qemu/hw/ne2000.c
aliguori 0ae18ceeaa Check NIC model in some NIC init functions (Mark McLoughlin)
Some NIC init functions are only called when that model is
the only valid model. In that case, it makes sense to use
qemu_check_nic_model() from the NIC init function itself.

Signed-off-by: Mark McLoughlin <markmc@redhat.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>



git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@6286 c046a42c-6fe2-441c-8c8c-71466251a162
2009-01-13 19:39:36 +00:00

816 lines
24 KiB
C

/*
* QEMU NE2000 emulation
*
* Copyright (c) 2003-2004 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "hw.h"
#include "pci.h"
#include "pc.h"
#include "net.h"
/* debug NE2000 card */
//#define DEBUG_NE2000
#define MAX_ETH_FRAME_SIZE 1514
#define E8390_CMD 0x00 /* The command register (for all pages) */
/* Page 0 register offsets. */
#define EN0_CLDALO 0x01 /* Low byte of current local dma addr RD */
#define EN0_STARTPG 0x01 /* Starting page of ring bfr WR */
#define EN0_CLDAHI 0x02 /* High byte of current local dma addr RD */
#define EN0_STOPPG 0x02 /* Ending page +1 of ring bfr WR */
#define EN0_BOUNDARY 0x03 /* Boundary page of ring bfr RD WR */
#define EN0_TSR 0x04 /* Transmit status reg RD */
#define EN0_TPSR 0x04 /* Transmit starting page WR */
#define EN0_NCR 0x05 /* Number of collision reg RD */
#define EN0_TCNTLO 0x05 /* Low byte of tx byte count WR */
#define EN0_FIFO 0x06 /* FIFO RD */
#define EN0_TCNTHI 0x06 /* High byte of tx byte count WR */
#define EN0_ISR 0x07 /* Interrupt status reg RD WR */
#define EN0_CRDALO 0x08 /* low byte of current remote dma address RD */
#define EN0_RSARLO 0x08 /* Remote start address reg 0 */
#define EN0_CRDAHI 0x09 /* high byte, current remote dma address RD */
#define EN0_RSARHI 0x09 /* Remote start address reg 1 */
#define EN0_RCNTLO 0x0a /* Remote byte count reg WR */
#define EN0_RTL8029ID0 0x0a /* Realtek ID byte #1 RD */
#define EN0_RCNTHI 0x0b /* Remote byte count reg WR */
#define EN0_RTL8029ID1 0x0b /* Realtek ID byte #2 RD */
#define EN0_RSR 0x0c /* rx status reg RD */
#define EN0_RXCR 0x0c /* RX configuration reg WR */
#define EN0_TXCR 0x0d /* TX configuration reg WR */
#define EN0_COUNTER0 0x0d /* Rcv alignment error counter RD */
#define EN0_DCFG 0x0e /* Data configuration reg WR */
#define EN0_COUNTER1 0x0e /* Rcv CRC error counter RD */
#define EN0_IMR 0x0f /* Interrupt mask reg WR */
#define EN0_COUNTER2 0x0f /* Rcv missed frame error counter RD */
#define EN1_PHYS 0x11
#define EN1_CURPAG 0x17
#define EN1_MULT 0x18
#define EN2_STARTPG 0x21 /* Starting page of ring bfr RD */
#define EN2_STOPPG 0x22 /* Ending page +1 of ring bfr RD */
#define EN3_CONFIG0 0x33
#define EN3_CONFIG1 0x34
#define EN3_CONFIG2 0x35
#define EN3_CONFIG3 0x36
/* Register accessed at EN_CMD, the 8390 base addr. */
