIFO and tag it with TAG.
* Zero returned on success, PL330_FIFO_STALL if there is no enough free
* space in MFIFO to store requested amount of data. If push was unsuccessful
* no data is stored to MFIFO.
*/
static int pl330_fifo_push(PL330Fifo *s, uint8_t *buf, int len, uint8_t tag)
{
int i;
if (s->buf_size - s->num < len) {
return PL330_FIFO_STALL;
}
for (i = 0; i < len; i++) {
int push_idx = (s->head + s->num + i) % s->buf_size;
s->buf[push_idx] = buf[i];
s->tag[push_idx] = tag;
}
s->num += len;
return PL330_FIFO_OK;
}
/* Get LEN bytes of data from MFIFO and store it to BUF. Tag value of each
* byte is verified. Zero returned on success, PL330_FIFO_ERR on tag mismatch
* and PL330_FIFO_STALL if there is no enough data in MFIFO. If get was
* unsuccessful no data is removed from MFIFO.
*/
static int pl330_fifo_get(PL330Fifo *s, uint8_t *buf, int len, uint8_t tag)
{
int i;
if (s->num < len) {
return PL330_FIFO_STALL;
}
for (i = 0; i < len; i++) {
if (s->tag[s->head] == tag) {
int get_idx = (s->head + i) % s->buf_size;
buf[i] = s->buf[get_idx];
} else { /* Tag mismatch - Rollback transaction */
return PL330_FIFO_ERR;
}
}
s->head = (s->head + len) % s->buf_size;
s->num -= len;
return PL330_FIFO_OK;
}
/* Reset MFIFO. This completely erases all data in it. */
static inline void pl330_fifo_reset(PL330Fifo *s)
{
s->head = 0;
s->num = 0;
}
/* Return tag of the first byte stored in MFIFO. If MFIFO is empty
* PL330_UNTAGGED is returned.
*/
static inline uint8_t pl330_fifo_tag(PL330Fifo *s)
{
return (!s->num) ? PL330_UNTAGGED : s->tag[s->head];
}
/* Returns non-zero if tag TAG is present in fifo or zero otherwise */
static int pl330_fifo_has_tag(PL330Fifo *s, uint8_t tag)
{
int i, n;
i = s->head;
for (n = 0; n < s->num; n++) {
if (s->tag[i] == tag) {
return 1;
}
i = pl330_fifo_inc(s, i);
}
return 0;
}
/* Remove all entry tagged with TAG from MFIFO */
static void pl330_fifo_tagged_remove(PL330Fifo *s, uint8_t tag)
{
int i, t, n;
t = i = s->head;
for (n = 0; n < s->num; n++) {
if (s->tag[i] != tag) {
s->buf[t] = s->buf[i];
s->tag[t] = s->tag[i];
t = pl330_fifo_inc(s, t);
} else {
s->num = s->num - 1;
}
i = pl330_fifo_inc(s, i);
}
}
/* Read-Write Queue implementation
*
* A Read-Write Queue stores up to QUEUE_SIZE instructions (loads or stores).
* Each instruction is described by source (for loads) or destination (for
* stores) address ADDR, width of data to be loaded/stored LEN, number of
* stores/loads to be performed N, INC bit, Z bit and TAG to identify channel
* this instruction belongs to. Queue does not store any information about
* nature of the instruction: is it load or store. PL330 has different queues
* for loads and stores so this is already known at the top level where it
* matters.
*
* Queue works as FIFO for instructions with equivalent tags, but can issue
* instructions with different tags in arbitrary order. SEQN field attached to
* each instruction helps to achieve this. For each TAG queue contains
* instructions with consecutive SEQN values ranging from LO_SEQN[TAG] to
* HI_SEQN[TAG]-1 inclusive. SEQN is 8-bit unsigned integer, so SEQN=255 is
* followed by SEQN=0.
*
* Z bit indicates that zeroes should be stored. No MFIFO fetches are performed
* in this case.
*/
static void pl330_queue_reset(PL330Queue *s)
{
int i;
for (i = 0; i < s->queue_size; i++) {
s->queue[i].tag = PL330_UNTAGGED;
}
}
/* Initialize queue */
static void pl330_queue_init(PL330Queue *s, int size, PL330State *parent)
{
s->parent = parent;
s->queue = g_new0(PL330QueueEntry, size);
s->queue_size = size;
}
/* Returns pointer to an empty slot or NULL if queue is full */
static PL330QueueEntry *pl330_queue_find_empty(PL330Queue *s)
{
int i;
for (i = 0; i < s->queue_size; i++) {
if (s->queue[i].tag == PL330_UNTAGGED) {
return &s->queue[i];
}
}
return NULL;
}
/* Put instruction in queue.
* Return value:
* - zero - OK
* - non-zero - queue is full
*/
static int pl330_queue_put_insn(PL330Queue *s, uint32_t addr,
int len, int n, bool inc, bool z, uint8_t tag)
{
PL330QueueEntry *entry = pl330_queue_find_empty(s);
if (!entry) {
return 1;
}
entry->tag = tag;
entry->addr = addr;
entry->len = len;
entry->n = n;
entry->z = z;
entry->inc = inc;
entry->seqn = s->parent->hi_seqn[tag];
s->parent->hi_seqn[tag]++;
return 0;
}
/* Returns a pointer to queue slot containing instruction which satisfies
* following conditions:
* - it has valid tag value (not PL330_UNTAGGED)
* - if enforce_seq is set it has to be issuable without violating queue
* logic (see above)
* - if TAG argument is not PL330_UNTAGGED this instruction has tag value
* equivalent to the argument TAG value.
* If such instruction cannot be found NULL is returned.
