4a1b0f1cc2
Signed-off-by: Juan Quintela <quintela@redhat.com> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2126 lines
60 KiB
C
2126 lines
60 KiB
C
/*
|
|
* QEMU LSI53C895A SCSI Host Bus Adapter emulation
|
|
*
|
|
* Copyright (c) 2006 CodeSourcery.
|
|
* Written by Paul Brook
|
|
*
|
|
* This code is licenced under the LGPL.
|
|
*/
|
|
|
|
/* ??? Need to check if the {read,write}[wl] routines work properly on
|
|
big-endian targets. */
|
|
|
|
#include <assert.h> \
|
|
|
|
#include "hw.h"
|
|
#include "pci.h"
|
|
#include "scsi.h"
|
|
#include "scsi-disk.h"
|
|
#include "block_int.h"
|
|
|
|
//#define DEBUG_LSI
|
|
//#define DEBUG_LSI_REG
|
|
|
|
#ifdef DEBUG_LSI
|
|
#define DPRINTF(fmt, ...) \
|
|
do { printf("lsi_scsi: " fmt , ## __VA_ARGS__); } while (0)
|
|
#define BADF(fmt, ...) \
|
|
do { fprintf(stderr, "lsi_scsi: error: " fmt , ## __VA_ARGS__); exit(1);} while (0)
|
|
#else
|
|
#define DPRINTF(fmt, ...) do {} while(0)
|
|
#define BADF(fmt, ...) \
|
|
do { fprintf(stderr, "lsi_scsi: error: " fmt , ## __VA_ARGS__);} while (0)
|
|
#endif
|
|
|
|
#define LSI_SCNTL0_TRG 0x01
|
|
#define LSI_SCNTL0_AAP 0x02
|
|
#define LSI_SCNTL0_EPC 0x08
|
|
#define LSI_SCNTL0_WATN 0x10
|
|
#define LSI_SCNTL0_START 0x20
|
|
|
|
#define LSI_SCNTL1_SST 0x01
|
|
#define LSI_SCNTL1_IARB 0x02
|
|
#define LSI_SCNTL1_AESP 0x04
|
|
#define LSI_SCNTL1_RST 0x08
|
|
#define LSI_SCNTL1_CON 0x10
|
|
#define LSI_SCNTL1_DHP 0x20
|
|
#define LSI_SCNTL1_ADB 0x40
|
|
#define LSI_SCNTL1_EXC 0x80
|
|
|
|
#define LSI_SCNTL2_WSR 0x01
|
|
#define LSI_SCNTL2_VUE0 0x02
|
|
#define LSI_SCNTL2_VUE1 0x04
|
|
#define LSI_SCNTL2_WSS 0x08
|
|
#define LSI_SCNTL2_SLPHBEN 0x10
|
|
#define LSI_SCNTL2_SLPMD 0x20
|
|
#define LSI_SCNTL2_CHM 0x40
|
|
#define LSI_SCNTL2_SDU 0x80
|
|
|
|
#define LSI_ISTAT0_DIP 0x01
|
|
#define LSI_ISTAT0_SIP 0x02
|
|
#define LSI_ISTAT0_INTF 0x04
|
|
#define LSI_ISTAT0_CON 0x08
|
|
#define LSI_ISTAT0_SEM 0x10
|
|
#define LSI_ISTAT0_SIGP 0x20
|
|
#define LSI_ISTAT0_SRST 0x40
|
|
#define LSI_ISTAT0_ABRT 0x80
|
|
|
|
#define LSI_ISTAT1_SI 0x01
|
|
#define LSI_ISTAT1_SRUN 0x02
|
|
#define LSI_ISTAT1_FLSH 0x04
|
|
|
|
#define LSI_SSTAT0_SDP0 0x01
|
|
#define LSI_SSTAT0_RST 0x02
|
|
#define LSI_SSTAT0_WOA 0x04
|
|
#define LSI_SSTAT0_LOA 0x08
|
|
#define LSI_SSTAT0_AIP 0x10
|
|
#define LSI_SSTAT0_OLF 0x20
|
|
#define LSI_SSTAT0_ORF 0x40
|
|
#define LSI_SSTAT0_ILF 0x80
|
|
|
|
#define LSI_SIST0_PAR 0x01
|
|
#define LSI_SIST0_RST 0x02
|
|
#define LSI_SIST0_UDC 0x04
|
|
#define LSI_SIST0_SGE 0x08
|
|
#define LSI_SIST0_RSL 0x10
|
|
#define LSI_SIST0_SEL 0x20
|
|
#define LSI_SIST0_CMP 0x40
|
|
#define LSI_SIST0_MA 0x80
|
|
|
|
#define LSI_SIST1_HTH 0x01
|
|
#define LSI_SIST1_GEN 0x02
|
|
#define LSI_SIST1_STO 0x04
|
|
#define LSI_SIST1_SBMC 0x10
|
|
|
|
#define LSI_SOCL_IO 0x01
|
|
#define LSI_SOCL_CD 0x02
|
|
#define LSI_SOCL_MSG 0x04
|
|
#define LSI_SOCL_ATN 0x08
|
|
#define LSI_SOCL_SEL 0x10
|
|
#define LSI_SOCL_BSY 0x20
|
|
#define LSI_SOCL_ACK 0x40
|
|
#define LSI_SOCL_REQ 0x80
|
|
|
|
#define LSI_DSTAT_IID 0x01
|
|
#define LSI_DSTAT_SIR 0x04
|
|
#define LSI_DSTAT_SSI 0x08
|
|
#define LSI_DSTAT_ABRT 0x10
|
|
#define LSI_DSTAT_BF 0x20
|
|
#define LSI_DSTAT_MDPE 0x40
|
|
#define LSI_DSTAT_DFE 0x80
|
|
|
|
#define LSI_DCNTL_COM 0x01
|
|
#define LSI_DCNTL_IRQD 0x02
|
|
#define LSI_DCNTL_STD 0x04
|
|
#define LSI_DCNTL_IRQM 0x08
|
|
#define LSI_DCNTL_SSM 0x10
|
|
#define LSI_DCNTL_PFEN 0x20
|
|
#define LSI_DCNTL_PFF 0x40
|
|
#define LSI_DCNTL_CLSE 0x80
|
|
|
|
#define LSI_DMODE_MAN 0x01
|
|
#define LSI_DMODE_BOF 0x02
|
|
#define LSI_DMODE_ERMP 0x04
|
|
#define LSI_DMODE_ERL 0x08
|
|
#define LSI_DMODE_DIOM 0x10
|
|
#define LSI_DMODE_SIOM 0x20
|
|
|
|
#define LSI_CTEST2_DACK 0x01
|
|
#define LSI_CTEST2_DREQ 0x02
|
|
#define LSI_CTEST2_TEOP 0x04
|
|
#define LSI_CTEST2_PCICIE 0x08
|
|
#define LSI_CTEST2_CM 0x10
|
|
#define LSI_CTEST2_CIO 0x20
|
|
#define LSI_CTEST2_SIGP 0x40
|
|
#define LSI_CTEST2_DDIR 0x80
|
|
|
|
#define LSI_CTEST5_BL2 0x04
|
|
#define LSI_CTEST5_DDIR 0x08
|
|
#define LSI_CTEST5_MASR 0x10
|
|
#define LSI_CTEST5_DFSN 0x20
|
|
#define LSI_CTEST5_BBCK 0x40
|
|
#define LSI_CTEST5_ADCK 0x80
|
|
|
|
#define LSI_CCNTL0_DILS 0x01
|
|
#define LSI_CCNTL0_DISFC 0x10
|
|
#define LSI_CCNTL0_ENNDJ 0x20
|
|
#define LSI_CCNTL0_PMJCTL 0x40
|
|
#define LSI_CCNTL0_ENPMJ 0x80
|
|
|
|
#define LSI_CCNTL1_EN64DBMV 0x01
|
|
#define LSI_CCNTL1_EN64TIBMV 0x02
|
|
#define LSI_CCNTL1_64TIMOD 0x04
|
|
#define LSI_CCNTL1_DDAC 0x08
|
|
#define LSI_CCNTL1_ZMOD 0x80
|
|
|
|
#define LSI_CCNTL1_40BIT (LSI_CCNTL1_EN64TIBMV|LSI_CCNTL1_64TIMOD)
|
|
|
|
#define PHASE_DO 0
|
|
#define PHASE_DI 1
|
|
#define PHASE_CMD 2
|
|
#define PHASE_ST 3
|
|
#define PHASE_MO 6
|
|
#define PHASE_MI 7
|
|
#define PHASE_MASK 7
|
|
|
|
/* Maximum length of MSG IN data. */
|
|
#define LSI_MAX_MSGIN_LEN 8
|
|
|
|
/* Flag set if this is a tagged command. */
|
|
#define LSI_TAG_VALID (1 << 16)
|
|
|
|
typedef struct {
|
|
uint32_t tag;
|
|
uint32_t pending;
|
|
int out;
|
|
} lsi_queue;
|
|
|
|
typedef struct {
|
|
PCIDevice dev;
|
|
int mmio_io_addr;
|
|
int ram_io_addr;
|
|
uint32_t script_ram_base;
|
|
|
|
int carry; /* ??? Should this be an a visible register somewhere? */
|
|
int sense;
|
|
/* Action to take at the end of a MSG IN phase.
|
|
0 = COMMAND, 1 = disconect, 2 = DATA OUT, 3 = DATA IN. */
|
|
int msg_action;
|
|
int msg_len;
|
|
uint8_t msg[LSI_MAX_MSGIN_LEN];
|
|
/* 0 if SCRIPTS are running or stopped.
|
|
* 1 if a Wait Reselect instruction has been issued.
|
|
* 2 if processing DMA from lsi_execute_script.