#define E8390_STOP 0x01 /* Stop and reset the chip */
#define E8390_START 0x02 /* Start the chip, clear reset */
#define E8390_TRANS 0x04 /* Transmit a frame */
#define E8390_RREAD 0x08 /* Remote read */
#define E8390_RWRITE 0x10 /* Remote write */
#define E8390_NODMA 0x20 /* Remote DMA */
#define E8390_PAGE0 0x00 /* Select page chip registers */
#define E8390_PAGE1 0x40 /* using the two high-order bits */
#define E8390_PAGE2 0x80 /* Page 3 is invalid. */
/* Bits in EN0_ISR - Interrupt status register */
#define ENISR_RX 0x01 /* Receiver, no error */
#define ENISR_TX 0x02 /* Transmitter, no error */
#define ENISR_RX_ERR 0x04 /* Receiver, with error */
#define ENISR_TX_ERR 0x08 /* Transmitter, with error */
#define ENISR_OVER 0x10 /* Receiver overwrote the ring */
#define ENISR_COUNTERS 0x20 /* Counters need emptying */
#define ENISR_RDC 0x40 /* remote dma complete */
#define ENISR_RESET 0x80 /* Reset completed */
#define ENISR_ALL 0x3f /* Interrupts we will enable */
/* Bits in received packet status byte and EN0_RSR*/
#define ENRSR_RXOK 0x01 /* Received a good packet */
#define ENRSR_CRC 0x02 /* CRC error */
#define ENRSR_FAE 0x04 /* frame alignment error */
#define ENRSR_FO 0x08 /* FIFO overrun */
#define ENRSR_MPA 0x10 /* missed pkt */
#define ENRSR_PHY 0x20 /* physical/multicast address */
#define ENRSR_DIS 0x40 /* receiver disable. set in monitor mode */
#define ENRSR_DEF 0x80 /* deferring */
/* Transmitted packet status, EN0_TSR. */
#define ENTSR_PTX 0x01 /* Packet transmitted without error */
#define ENTSR_ND 0x02 /* The transmit wasn't deferred. */
#define ENTSR_COL 0x04 /* The transmit collided at least once. */
#define ENTSR_ABT 0x08 /* The transmit collided 16 times, and was deferred. */
#define ENTSR_CRS 0x10 /* The carrier sense was lost. */
#define ENTSR_FU 0x20 /* A "FIFO underrun" occurred during transmit. */
#define ENTSR_CDH 0x40 /* The collision detect "heartbeat" signal was lost. */
#define ENTSR_OWC 0x80 /* There was an out-of-window collision. */
#define NE2000_PMEM_SIZE (32*1024)
#define NE2000_PMEM_START (16*1024)
#define NE2000_PMEM_END (NE2000_PMEM_SIZE+NE2000_PMEM_START)
#define NE2000_MEM_SIZE NE2000_PMEM_END
typedef struct NE2000State {
uint8_t cmd;
uint32_t start;
uint32_t stop;
uint8_t boundary;
uint8_t tsr;
uint8_t tpsr;
uint16_t tcnt;
uint16_t rcnt;
uint32_t rsar;
uint8_t rsr;
uint8_t rxcr;
uint8_t isr;
uint8_t dcfg;
uint8_t imr;
uint8_t phys[6]; /* mac address */
uint8_t curpag;
uint8_t mult[8]; /* multicast mask array */
qemu_irq irq;
PCIDevice *pci_dev;
VLANClientState *vc;
uint8_t macaddr[6];
uint8_t mem[NE2000_MEM_SIZE];
} NE2000State;
static void ne2000_reset(NE2000State *s)
{
int i;
s->isr = ENISR_RESET;
memcpy(s->mem, s->macaddr, 6);
s->mem[14] = 0x57;
s->mem[15] = 0x57;
/* duplicate prom data */
for(i = 15;i >= 0; i--) {
s->mem[2 * i] = s->mem[i];
