dda533087a
Multiple warning messages and corresponding backtraces are observed when Linux guest is booted on the host with Fujitsu CPUs. One of them is shown as below. [ 0.032443] ------------[ cut here ]------------ [ 0.032446] uart-pl011 9000000.pl011: ARCH_DMA_MINALIGN smaller than CTR_EL0.CWG (128 < 256) [ 0.032454] WARNING: CPU: 0 PID: 1 at arch/arm64/mm/dma-mapping.c:54 arch_setup_dma_ops+0xbc/0xcc [ 0.032470] Modules linked in: [ 0.032475] CPU: 0 PID: 1 Comm: swapper/0 Not tainted 5.14.0-452.el9.aarch64 [ 0.032481] Hardware name: linux,dummy-virt (DT) [ 0.032484] pstate: 60400005 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 0.032490] pc : arch_setup_dma_ops+0xbc/0xcc [ 0.032496] lr : arch_setup_dma_ops+0xbc/0xcc [ 0.032501] sp : ffff80008003b860 [ 0.032503] x29: ffff80008003b860 x28: 0000000000000000 x27: ffffaae4b949049c [ 0.032510] x26: 0000000000000000 x25: 0000000000000000 x24: 0000000000000000 [ 0.032517] x23: 0000000000000100 x22: 0000000000000000 x21: 0000000000000000 [ 0.032523] x20: 0000000100000000 x19: ffff2f06c02ea400 x18: ffffffffffffffff [ 0.032529] x17: 00000000208a5f76 x16: 000000006589dbcb x15: ffffaae4ba071c89 [ 0.032535] x14: 0000000000000000 x13: ffffaae4ba071c84 x12: 455f525443206e61 [ 0.032541] x11: 68742072656c6c61 x10: 0000000000000029 x9 : ffffaae4b7d21da4 [ 0.032547] x8 : 0000000000000029 x7 : 4c414e494d5f414d x6 : 0000000000000029 [ 0.032553] x5 : 000000000000000f x4 : ffffaae4b9617a00 x3 : 0000000000000001 [ 0.032558] x2 : 0000000000000000 x1 : 0000000000000000 x0 : ffff2f06c029be40 [ 0.032564] Call trace: [ 0.032566] arch_setup_dma_ops+0xbc/0xcc [ 0.032572] of_dma_configure_id+0x138/0x300 [ 0.032591] amba_dma_configure+0x34/0xc0 [ 0.032600] really_probe+0x78/0x3dc [ 0.032614] __driver_probe_device+0x108/0x160 [ 0.032619] driver_probe_device+0x44/0x114 [ 0.032624] __device_attach_driver+0xb8/0x14c [ 0.032629] bus_for_each_drv+0x88/0xe4 [ 0.032634] __device_attach+0xb0/0x1e0 [ 0.032638] device_initial_probe+0x18/0x20 [ 0.032643] bus_probe_device+0xa8/0xb0 [ 0.032648] device_add+0x4b4/0x6c0 [ 0.032652] amba_device_try_add.part.0+0x48/0x360 [ 0.032657] amba_device_add+0x104/0x144 [ 0.032662] of_amba_device_create.isra.0+0x100/0x1c4 [ 0.032666] of_platform_bus_create+0x294/0x35c [ 0.032669] of_platform_populate+0x5c/0x150 [ 0.032672] of_platform_default_populate_init+0xd0/0xec [ 0.032697] do_one_initcall+0x4c/0x2e0 [ 0.032701] do_initcalls+0x100/0x13c [ 0.032707] kernel_init_freeable+0x1c8/0x21c [ 0.032712] kernel_init+0x28/0x140 [ 0.032731] ret_from_fork+0x10/0x20 [ 0.032735] ---[ end trace 0000000000000000 ]--- In Linux, a check is applied to every device which is exposed through device-tree node. The warning message is raised when the device isn't DMA coherent and the cache line size is larger than ARCH_DMA_MINALIGN (128 bytes). The cache line is sorted from CTR_EL0[CWG], which corresponds to 256 bytes on the guest CPUs. The DMA coherent capability is claimed through 'dma-coherent' in their device-tree nodes or parent nodes. This happens even when the device doesn't implement or use DMA at all, for legacy reasons. Fix the issue by adding 'dma-coherent' property to the device-tree root node, meaning all devices are capable of DMA coherent by default. This both suppresses the spurious kernel warnings and also guards against possible future QEMU bugs where we add a DMA-capable device and forget to mark it as dma-coherent. Signed-off-by: Zhenyu Zhang <zhenyzha@redhat.com> Reviewed-by: Gavin Shan <gshan@redhat.com> Reviewed-by: Donald Dutile <ddutile@redhat.com Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Message-id: 20240612020506.307793-1-zhenyzha@redhat.com [PMM: tweaked commit message] Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
3544 lines
128 KiB
C
3544 lines
128 KiB
C
/*
|
|
* ARM mach-virt emulation
|
|
*
|
|
* Copyright (c) 2013 Linaro Limited
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms and conditions of the GNU General Public License,
|
|
* version 2 or later, as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along with
|
|
* this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
* Emulate a virtual board which works by passing Linux all the information
|
|
* it needs about what devices are present via the device tree.
|
|
* There are some restrictions about what we can do here:
|
|
* + we can only present devices whose Linux drivers will work based
|
|
* purely on the device tree with no platform data at all
|
|
* + we want to present a very stripped-down minimalist platform,
|
|
* both because this reduces the security attack surface from the guest
|
|
* and also because it reduces our exposure to being broken when
|
|
* the kernel updates its device tree bindings and requires further
|
|
* information in a device binding that we aren't providing.
|
|
* This is essentially the same approach kvmtool uses.