|
|
* 3 if a DMA operation is in progress. */
|
|
int waiting;
|
|
SCSIBus bus;
|
|
SCSIDevice *current_dev;
|
|
int current_lun;
|
|
/* The tag is a combination of the device ID and the SCSI tag. */
|
|
uint32_t current_tag;
|
|
uint32_t current_dma_len;
|
|
int command_complete;
|
|
uint8_t *dma_buf;
|
|
lsi_queue *queue;
|
|
int queue_len;
|
|
int active_commands;
|
|
|
|
uint32_t dsa;
|
|
uint32_t temp;
|
|
uint32_t dnad;
|
|
uint32_t dbc;
|
|
uint8_t istat0;
|
|
uint8_t istat1;
|
|
uint8_t dcmd;
|
|
uint8_t dstat;
|
|
uint8_t dien;
|
|
uint8_t sist0;
|
|
uint8_t sist1;
|
|
uint8_t sien0;
|
|
uint8_t sien1;
|
|
uint8_t mbox0;
|
|
uint8_t mbox1;
|
|
uint8_t dfifo;
|
|
uint8_t ctest2;
|
|
uint8_t ctest3;
|
|
uint8_t ctest4;
|
|
uint8_t ctest5;
|
|
uint8_t ccntl0;
|
|
uint8_t ccntl1;
|
|
uint32_t dsp;
|
|
uint32_t dsps;
|
|
uint8_t dmode;
|
|
uint8_t dcntl;
|
|
uint8_t scntl0;
|
|
uint8_t scntl1;
|
|
uint8_t scntl2;
|
|
uint8_t scntl3;
|
|
uint8_t sstat0;
|
|
uint8_t sstat1;
|
|
uint8_t scid;
|
|
uint8_t sxfer;
|
|
uint8_t socl;
|
|
uint8_t sdid;
|
|
uint8_t ssid;
|
|
uint8_t sfbr;
|
|
uint8_t stest1;
|
|
uint8_t stest2;
|
|
uint8_t stest3;
|
|
uint8_t sidl;
|
|
uint8_t stime0;
|
|
uint8_t respid0;
|
|
uint8_t respid1;
|
|
uint32_t mmrs;
|
|
uint32_t mmws;
|
|
uint32_t sfs;
|
|
uint32_t drs;
|
|
uint32_t sbms;
|
|
uint32_t dbms;
|
|
uint32_t dnad64;
|
|
uint32_t pmjad1;
|
|
uint32_t pmjad2;
|
|
uint32_t rbc;
|
|
uint32_t ua;
|
|
uint32_t ia;
|
|
uint32_t sbc;
|
|
uint32_t csbc;
|
|
uint32_t scratch[18]; /* SCRATCHA-SCRATCHR */
|
|
uint8_t sbr;
|
|
|
|
/* Script ram is stored as 32-bit words in host byteorder. */
|
|
uint32_t script_ram[2048];
|
|
} LSIState;
|
|
|
|
static void lsi_soft_reset(LSIState *s)
|
|
{
|
|
DPRINTF("Reset\n");
|
|
s->carry = 0;
|
|
|
|
s->waiting = 0;
|
|
s->dsa = 0;
|
|
s->dnad = 0;
|
|
s->dbc = 0;
|
|
s->temp = 0;
|
|
memset(s->scratch, 0, sizeof(s->scratch));
|
|
s->istat0 = 0;
|
|
s->istat1 = 0;
|
|
s->dcmd = 0;
|
|
s->dstat = 0;
|
|
s->dien = 0;
|
|
s->sist0 = 0;
|
|
s->sist1 = 0;
|
|
s->sien0 = 0;
|
|
s->sien1 = 0;
|
|
s->mbox0 = 0;
|
|
s->mbox1 = 0;
|
|
s->dfifo = 0;
|
|
s->ctest2 = 0;
|
|
s->ctest3 = 0;
|
|
s->ctest4 = 0;
|
|
s->ctest5 = 0;
|
|
s->ccntl0 = 0;
|
|
s->ccntl1 = 0;
|
|
s->dsp = 0;
|
|
s->dsps = 0;
|
|
s->dmode = 0;
|
|
s->dcntl = 0;
|
|
s->scntl0 = 0xc0;
|
|
s->scntl1 = 0;
|
|
s->scntl2 = 0;
|
|
s->scntl3 = 0;
|
|
s->sstat0 = 0;
|
|
s->sstat1 = 0;
|
|
s->scid = 7;
|
|
s->sxfer = 0;
|
|
s->socl = 0;
|
|
s->stest1 = 0;
|
|
s->stest2 = 0;
|
|
s->stest3 = 0;
|
|
s->sidl = 0;
|
|
s->stime0 = 0;
|
|
s->respid0 = 0x80;
|
|
s->respid1 = 0;
|
|
s->mmrs = 0;
|
|
s->mmws = 0;
|
|
s->sfs = 0;
|
|
s->drs = 0;
|
|
s->sbms = 0;
|
|
s->dbms = 0;
|
|
s->dnad64 = 0;
|
|
s->pmjad1 = 0;
|
|
s->pmjad2 = 0;
|
|
s->rbc = 0;
|
|
s->ua = 0;
|
|
s->ia = 0;
|
|
s->sbc = 0;
|
|
s->csbc = 0;
|
|
s->sbr = 0;
|
|
}
|
|
|
|
static int lsi_dma_40bit(LSIState *s)
|
|
{
|
|
if ((s->ccntl1 & LSI_CCNTL1_40BIT) == LSI_CCNTL1_40BIT)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
static int lsi_dma_ti64bit(LSIState *s)
|
|
{
|
|
if ((s->ccntl1 & LSI_CCNTL1_EN64TIBMV) == LSI_CCNTL1_EN64TIBMV)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
static int lsi_dma_64bit(LSIState *s)
|
|
{
|
|
if ((s->ccntl1 & LSI_CCNTL1_EN64DBMV) == LSI_CCNTL1_EN64DBMV)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
static uint8_t lsi_reg_readb(LSIState *s, int offset);
|
|
static void lsi_reg_writeb(LSIState *s, int offset, uint8_t val);
|
|
static void lsi_execute_script(LSIState *s);
|
|
|
|
static inline uint32_t read_dword(LSIState *s, uint32_t addr)
|
|
{
|
|
uint32_t buf;
|
|
|
|
/* Optimize reading from SCRIPTS RAM. */
|
|
if ((addr & 0xffffe000) == s->script_ram_base) {
|
|
return s->script_ram[(addr & 0x1fff) >> 2];
|
|
}
|
|
cpu_physical_memory_read(addr, (uint8_t *)&buf, 4);
|
|
return cpu_to_le32(buf);
|
|
}
|
|
|
|
static void lsi_stop_script(LSIState *s)
|
|
{
|
|
s->istat1 &= ~LSI_ISTAT1_SRUN;
|
|
}
|
|
|
|
static void lsi_update_irq(LSIState *s)
|
|
{
|
|
int level;
|
|
static int last_level;
|
|
|
|
/* It's unclear whether the DIP/SIP bits should be cleared when the
|
|
Interrupt Status Registers are cleared or when istat0 is read.
|
|
We currently do the formwer, which seems to work. */
|
|
level = 0;
|
|
if (s->dstat) {
|
|
if (s->dstat & s->dien)
|
|
level = 1;
|
|
s->istat0 |= LSI_ISTAT0_DIP;
|
|
} else {
|
|
s->istat0 &= ~LSI_ISTAT0_DIP;
|
|
}
|
|
|
|
if (s->sist0 || s->sist1) {
|
|
if ((s->sist0 & s->sien0) || (s->sist1 & s->sien1))
|
|
level = 1;
|
|
s->istat0 |= LSI_ISTAT0_SIP;
|
|
} else {
|
|
s->istat0 &= ~LSI_ISTAT0_SIP;
|
|
}
|
|
if (s->istat0 & LSI_ISTAT0_INTF)
|
|
level = 1;
|
|
|
|
if (level != last_level) {
|
|
DPRINTF("Update IRQ level %d dstat %02x sist %02x%02x\n",
|
|
level, s->dstat, s->sist1, s->sist0);
|
|
last_level = level;
|
|
}
|
|
qemu_set_irq(s->dev.irq[0], level);
|
|
}
|
|
|
|
/* Stop SCRIPTS execution and raise a SCSI interrupt. */
|
|
static void lsi_script_scsi_interrupt(LSIState *s, int stat0, int stat1)
|
|
{
|
|
uint32_t mask0;
|
|
uint32_t mask1;
|
|
|
|
DPRINTF("SCSI Interrupt 0x%02x%02x prev 0x%02x%02x\n",
|
|
stat1, stat0, s->sist1, s->sist0);
|
|
s->sist0 |= stat0;
|
|
s->sist1 |= stat1;
|
|
/* Stop processor on fatal or unmasked interrupt. As a special hack
|
|
we don't stop processing when raising STO. Instead continue
|
|
execution and stop at the next insn that accesses the SCSI bus. */
|
|
mask0 = s->sien0 | ~(LSI_SIST0_CMP | LSI_SIST0_SEL | LSI_SIST0_RSL);
|
|
mask1 = s->sien1 | ~(LSI_SIST1_GEN | LSI_SIST1_HTH);
|
|
mask1 &= ~LSI_SIST1_STO;
|
|
if (s->sist0 & mask0 || s->sist1 & mask1) {
|
|
lsi_stop_script(s);
|
|
}
|
|
lsi_update_irq(s);
|
|
}
|
|
|
|
/* Stop SCRIPTS execution and raise a DMA interrupt. */
|
|
static void lsi_script_dma_interrupt(LSIState *s, int stat)
|
|
{
|
|
DPRINTF("DMA Interrupt 0x%x prev 0x%x\n", stat, s->dstat);
|
|
s->dstat |= stat;
|
|
lsi_update_irq(s);
|
|
lsi_stop_script(s);
|
|
}
|
|
|
|
static inline void lsi_set_phase(LSIState *s, int phase)
|
|
{
|
|
s->sstat1 = (s->sstat1 & ~PHASE_MASK) | phase;
|
|
}
|
|
|
|
static void lsi_bad_phase(LSIState *s, int out, int new_phase)
|
|
{
|
|
/* Trigger a phase mismatch. */
|
|
if (s->ccntl0 & LSI_CCNTL0_ENPMJ) {
|
|
if ((s->ccntl0 & LSI_CCNTL0_PMJCTL) || out) {
|
|
s->dsp = s->pmjad1;
|
|
} else {
|
|
s->dsp = s->pmjad2;
|
|
}
|
|
DPRINTF("Data phase mismatch jump to %08x\n", s->dsp);
|
|
} else {
|
|
DPRINTF("Phase mismatch interrupt\n");
|
|
lsi_script_scsi_interrupt(s, LSI_SIST0_MA, 0);
|
|
lsi_stop_script(s);
|
|
}
|
|
lsi_set_phase(s, new_phase);
|
|
}
|
|
|
|
|
|
/* Resume SCRIPTS execution after a DMA operation. */
|
|
static void lsi_resume_script(LSIState *s)
|
|
{
|
|
if (s->waiting != 2) {
|
|
s->waiting = 0;
|
|
lsi_execute_script(s);
|
|
} else {
|
|
s->waiting = 0;
|
|
}
|
|
}
|
|
|
|
/* Initiate a SCSI layer data transfer. */
|
|
static void lsi_do_dma(LSIState *s, int out)
|
|
{
|
|
uint32_t count;
|
|
target_phys_addr_t addr;
|
|
|
|
if (!s->current_dma_len) {
|
|
/* Wait until data is available. */
|
|
DPRINTF("DMA no data available\n");
|
|
return;
|
|
}
|
|
|
|
count = s->dbc;
|
|
if (count > s->current_dma_len)
|
|