*/
static PL330QueueEntry *pl330_queue_find_insn(PL330Queue *s, uint8_t tag,
bool enforce_seq)
{
int i;
for (i = 0; i < s->queue_size; i++) {
if (s->queue[i].tag != PL330_UNTAGGED) {
if ((!enforce_seq ||
s->queue[i].seqn == s->parent->lo_seqn[s->queue[i].tag]) &&
(s->queue[i].tag == tag || tag == PL330_UNTAGGED ||
s->queue[i].z)) {
return &s->queue[i];
}
}
}
return NULL;
}
/* Removes instruction from queue. */
static inline void pl330_queue_remove_insn(PL330Queue *s, PL330QueueEntry *e)
{
s->parent->lo_seqn[e->tag]++;
e->tag = PL330_UNTAGGED;
}
/* Removes all instructions tagged with TAG from queue. */
static inline void pl330_queue_remove_tagged(PL330Queue *s, uint8_t tag)
{
int i;
for (i = 0; i < s->queue_size; i++) {
if (s->queue[i].tag == tag) {
s->queue[i].tag = PL330_UNTAGGED;
}
}
}
/* DMA instruction execution engine */
/* Moves DMA channel to the FAULT state and updates it's status. */
static inline void pl330_fault(PL330Chan *ch, uint32_t flags)
{
trace_pl330_fault(ch, flags);
ch->fault_type |= flags;
if (ch->state == pl330_chan_fault) {
return;
}
ch->state = pl330_chan_fault;
ch->parent->num_faulting++;
if (ch->parent->num_faulting == 1) {
trace_pl330_fault_abort();
qemu_irq_raise(ch->parent->irq_abort);
}
}
/*
* For information about instructions see PL330 Technical Reference Manual.
*
* Arguments:
* CH - channel executing the instruction
* OPCODE - opcode
* ARGS - array of 8-bit arguments
* LEN - number of elements in ARGS array
*/
static void pl330_dmaadxh(PL330Chan *ch, uint8_t *args, bool ra, bool neg)
{
uint32_t im = (args[1] << 8) | args[0];
if (neg) {
im |= 0xffffu << 16;
}
if (ch->is_manager) {
pl330_fault(ch, PL330_FAULT_UNDEF_INSTR);
return;
}
if (ra) {
ch->dst += im;
} else {
ch->src += im;
}
}
static void pl330_dmaaddh(PL330Chan *ch, uint8_t opcode, uint8_t *args, int len)
{
pl330_dmaadxh(ch, args, extract32(opcode, 1, 1), false);
}
static void pl330_dmaadnh(PL330Chan *ch, uint8_t opcode, uint8_t *args, int len)
{
pl330_dmaadxh(ch, args, extract32(opcode, 1, 1), true);
}
static void pl330_dmaend(PL330Chan *ch, uint8_t opcode,
uint8_t *args, int len)
{
PL330State *s = ch->parent;
if (ch->state == pl330_chan_executing && !ch->is_manager) {
/* Wait for all transfers to complete */
if (pl330_fifo_has_tag(&s->fifo, ch->tag) ||
pl330_queue_find_insn(&s->read_queue, ch->tag, false) != NULL ||
pl330_queue_find_insn(&s->write_queue, ch->tag, false) != NULL) {
ch->stall = 1;
return;
}
}
trace_pl330_dmaend();
pl330_fifo_tagged_remove(&s->fifo, ch->tag);
pl330_queue_remove_tagged(&s->read_queue, ch->tag);
pl330_queue_remove_tagged(&s->write_queue, ch->tag);
ch->state = pl330_chan_stopped;
}
static void pl330_dmaflushp(PL330Chan *ch, uint8_t opcode,
uint8_t *args, int len)
{
uint8_t periph_id;
if (args[0] & 7) {
pl330_fault(ch, PL330_FAULT_OPERAND_INVALID);
return;
}
periph_id = (args[0] >> 3) & 0x1f;
if (periph_id >= ch->parent->num_periph_req) {
pl330_fault(ch, PL330_FAULT_OPERAND_INVALID);
return;
}
if (ch->ns && !(ch->parent->cfg[CFG_PNS] & (1 << periph_id))) {
pl330_fault(ch, PL330_FAULT_CH_PERIPH_ERR);
return;
}
/* Do nothing */
}
static void pl330_dmago(PL330Chan *ch, uint8_t opcode, uint8_t *args, int len)
{
uint8_t chan_id;
uint8_t ns;
uint32_t pc;
PL330Chan *s;
trace_pl330_dmago();
if (!ch->is_manager) {
pl330_fault(ch, PL330_FAULT_UNDEF_INSTR);
return;
}
ns = !!(opcode & 2);
chan_id = args[0] & 7;
if ((args[0] >> 3)) {
pl330_fault(ch, PL330_FAULT_OPERAND_INVALID);
return;
}
if (chan_id >= ch->parent->num_chnls) {
pl330_fault(ch, PL330_FAULT_OPERAND_INVALID);
return;
}
pc = (((uint32_t)args[4]) << 24) | (((uint32_t)args[3]) << 16) |
(((uint32_t)args[2]) << 8) | (((uint32_t)args[1]));
if (ch->parent->chan[chan_id].state != pl330_chan_stopped) {
pl330_fault(ch, PL330_FAULT_OPERAND_INVALID);
return;
}
if (ch->ns && !ns) {
pl330_fault(ch, PL330_FAULT_DMAGO_ERR);
return;
}
s = &ch->parent->chan[chan_id];
s->ns = ns;
s->pc = pc;
s->state = pl330_chan_executing;
}
static void pl330_dmald(PL330Chan *ch, uint8_t opcode, uint8_t *args, int len)