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "qemu/datadir.h"
|
|
#include "qemu/units.h"
|
|
#include "qemu/option.h"
|
|
#include "monitor/qdev.h"
|
|
#include "hw/sysbus.h"
|
|
#include "hw/arm/boot.h"
|
|
#include "hw/arm/primecell.h"
|
|
#include "hw/arm/virt.h"
|
|
#include "hw/block/flash.h"
|
|
#include "hw/vfio/vfio-calxeda-xgmac.h"
|
|
#include "hw/vfio/vfio-amd-xgbe.h"
|
|
#include "hw/display/ramfb.h"
|
|
#include "net/net.h"
|
|
#include "sysemu/device_tree.h"
|
|
#include "sysemu/numa.h"
|
|
#include "sysemu/runstate.h"
|
|
#include "sysemu/tpm.h"
|
|
#include "sysemu/tcg.h"
|
|
#include "sysemu/kvm.h"
|
|
#include "sysemu/hvf.h"
|
|
#include "sysemu/qtest.h"
|
|
#include "hw/loader.h"
|
|
#include "qapi/error.h"
|
|
#include "qemu/bitops.h"
|
|
#include "qemu/error-report.h"
|
|
#include "qemu/module.h"
|
|
#include "hw/pci-host/gpex.h"
|
|
#include "hw/virtio/virtio-pci.h"
|
|
#include "hw/core/sysbus-fdt.h"
|
|
#include "hw/platform-bus.h"
|
|
#include "hw/qdev-properties.h"
|
|
#include "hw/arm/fdt.h"
|
|
#include "hw/intc/arm_gic.h"
|
|
#include "hw/intc/arm_gicv3_common.h"
|
|
#include "hw/intc/arm_gicv3_its_common.h"
|
|
#include "hw/irq.h"
|
|
#include "kvm_arm.h"
|
|
#include "hw/firmware/smbios.h"
|
|
#include "qapi/visitor.h"
|
|
#include "qapi/qapi-visit-common.h"
|
|
#include "qapi/qmp/qlist.h"
|
|
#include "standard-headers/linux/input.h"
|
|
#include "hw/arm/smmuv3.h"
|
|
#include "hw/acpi/acpi.h"
|
|
#include "target/arm/cpu-qom.h"
|
|
#include "target/arm/internals.h"
|
|
#include "target/arm/multiprocessing.h"
|
|
#include "target/arm/gtimer.h"
|
|
#include "hw/mem/pc-dimm.h"
|
|
#include "hw/mem/nvdimm.h"
|
|
#include "hw/acpi/generic_event_device.h"
|
|
#include "hw/virtio/virtio-md-pci.h"
|
|
#include "hw/virtio/virtio-iommu.h"
|
|
#include "hw/char/pl011.h"
|
|
#include "qemu/guest-random.h"
|
|
|
|
static GlobalProperty arm_virt_compat[] = {
|
|
{ TYPE_VIRTIO_IOMMU_PCI, "aw-bits", "48" },
|
|
};
|
|
static const size_t arm_virt_compat_len = G_N_ELEMENTS(arm_virt_compat);
|
|
|
|
/*
|
|
* This cannot be called from the virt_machine_class_init() because
|
|
* TYPE_VIRT_MACHINE is abstract and mc->compat_props g_ptr_array_new()
|
|
* only is called on virt non abstract class init.
|
|
*/
|
|
static void arm_virt_compat_set(MachineClass *mc)
|
|
{
|
|
compat_props_add(mc->compat_props, arm_virt_compat,
|
|
arm_virt_compat_len);
|
|
}
|
|
|
|
#define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
|
|
static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
|
|
void *data) \
|
|
{ \
|
|
MachineClass *mc = MACHINE_CLASS(oc); \
|
|
arm_virt_compat_set(mc); \
|
|
virt_machine_##major##_##minor##_options(mc); \
|
|
mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
|
|
if (latest) { \
|
|
mc->alias = "virt"; \
|
|
} \
|
|
} \
|
|
static const TypeInfo machvirt_##major##_##minor##_info = { \
|
|
.name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
|
|
.parent = TYPE_VIRT_MACHINE, \
|
|
.class_init = virt_##major##_##minor##_class_init, \
|
|
}; \
|
|
static void machvirt_machine_##major##_##minor##_init(void) \
|
|
{ \
|
|
type_register_static(&machvirt_##major##_##minor##_info); \
|
|
} \
|
|
type_init(machvirt_machine_##major##_##minor##_init);
|
|
|
|
#define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
|
|
DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
|
|
#define DEFINE_VIRT_MACHINE(major, minor) \
|
|
DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
|
|
|
|
|
|
/* Number of external interrupt lines to configure the GIC with */
|
|
#define NUM_IRQS 256
|
|
|
|
#define PLATFORM_BUS_NUM_IRQS 64
|
|
|
|
/* Legacy RAM limit in GB (< version 4.0) */
|
|
#define LEGACY_RAMLIMIT_GB 255
|
|
#define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB)
|
|
|
|
/* Addresses and sizes of our components.