count = s->current_dma_len;
|
|
|
|
addr = s->dnad;
|
|
/* both 40 and Table Indirect 64-bit DMAs store upper bits in dnad64 */
|
|
if (lsi_dma_40bit(s) || lsi_dma_ti64bit(s))
|
|
addr |= ((uint64_t)s->dnad64 << 32);
|
|
else if (s->dbms)
|
|
addr |= ((uint64_t)s->dbms << 32);
|
|
else if (s->sbms)
|
|
addr |= ((uint64_t)s->sbms << 32);
|
|
|
|
DPRINTF("DMA addr=0x" TARGET_FMT_plx " len=%d\n", addr, count);
|
|
s->csbc += count;
|
|
s->dnad += count;
|
|
s->dbc -= count;
|
|
|
|
if (s->dma_buf == NULL) {
|
|
s->dma_buf = s->current_dev->info->get_buf(s->current_dev,
|
|
s->current_tag);
|
|
}
|
|
|
|
/* ??? Set SFBR to first data byte. */
|
|
if (out) {
|
|
cpu_physical_memory_read(addr, s->dma_buf, count);
|
|
} else {
|
|
cpu_physical_memory_write(addr, s->dma_buf, count);
|
|
}
|
|
s->current_dma_len -= count;
|
|
if (s->current_dma_len == 0) {
|
|
s->dma_buf = NULL;
|
|
if (out) {
|
|
/* Write the data. */
|
|
s->current_dev->info->write_data(s->current_dev, s->current_tag);
|
|
} else {
|
|
/* Request any remaining data. */
|
|
s->current_dev->info->read_data(s->current_dev, s->current_tag);
|
|
}
|
|
} else {
|
|
s->dma_buf += count;
|
|
lsi_resume_script(s);
|
|
}
|
|
}
|
|
|
|
|
|
/* Add a command to the queue. */
|
|
static void lsi_queue_command(LSIState *s)
|
|
{
|
|
lsi_queue *p;
|
|
|
|
DPRINTF("Queueing tag=0x%x\n", s->current_tag);
|
|
if (s->queue_len == s->active_commands) {
|
|
s->queue_len++;
|
|
s->queue = qemu_realloc(s->queue, s->queue_len * sizeof(lsi_queue));
|
|
}
|
|
p = &s->queue[s->active_commands++];
|
|
p->tag = s->current_tag;
|
|
p->pending = 0;
|
|
p->out = (s->sstat1 & PHASE_MASK) == PHASE_DO;
|
|
}
|
|
|
|
/* Queue a byte for a MSG IN phase. */
|
|
static void lsi_add_msg_byte(LSIState *s, uint8_t data)
|
|
{
|
|
if (s->msg_len >= LSI_MAX_MSGIN_LEN) {
|
|
BADF("MSG IN data too long\n");
|
|
} else {
|
|
DPRINTF("MSG IN 0x%02x\n", data);
|
|
s->msg[s->msg_len++] = data;
|
|
}
|
|
}
|
|
|
|
/* Perform reselection to continue a command. */
|
|
static void lsi_reselect(LSIState *s, uint32_t tag)
|
|
{
|
|
lsi_queue *p;
|
|
int n;
|
|
int id;
|
|
|
|
p = NULL;
|
|
for (n = 0; n < s->active_commands; n++) {
|
|
p = &s->queue[n];
|
|
if (p->tag == tag)
|
|
break;
|
|
}
|
|
if (n == s->active_commands) {
|
|
BADF("Reselected non-existant command tag=0x%x\n", tag);
|
|
return;
|
|
}
|
|
id = (tag >> 8) & 0xf;
|
|
s->ssid = id | 0x80;
|
|
DPRINTF("Reselected target %d\n", id);
|
|
s->current_dev = s->bus.devs[id];
|
|
s->current_tag = tag;
|
|
s->scntl1 |= LSI_SCNTL1_CON;
|
|
lsi_set_phase(s, PHASE_MI);
|
|
s->msg_action = p->out ? 2 : 3;
|
|
s->current_dma_len = p->pending;
|
|
s->dma_buf = NULL;
|
|
lsi_add_msg_byte(s, 0x80);
|
|
if (s->current_tag & LSI_TAG_VALID) {
|
|
lsi_add_msg_byte(s, 0x20);
|
|
lsi_add_msg_byte(s, tag & 0xff);
|
|
}
|
|
|
|
s->active_commands--;
|
|
if (n != s->active_commands) {
|
|
s->queue[n] = s->queue[s->active_commands];
|
|
}
|
|
}
|
|
|
|
/* Record that data is available for a queued command. Returns zero if
|
|
the device was reselected, nonzero if the IO is deferred. */
|
|
static int lsi_queue_tag(LSIState *s, uint32_t tag, uint32_t arg)
|
|
{
|
|
lsi_queue *p;
|
|
int i;
|
|
for (i = 0; i < s->active_commands; i++) {
|
|
p = &s->queue[i];
|
|
if (p->tag == tag) {
|
|
if (p->pending) {
|
|
BADF("Multiple IO pending for tag %d\n", tag);
|
|
}
|
|
p->pending = arg;
|
|
if (s->waiting == 1) {
|
|
/* Reselect device. */
|
|
lsi_reselect(s, tag);
|
|
return 0;
|
|
} else {
|
|
DPRINTF("Queueing IO tag=0x%x\n", tag);
|
|
p->pending = arg;
|
|
return 1;
|
|
}
|
|
}
|
|
}
|
|
BADF("IO with unknown tag %d\n", tag);
|
|
return 1;
|
|
}
|
|
|
|
/* Callback to indicate that the SCSI layer has completed a transfer. */
|
|
static void lsi_command_complete(SCSIBus *bus, int reason, uint32_t tag,
|
|
uint32_t arg)
|
|
{
|
|
LSIState *s = DO_UPCAST(LSIState, dev.qdev, bus->qbus.parent);
|
|
int out;
|
|
|
|
out = (s->sstat1 & PHASE_MASK) == PHASE_DO;
|
|
if (reason == SCSI_REASON_DONE) {
|
|
DPRINTF("Command complete sense=%d\n", (int)arg);
|
|
s->sense = arg;
|
|
s->command_complete = 2;
|
|
if (s->waiting && s->dbc != 0) {
|
|
/* Raise phase mismatch for short transfers. */
|
|
lsi_bad_phase(s, out, PHASE_ST);
|
|
} else {
|
|
lsi_set_phase(s, PHASE_ST);
|
|
}
|
|
lsi_resume_script(s);
|
|
return;
|
|
}
|
|
|
|
if (s->waiting == 1 || tag != s->current_tag) {
|
|
if (lsi_queue_tag(s, tag, arg))
|
|
return;
|
|
}
|
|
DPRINTF("Data ready tag=0x%x len=%d\n", tag, arg);
|
|
s->current_dma_len = arg;
|
|
s->command_complete = 1;
|
|
if (!s->waiting)
|
|
return;
|
|
if (s->waiting == 1 || s->dbc == 0) {
|
|
lsi_resume_script(s);
|
|
} else {
|
|
lsi_do_dma(s, out);
|
|
}
|
|
}
|
|
|
|
static void lsi_do_command(LSIState *s)
|
|
{
|
|
uint8_t buf[16];
|
|
int n;
|
|
|
|
DPRINTF("Send command len=%d\n", s->dbc);
|
|
if (s->dbc > 16)
|
|
s->dbc = 16;
|
|
cpu_physical_memory_read(s->dnad, buf, s->dbc);
|
|
s->sfbr = buf[0];
|
|
s->command_complete = 0;
|
|
n = s->current_dev->info->send_command(s->current_dev, s->current_tag, buf,
|
|
s->current_lun);
|
|
if (n > 0) {
|
|
lsi_set_phase(s, PHASE_DI);
|
|
s->current_dev->info->read_data(s->current_dev, s->current_tag);
|
|
} else if (n < 0) {
|
|
lsi_set_phase(s, PHASE_DO);
|
|
s->current_dev->info->write_data(s->current_dev, s->current_tag);
|
|
}
|
|
|
|
if (!s->command_complete) {
|
|
if (n) {
|
|
/* Command did not complete immediately so disconnect. */
|
|
lsi_add_msg_byte(s, 2); /* SAVE DATA POINTER */
|
|
lsi_add_msg_byte(s, 4); /* DISCONNECT */
|
|
/* wait data */
|
|
lsi_set_phase(s, PHASE_MI);
|
|
s->msg_action = 1;
|
|
lsi_queue_command(s);
|
|
} else {
|
|
/* wait command complete */
|
|
lsi_set_phase(s, PHASE_DI);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void lsi_do_status(LSIState *s)
|
|
{
|
|
uint8_t sense;
|
|
DPRINTF("Get status len=%d sense=%d\n", s->dbc, s->sense);
|
|
if (s->dbc != 1)
|
|
BADF("Bad Status move\n");
|
|
s->dbc = 1;
|
|
sense = s->sense;
|
|
s->sfbr = sense;
|
|
cpu_physical_memory_write(s->dnad, &sense, 1);
|
|
lsi_set_phase(s, PHASE_MI);
|
|
s->msg_action = 1;
|
|
lsi_add_msg_byte(s, 0); /* COMMAND COMPLETE */
|
|
}
|
|
|
|
static void lsi_disconnect(LSIState *s)
|
|
{
|
|
s->scntl1 &= ~LSI_SCNTL1_CON;
|
|
s->sstat1 &= ~PHASE_MASK;
|
|
}
|
|
|
|
static void lsi_do_msgin(LSIState *s)
|
|
{
|
|
int len;
|
|
DPRINTF("Message in len=%d/%d\n", s->dbc, s->msg_len);
|
|
s->sfbr = s->msg[0];
|
|
len = s->msg_len;
|
|
if (len > s->dbc)
|
|
len = s->dbc;
|
|
cpu_physical_memory_write(s->dnad, s->msg, len);
|
|
/* Linux drivers rely on the last byte being in the SIDL. */
|
|
s->sidl = s->msg[len - 1];
|
|
s->msg_len -= len;
|
|
if (s->msg_len) {
|
|
memmove(s->msg, s->msg + len, s->msg_len);
|
|
} else {
|
|
/* ??? Check if ATN (not yet implemented) is asserted and maybe
|
|
switch to PHASE_MO. */
|
|
switch (s->msg_action) {
|
|
case 0:
|
|
lsi_set_phase(s, PHASE_CMD);
|
|
break;
|
|
case 1:
|
|
lsi_disconnect(s);
|
|
break;
|
|
case 2:
|
|
lsi_set_phase(s, PHASE_DO);
|
|
break;
|
|
case 3:
|
|
lsi_set_phase(s, PHASE_DI);
|
|
break;
|
|
default:
|
|
abort();
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Read the next byte during a MSGOUT phase. */
|
|
static uint8_t lsi_get_msgbyte(LSIState *s)