{
uint8_t bs = opcode & 3;
uint32_t size, num;
bool inc;
if (bs == 2) {
pl330_fault(ch, PL330_FAULT_OPERAND_INVALID);
return;
}
if ((bs == 1 && ch->request_flag == PL330_BURST) ||
(bs == 3 && ch->request_flag == PL330_SINGLE)) {
/* Perform NOP */
return;
}
if (bs == 1 && ch->request_flag == PL330_SINGLE) {
num = 1;
} else {
num = ((ch->control >> 4) & 0xf) + 1;
}
size = (uint32_t)1 << ((ch->control >> 1) & 0x7);
inc = !!(ch->control & 1);
ch->stall = pl330_queue_put_insn(&ch->parent->read_queue, ch->src,
size, num, inc, 0, ch->tag);
if (!ch->stall) {
trace_pl330_dmald(ch->tag, ch->src, size, num, inc ? 'Y' : 'N');
ch->src += inc ? size * num - (ch->src & (size - 1)) : 0;
}
}
static void pl330_dmaldp(PL330Chan *ch, uint8_t opcode, uint8_t *args, int len)
{
uint8_t periph_id;
if (args[0] & 7) {
pl330_fault(ch, PL330_FAULT_OPERAND_INVALID);
return;
}
periph_id = (args[0] >> 3) & 0x1f;
if (periph_id >= ch->parent->num_periph_req) {
pl330_fault(ch, PL330_FAULT_OPERAND_INVALID);
return;
}
if (ch->ns && !(ch->parent->cfg[CFG_PNS] & (1 << periph_id))) {
pl330_fault(ch, PL330_FAULT_CH_PERIPH_ERR);
return;
}
pl330_dmald(ch, opcode, args, len);
}
static void pl330_dmalp(PL330Chan *ch, uint8_t opcode, uint8_t *args, int len)
{
uint8_t lc = (opcode & 2) >> 1;
ch->lc[lc] = args[0];
}
static void pl330_dmakill(PL330Chan *ch, uint8_t opcode, uint8_t *args, int len)
{
if (ch->state == pl330_chan_fault ||
ch->state == pl330_chan_fault_completing) {
/* This is the only way for a channel to leave the faulting state */
ch->fault_type = 0;
ch->parent->num_faulting--;
if (ch->parent->num_faulting == 0) {
trace_pl330_dmakill();
qemu_irq_lower(ch->parent->irq_abort);
}
}
ch->state = pl330_chan_killing;
pl330_fifo_tagged_remove(&ch->parent->fifo, ch->tag);
pl330_queue_remove_tagged(&ch->parent->read_queue, ch->tag);
pl330_queue_remove_tagged(&ch->parent->write_queue, ch->tag);
ch->state = pl330_chan_stopped;
}
static void pl330_dmalpend(PL330Chan *ch, uint8_t opcode,
uint8_t *args, int len)
{
uint8_t nf = (opcode & 0x10) >> 4;
uint8_t bs = opcode & 3;
uint8_t lc = (opcode & 4) >> 2;
trace_pl330_dmalpend(nf, bs, lc, ch->lc[lc], ch->request_flag);
if (bs == 2) {
pl330_fault(ch, PL330_FAULT_OPERAND_INVALID);
return;
}
if ((bs == 1 && ch->request_flag == PL330_BURST) ||
(bs == 3 && ch->request_flag == PL330_SINGLE)) {
/* Perform NOP */
return;
}
if (!nf || ch->lc[lc]) {
if (nf) {
ch->lc[lc]--;
}
trace_pl330_dmalpiter();
ch->pc -= args[0];
ch->pc -= len + 1;
/* "ch->pc -= args[0] + len + 1" is incorrect when args[0] == 256 */
} else {
trace_pl330_dmalpfallthrough();
}
}
static void pl330_dmamov(PL330Chan *ch, uint8_t opcode, uint8_t *args, int len)
{
uint8_t rd = args[0] & 7;
uint32_t im;
if ((args[0] >> 3)) {
pl330_fault(ch, PL330_FAULT_OPERAND_INVALID);
return;
}
im = (((uint32_t)args[4]) << 24) | (((uint32_t)args[3]) << 16) |
(((uint32_t)args[2]) << 8) | (((uint32_t)args[1]));
switch (rd) {
case 0:
ch->src = im;
break;
case 1:
ch->control = im;
break;
case 2:
ch->dst = im;
break;
default:
pl330_fault(ch, PL330_FAULT_OPERAND_INVALID);
return;
}
}
static void pl330_dmanop(PL330Chan *ch, uint8_t opcode,
uint8_t *args, int len)
{
/* NOP is NOP. */
}
static void pl330_dmarmb(PL330Chan *ch, uint8_t opcode, uint8_t *args, int len)
{
if (pl330_queue_find_insn(&ch->parent->read_queue, ch->tag, false)) {
ch->state = pl330_chan_at_barrier;
ch->stall = 1;
return;
} else {
ch->state = pl330_chan_executing;
}
}
static void pl330_dmasev(PL330Chan *ch, uint8_t opcode, uint8_t *args, int len)
{
uint8_t ev_id;
if (args[0] & 7) {
pl330_fault(ch, PL330_FAULT_OPERAND_INVALID);
return;
}
ev_id = (args[0] >> 3) & 0x1f;
if (ev_id >= ch->parent->num_events) {
pl330_fault(ch, PL330_FAULT_OPERAND_INVALID);
return;
}
if (ch->ns && !(ch->parent->cfg[CFG_INS] & (1 << ev_id))) {
pl330_fault(ch, PL330_FAULT_EVENT_ERR);
return;
}
if (ch->parent->inten & (1 << ev_id)) {
ch->parent->int_status |= (1 << ev_id);
trace_pl330_dmasev_evirq(ev_id);
qemu_irq_raise(ch->parent->irq[ev_id]);