s->mem[2 * i + 1] = s->mem[i];
}
}
static void ne2000_update_irq(NE2000State *s)
{
int isr;
isr = (s->isr & s->imr) & 0x7f;
#if defined(DEBUG_NE2000)
printf("NE2000: Set IRQ to %d (%02x %02x)\n",
isr ? 1 : 0, s->isr, s->imr);
#endif
qemu_set_irq(s->irq, (isr != 0));
}
#define POLYNOMIAL 0x04c11db6
/* From FreeBSD */
/* XXX: optimize */
static int compute_mcast_idx(const uint8_t *ep)
{
uint32_t crc;
int carry, i, j;
uint8_t b;
crc = 0xffffffff;
for (i = 0; i < 6; i++) {
b = *ep++;
for (j = 0; j < 8; j++) {
carry = ((crc & 0x80000000L) ? 1 : 0) ^ (b & 0x01);
crc <<= 1;
b >>= 1;
if (carry)
crc = ((crc ^ POLYNOMIAL) | carry);
}
}
return (crc >> 26);
}
static int ne2000_buffer_full(NE2000State *s)
{
int avail, index, boundary;
index = s->curpag << 8;
boundary = s->boundary << 8;
if (index < boundary)
avail = boundary - index;
else
avail = (s->stop - s->start) - (index - boundary);
if (avail < (MAX_ETH_FRAME_SIZE + 4))
return 1;
return 0;
}
static int ne2000_can_receive(void *opaque)
{
NE2000State *s = opaque;
if (s->cmd & E8390_STOP)
return 1;
return !ne2000_buffer_full(s);
}
#define MIN_BUF_SIZE 60
static void ne2000_receive(void *opaque, const uint8_t *buf, int size)
{
NE2000State *s = opaque;
uint8_t *p;
unsigned int total_len, next, avail, len, index, mcast_idx;
uint8_t buf1[60];
static const uint8_t broadcast_macaddr[6] =
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
#if defined(DEBUG_NE2000)
printf("NE2000: received len=%d\n", size);
#endif
if (s->cmd & E8390_STOP || ne2000_buffer_full(s))
return;
/* XXX: check this */
if (s->rxcr & 0x10) {
/* promiscuous: receive all */
} else {
if (!memcmp(buf, broadcast_macaddr, 6)) {
/* broadcast address */
if (!(s->rxcr & 0x04))
return;
} else if (buf[0] & 0x01) {
/* multicast */
if (!(s->rxcr & 0x08))
return;
mcast_idx = compute_mcast_idx(buf);
if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))))
return;
} else if (s->mem[0] == buf[0] &&
s->mem[2] == buf[1] &&
s->mem[4] == buf[2] &&
s->mem[6] == buf[3] &&
s->mem[8] == buf[4] &&
s->mem[10] == buf[5]) {
/* match */
} else {
return;
}
}
/* if too small buffer, then expand it */
if (size < MIN_BUF_SIZE) {
memcpy(buf1, buf, size);
memset(buf1 + size, 0, MIN_BUF_SIZE - size);
buf = buf1;
size = MIN_BUF_SIZE;
}
index = s->curpag << 8;
/* 4 bytes for header */
total_len = size + 4;
/* address for next packet (4 bytes for CRC) */
next = index + ((total_len + 4 + 255) & ~0xff);
if (next >= s->stop)
next -= (s->stop - s->start);
/* prepare packet header */
p = s->mem + index;
s->rsr = ENRSR_RXOK; /* receive status */
/* XXX: check this */
if (buf[0] & 0x01)
s->rsr |= ENRSR_PHY;
p[0] = s->rsr;
p[1] = next >> 8;
p[2] = total_len;
p[3] = total_len >> 8;
index += 4;
/* write packet data */
while (size > 0) {
if (index <= s->stop)
avail = s->stop - index;
else
avail = 0;
len = size;
if (len > avail)