|
|
{
|
|
uint8_t data;
|
|
cpu_physical_memory_read(s->dnad, &data, 1);
|
|
s->dnad++;
|
|
s->dbc--;
|
|
return data;
|
|
}
|
|
|
|
static void lsi_do_msgout(LSIState *s)
|
|
{
|
|
uint8_t msg;
|
|
int len;
|
|
|
|
DPRINTF("MSG out len=%d\n", s->dbc);
|
|
while (s->dbc) {
|
|
msg = lsi_get_msgbyte(s);
|
|
s->sfbr = msg;
|
|
|
|
switch (msg) {
|
|
case 0x00:
|
|
DPRINTF("MSG: Disconnect\n");
|
|
lsi_disconnect(s);
|
|
break;
|
|
case 0x08:
|
|
DPRINTF("MSG: No Operation\n");
|
|
lsi_set_phase(s, PHASE_CMD);
|
|
break;
|
|
case 0x01:
|
|
len = lsi_get_msgbyte(s);
|
|
msg = lsi_get_msgbyte(s);
|
|
DPRINTF("Extended message 0x%x (len %d)\n", msg, len);
|
|
switch (msg) {
|
|
case 1:
|
|
DPRINTF("SDTR (ignored)\n");
|
|
s->dbc -= 2;
|
|
break;
|
|
case 3:
|
|
DPRINTF("WDTR (ignored)\n");
|
|
s->dbc -= 1;
|
|
break;
|
|
default:
|
|
goto bad;
|
|
}
|
|
break;
|
|
case 0x20: /* SIMPLE queue */
|
|
s->current_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
|
|
DPRINTF("SIMPLE queue tag=0x%x\n", s->current_tag & 0xff);
|
|
break;
|
|
case 0x21: /* HEAD of queue */
|
|
BADF("HEAD queue not implemented\n");
|
|
s->current_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
|
|
break;
|
|
case 0x22: /* ORDERED queue */
|
|
BADF("ORDERED queue not implemented\n");
|
|
s->current_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
|
|
break;
|
|
default:
|
|
if ((msg & 0x80) == 0) {
|
|
goto bad;
|
|
}
|
|
s->current_lun = msg & 7;
|
|
DPRINTF("Select LUN %d\n", s->current_lun);
|
|
lsi_set_phase(s, PHASE_CMD);
|
|
break;
|
|
}
|
|
}
|
|
return;
|
|
bad:
|
|
BADF("Unimplemented message 0x%02x\n", msg);
|
|
lsi_set_phase(s, PHASE_MI);
|
|
lsi_add_msg_byte(s, 7); /* MESSAGE REJECT */
|
|
s->msg_action = 0;
|
|
}
|
|
|
|
/* Sign extend a 24-bit value. */
|
|
static inline int32_t sxt24(int32_t n)
|
|
{
|
|
return (n << 8) >> 8;
|
|
}
|
|
|
|
#define LSI_BUF_SIZE 4096
|
|
static void lsi_memcpy(LSIState *s, uint32_t dest, uint32_t src, int count)
|
|
{
|
|
int n;
|
|
uint8_t buf[LSI_BUF_SIZE];
|
|
|
|
DPRINTF("memcpy dest 0x%08x src 0x%08x count %d\n", dest, src, count);
|
|
while (count) {
|
|
n = (count > LSI_BUF_SIZE) ? LSI_BUF_SIZE : count;
|
|
cpu_physical_memory_read(src, buf, n);
|
|
cpu_physical_memory_write(dest, buf, n);
|
|
src += n;
|
|
dest += n;
|
|
count -= n;
|
|
}
|
|
}
|
|
|
|
static void lsi_wait_reselect(LSIState *s)
|
|
{
|
|
int i;
|
|
DPRINTF("Wait Reselect\n");
|
|
if (s->current_dma_len)
|
|
BADF("Reselect with pending DMA\n");
|
|
for (i = 0; i < s->active_commands; i++) {
|
|
if (s->queue[i].pending) {
|
|
lsi_reselect(s, s->queue[i].tag);
|
|
break;
|
|
}
|
|
}
|
|
if (s->current_dma_len == 0) {
|
|
s->waiting = 1;
|
|
}
|
|
}
|
|
|
|
static void lsi_execute_script(LSIState *s)
|
|
{
|
|
uint32_t insn;
|
|
uint32_t addr, addr_high;
|
|
int opcode;
|
|
int insn_processed = 0;
|
|
|
|
s->istat1 |= LSI_ISTAT1_SRUN;
|
|
again:
|
|
insn_processed++;
|
|
insn = read_dword(s, s->dsp);
|
|
if (!insn) {
|
|
/* If we receive an empty opcode increment the DSP by 4 bytes
|
|
instead of 8 and execute the next opcode at that location */
|
|
s->dsp += 4;
|
|
goto again;
|
|
}
|
|
addr = read_dword(s, s->dsp + 4);
|
|
addr_high = 0;
|
|
DPRINTF("SCRIPTS dsp=%08x opcode %08x arg %08x\n", s->dsp, insn, addr);
|
|
s->dsps = addr;
|
|
s->dcmd = insn >> 24;
|
|
s->dsp += 8;
|
|
switch (insn >> 30) {
|
|
case 0: /* Block move. */
|
|
if (s->sist1 & LSI_SIST1_STO) {
|
|
DPRINTF("Delayed select timeout\n");
|
|
lsi_stop_script(s);
|
|
break;
|
|
}
|
|
s->dbc = insn & 0xffffff;
|
|
s->rbc = s->dbc;
|
|
/* ??? Set ESA. */
|
|
s->ia = s->dsp - 8;
|
|
if (insn & (1 << 29)) {
|
|
/* Indirect addressing. */
|
|
addr = read_dword(s, addr);
|
|
} else if (insn & (1 << 28)) {
|
|
uint32_t buf[2];
|
|
int32_t offset;
|
|
/* Table indirect addressing. */
|
|
|
|
/* 32-bit Table indirect */
|
|
offset = sxt24(addr);
|
|
cpu_physical_memory_read(s->dsa + offset, (uint8_t *)buf, 8);
|
|
/* byte count is stored in bits 0:23 only */
|
|
s->dbc = cpu_to_le32(buf[0]) & 0xffffff;
|
|
s->rbc = s->dbc;
|
|
addr = cpu_to_le32(buf[1]);
|
|
|
|
/* 40-bit DMA, upper addr bits [39:32] stored in first DWORD of
|
|
* table, bits [31:24] */
|
|
if (lsi_dma_40bit(s))
|
|
addr_high = cpu_to_le32(buf[0]) >> 24;
|
|
else if (lsi_dma_ti64bit(s)) {
|
|
int selector = (cpu_to_le32(buf[0]) >> 24) & 0x1f;
|
|
switch (selector) {
|
|
case 0 ... 0x0f:
|
|
/* offset index into scratch registers since
|
|
* TI64 mode can use registers C to R */
|
|
addr_high = s->scratch[2 + selector];
|
|
break;
|
|
case 0x10:
|
|
addr_high = s->mmrs;
|
|
break;
|
|
case 0x11:
|
|
addr_high = s->mmws;
|
|
break;
|
|
case 0x12:
|
|
addr_high = s->sfs;
|
|
break;
|
|
case 0x13:
|
|
addr_high = s->drs;
|
|
break;
|
|
case 0x14:
|
|
addr_high = s->sbms;
|
|
break;
|
|
case 0x15:
|
|
addr_high = s->dbms;
|
|
break;
|
|
default:
|
|
BADF("Illegal selector specified (0x%x > 0x15)"
|
|
" for 64-bit DMA block move", selector);
|
|
break;
|
|
}
|
|
}
|
|
} else if (lsi_dma_64bit(s)) {
|
|
/* fetch a 3rd dword if 64-bit direct move is enabled and
|
|
only if we're not doing table indirect or indirect addressing */
|
|
s->dbms = read_dword(s, s->dsp);
|
|
s->dsp += 4;
|
|
s->ia = s->dsp - 12;
|
|
}
|
|
if ((s->sstat1 & PHASE_MASK) != ((insn >> 24) & 7)) {
|
|
DPRINTF("Wrong phase got %d expected %d\n",
|
|
s->sstat1 & PHASE_MASK, (insn >> 24) & 7);
|
|
lsi_script_scsi_interrupt(s, LSI_SIST0_MA, 0);
|
|
break;
|
|
}
|
|
s->dnad = addr;
|
|
s->dnad64 = addr_high;
|
|
switch (s->sstat1 & 0x7) {
|
|
case PHASE_DO:
|
|
s->waiting = 2;
|
|
lsi_do_dma(s, 1);
|
|
if (s->waiting)
|
|
s->waiting = 3;
|
|
break;
|
|
case PHASE_DI:
|
|
s->waiting = 2;
|
|
lsi_do_dma(s, 0);
|
|
if (s->waiting)
|
|
s->waiting = 3;
|
|
break;
|
|
case PHASE_CMD:
|
|
lsi_do_command(s);
|
|
break;
|
|
case PHASE_ST:
|
|
lsi_do_status(s);
|
|
break;
|
|
case PHASE_MO:
|
|
lsi_do_msgout(s);
|
|
break;
|
|
case PHASE_MI:
|
|
lsi_do_msgin(s);
|
|
break;
|
|
default:
|
|
BADF("Unimplemented phase %d\n", s->sstat1 & PHASE_MASK);
|
|
exit(1);
|
|
}
|
|
s->dfifo = s->dbc & 0xff;
|
|
s->ctest5 = (s->ctest5 & 0xfc) | ((s->dbc >> 8) & 3);
|
|
s->sbc = s->dbc;
|
|
s->rbc -= s->dbc;
|
|
s->ua = addr + s->dbc;
|
|
break;
|
|
|
|
case 1: /* IO or Read/Write instruction. */
|
|
opcode = (insn >> 27) & 7;
|
|
if (opcode < 5) {
|
|
uint32_t id;
|
|
|
|
if (insn & (1 << 25)) {
|
|
id = read_dword(s, s->dsa + sxt24(insn));
|
|
} else {
|
|
id = addr;
|
|
}
|
|
id = (id >> 16) & 0xf;
|
|
if (insn & (1 << 26)) {
|
|
addr = s->dsp + sxt24(addr);
|
|
}
|
|
s->dnad = addr;
|
|
switch (opcode) {
|
|
case 0: /* Select */
|
|
s->sdid = id;
|
|
if (s->current_dma_len && (s->ssid & 0xf) == id) {
|
|
DPRINTF("Already reselected by target %d\n", id);
|
|
break;
|
|
}
|
|
s->sstat0 |= LSI_SSTAT0_WOA;
|
|
s->scntl1 &= ~LSI_SCNTL1_IARB;
|
|
if (id >= LSI_MAX_DEVS || !s->bus.devs[id]) {
|
|
DPRINTF("Selected absent target %d\n", id);
|
|
lsi_script_scsi_interrupt(s, 0, LSI_SIST1_STO);
|
|
lsi_disconnect(s);
|
|
break;
|
|
}
|
|
DPRINTF("Selected target %d%s\n",
|
|
id, insn & (1 << 3) ? " ATN" : "");
|
|
/* ??? Linux drivers compain when this is set. Maybe
|
|
it only applies in low-level mode (unimplemented).