}
trace_pl330_dmasev_event(ev_id);
ch->parent->ev_status |= (1 << ev_id);
}
static void pl330_dmast(PL330Chan *ch, uint8_t opcode, uint8_t *args, int len)
{
uint8_t bs = opcode & 3;
uint32_t size, num;
bool inc;
if (bs == 2) {
pl330_fault(ch, PL330_FAULT_OPERAND_INVALID);
return;
}
if ((bs == 1 && ch->request_flag == PL330_BURST) ||
(bs == 3 && ch->request_flag == PL330_SINGLE)) {
/* Perform NOP */
return;
}
num = ((ch->control >> 18) & 0xf) + 1;
size = (uint32_t)1 << ((ch->control >> 15) & 0x7);
inc = !!((ch->control >> 14) & 1);
ch->stall = pl330_queue_put_insn(&ch->parent->write_queue, ch->dst,
size, num, inc, 0, ch->tag);
if (!ch->stall) {
trace_pl330_dmast(ch->tag, ch->dst, size, num, inc ? 'Y' : 'N');
ch->dst += inc ? size * num - (ch->dst & (size - 1)) : 0;
}
}
static void pl330_dmastp(PL330Chan *ch, uint8_t opcode,
uint8_t *args, int len)
{
uint8_t periph_id;
if (args[0] & 7) {
pl330_fault(ch, PL330_FAULT_OPERAND_INVALID);
return;
}
periph_id = (args[0] >> 3) & 0x1f;
if (periph_id >= ch->parent->num_periph_req) {
pl330_fault(ch, PL330_FAULT_OPERAND_INVALID);
return;
}
if (ch->ns && !(ch->parent->cfg[CFG_PNS] & (1 << periph_id))) {
pl330_fault(ch, PL330_FAULT_CH_PERIPH_ERR);
return;
}
pl330_dmast(ch, opcode, args, len);
}
static void pl330_dmastz(PL330Chan *ch, uint8_t opcode,
uint8_t *args, int len)
{
uint32_t size, num;
bool inc;
num = ((ch->control >> 18) & 0xf) + 1;
size = (uint32_t)1 << ((ch->control >> 15) & 0x7);
inc = !!((ch->control >> 14) & 1);
ch->stall = pl330_queue_put_insn(&ch->parent->write_queue, ch->dst,
size, num, inc, 1, ch->tag);
if (inc) {
ch->dst += size * num;
}
}
static void pl330_dmawfe(PL330Chan *ch, uint8_t opcode,
uint8_t *args, int len)
{
uint8_t ev_id;
int i;
if (args[0] & 5) {
pl330_fault(ch, PL330_FAULT_OPERAND_INVALID);
return;
}
ev_id = (args[0] >> 3) & 0x1f;
if (ev_id >= ch->parent->num_events) {
pl330_fault(ch, PL330_FAULT_OPERAND_INVALID);
return;
}
if (ch->ns && !(ch->parent->cfg[CFG_INS] & (1 << ev_id))) {
pl330_fault(ch, PL330_FAULT_EVENT_ERR);
return;
}
ch->wakeup = ev_id;
ch->state = pl330_chan_waiting_event;
if (~ch->parent->inten & ch->parent->ev_status & 1 << ev_id) {
ch->state = pl330_chan_executing;
/* If anyone else is currently waiting on the same event, let them
* clear the ev_status so they pick up event as well
*/
for (i = 0; i < ch->parent->num_chnls; ++i) {
PL330Chan *peer = &ch->parent->chan[i];
if (peer->state == pl330_chan_waiting_event &&
peer->wakeup == ev_id) {
return;
}
}
ch->parent->ev_status &= ~(1 << ev_id);
trace_pl330_dmawfe(ev_id);
} else {
ch->stall = 1;
}
}
static void pl330_dmawfp(PL330Chan *ch, uint8_t opcode,
uint8_t *args, int len)
{
uint8_t bs = opcode & 3;
uint8_t periph_id;
if (args[0] & 7) {
pl330_fault(ch, PL330_FAULT_OPERAND_INVALID);
return;
}
periph_id = (args[0] >> 3) & 0x1f;
if (periph_id >= ch->parent->num_periph_req) {
pl330_fault(ch, PL330_FAULT_OPERAND_INVALID);
return;
}
if (ch->ns && !(ch->parent->cfg[CFG_PNS] & (1 << periph_id))) {
pl330_fault(ch, PL330_FAULT_CH_PERIPH_ERR);
return;
}
switch (bs) {
case 0: /* S */
ch->request_flag = PL330_SINGLE;
ch->wfp_sbp = 0;
break;
case 1: /* P */
ch->request_flag = PL330_BURST;
ch->wfp_sbp = 2;
break;
case 2: /* B */
ch->request_flag = PL330_BURST;
ch->wfp_sbp = 1;
break;
default:
pl330_fault(ch, PL330_FAULT_OPERAND_INVALID);
return;
}
if (ch->parent->periph_busy[periph_id]) {
ch->state = pl330_chan_waiting_periph;
ch->stall = 1;
} else if (ch->state == pl330_chan_waiting_periph) {
ch->state = pl330_chan_executing;
}
}
static void pl330_dmawmb(PL330Chan *ch, uint8_t opcode,
uint8_t *args, int len)
{
if (pl330_queue_find_insn(&ch->parent->write_queue, ch->tag, false)) {
ch->state = pl330_chan_at_barrier;
ch->stall = 1;
return;
} else {
ch->state = pl330_chan_executing;
}
}
/* NULL terminated array of the instruction descriptions. */
static const PL330InsnDesc insn_desc[] = {
{ .opcode = 0x54, .opmask = 0xFD, .size = 3, .exec = pl330_dmaaddh, },
{ .opcode = 0x5c, .opmask = 0xFD, .size = 3, .exec = pl330_dmaadnh, },