len = avail;
memcpy(s->mem + index, buf, len);
buf += len;
index += len;
if (index == s->stop)
index = s->start;
size -= len;
}
s->curpag = next >> 8;
/* now we can signal we have received something */
s->isr |= ENISR_RX;
ne2000_update_irq(s);
}
static void ne2000_ioport_write(void *opaque, uint32_t addr, uint32_t val)
{
NE2000State *s = opaque;
int offset, page, index;
addr &= 0xf;
#ifdef DEBUG_NE2000
printf("NE2000: write addr=0x%x val=0x%02x\n", addr, val);
#endif
if (addr == E8390_CMD) {
/* control register */
s->cmd = val;
if (!(val & E8390_STOP)) { /* START bit makes no sense on RTL8029... */
s->isr &= ~ENISR_RESET;
/* test specific case: zero length transfer */
if ((val & (E8390_RREAD | E8390_RWRITE)) &&
s->rcnt == 0) {
s->isr |= ENISR_RDC;
ne2000_update_irq(s);
}
if (val & E8390_TRANS) {
index = (s->tpsr << 8);
/* XXX: next 2 lines are a hack to make netware 3.11 work */
if (index >= NE2000_PMEM_END)
index -= NE2000_PMEM_SIZE;
/* fail safe: check range on the transmitted length */
if (index + s->tcnt <= NE2000_PMEM_END) {
qemu_send_packet(s->vc, s->mem + index, s->tcnt);
}
/* signal end of transfer */
s->tsr = ENTSR_PTX;
s->isr |= ENISR_TX;
s->cmd &= ~E8390_TRANS;
ne2000_update_irq(s);
}
}
} else {
page = s->cmd >> 6;
offset = addr | (page << 4);
switch(offset) {
case EN0_STARTPG:
s->start = val << 8;
break;
case EN0_STOPPG:
s->stop = val << 8;
break;
case EN0_BOUNDARY:
s->boundary = val;
break;
case EN0_IMR:
s->imr = val;
ne2000_update_irq(s);
break;
case EN0_TPSR:
s->tpsr = val;
break;
case EN0_TCNTLO:
s->tcnt = (s->tcnt & 0xff00) | val;
break;
case EN0_TCNTHI:
s->tcnt = (s->tcnt & 0x00ff) | (val << 8);
break;
case EN0_RSARLO:
s->rsar = (s->rsar & 0xff00) | val;
break;
case EN0_RSARHI:
s->rsar = (s->rsar & 0x00ff) | (val << 8);
break;
case EN0_RCNTLO:
s->rcnt = (s->rcnt & 0xff00) | val;
break;
case EN0_RCNTHI:
s->rcnt = (s->rcnt & 0x00ff) | (val << 8);
break;
case EN0_RXCR:
s->rxcr = val;
break;
case EN0_DCFG:
s->dcfg = val;
break;
case EN0_ISR:
s->isr &= ~(val & 0x7f);
ne2000_update_irq(s);
break;
case EN1_PHYS ... EN1_PHYS + 5:
s->phys[offset - EN1_PHYS] = val;
break;
case EN1_CURPAG:
s->curpag = val;
break;
case EN1_MULT ... EN1_MULT + 7:
s->mult[offset - EN1_MULT] = val;
break;
}
}
}
static uint32_t ne2000_ioport_read(void *opaque, uint32_t addr)
{
NE2000State *s = opaque;
int offset, page, ret;
addr &= 0xf;
if (addr == E8390_CMD) {
ret = s->cmd;
} else {
page = s->cmd >> 6;
offset = addr | (page << 4);
switch(offset) {
case EN0_TSR:
ret = s->tsr;
break;
case EN0_BOUNDARY:
ret = s->boundary;
break;
case EN0_ISR:
ret = s->isr;
break;
case EN0_RSARLO:
ret = s->rsar & 0x00ff;
break;
case EN0_RSARHI:
ret = s->rsar >> 8;
break;
case EN1_PHYS ... EN1_PHYS + 5:
ret = s->phys[offset - EN1_PHYS];
break;
case EN1_CURPAG:
ret = s->curpag;
break;
case EN1_MULT ... EN1_MULT + 7:
ret = s->mult[offset - EN1_MULT];
break;
case EN0_RSR:
ret = s->rsr;
break;
case EN2_STARTPG:
ret = s->start >> 8;
break;
case EN2_STOPPG:
ret = s->stop >> 8;
break;
case EN0_RTL8029ID0:
ret = 0x50;
break;
case EN0_RTL8029ID1:
ret = 0x43;
break;
case EN3_CONFIG0:
ret = 0; /* 10baseT media */
break;
case EN3_CONFIG2:
ret = 0x40; /* 10baseT active */
break;
case EN3_CONFIG3:
ret = 0x40; /* Full duplex */
break;
default:
ret = 0x00;
break;
}
}
#ifdef DEBUG_NE2000
printf("NE2000: read addr=0x%x val=%02x\n", addr, ret);
#endif
return ret;
}
static inline void ne2000_mem_writeb(NE2000State *s, uint32_t addr,
uint32_t val)
{
if (addr < 32 ||
(addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
s->mem[addr] = val;
}
}
static inline void ne2000_mem_writew(NE2000State *s, uint32_t addr,
uint32_t val)
{
addr &= ~1; /* XXX: check exact behaviour if not even */
if (addr < 32 ||
(addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
*(uint16_t *)(s->mem + addr) = cpu_to_le16(val);
}
}
static inline void ne2000_mem_writel(NE2000State *s, uint32_t addr,
uint32_t val)
{
addr &= ~1; /* XXX: check exact behaviour if not even */
if (addr < 32 ||
(addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
cpu_to_le32wu((uint32_t *)(s->mem + addr), val);
}
}
static inline uint32_t ne2000_mem_readb(NE2000State *s, uint32_t addr)
{
if (addr < 32 ||
(addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
return s->mem[addr];
} else {
return 0xff;
}
}
static inline uint32_t ne2000_mem_readw(NE2000State *s, uint32_t addr)
{
addr &= ~1; /* XXX: check exact behaviour if not even */
if (addr < 32 ||
(addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
return le16_to_cpu(*(uint16_t *)(s->mem + addr));
} else {
return 0xffff;
}
}
static inline uint32_t ne2000_mem_readl(NE2000State *s, uint32_t addr)
{
addr &= ~1; /* XXX: check exact behaviour if not even */
if (addr < 32 ||
(addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
return le32_to_cpupu((uint32_t *)(s->mem + addr));
} else {
return 0xffffffff;
}
}
static inline void ne2000_dma_update(NE2000State *s, int len)
{
s->rsar += len;
/* wrap */
/* XXX: check what to do if rsar > stop */
if (s->rsar == s->stop)
s->rsar = s->start;
if (s->rcnt <= len) {
s->rcnt = 0;
/* signal end of transfer */
s->isr |= ENISR_RDC;
ne2000_update_irq(s);
} else {
s->rcnt -= len;
}
}
static void ne2000_asic_ioport_write(void *opaque, uint32_t addr, uint32_t val)
{
NE2000State *s = opaque;
#ifdef DEBUG_NE2000
printf("NE2000: asic write val=0x%04x\n", val);
#endif
if (s->rcnt == 0)
return;
if (s->dcfg & 0x01) {
/* 16 bit access */
ne2000_mem_writew(s, s->rsar, val);
ne2000_dma_update(s, 2);
} else {
/* 8 bit access */
ne2000_mem_writeb(s, s->rsar, val);
ne2000_dma_update(s, 1);
}
}
static uint32_t ne2000_asic_ioport_read(void *opaque, uint32_t addr)
{
NE2000State *s = opaque;