|
|
lsi_script_scsi_interrupt(s, LSI_SIST0_CMP, 0); */
|
|
s->current_dev = s->bus.devs[id];
|
|
s->current_tag = id << 8;
|
|
s->scntl1 |= LSI_SCNTL1_CON;
|
|
if (insn & (1 << 3)) {
|
|
s->socl |= LSI_SOCL_ATN;
|
|
}
|
|
lsi_set_phase(s, PHASE_MO);
|
|
break;
|
|
case 1: /* Disconnect */
|
|
DPRINTF("Wait Disconect\n");
|
|
s->scntl1 &= ~LSI_SCNTL1_CON;
|
|
break;
|
|
case 2: /* Wait Reselect */
|
|
lsi_wait_reselect(s);
|
|
break;
|
|
case 3: /* Set */
|
|
DPRINTF("Set%s%s%s%s\n",
|
|
insn & (1 << 3) ? " ATN" : "",
|
|
insn & (1 << 6) ? " ACK" : "",
|
|
insn & (1 << 9) ? " TM" : "",
|
|
insn & (1 << 10) ? " CC" : "");
|
|
if (insn & (1 << 3)) {
|
|
s->socl |= LSI_SOCL_ATN;
|
|
lsi_set_phase(s, PHASE_MO);
|
|
}
|
|
if (insn & (1 << 9)) {
|
|
BADF("Target mode not implemented\n");
|
|
exit(1);
|
|
}
|
|
if (insn & (1 << 10))
|
|
s->carry = 1;
|
|
break;
|
|
case 4: /* Clear */
|
|
DPRINTF("Clear%s%s%s%s\n",
|
|
insn & (1 << 3) ? " ATN" : "",
|
|
insn & (1 << 6) ? " ACK" : "",
|
|
insn & (1 << 9) ? " TM" : "",
|
|
insn & (1 << 10) ? " CC" : "");
|
|
if (insn & (1 << 3)) {
|
|
s->socl &= ~LSI_SOCL_ATN;
|
|
}
|
|
if (insn & (1 << 10))
|
|
s->carry = 0;
|
|
break;
|
|
}
|
|
} else {
|
|
uint8_t op0;
|
|
uint8_t op1;
|
|
uint8_t data8;
|
|
int reg;
|
|
int operator;
|
|
#ifdef DEBUG_LSI
|
|
static const char *opcode_names[3] =
|
|
{"Write", "Read", "Read-Modify-Write"};
|
|
static const char *operator_names[8] =
|
|
{"MOV", "SHL", "OR", "XOR", "AND", "SHR", "ADD", "ADC"};
|
|
#endif
|
|
|
|
reg = ((insn >> 16) & 0x7f) | (insn & 0x80);
|
|
data8 = (insn >> 8) & 0xff;
|
|
opcode = (insn >> 27) & 7;
|
|
operator = (insn >> 24) & 7;
|
|
DPRINTF("%s reg 0x%x %s data8=0x%02x sfbr=0x%02x%s\n",
|
|
opcode_names[opcode - 5], reg,
|
|
operator_names[operator], data8, s->sfbr,
|
|
(insn & (1 << 23)) ? " SFBR" : "");
|
|
op0 = op1 = 0;
|
|
switch (opcode) {
|
|
case 5: /* From SFBR */
|
|
op0 = s->sfbr;
|
|
op1 = data8;
|
|
break;
|
|
case 6: /* To SFBR */
|
|
if (operator)
|
|
op0 = lsi_reg_readb(s, reg);
|
|
op1 = data8;
|
|
break;
|
|
case 7: /* Read-modify-write */
|
|
if (operator)
|
|
op0 = lsi_reg_readb(s, reg);
|
|
if (insn & (1 << 23)) {
|
|
op1 = s->sfbr;
|
|
} else {
|
|
op1 = data8;
|
|
}
|
|
break;
|
|
}
|
|
|
|
switch (operator) {
|
|
case 0: /* move */
|
|
op0 = op1;
|
|
break;
|
|
case 1: /* Shift left */
|
|
op1 = op0 >> 7;
|
|
op0 = (op0 << 1) | s->carry;
|
|
s->carry = op1;
|
|
break;
|
|
case 2: /* OR */
|
|
op0 |= op1;
|
|
break;
|
|
case 3: /* XOR */
|
|
op0 ^= op1;
|
|
break;
|
|
case 4: /* AND */
|
|
op0 &= op1;
|
|
break;
|
|
case 5: /* SHR */
|
|
op1 = op0 & 1;
|
|
op0 = (op0 >> 1) | (s->carry << 7);
|
|
s->carry = op1;
|
|
break;
|
|
case 6: /* ADD */
|
|
op0 += op1;
|
|
s->carry = op0 < op1;
|
|
break;
|
|
case 7: /* ADC */
|
|
op0 += op1 + s->carry;
|
|
if (s->carry)
|
|
s->carry = op0 <= op1;
|
|
else
|
|
s->carry = op0 < op1;
|
|
break;
|
|
}
|
|
|
|
switch (opcode) {
|
|
case 5: /* From SFBR */
|
|
case 7: /* Read-modify-write */
|
|
lsi_reg_writeb(s, reg, op0);
|
|
break;
|
|
case 6: /* To SFBR */
|
|
s->sfbr = op0;
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case 2: /* Transfer Control. */
|
|
{
|
|
int cond;
|
|
int jmp;
|
|
|
|
if ((insn & 0x002e0000) == 0) {
|
|
DPRINTF("NOP\n");
|
|
break;
|
|
}
|
|
if (s->sist1 & LSI_SIST1_STO) {
|
|
DPRINTF("Delayed select timeout\n");
|
|
lsi_stop_script(s);
|
|
break;
|
|
}
|
|
cond = jmp = (insn & (1 << 19)) != 0;
|
|
if (cond == jmp && (insn & (1 << 21))) {
|
|
DPRINTF("Compare carry %d\n", s->carry == jmp);
|
|
cond = s->carry != 0;
|
|
}
|
|
if (cond == jmp && (insn & (1 << 17))) {
|
|
DPRINTF("Compare phase %d %c= %d\n",
|
|
(s->sstat1 & PHASE_MASK),
|
|
jmp ? '=' : '!',
|
|
((insn >> 24) & 7));
|
|
cond = (s->sstat1 & PHASE_MASK) == ((insn >> 24) & 7);
|
|
}
|
|
if (cond == jmp && (insn & (1 << 18))) {
|
|
uint8_t mask;
|
|
|
|
mask = (~insn >> 8) & 0xff;
|
|
DPRINTF("Compare data 0x%x & 0x%x %c= 0x%x\n",
|
|
s->sfbr, mask, jmp ? '=' : '!', insn & mask);
|
|
cond = (s->sfbr & mask) == (insn & mask);
|
|
}
|
|
if (cond == jmp) {
|
|
if (insn & (1 << 23)) {
|
|
/* Relative address. */
|
|
addr = s->dsp + sxt24(addr);
|
|
}
|
|
switch ((insn >> 27) & 7) {
|
|
case 0: /* Jump */
|
|
DPRINTF("Jump to 0x%08x\n", addr);
|
|
s->dsp = addr;
|
|
break;
|
|
case 1: /* Call */
|
|
DPRINTF("Call 0x%08x\n", addr);
|
|
s->temp = s->dsp;
|
|
s->dsp = addr;
|
|
break;
|
|
case 2: /* Return */
|
|
DPRINTF("Return to 0x%08x\n", s->temp);
|
|
s->dsp = s->temp;
|
|
break;
|
|
case 3: /* Interrupt */
|
|
DPRINTF("Interrupt 0x%08x\n", s->dsps);
|
|
if ((insn & (1 << 20)) != 0) {
|
|
s->istat0 |= LSI_ISTAT0_INTF;
|
|
lsi_update_irq(s);
|
|
} else {
|
|
lsi_script_dma_interrupt(s, LSI_DSTAT_SIR);
|
|
}
|
|
break;
|
|
default:
|
|
DPRINTF("Illegal transfer control\n");
|
|
lsi_script_dma_interrupt(s, LSI_DSTAT_IID);
|
|
break;
|
|
}
|
|
} else {
|
|
DPRINTF("Control condition failed\n");
|
|
}
|
|
}
|
|
break;
|
|
|
|
case 3:
|
|
if ((insn & (1 << 29)) == 0) {
|
|
/* Memory move. */
|
|
uint32_t dest;
|
|
/* ??? The docs imply the destination address is loaded into
|
|
the TEMP register. However the Linux drivers rely on
|
|
the value being presrved. */
|
|
dest = read_dword(s, s->dsp);
|
|
s->dsp += 4;
|
|
lsi_memcpy(s, dest, addr, insn & 0xffffff);
|
|
} else {
|
|
uint8_t data[7];
|
|
int reg;
|
|
int n;
|
|
int i;
|
|
|
|
if (insn & (1 << 28)) {
|
|
addr = s->dsa + sxt24(addr);
|
|
}
|
|
n = (insn & 7);
|
|
reg = (insn >> 16) & 0xff;
|
|
if (insn & (1 << 24)) {
|
|
cpu_physical_memory_read(addr, data, n);
|
|
DPRINTF("Load reg 0x%x size %d addr 0x%08x = %08x\n", reg, n,
|
|
addr, *(int *)data);
|
|
for (i = 0; i < n; i++) {
|
|
lsi_reg_writeb(s, reg + i, data[i]);
|
|
}
|
|
} else {
|
|
DPRINTF("Store reg 0x%x size %d addr 0x%08x\n", reg, n, addr);
|
|
for (i = 0; i < n; i++) {
|
|
data[i] = lsi_reg_readb(s, reg + i);
|
|
}
|
|
cpu_physical_memory_write(addr, data, n);
|
|
}
|
|
}
|
|
}
|
|
if (insn_processed > 10000 && !s->waiting) {
|
|
/* Some windows drivers make the device spin waiting for a memory
|
|
location to change. If we have been executed a lot of code then
|
|
assume this is the case and force an unexpected device disconnect.
|
|
This is apparently sufficient to beat the drivers into submission.