{ .opcode = 0x00, .opmask = 0xFF, .size = 1, .exec = pl330_dmaend, },
{ .opcode = 0x35, .opmask = 0xFF, .size = 2, .exec = pl330_dmaflushp, },
{ .opcode = 0xA0, .opmask = 0xFD, .size = 6, .exec = pl330_dmago, },
{ .opcode = 0x04, .opmask = 0xFC, .size = 1, .exec = pl330_dmald, },
{ .opcode = 0x25, .opmask = 0xFD, .size = 2, .exec = pl330_dmaldp, },
{ .opcode = 0x20, .opmask = 0xFD, .size = 2, .exec = pl330_dmalp, },
/* dmastp must be before dmalpend in this list, because their maps
* are overlapping
*/
{ .opcode = 0x29, .opmask = 0xFD, .size = 2, .exec = pl330_dmastp, },
{ .opcode = 0x28, .opmask = 0xE8, .size = 2, .exec = pl330_dmalpend, },
{ .opcode = 0x01, .opmask = 0xFF, .size = 1, .exec = pl330_dmakill, },
{ .opcode = 0xBC, .opmask = 0xFF, .size = 6, .exec = pl330_dmamov, },
{ .opcode = 0x18, .opmask = 0xFF, .size = 1, .exec = pl330_dmanop, },
{ .opcode = 0x12, .opmask = 0xFF, .size = 1, .exec = pl330_dmarmb, },
{ .opcode = 0x34, .opmask = 0xFF, .size = 2, .exec = pl330_dmasev, },
{ .opcode = 0x08, .opmask = 0xFC, .size = 1, .exec = pl330_dmast, },
{ .opcode = 0x0C, .opmask = 0xFF, .size = 1, .exec = pl330_dmastz, },
{ .opcode = 0x36, .opmask = 0xFF, .size = 2, .exec = pl330_dmawfe, },
{ .opcode = 0x30, .opmask = 0xFC, .size = 2, .exec = pl330_dmawfp, },
{ .opcode = 0x13, .opmask = 0xFF, .size = 1, .exec = pl330_dmawmb, },
{ .opcode = 0x00, .opmask = 0x00, .size = 0, .exec = NULL, }
};
/* Instructions which can be issued via debug registers. */
static const PL330InsnDesc debug_insn_desc[] = {
{ .opcode = 0xA0, .opmask = 0xFD, .size = 6, .exec = pl330_dmago, },
{ .opcode = 0x01, .opmask = 0xFF, .size = 1, .exec = pl330_dmakill, },
{ .opcode = 0x34, .opmask = 0xFF, .size = 2, .exec = pl330_dmasev, },
{ .opcode = 0x00, .opmask = 0x00, .size = 0, .exec = NULL, }
};
static inline const PL330InsnDesc *pl330_fetch_insn(PL330Chan *ch)
{
uint8_t opcode;
int i;
dma_memory_read(ch->parent->mem_as, ch->pc, &opcode, 1,
MEMTXATTRS_UNSPECIFIED);
for (i = 0; insn_desc[i].size; i++) {
if ((opcode & insn_desc[i].opmask) == insn_desc[i].opcode) {
return &insn_desc[i];
}
}
return NULL;
}
static inline void pl330_exec_insn(PL330Chan *ch, const PL330InsnDesc *insn)
{
uint8_t buf[PL330_INSN_MAXSIZE];
assert(insn->size <= PL330_INSN_MAXSIZE);
dma_memory_read(ch->parent->mem_as, ch->pc, buf, insn->size,
MEMTXATTRS_UNSPECIFIED);
insn->exec(ch, buf[0], &buf[1], insn->size - 1);
}
static inline void pl330_update_pc(PL330Chan *ch,
const PL330InsnDesc *insn)
{
ch->pc += insn->size;
}
/* Try to execute current instruction in channel CH. Number of executed
instructions is returned (0 or 1). */
static int pl330_chan_exec(PL330Chan *ch)
{
const PL330InsnDesc *insn;
if (ch->state != pl330_chan_executing &&
ch->state != pl330_chan_waiting_periph &&
ch->state != pl330_chan_at_barrier &&
ch->state != pl330_chan_waiting_event) {
return 0;
}
ch->stall = 0;
insn = pl330_fetch_insn(ch);
if (!insn) {
trace_pl330_chan_exec_undef();
pl330_fault(ch, PL330_FAULT_UNDEF_INSTR);
return 0;
}
pl330_exec_insn(ch, insn);
if (!ch->stall) {
pl330_update_pc(ch, insn);
ch->watchdog_timer = 0;
return 1;
/* WDT only active in exec state */
} else if (ch->state == pl330_chan_executing) {
ch->watchdog_timer++;
if (ch->watchdog_timer >= PL330_WATCHDOG_LIMIT) {
pl330_fault(ch, PL330_FAULT_LOCKUP_ERR);
}
}
return 0;
}
/* Try to execute 1 instruction in each channel, one instruction from read
queue and one instruction from write queue. Number of successfully executed
instructions is returned. */
static int pl330_exec_cycle(PL330Chan *channel)
{
PL330State *s = channel->parent;
PL330QueueEntry *q;
int i;
int num_exec = 0;
int fifo_res = 0;
uint8_t buf[PL330_MAX_BURST_LEN];
/* Execute one instruction in each channel */
num_exec += pl330_chan_exec(channel);
/* Execute one instruction from read queue */
q = pl330_queue_find_insn(&s->read_queue, PL330_UNTAGGED, true);
if (q != NULL && q->len <= pl330_fifo_num_free(&s->fifo)) {
int len = q->len - (q->addr & (q->len - 1));