int ret;
if (s->dcfg & 0x01) {
/* 16 bit access */
ret = ne2000_mem_readw(s, s->rsar);
ne2000_dma_update(s, 2);
} else {
/* 8 bit access */
ret = ne2000_mem_readb(s, s->rsar);
ne2000_dma_update(s, 1);
}
#ifdef DEBUG_NE2000
printf("NE2000: asic read val=0x%04x\n", ret);
#endif
return ret;
}
static void ne2000_asic_ioport_writel(void *opaque, uint32_t addr, uint32_t val)
{
NE2000State *s = opaque;
#ifdef DEBUG_NE2000
printf("NE2000: asic writel val=0x%04x\n", val);
#endif
if (s->rcnt == 0)
return;
/* 32 bit access */
ne2000_mem_writel(s, s->rsar, val);
ne2000_dma_update(s, 4);
}
static uint32_t ne2000_asic_ioport_readl(void *opaque, uint32_t addr)
{
NE2000State *s = opaque;
int ret;
/* 32 bit access */
ret = ne2000_mem_readl(s, s->rsar);
ne2000_dma_update(s, 4);
#ifdef DEBUG_NE2000
printf("NE2000: asic readl val=0x%04x\n", ret);
#endif
return ret;
}
static void ne2000_reset_ioport_write(void *opaque, uint32_t addr, uint32_t val)
{
/* nothing to do (end of reset pulse) */
}
static uint32_t ne2000_reset_ioport_read(void *opaque, uint32_t addr)
{
NE2000State *s = opaque;
ne2000_reset(s);
return 0;
}
static void ne2000_save(QEMUFile* f,void* opaque)
{
NE2000State* s=(NE2000State*)opaque;
uint32_t tmp;
if (s->pci_dev)
pci_device_save(s->pci_dev, f);
qemu_put_8s(f, &s->rxcr);
qemu_put_8s(f, &s->cmd);
qemu_put_be32s(f, &s->start);
qemu_put_be32s(f, &s->stop);
qemu_put_8s(f, &s->boundary);
qemu_put_8s(f, &s->tsr);
qemu_put_8s(f, &s->tpsr);
qemu_put_be16s(f, &s->tcnt);
qemu_put_be16s(f, &s->rcnt);
qemu_put_be32s(f, &s->rsar);
qemu_put_8s(f, &s->rsr);
qemu_put_8s(f, &s->isr);
qemu_put_8s(f, &s->dcfg);
qemu_put_8s(f, &s->imr);
qemu_put_buffer(f, s->phys, 6);
qemu_put_8s(f, &s->curpag);
qemu_put_buffer(f, s->mult, 8);
tmp = 0;
qemu_put_be32s(f, &tmp); /* ignored, was irq */
qemu_put_buffer(f, s->mem, NE2000_MEM_SIZE);
}
static int ne2000_load(QEMUFile* f,void* opaque,int version_id)
{
NE2000State* s=(NE2000State*)opaque;
int ret;
uint32_t tmp;
if (version_id > 3)
return -EINVAL;
if (s->pci_dev && version_id >= 3) {
ret = pci_device_load(s->pci_dev, f);
if (ret < 0)
return ret;
}
if (version_id >= 2) {
qemu_get_8s(f, &s->rxcr);
} else {
s->rxcr = 0x0c;
}
qemu_get_8s(f, &s->cmd);
qemu_get_be32s(f, &s->start);
qemu_get_be32s(f, &s->stop);
qemu_get_8s(f, &s->boundary);
qemu_get_8s(f, &s->tsr);
qemu_get_8s(f, &s->tpsr);
qemu_get_be16s(f, &s->tcnt);
qemu_get_be16s(f, &s->rcnt);
qemu_get_be32s(f, &s->rsar);
qemu_get_8s(f, &s->rsr);
qemu_get_8s(f, &s->isr);
qemu_get_8s(f, &s->dcfg);
qemu_get_8s(f, &s->imr);
qemu_get_buffer(f, s->phys, 6);
qemu_get_8s(f, &s->curpag);
qemu_get_buffer(f, s->mult, 8);
qemu_get_be32s(f, &tmp); /* ignored */
qemu_get_buffer(f, s->mem, NE2000_MEM_SIZE);
return 0;
}
void isa_ne2000_init(int base, qemu_irq irq, NICInfo *nd)
{
NE2000State *s;
qemu_check_nic_model(nd, "ne2k_isa");