|
|
*/
|
|
if (!(s->sien0 & LSI_SIST0_UDC))
|
|
fprintf(stderr, "inf. loop with UDC masked\n");
|
|
lsi_script_scsi_interrupt(s, LSI_SIST0_UDC, 0);
|
|
lsi_disconnect(s);
|
|
} else if (s->istat1 & LSI_ISTAT1_SRUN && !s->waiting) {
|
|
if (s->dcntl & LSI_DCNTL_SSM) {
|
|
lsi_script_dma_interrupt(s, LSI_DSTAT_SSI);
|
|
} else {
|
|
goto again;
|
|
}
|
|
}
|
|
DPRINTF("SCRIPTS execution stopped\n");
|
|
}
|
|
|
|
static uint8_t lsi_reg_readb(LSIState *s, int offset)
|
|
{
|
|
uint8_t tmp;
|
|
#define CASE_GET_REG24(name, addr) \
|
|
case addr: return s->name & 0xff; \
|
|
case addr + 1: return (s->name >> 8) & 0xff; \
|
|
case addr + 2: return (s->name >> 16) & 0xff;
|
|
|
|
#define CASE_GET_REG32(name, addr) \
|
|
case addr: return s->name & 0xff; \
|
|
case addr + 1: return (s->name >> 8) & 0xff; \
|
|
case addr + 2: return (s->name >> 16) & 0xff; \
|
|
case addr + 3: return (s->name >> 24) & 0xff;
|
|
|
|
#ifdef DEBUG_LSI_REG
|
|
DPRINTF("Read reg %x\n", offset);
|
|
#endif
|
|
switch (offset) {
|
|
case 0x00: /* SCNTL0 */
|
|
return s->scntl0;
|
|
case 0x01: /* SCNTL1 */
|
|
return s->scntl1;
|
|
case 0x02: /* SCNTL2 */
|
|
return s->scntl2;
|
|
case 0x03: /* SCNTL3 */
|
|
return s->scntl3;
|
|
case 0x04: /* SCID */
|
|
return s->scid;
|
|
case 0x05: /* SXFER */
|
|
return s->sxfer;
|
|
case 0x06: /* SDID */
|
|
return s->sdid;
|
|
case 0x07: /* GPREG0 */
|
|
return 0x7f;
|
|
case 0x08: /* Revision ID */
|
|
return 0x00;
|
|
case 0xa: /* SSID */
|
|
return s->ssid;
|
|
case 0xb: /* SBCL */
|
|
/* ??? This is not correct. However it's (hopefully) only
|
|
used for diagnostics, so should be ok. */
|
|
return 0;
|
|
case 0xc: /* DSTAT */
|
|
tmp = s->dstat | 0x80;
|
|
if ((s->istat0 & LSI_ISTAT0_INTF) == 0)
|
|
s->dstat = 0;
|
|
lsi_update_irq(s);
|
|
return tmp;
|
|
case 0x0d: /* SSTAT0 */
|
|
return s->sstat0;
|
|
case 0x0e: /* SSTAT1 */
|
|
return s->sstat1;
|
|
case 0x0f: /* SSTAT2 */
|
|
return s->scntl1 & LSI_SCNTL1_CON ? 0 : 2;
|
|
CASE_GET_REG32(dsa, 0x10)
|
|
case 0x14: /* ISTAT0 */
|
|
return s->istat0;
|
|
case 0x15: /* ISTAT1 */
|
|
return s->istat1;
|
|
case 0x16: /* MBOX0 */
|
|
return s->mbox0;
|
|
case 0x17: /* MBOX1 */
|
|
return s->mbox1;
|
|
case 0x18: /* CTEST0 */
|
|
return 0xff;
|
|
case 0x19: /* CTEST1 */
|
|
return 0;
|
|
case 0x1a: /* CTEST2 */
|
|
tmp = s->ctest2 | LSI_CTEST2_DACK | LSI_CTEST2_CM;
|
|
if (s->istat0 & LSI_ISTAT0_SIGP) {
|
|
s->istat0 &= ~LSI_ISTAT0_SIGP;
|
|
tmp |= LSI_CTEST2_SIGP;
|
|
}
|
|
return tmp;
|
|
case 0x1b: /* CTEST3 */
|
|
return s->ctest3;
|
|
CASE_GET_REG32(temp, 0x1c)
|
|
case 0x20: /* DFIFO */
|
|
return 0;
|
|
case 0x21: /* CTEST4 */
|
|
return s->ctest4;
|
|
case 0x22: /* CTEST5 */
|
|
return s->ctest5;
|
|
case 0x23: /* CTEST6 */
|
|
return 0;
|
|
CASE_GET_REG24(dbc, 0x24)
|
|
case 0x27: /* DCMD */
|
|
return s->dcmd;
|
|
CASE_GET_REG32(dnad, 0x28)
|
|
CASE_GET_REG32(dsp, 0x2c)
|
|
CASE_GET_REG32(dsps, 0x30)
|
|
CASE_GET_REG32(scratch[0], 0x34)
|
|
case 0x38: /* DMODE */
|
|
return s->dmode;
|
|
case 0x39: /* DIEN */
|
|
return s->dien;
|
|
case 0x3a: /* SBR */
|
|
return s->sbr;
|
|
case 0x3b: /* DCNTL */
|
|
return s->dcntl;
|
|
case 0x40: /* SIEN0 */
|
|
return s->sien0;
|
|
case 0x41: /* SIEN1 */
|
|
return s->sien1;
|
|
case 0x42: /* SIST0 */
|
|
tmp = s->sist0;
|
|
s->sist0 = 0;
|
|
lsi_update_irq(s);
|
|
return tmp;
|
|
case 0x43: /* SIST1 */
|
|
tmp = s->sist1;
|
|
s->sist1 = 0;
|
|
lsi_update_irq(s);
|
|
return tmp;
|
|
case 0x46: /* MACNTL */
|
|
return 0x0f;
|
|
case 0x47: /* GPCNTL0 */
|
|
return 0x0f;
|
|
case 0x48: /* STIME0 */
|
|
return s->stime0;
|
|
case 0x4a: /* RESPID0 */
|
|
return s->respid0;
|
|
case 0x4b: /* RESPID1 */
|
|
return s->respid1;
|
|
case 0x4d: /* STEST1 */
|
|
return s->stest1;
|
|
case 0x4e: /* STEST2 */
|
|
return s->stest2;
|
|
case 0x4f: /* STEST3 */
|
|
return s->stest3;
|
|
case 0x50: /* SIDL */
|
|
/* This is needed by the linux drivers. We currently only update it
|
|
during the MSG IN phase. */
|
|
return s->sidl;
|
|
case 0x52: /* STEST4 */
|
|
return 0xe0;
|
|
case 0x56: /* CCNTL0 */
|
|
return s->ccntl0;
|
|
case 0x57: /* CCNTL1 */
|
|
return s->ccntl1;
|
|
case 0x58: /* SBDL */
|
|
/* Some drivers peek at the data bus during the MSG IN phase. */
|
|
if ((s->sstat1 & PHASE_MASK) == PHASE_MI)
|
|
return s->msg[0];
|
|
return 0;
|
|
case 0x59: /* SBDL high */
|
|
return 0;
|
|
CASE_GET_REG32(mmrs, 0xa0)
|
|
CASE_GET_REG32(mmws, 0xa4)
|
|
CASE_GET_REG32(sfs, 0xa8)
|
|
CASE_GET_REG32(drs, 0xac)
|
|
CASE_GET_REG32(sbms, 0xb0)
|
|
CASE_GET_REG32(dbms, 0xb4)
|
|
CASE_GET_REG32(dnad64, 0xb8)
|
|
CASE_GET_REG32(pmjad1, 0xc0)
|
|
CASE_GET_REG32(pmjad2, 0xc4)
|
|
CASE_GET_REG32(rbc, 0xc8)
|
|
CASE_GET_REG32(ua, 0xcc)
|
|
CASE_GET_REG32(ia, 0xd4)
|
|
CASE_GET_REG32(sbc, 0xd8)
|
|
CASE_GET_REG32(csbc, 0xdc)
|
|
}
|
|
if (offset >= 0x5c && offset < 0xa0) {
|
|
int n;
|
|
int shift;
|
|
n = (offset - 0x58) >> 2;
|
|
shift = (offset & 3) * 8;
|
|
return (s->scratch[n] >> shift) & 0xff;
|
|
}
|
|
BADF("readb 0x%x\n", offset);
|
|
exit(1);
|
|
#undef CASE_GET_REG24
|
|
#undef CASE_GET_REG32
|
|
}
|
|
|
|
static void lsi_reg_writeb(LSIState *s, int offset, uint8_t val)
|
|
{
|
|
#define CASE_SET_REG24(name, addr) \
|
|
case addr : s->name &= 0xffffff00; s->name |= val; break; \
|
|
case addr + 1: s->name &= 0xffff00ff; s->name |= val << 8; break; \
|
|
case addr + 2: s->name &= 0xff00ffff; s->name |= val << 16; break;
|
|
|
|
#define CASE_SET_REG32(name, addr) \
|
|
case addr : s->name &= 0xffffff00; s->name |= val; break; \
|
|
case addr + 1: s->name &= 0xffff00ff; s->name |= val << 8; break; \
|
|
case addr + 2: s->name &= 0xff00ffff; s->name |= val << 16; break; \
|
|
case addr + 3: s->name &= 0x00ffffff; s->name |= val << 24; break;
|
|
|
|
#ifdef DEBUG_LSI_REG
|
|
DPRINTF("Write reg %x = %02x\n", offset, val);
|
|
#endif
|
|
switch (offset) {
|
|
case 0x00: /* SCNTL0 */
|
|
s->scntl0 = val;
|
|
if (val & LSI_SCNTL0_START) {
|
|
BADF("Start sequence not implemented\n");
|
|
}
|
|
break;
|
|
case 0x01: /* SCNTL1 */
|
|
s->scntl1 = val & ~LSI_SCNTL1_SST;
|
|
if (val & LSI_SCNTL1_IARB) {
|
|
BADF("Immediate Arbritration not implemented\n");
|
|
}
|
|
if (val & LSI_SCNTL1_RST) {
|
|
s->sstat0 |= LSI_SSTAT0_RST;
|
|
lsi_script_scsi_interrupt(s, LSI_SIST0_RST, 0);
|
|
} else {
|
|
s->sstat0 &= ~LSI_SSTAT0_RST;
|
|
}
|
|
break;
|
|
case 0x02: /* SCNTL2 */
|
|
val &= ~(LSI_SCNTL2_WSR | LSI_SCNTL2_WSS);
|
|
s->scntl2 = val;
|
|
break;
|
|
case 0x03: /* SCNTL3 */
|
|
s->scntl3 = val;
|
|
break;
|
|
case 0x04: /* SCID */
|
|
s->scid = val;
|
|
break;
|
|
case 0x05: /* SXFER */
|
|
s->sxfer = val;
|
|
break;
|
|
case 0x06: /* SDID */
|
|
if ((val & 0xf) != (s->ssid & 0xf))
|
|
BADF("Destination ID does not match SSID\n");
|
|
s->sdid = val & 0xf;
|
|
break;
|
|
case 0x07: /* GPREG0 */
|
|
break;
|
|
case 0x08: /* SFBR */
|
|
/* The CPU is not allowed to write to this register. However the
|
|
SCRIPTS register move instructions are. */
|
|
s->sfbr = val;
|
|
break;
|
|
case 0x0a: case 0x0b:
|
|
/* Openserver writes to these readonly registers on startup */
|
|
return;
|
|
case 0x0c: case 0x0d: case 0x0e: case 0x0f:
|
|
/* Linux writes to these readonly registers on startup. */
|
|
return;
|
|
CASE_SET_REG32(dsa, 0x10)
|
|
case 0x14: /* ISTAT0 */
|
|
s->istat0 = (s->istat0 & 0x0f) | (val & 0xf0);
|
|
if (val & LSI_ISTAT0_ABRT) {
|
|
lsi_script_dma_interrupt(s, LSI_DSTAT_ABRT);
|
|
}
|
|
if (val & LSI_ISTAT0_INTF) {
|
|
s->istat0 &= ~LSI_ISTAT0_INTF;
|
|
lsi_update_irq(s);
|
|
}
|
|
if (s->waiting == 1 && val & LSI_ISTAT0_SIGP) {
|
|
DPRINTF("Woken by SIGP\n");
|