dma_memory_read(s->mem_as, q->addr, buf, len,
MEMTXATTRS_UNSPECIFIED);
trace_pl330_exec_cycle(q->addr, len);
if (trace_event_get_state_backends(TRACE_PL330_HEXDUMP)) {
pl330_hexdump(buf, len);
}
fifo_res = pl330_fifo_push(&s->fifo, buf, len, q->tag);
if (fifo_res == PL330_FIFO_OK) {
if (q->inc) {
q->addr += len;
}
q->n--;
if (!q->n) {
pl330_queue_remove_insn(&s->read_queue, q);
}
num_exec++;
}
}
/* Execute one instruction from write queue. */
q = pl330_queue_find_insn(&s->write_queue, pl330_fifo_tag(&s->fifo), true);
if (q != NULL) {
int len = q->len - (q->addr & (q->len - 1));
if (q->z) {
for (i = 0; i < len; i++) {
buf[i] = 0;
}
} else {
fifo_res = pl330_fifo_get(&s->fifo, buf, len, q->tag);
}
if (fifo_res == PL330_FIFO_OK || q->z) {
dma_memory_write(s->mem_as, q->addr, buf, len,
MEMTXATTRS_UNSPECIFIED);
trace_pl330_exec_cycle(q->addr, len);
if (trace_event_get_state_backends(TRACE_PL330_HEXDUMP)) {
pl330_hexdump(buf, len);
}
if (q->inc) {
q->addr += len;
}
num_exec++;
} else if (fifo_res == PL330_FIFO_STALL) {
pl330_fault(&channel->parent->chan[q->tag],
PL330_FAULT_FIFOEMPTY_ERR);
}
q->n--;
if (!q->n) {
pl330_queue_remove_insn(&s->write_queue, q);
}
}
return num_exec;
}
static int pl330_exec_channel(PL330Chan *channel)
{
int insr_exec = 0;
/* TODO: Is it all right to execute everything or should we do per-cycle
simulation? */
while (pl330_exec_cycle(channel)) {
insr_exec++;
}
/* Detect deadlock */
if (channel->state == pl330_chan_executing) {
pl330_fault(channel, PL330_FAULT_LOCKUP_ERR);
}
/* Situation when one of the queues has deadlocked but all channels
* have finished their programs should be impossible.
*/
return insr_exec;
}
static inline void pl330_exec(PL330State *s)
{
int i, insr_exec;
trace_pl330_exec();
do {
insr_exec = pl330_exec_channel(&s->manager);
for (i = 0; i < s->num_chnls; i++) {
insr_exec += pl330_exec_channel(&s->chan[i]);
}
} while (insr_exec);
}
static void pl330_exec_cycle_timer(void *opaque)
{
PL330State *s = (PL330State *)opaque;
pl330_exec(s);
}
/* Stop or restore dma operations */
static void pl330_dma_stop_irq(void *opaque, int irq, int level)
{
PL330State *s = (PL330State *)opaque;
if (s->periph_busy[irq] != level) {
s->periph_busy[irq] = level;
timer_mod(s->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
}
}
static void pl330_debug_exec(PL330State *s)
{
uint8_t args[5];
uint8_t opcode;
uint8_t chan_id;
int i;
PL330Chan *ch;
const PL330InsnDesc *insn;
s->debug_status = 1;
chan_id = (s->dbg[0] >> 8) & 0x07;
opcode = (s->dbg[0] >> 16) & 0xff;
args[0] = (s->dbg[0] >> 24) & 0xff;
args[1] = (s->dbg[1] >> 0) & 0xff;
args[2] = (s->dbg[1] >> 8) & 0xff;
args[3] = (s->dbg[1] >> 16) & 0xff;
args[4] = (s->dbg[1] >> 24) & 0xff;
trace_pl330_debug_exec(chan_id);
if (s->dbg[0] & 1) {
ch = &s->chan[chan_id];
} else {
ch = &s->manager;
}
insn = NULL;
for (i = 0; debug_insn_desc[i].size; i++) {
if ((opcode & debug_insn_desc[i].opmask) == debug_insn_desc[i].opcode) {
insn = &debug_insn_desc[i];
}
}
if (!insn) {
pl330_fault(ch, PL330_FAULT_UNDEF_INSTR | PL330_FAULT_DBG_INSTR);
return;
}
ch->stall = 0;
insn->exec(ch, opcode, args, insn->size - 1);
if (ch->fault_type) {
ch->fault_type |= PL330_FAULT_DBG_INSTR;
}
if (ch->stall) {
trace_pl330_debug_exec_stall();
qemu_log_mask(LOG_UNIMP, "pl330: stall of debug instruction not "
"implemented\n");
}
s->debug_status = 0;
}
/* IOMEM mapped registers */
static void pl330_iomem_write(void *opaque, hwaddr offset,
uint64_t value, unsigned size)
{
PL330State *s = (PL330State *) opaque;
int i;
trace_pl330_iomem_write((unsigned)offset, (unsigned)value);
switch (offset) {
case PL330_REG_INTEN:
s->inten = value;
break;
case PL330_REG_INTCLR:
for (i = 0; i < s->num_events; i++) {
if (s->int_status & s->inten & value & (1 << i)) {
trace_pl330_iomem_write_clr(i);
qemu_irq_lower(s->irq[i]);
}
}
s->ev_status &= ~(value & s->inten);
s->int_status &= ~(value & s->inten);
break;
case PL330_REG_DBGCMD:
if ((value & 3) == 0) {
pl330_debug_exec(s);
pl330_exec(s);
} else {