s = qemu_mallocz(sizeof(NE2000State));
if (!s)
return;
register_ioport_write(base, 16, 1, ne2000_ioport_write, s);
register_ioport_read(base, 16, 1, ne2000_ioport_read, s);
register_ioport_write(base + 0x10, 1, 1, ne2000_asic_ioport_write, s);
register_ioport_read(base + 0x10, 1, 1, ne2000_asic_ioport_read, s);
register_ioport_write(base + 0x10, 2, 2, ne2000_asic_ioport_write, s);
register_ioport_read(base + 0x10, 2, 2, ne2000_asic_ioport_read, s);
register_ioport_write(base + 0x1f, 1, 1, ne2000_reset_ioport_write, s);
register_ioport_read(base + 0x1f, 1, 1, ne2000_reset_ioport_read, s);
s->irq = irq;
memcpy(s->macaddr, nd->macaddr, 6);
ne2000_reset(s);
s->vc = qemu_new_vlan_client(nd->vlan, nd->model, nd->name,
ne2000_receive, ne2000_can_receive, s);
qemu_format_nic_info_str(s->vc, s->macaddr);
register_savevm("ne2000", -1, 2, ne2000_save, ne2000_load, s);
}
/***********************************************************/
/* PCI NE2000 definitions */
typedef struct PCINE2000State {
PCIDevice dev;
NE2000State ne2000;
} PCINE2000State;
static void ne2000_map(PCIDevice *pci_dev, int region_num,
uint32_t addr, uint32_t size, int type)
{
PCINE2000State *d = (PCINE2000State *)pci_dev;
NE2000State *s = &d->ne2000;
register_ioport_write(addr, 16, 1, ne2000_ioport_write, s);
register_ioport_read(addr, 16, 1, ne2000_ioport_read, s);
register_ioport_write(addr + 0x10, 1, 1, ne2000_asic_ioport_write, s);
register_ioport_read(addr + 0x10, 1, 1, ne2000_asic_ioport_read, s);
register_ioport_write(addr + 0x10, 2, 2, ne2000_asic_ioport_write, s);
register_ioport_read(addr + 0x10, 2, 2, ne2000_asic_ioport_read, s);
register_ioport_write(addr + 0x10, 4, 4, ne2000_asic_ioport_writel, s);
register_ioport_read(addr + 0x10, 4, 4, ne2000_asic_ioport_readl, s);
register_ioport_write(addr + 0x1f, 1, 1, ne2000_reset_ioport_write, s);
register_ioport_read(addr + 0x1f, 1, 1, ne2000_reset_ioport_read, s);
}
void pci_ne2000_init(PCIBus *bus, NICInfo *nd, int devfn)
{
PCINE2000State *d;
NE2000State *s;
uint8_t *pci_conf;
d = (PCINE2000State *)pci_register_device(bus,
"NE2000", sizeof(PCINE2000State),
devfn,
NULL, NULL);
pci_conf = d->dev.config;
pci_conf[0x00] = 0xec; // Realtek 8029
pci_conf[0x01] = 0x10;
pci_conf[0x02] = 0x29;
pci_conf[0x03] = 0x80;
pci_conf[0x0a] = 0x00; // ethernet network controller
pci_conf[0x0b] = 0x02;
pci_conf[0x0e] = 0x00; // header_type
pci_conf[0x3d] = 1; // interrupt pin 0
pci_register_io_region(&d->dev, 0, 0x100,
PCI_ADDRESS_SPACE_IO, ne2000_map);
s = &d->ne2000;
s->irq = d->dev.irq[0];
s->pci_dev = (PCIDevice *)d;
memcpy(s->macaddr, nd->macaddr, 6);
ne2000_reset(s);
s->vc = qemu_new_vlan_client(nd->vlan, nd->model, nd->name,
ne2000_receive, ne2000_can_receive, s);
qemu_format_nic_info_str(s->vc, s->macaddr);
register_savevm("ne2000", -1, 3, ne2000_save, ne2000_load, s);
}