|
s->waiting = 0;
|
|
s->dsp = s->dnad;
|
|
lsi_execute_script(s);
|
|
}
|
|
if (val & LSI_ISTAT0_SRST) {
|
|
lsi_soft_reset(s);
|
|
}
|
|
break;
|
|
case 0x16: /* MBOX0 */
|
|
s->mbox0 = val;
|
|
break;
|
|
case 0x17: /* MBOX1 */
|
|
s->mbox1 = val;
|
|
break;
|
|
case 0x1a: /* CTEST2 */
|
|
s->ctest2 = val & LSI_CTEST2_PCICIE;
|
|
break;
|
|
case 0x1b: /* CTEST3 */
|
|
s->ctest3 = val & 0x0f;
|
|
break;
|
|
CASE_SET_REG32(temp, 0x1c)
|
|
case 0x21: /* CTEST4 */
|
|
if (val & 7) {
|
|
BADF("Unimplemented CTEST4-FBL 0x%x\n", val);
|
|
}
|
|
s->ctest4 = val;
|
|
break;
|
|
case 0x22: /* CTEST5 */
|
|
if (val & (LSI_CTEST5_ADCK | LSI_CTEST5_BBCK)) {
|
|
BADF("CTEST5 DMA increment not implemented\n");
|
|
}
|
|
s->ctest5 = val;
|
|
break;
|
|
CASE_SET_REG24(dbc, 0x24)
|
|
CASE_SET_REG32(dnad, 0x28)
|
|
case 0x2c: /* DSP[0:7] */
|
|
s->dsp &= 0xffffff00;
|
|
s->dsp |= val;
|
|
break;
|
|
case 0x2d: /* DSP[8:15] */
|
|
s->dsp &= 0xffff00ff;
|
|
s->dsp |= val << 8;
|
|
break;
|
|
case 0x2e: /* DSP[16:23] */
|
|
s->dsp &= 0xff00ffff;
|
|
s->dsp |= val << 16;
|
|
break;
|
|
case 0x2f: /* DSP[24:31] */
|
|
s->dsp &= 0x00ffffff;
|
|
s->dsp |= val << 24;
|
|
if ((s->dmode & LSI_DMODE_MAN) == 0
|
|
&& (s->istat1 & LSI_ISTAT1_SRUN) == 0)
|
|
lsi_execute_script(s);
|
|
break;
|
|
CASE_SET_REG32(dsps, 0x30)
|
|
CASE_SET_REG32(scratch[0], 0x34)
|
|
case 0x38: /* DMODE */
|
|
if (val & (LSI_DMODE_SIOM | LSI_DMODE_DIOM)) {
|
|
BADF("IO mappings not implemented\n");
|
|
}
|
|
s->dmode = val;
|
|
break;
|
|
case 0x39: /* DIEN */
|
|
s->dien = val;
|
|
lsi_update_irq(s);
|
|
break;
|
|
case 0x3a: /* SBR */
|
|
s->sbr = val;
|
|
break;
|
|
case 0x3b: /* DCNTL */
|
|
s->dcntl = val & ~(LSI_DCNTL_PFF | LSI_DCNTL_STD);
|
|
if ((val & LSI_DCNTL_STD) && (s->istat1 & LSI_ISTAT1_SRUN) == 0)
|
|
lsi_execute_script(s);
|
|
break;
|
|
case 0x40: /* SIEN0 */
|
|
s->sien0 = val;
|
|
lsi_update_irq(s);
|
|
break;
|
|
case 0x41: /* SIEN1 */
|
|
s->sien1 = val;
|
|
lsi_update_irq(s);
|
|
break;
|
|
case 0x47: /* GPCNTL0 */
|
|
break;
|
|
case 0x48: /* STIME0 */
|
|
s->stime0 = val;
|
|
break;
|
|
case 0x49: /* STIME1 */
|
|
if (val & 0xf) {
|
|
DPRINTF("General purpose timer not implemented\n");
|
|
/* ??? Raising the interrupt immediately seems to be sufficient
|
|
to keep the FreeBSD driver happy. */
|
|
lsi_script_scsi_interrupt(s, 0, LSI_SIST1_GEN);
|
|
}
|
|
break;
|
|
case 0x4a: /* RESPID0 */
|
|
s->respid0 = val;
|
|
break;
|
|
case 0x4b: /* RESPID1 */
|
|
s->respid1 = val;
|
|
break;
|
|
case 0x4d: /* STEST1 */
|
|
s->stest1 = val;
|
|
break;
|
|
case 0x4e: /* STEST2 */
|
|
if (val & 1) {
|
|
BADF("Low level mode not implemented\n");
|
|
}
|
|
s->stest2 = val;
|
|
break;
|
|
case 0x4f: /* STEST3 */
|
|
if (val & 0x41) {
|
|
BADF("SCSI FIFO test mode not implemented\n");
|
|
}
|
|
s->stest3 = val;
|
|
break;
|
|
case 0x56: /* CCNTL0 */
|
|
s->ccntl0 = val;
|
|
break;
|
|
case 0x57: /* CCNTL1 */
|
|
s->ccntl1 = val;
|
|
break;
|
|
CASE_SET_REG32(mmrs, 0xa0)
|
|
CASE_SET_REG32(mmws, 0xa4)
|
|
CASE_SET_REG32(sfs, 0xa8)
|
|
CASE_SET_REG32(drs, 0xac)
|
|
CASE_SET_REG32(sbms, 0xb0)
|
|
CASE_SET_REG32(dbms, 0xb4)
|
|
CASE_SET_REG32(dnad64, 0xb8)
|
|
CASE_SET_REG32(pmjad1, 0xc0)
|
|
CASE_SET_REG32(pmjad2, 0xc4)
|
|
CASE_SET_REG32(rbc, 0xc8)
|
|
CASE_SET_REG32(ua, 0xcc)
|
|
CASE_SET_REG32(ia, 0xd4)
|
|
CASE_SET_REG32(sbc, 0xd8)
|
|
CASE_SET_REG32(csbc, 0xdc)
|
|
default:
|
|
if (offset >= 0x5c && offset < 0xa0) {
|
|
int n;
|
|
int shift;
|
|
n = (offset - 0x58) >> 2;
|
|
shift = (offset & 3) * 8;
|
|
s->scratch[n] &= ~(0xff << shift);
|
|
s->scratch[n] |= (val & 0xff) << shift;
|
|
} else {
|
|
BADF("Unhandled writeb 0x%x = 0x%x\n", offset, val);
|
|
}
|
|
}
|
|
#undef CASE_SET_REG24
|
|
#undef CASE_SET_REG32
|
|
}
|
|
|
|
static void lsi_mmio_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
|
|
{
|
|
LSIState *s = opaque;
|
|
|
|
lsi_reg_writeb(s, addr & 0xff, val);
|
|
}
|
|
|
|
static void lsi_mmio_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
|
|
{
|
|
LSIState *s = opaque;
|
|
|
|
addr &= 0xff;
|
|
lsi_reg_writeb(s, addr, val & 0xff);
|
|
lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
|
|
}
|
|
|
|
static void lsi_mmio_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
|
|
{
|
|
LSIState *s = opaque;
|
|
|
|
addr &= 0xff;
|
|
lsi_reg_writeb(s, addr, val & 0xff);
|
|
lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
|
|
lsi_reg_writeb(s, addr + 2, (val >> 16) & 0xff);
|
|
lsi_reg_writeb(s, addr + 3, (val >> 24) & 0xff);
|
|
}
|
|
|
|
static uint32_t lsi_mmio_readb(void *opaque, target_phys_addr_t addr)
|
|
{
|
|
LSIState *s = opaque;
|
|
|
|
return lsi_reg_readb(s, addr & 0xff);
|
|
}
|
|
|
|
static uint32_t lsi_mmio_readw(void *opaque, target_phys_addr_t addr)
|
|
{
|
|
LSIState *s = opaque;
|
|
uint32_t val;
|
|
|
|
addr &= 0xff;
|
|
val = lsi_reg_readb(s, addr);
|
|
val |= lsi_reg_readb(s, addr + 1) << 8;
|
|
return val;
|
|
}
|
|
|
|
static uint32_t lsi_mmio_readl(void *opaque, target_phys_addr_t addr)
|
|
{
|
|
LSIState *s = opaque;
|
|
uint32_t val;
|
|
addr &= 0xff;
|
|
val = lsi_reg_readb(s, addr);
|
|
val |= lsi_reg_readb(s, addr + 1) << 8;
|
|
val |= lsi_reg_readb(s, addr + 2) << 16;
|
|
val |= lsi_reg_readb(s, addr + 3) << 24;
|
|
return val;
|
|
}
|
|
|
|
static CPUReadMemoryFunc * const lsi_mmio_readfn[3] = {
|
|
lsi_mmio_readb,
|
|
lsi_mmio_readw,
|
|
lsi_mmio_readl,
|
|
};
|
|
|
|
static CPUWriteMemoryFunc * const lsi_mmio_writefn[3] = {
|
|
lsi_mmio_writeb,
|
|
lsi_mmio_writew,
|
|
lsi_mmio_writel,
|
|
};
|
|
|
|
static void lsi_ram_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
|
|
{
|
|
LSIState *s = opaque;
|
|
uint32_t newval;
|
|
int shift;
|
|
|
|
addr &= 0x1fff;
|
|
newval = s->script_ram[addr >> 2];
|
|
shift = (addr & 3) * 8;
|
|
newval &= ~(0xff << shift);
|
|
newval |= val << shift;
|
|
s->script_ram[addr >> 2] = newval;
|
|
}
|
|
|
|
static void lsi_ram_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
|
|
{
|
|
LSIState *s = opaque;
|
|
uint32_t newval;
|
|
|
|
addr &= 0x1fff;
|
|
newval = s->script_ram[addr >> 2];
|
|
if (addr & 2) {
|
|
newval = (newval & 0xffff) | (val << 16);
|
|
} else {
|
|
newval = (newval & 0xffff0000) | val;
|
|
}
|
|
s->script_ram[addr >> 2] = newval;
|
|
}
|
|
|
|
|
|
static void lsi_ram_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
|
|
{
|
|
LSIState *s = opaque;
|
|
|
|
addr &= 0x1fff;
|
|
s->script_ram[addr >> 2] = val;
|
|
}
|
|
|
|
static uint32_t lsi_ram_readb(void *opaque, target_phys_addr_t addr)
|
|
{
|
|
LSIState *s = opaque;
|
|
uint32_t val;
|
|
|
|
addr &= 0x1fff;
|
|
val = s->script_ram[addr >> 2];
|
|
val >>= (addr & 3) * 8;
|
|
return val & 0xff;
|
|
}
|
|
|
|
static uint32_t lsi_ram_readw(void *opaque, target_phys_addr_t addr)
|
|
{
|
|
LSIState *s = opaque;
|
|
uint32_t val;
|
|
|
|
addr &= 0x1fff;
|
|
val = s->script_ram[addr >> 2];
|
|
if (addr & 2)
|
|
val >>= 16;
|
|
return le16_to_cpu(val);
|
|
}
|
|
|
|
static uint32_t lsi_ram_readl(void *opaque, target_phys_addr_t addr)
|
|
{
|
|
LSIState *s = opaque;
|
|
|
|
addr &= 0x1fff;
|
|
return le32_to_cpu(s->script_ram[addr >> 2]);
|
|
}
|
|
|
|
static CPUReadMemoryFunc * const lsi_ram_readfn[3] = {
|
|
lsi_ram_readb,
|
|
lsi_ram_readw,
|
|
lsi_ram_readl,
|
|
};
|
|
|
|
static CPUWriteMemoryFunc * const lsi_ram_writefn[3] = {
|
|
lsi_ram_writeb,
|
|
lsi_ram_writew,
|
|
lsi_ram_writel,
|
|
};
|
|
|
|
static uint32_t lsi_io_readb(void *opaque, uint32_t addr)
|
|
{
|
|
LSIState *s = opaque;
|
|
return lsi_reg_readb(s, addr & 0xff);
|
|
}
|
|
|
|
static uint32_t lsi_io_readw(void *opaque, uint32_t addr)
|
|