qemu_log_mask(LOG_GUEST_ERROR, "pl330: write of illegal value %u "
"for offset " HWADDR_FMT_plx "\n", (unsigned)value,
offset);
}
break;
case PL330_REG_DBGINST0:
s->dbg[0] = value;
break;
case PL330_REG_DBGINST1:
s->dbg[1] = value;
break;
default:
qemu_log_mask(LOG_GUEST_ERROR, "pl330: bad write offset " HWADDR_FMT_plx
"\n", offset);
break;
}
}
static inline uint32_t pl330_iomem_read_imp(void *opaque,
hwaddr offset)
{
PL330State *s = (PL330State *)opaque;
int chan_id;
int i;
uint32_t res;
if (offset >= PL330_REG_PERIPH_ID && offset < PL330_REG_PERIPH_ID + 32) {
return pl330_id[(offset - PL330_REG_PERIPH_ID) >> 2];
}
if (offset >= PL330_REG_CR0_BASE && offset < PL330_REG_CR0_BASE + 24) {
return s->cfg[(offset - PL330_REG_CR0_BASE) >> 2];
}
if (offset >= PL330_REG_CHANCTRL && offset < PL330_REG_DBGSTATUS) {
offset -= PL330_REG_CHANCTRL;
chan_id = offset >> 5;
if (chan_id >= s->num_chnls) {
qemu_log_mask(LOG_GUEST_ERROR, "pl330: bad read offset "
HWADDR_FMT_plx "\n", offset);
return 0;
}
switch (offset & 0x1f) {
case 0x00:
return s->chan[chan_id].src;
case 0x04:
return s->chan[chan_id].dst;
case 0x08:
return s->chan[chan_id].control;
case 0x0C:
return s->chan[chan_id].lc[0];
case 0x10:
return s->chan[chan_id].lc[1];
default:
qemu_log_mask(LOG_GUEST_ERROR, "pl330: bad read offset "
HWADDR_FMT_plx "\n", offset);
return 0;
}
}
if (offset >= PL330_REG_CSR_BASE && offset < 0x400) {
offset -= PL330_REG_CSR_BASE;
chan_id = offset >> 3;
if (chan_id >= s->num_chnls) {
qemu_log_mask(LOG_GUEST_ERROR, "pl330: bad read offset "
HWADDR_FMT_plx "\n", offset);
return 0;
}
switch ((offset >> 2) & 1) {
case 0x0:
res = (s->chan[chan_id].ns << 21) |
(s->chan[chan_id].wakeup << 4) |
(s->chan[chan_id].state) |
(s->chan[chan_id].wfp_sbp << 14);
return res;
case 0x1:
return s->chan[chan_id].pc;
default:
qemu_log_mask(LOG_GUEST_ERROR, "pl330: read error\n");
return 0;
}
}
if (offset >= PL330_REG_FTR_BASE && offset < 0x100) {
offset -= PL330_REG_FTR_BASE;
chan_id = offset >> 2;
if (chan_id >= s->num_chnls) {
qemu_log_mask(LOG_GUEST_ERROR, "pl330: bad read offset "
HWADDR_FMT_plx "\n", offset);
return 0;
}
return s->chan[chan_id].fault_type;
}
switch (offset) {
case PL330_REG_DSR:
return (s->manager.ns << 9) | (s->manager.wakeup << 4) |
(s->manager.state & 0xf);
case PL330_REG_DPC:
return s->manager.pc;
case PL330_REG_INTEN:
return s->inten;
case PL330_REG_INT_EVENT_RIS:
return s->ev_status;
case PL330_REG_INTMIS:
return s->int_status;
case PL330_REG_INTCLR:
/* Documentation says that we can't read this register
* but linux kernel does it
*/
return 0;
case PL330_REG_FSRD:
return s->manager.state ? 1 : 0;
case PL330_REG_FSRC:
res = 0;
for (i = 0; i < s->num_chnls; i++) {
if (s->chan[i].state == pl330_chan_fault ||
s->chan[i].state == pl330_chan_fault_completing) {
res |= 1 << i;
}
}
return res;
case PL330_REG_FTRD:
return s->manager.fault_type;
case PL330_REG_DBGSTATUS:
return s->debug_status;
default:
qemu_log_mask(LOG_GUEST_ERROR, "pl330: bad read offset "
HWADDR_FMT_plx "\n", offset);
}
return 0;
}
static uint64_t pl330_iomem_read(void *opaque, hwaddr offset,
unsigned size)
{
uint32_t ret = pl330_iomem_read_imp(opaque, offset);
trace_pl330_iomem_read((uint32_t)offset, ret);
return ret;
}
static const MemoryRegionOps pl330_ops = {
.read = pl330_iomem_read,
.write = pl330_iomem_write,
.endianness = DEVICE_NATIVE_ENDIAN,
.impl = {
.min_access_size = 4,
.max_access_size = 4,
}
};
/* Controller logic and initialization */
static void pl330_chan_reset(PL330Chan *ch)
{
ch->src = 0;
ch->dst = 0;
ch->pc = 0;
ch->state = pl330_chan_stopped;
ch->watchdog_timer = 0;
ch->stall = 0;
ch->control = 0;
ch->status = 0;
ch->fault_type = 0;
}
static void pl330_reset(DeviceState *d)
{
int i;
PL330State *s = PL330(d);
s->inten = 0;
s->int_status = 0;
s->ev_status = 0;
s->debug_status = 0;
s->num_faulting = 0;
s->manager.ns = s->mgr_ns_at_rst;
pl330_fifo_reset(&s->fifo);
pl330_queue_reset(&s->read_queue);
pl330_queue_reset(&s->write_queue);
for (i = 0; i < s->num_chnls; i++) {
pl330_chan_reset(&s->chan[i]);
}
for (i = 0; i < s->num_periph_req; i++) {
s->periph_busy[i] = 0;
}
timer_del(s->timer);
}
static void pl330_realize(DeviceState *dev, Error **errp)
{
int i;
PL330State *s = PL330(dev);
sysbus_init_irq(SYS_BUS_DEVICE(dev), &s->irq_abort);
memory_region_init_io(&s->iomem, OBJECT(s), &pl330_ops, s,
"dma", PL330_IOMEM_SIZE);
sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->iomem);
if (!s->mem_mr) {
error_setg(errp, "'memory' link is not set");
return;
} else if (s->mem_mr == get_system_memory()) {
/* Avoid creating new AS for system memory. */
s->mem_as = &address_space_memory;
} else {
s->mem_as = g_new0(AddressSpace, 1);
address_space_init(s->mem_as, s->mem_mr,
memory_region_name(s->mem_mr));
}
s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, pl330_exec_cycle_timer, s);
s->cfg[0] = (s->mgr_ns_at_rst ? 0x4 : 0) |
(s->num_periph_req > 0 ? 1 : 0) |
((s->num_chnls - 1) & 0x7) << 4 |
((s->num_periph_req - 1) & 0x1f) << 12 |
((s->num_events - 1) & 0x1f) << 17;
switch (s->i_cache_len) {
case (4):
s->cfg[1] |= 2;
break;
case (8):
s->cfg[1] |= 3;
break;
case (16):
s->cfg[1] |= 4;
break;
case (32):
s->cfg[1] |= 5;
break;
default:
error_setg(errp, "Bad value for i-cache_len property: %" PRIx8,
s->i_cache_len);
return;
}
s->cfg[1] |= ((s->num_i_cache_lines - 1) & 0xf) << 4;
s->chan = g_new0(PL330Chan, s->num_chnls);
s->hi_seqn = g_new0(uint8_t, s->num_chnls);
s->lo_seqn = g_new0(uint8_t, s->num_chnls);
for (i = 0; i < s->num_chnls; i++) {
s->chan[i].parent = s;
s->chan[i].tag = (uint8_t)i;
}
s->manager.parent = s;
s->manager.tag = s->num_chnls;
s->manager.is_manager = true;
s->irq = g_new0(qemu_irq, s->num_events);
for (i = 0; i < s->num_events; i++) {
sysbus_init_irq(SYS_BUS_DEVICE(dev), &s->irq[i]);
}
qdev_init_gpio_in(dev, pl330_dma_stop_irq, PL330_PERIPH_NUM);
switch (s->data_width) {
case (32):
s->cfg[CFG_CRD] |= 0x2;
break;
case (64):
s->cfg[CFG_CRD] |= 0x3;
break;
case (128):
s->cfg[CFG_CRD] |= 0x4;
break;
default:
error_setg(errp, "Bad value for data_width property: %" PRIx8,
s->data_width);
return;
}
s->cfg[CFG_CRD] |= ((s->wr_cap - 1) & 0x7) << 4 |
((s->wr_q_dep - 1) & 0xf) << 8 |
((s->rd_cap - 1) & 0x7) << 12 |
((s->rd_q_dep - 1) & 0xf) << 16 |
((s->data_buffer_dep - 1) & 0x1ff) << 20;
pl330_queue_init(&s->read_queue, s->rd_q_dep, s);
pl330_queue_init(&s->write_queue, s->wr_q_dep, s);
pl330_fifo_init(&s->fifo, s->data_width / 4 * s->data_buffer_dep);
}
static Property pl330_properties[] = {
/* CR0 */
DEFINE_PROP_UINT32("num_chnls", PL330State, num_chnls, 8),
DEFINE_PROP_UINT8("num_periph_req", PL330State, num_periph_req, 4),
DEFINE_PROP_UINT8("num_events", PL330State, num_events, 16),
DEFINE_PROP_UINT8("mgr_ns_at_rst", PL330State, mgr_ns_at_rst, 0),
/* CR1 */
DEFINE_PROP_UINT8("i-cache_len", PL330State, i_cache_len, 4),
DEFINE_PROP_UINT8("num_i-cache_lines", PL330State, num_i_cache_lines, 8),
/* CR2-4 */
DEFINE_PROP_UINT32("boot_addr", PL330State, cfg[CFG_BOOT_ADDR], 0),
DEFINE_PROP_UINT32("INS", PL330State, cfg[CFG_INS], 0),
DEFINE_PROP_UINT32("PNS", PL330State, cfg[CFG_PNS], 0),
/* CRD */
DEFINE_PROP_UINT8("data_width", PL330State, data_width, 64),
DEFINE_PROP_UINT8("wr_cap", PL330State, wr_cap, 8),
DEFINE_PROP_UINT8("wr_q_dep", PL330State, wr_q_dep, 16),
DEFINE_PROP_UINT8("rd_cap", PL330State, rd_cap, 8),
DEFINE_PROP_UINT8("rd_q_dep", PL330State, rd_q_dep, 16),
DEFINE_PROP_UINT16("data_buffer_dep", PL330State, data_buffer_dep, 256),
DEFINE_PROP_LINK("memory", PL330State, mem_mr,
TYPE_MEMORY_REGION, MemoryRegion *),
DEFINE_PROP_END_OF_LIST(),
};
static void pl330_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->realize = pl330_realize;
dc->reset = pl330_reset;
device_class_set_props(dc, pl330_properties);
dc->vmsd = &vmstate_pl330;
}
static const TypeInfo pl330_type_info = {
.name = TYPE_PL330,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(PL330State),
.class_init = pl330_class_init,
};
static void pl330_register_types(void)
{
type_register_static(&pl330_type_info);
}
type_init(pl330_register_types)