{
|
|
LSIState *s = opaque;
|
|
uint32_t val;
|
|
addr &= 0xff;
|
|
val = lsi_reg_readb(s, addr);
|
|
val |= lsi_reg_readb(s, addr + 1) << 8;
|
|
return val;
|
|
}
|
|
|
|
static uint32_t lsi_io_readl(void *opaque, uint32_t addr)
|
|
{
|
|
LSIState *s = opaque;
|
|
uint32_t val;
|
|
addr &= 0xff;
|
|
val = lsi_reg_readb(s, addr);
|
|
val |= lsi_reg_readb(s, addr + 1) << 8;
|
|
val |= lsi_reg_readb(s, addr + 2) << 16;
|
|
val |= lsi_reg_readb(s, addr + 3) << 24;
|
|
return val;
|
|
}
|
|
|
|
static void lsi_io_writeb(void *opaque, uint32_t addr, uint32_t val)
|
|
{
|
|
LSIState *s = opaque;
|
|
lsi_reg_writeb(s, addr & 0xff, val);
|
|
}
|
|
|
|
static void lsi_io_writew(void *opaque, uint32_t addr, uint32_t val)
|
|
{
|
|
LSIState *s = opaque;
|
|
addr &= 0xff;
|
|
lsi_reg_writeb(s, addr, val & 0xff);
|
|
lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
|
|
}
|
|
|
|
static void lsi_io_writel(void *opaque, uint32_t addr, uint32_t val)
|
|
{
|
|
LSIState *s = opaque;
|
|
addr &= 0xff;
|
|
lsi_reg_writeb(s, addr, val & 0xff);
|
|
lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
|
|
lsi_reg_writeb(s, addr + 2, (val >> 16) & 0xff);
|
|
lsi_reg_writeb(s, addr + 3, (val >> 24) & 0xff);
|
|
}
|
|
|
|
static void lsi_io_mapfunc(PCIDevice *pci_dev, int region_num,
|
|
uint32_t addr, uint32_t size, int type)
|
|
{
|
|
LSIState *s = DO_UPCAST(LSIState, dev, pci_dev);
|
|
|
|
DPRINTF("Mapping IO at %08x\n", addr);
|
|
|
|
register_ioport_write(addr, 256, 1, lsi_io_writeb, s);
|
|
register_ioport_read(addr, 256, 1, lsi_io_readb, s);
|
|
register_ioport_write(addr, 256, 2, lsi_io_writew, s);
|
|
register_ioport_read(addr, 256, 2, lsi_io_readw, s);
|
|
register_ioport_write(addr, 256, 4, lsi_io_writel, s);
|
|
register_ioport_read(addr, 256, 4, lsi_io_readl, s);
|
|
}
|
|
|
|
static void lsi_ram_mapfunc(PCIDevice *pci_dev, int region_num,
|
|
uint32_t addr, uint32_t size, int type)
|
|
{
|
|
LSIState *s = DO_UPCAST(LSIState, dev, pci_dev);
|
|
|
|
DPRINTF("Mapping ram at %08x\n", addr);
|
|
s->script_ram_base = addr;
|
|
cpu_register_physical_memory(addr + 0, 0x2000, s->ram_io_addr);
|
|
}
|
|
|
|
static void lsi_mmio_mapfunc(PCIDevice *pci_dev, int region_num,
|
|
uint32_t addr, uint32_t size, int type)
|
|
{
|
|
LSIState *s = DO_UPCAST(LSIState, dev, pci_dev);
|
|
|
|
DPRINTF("Mapping registers at %08x\n", addr);
|
|
cpu_register_physical_memory(addr + 0, 0x400, s->mmio_io_addr);
|
|
}
|
|
|
|
static void lsi_pre_save(void *opaque)
|
|
{
|
|
LSIState *s = opaque;
|
|
|
|
assert(s->dma_buf == NULL);
|
|
assert(s->current_dma_len == 0);
|
|
assert(s->active_commands == 0);
|
|
}
|
|
|
|
static const VMStateDescription vmstate_lsi_scsi = {
|
|
.name = "lsiscsi",
|
|
.version_id = 0,
|
|
.minimum_version_id = 0,
|
|
.minimum_version_id_old = 0,
|
|
.pre_save = lsi_pre_save,
|
|
.fields = (VMStateField []) {
|
|
VMSTATE_PCI_DEVICE(dev, LSIState),
|
|
|
|
VMSTATE_INT32(carry, LSIState),
|
|
VMSTATE_INT32(sense, LSIState),
|
|
VMSTATE_INT32(msg_action, LSIState),
|
|
VMSTATE_INT32(msg_len, LSIState),
|
|
VMSTATE_BUFFER(msg, LSIState),
|
|
VMSTATE_INT32(waiting, LSIState),
|
|
|
|
VMSTATE_UINT32(dsa, LSIState),
|
|
VMSTATE_UINT32(temp, LSIState),
|
|
VMSTATE_UINT32(dnad, LSIState),
|
|
VMSTATE_UINT32(dbc, LSIState),
|
|
VMSTATE_UINT8(istat0, LSIState),
|
|
VMSTATE_UINT8(istat1, LSIState),
|
|
VMSTATE_UINT8(dcmd, LSIState),
|
|
VMSTATE_UINT8(dstat, LSIState),
|
|
VMSTATE_UINT8(dien, LSIState),
|
|
VMSTATE_UINT8(sist0, LSIState),
|
|
VMSTATE_UINT8(sist1, LSIState),
|
|
VMSTATE_UINT8(sien0, LSIState),
|
|
VMSTATE_UINT8(sien1, LSIState),
|
|
VMSTATE_UINT8(mbox0, LSIState),
|
|
VMSTATE_UINT8(mbox1, LSIState),
|
|
VMSTATE_UINT8(dfifo, LSIState),
|
|
VMSTATE_UINT8(ctest2, LSIState),
|
|
VMSTATE_UINT8(ctest3, LSIState),
|
|
VMSTATE_UINT8(ctest4, LSIState),
|
|
VMSTATE_UINT8(ctest5, LSIState),
|
|
VMSTATE_UINT8(ccntl0, LSIState),
|
|
VMSTATE_UINT8(ccntl1, LSIState),
|
|
VMSTATE_UINT32(dsp, LSIState),
|
|
VMSTATE_UINT32(dsps, LSIState),
|
|
VMSTATE_UINT8(dmode, LSIState),
|
|
VMSTATE_UINT8(dcntl, LSIState),
|
|
VMSTATE_UINT8(scntl0, LSIState),
|
|
VMSTATE_UINT8(scntl1, LSIState),
|
|
VMSTATE_UINT8(scntl2, LSIState),
|
|
VMSTATE_UINT8(scntl3, LSIState),
|
|
VMSTATE_UINT8(sstat0, LSIState),
|
|
VMSTATE_UINT8(sstat1, LSIState),
|
|
VMSTATE_UINT8(scid, LSIState),
|
|
VMSTATE_UINT8(sxfer, LSIState),
|
|
VMSTATE_UINT8(socl, LSIState),
|
|
VMSTATE_UINT8(sdid, LSIState),
|
|
VMSTATE_UINT8(ssid, LSIState),
|
|
VMSTATE_UINT8(sfbr, LSIState),
|
|
VMSTATE_UINT8(stest1, LSIState),
|
|
VMSTATE_UINT8(stest2, LSIState),
|
|
VMSTATE_UINT8(stest3, LSIState),
|
|
VMSTATE_UINT8(sidl, LSIState),
|
|
VMSTATE_UINT8(stime0, LSIState),
|
|
VMSTATE_UINT8(respid0, LSIState),
|
|
VMSTATE_UINT8(respid1, LSIState),
|
|
VMSTATE_UINT32(mmrs, LSIState),
|
|
VMSTATE_UINT32(mmws, LSIState),
|
|
VMSTATE_UINT32(sfs, LSIState),
|
|
VMSTATE_UINT32(drs, LSIState),
|
|
VMSTATE_UINT32(sbms, LSIState),
|
|
VMSTATE_UINT32(dbms, LSIState),
|
|
VMSTATE_UINT32(dnad64, LSIState),
|
|
VMSTATE_UINT32(pmjad1, LSIState),
|
|
VMSTATE_UINT32(pmjad2, LSIState),
|
|
VMSTATE_UINT32(rbc, LSIState),
|
|
VMSTATE_UINT32(ua, LSIState),
|
|
VMSTATE_UINT32(ia, LSIState),
|
|
VMSTATE_UINT32(sbc, LSIState),
|
|
VMSTATE_UINT32(csbc, LSIState),
|
|
VMSTATE_BUFFER_UNSAFE(scratch, LSIState, 0, 18 * sizeof(uint32_t)),
|
|
VMSTATE_UINT8(sbr, LSIState),
|
|
|
|
VMSTATE_BUFFER_UNSAFE(script_ram, LSIState, 0, 2048 * sizeof(uint32_t)),
|
|
VMSTATE_END_OF_LIST()
|
|
}
|
|
};
|
|
|
|
static int lsi_scsi_uninit(PCIDevice *d)
|
|
{
|
|
LSIState *s = DO_UPCAST(LSIState, dev, d);
|
|
|
|
cpu_unregister_io_memory(s->mmio_io_addr);
|
|
cpu_unregister_io_memory(s->ram_io_addr);
|
|
|
|
qemu_free(s->queue);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int lsi_scsi_init(PCIDevice *dev)
|
|
{
|
|
LSIState *s = DO_UPCAST(LSIState, dev, dev);
|
|
uint8_t *pci_conf;
|
|
|
|
pci_conf = s->dev.config;
|
|
|
|
/* PCI Vendor ID (word) */
|
|
pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_LSI_LOGIC);
|
|
/* PCI device ID (word) */
|
|
pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_LSI_53C895A);
|
|
/* PCI base class code */
|
|
pci_config_set_class(pci_conf, PCI_CLASS_STORAGE_SCSI);
|
|
/* PCI subsystem ID */
|
|
pci_conf[0x2e] = 0x00;
|
|
pci_conf[0x2f] = 0x10;
|
|
/* PCI latency timer = 255 */
|
|
pci_conf[0x0d] = 0xff;
|
|
/* Interrupt pin 1 */
|
|
pci_conf[0x3d] = 0x01;
|
|
|
|
s->mmio_io_addr = cpu_register_io_memory(lsi_mmio_readfn,
|
|
lsi_mmio_writefn, s);
|
|
s->ram_io_addr = cpu_register_io_memory(lsi_ram_readfn,
|
|
lsi_ram_writefn, s);
|
|
|
|
pci_register_bar((struct PCIDevice *)s, 0, 256,
|
|
PCI_ADDRESS_SPACE_IO, lsi_io_mapfunc);
|
|
pci_register_bar((struct PCIDevice *)s, 1, 0x400,
|
|
PCI_ADDRESS_SPACE_MEM, lsi_mmio_mapfunc);
|
|
pci_register_bar((struct PCIDevice *)s, 2, 0x2000,
|
|
PCI_ADDRESS_SPACE_MEM, lsi_ram_mapfunc);
|
|
s->queue = qemu_malloc(sizeof(lsi_queue));
|
|
s->queue_len = 1;
|
|
s->active_commands = 0;
|
|
|
|
lsi_soft_reset(s);
|
|
|
|
scsi_bus_new(&s->bus, &dev->qdev, 1, LSI_MAX_DEVS, lsi_command_complete);
|
|
if (!dev->qdev.hotplugged) {
|
|
scsi_bus_legacy_handle_cmdline(&s->bus);
|
|
}
|
|
vmstate_register(-1, &vmstate_lsi_scsi, s);
|
|
return 0;
|
|
}
|
|
|
|
static PCIDeviceInfo lsi_info = {
|
|
.qdev.name = "lsi53c895a",
|
|
.qdev.alias = "lsi",
|
|
.qdev.size = sizeof(LSIState),
|
|
.init = lsi_scsi_init,
|
|
.exit = lsi_scsi_uninit,
|
|
};
|
|
|
|
static void lsi53c895a_register_devices(void)
|
|
{
|
|
pci_qdev_register(&lsi_info);
|
|
}
|
|
|
|
device_init(lsi53c895a_register_devices);
|