|
|
* 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
|
|
* 128MB..256MB is used for miscellaneous device I/O.
|
|
* 256MB..1GB is reserved for possible future PCI support (ie where the
|
|
* PCI memory window will go if we add a PCI host controller).
|
|
* 1GB and up is RAM (which may happily spill over into the
|
|
* high memory region beyond 4GB).
|
|
* This represents a compromise between how much RAM can be given to
|
|
* a 32 bit VM and leaving space for expansion and in particular for PCI.
|
|
* Note that devices should generally be placed at multiples of 0x10000,
|
|
* to accommodate guests using 64K pages.
|
|
*/
|
|
static const MemMapEntry base_memmap[] = {
|
|
/* Space up to 0x8000000 is reserved for a boot ROM */
|
|
[VIRT_FLASH] = { 0, 0x08000000 },
|
|
[VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 },
|
|
/* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
|
|
[VIRT_GIC_DIST] = { 0x08000000, 0x00010000 },
|
|
[VIRT_GIC_CPU] = { 0x08010000, 0x00010000 },
|
|
[VIRT_GIC_V2M] = { 0x08020000, 0x00001000 },
|
|
[VIRT_GIC_HYP] = { 0x08030000, 0x00010000 },
|
|
[VIRT_GIC_VCPU] = { 0x08040000, 0x00010000 },
|
|
/* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
|
|
[VIRT_GIC_ITS] = { 0x08080000, 0x00020000 },
|
|
/* This redistributor space allows up to 2*64kB*123 CPUs */
|
|
[VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 },
|
|
[VIRT_UART0] = { 0x09000000, 0x00001000 },
|
|
[VIRT_RTC] = { 0x09010000, 0x00001000 },
|
|
[VIRT_FW_CFG] = { 0x09020000, 0x00000018 },
|
|
[VIRT_GPIO] = { 0x09030000, 0x00001000 },
|
|
[VIRT_UART1] = { 0x09040000, 0x00001000 },
|
|
[VIRT_SMMU] = { 0x09050000, 0x00020000 },
|
|
[VIRT_PCDIMM_ACPI] = { 0x09070000, MEMORY_HOTPLUG_IO_LEN },
|
|
[VIRT_ACPI_GED] = { 0x09080000, ACPI_GED_EVT_SEL_LEN },
|
|
[VIRT_NVDIMM_ACPI] = { 0x09090000, NVDIMM_ACPI_IO_LEN},
|
|
[VIRT_PVTIME] = { 0x090a0000, 0x00010000 },
|
|
[VIRT_SECURE_GPIO] = { 0x090b0000, 0x00001000 },
|
|
[VIRT_MMIO] = { 0x0a000000, 0x00000200 },
|
|
/* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
|
|
[VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 },
|
|
[VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 },
|
|
[VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 },
|
|
[VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 },
|
|
[VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 },
|
|
/* Actual RAM size depends on initial RAM and device memory settings */
|
|
[VIRT_MEM] = { GiB, LEGACY_RAMLIMIT_BYTES },
|
|
};
|
|
|
|
/*
|
|
* Highmem IO Regions: This memory map is floating, located after the RAM.
|
|
* Each MemMapEntry base (GPA) will be dynamically computed, depending on the
|
|
* top of the RAM, so that its base get the same alignment as the size,
|
|
* ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is
|
|
* less than 256GiB of RAM, the floating area starts at the 256GiB mark.
|
|
* Note the extended_memmap is sized so that it eventually also includes the
|
|
* base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last
|
|
* index of base_memmap).
|
|
*
|
|
* The memory map for these Highmem IO Regions can be in legacy or compact
|
|
* layout, depending on 'compact-highmem' property. With legacy layout, the
|
|
* PA space for one specific region is always reserved, even if the region
|
|
* has been disabled or doesn't fit into the PA space. However, the PA space
|
|
* for the region won't be reserved in these circumstances with compact layout.
|
|
*/
|
|
static MemMapEntry extended_memmap[] = {
|
|
/* Additional 64 MB redist region (can contain up to 512 redistributors) */
|
|
[VIRT_HIGH_GIC_REDIST2] = { 0x0, 64 * MiB },
|
|
[VIRT_HIGH_PCIE_ECAM] = { 0x0, 256 * MiB },
|
|
/* Second PCIe window */
|
|
[VIRT_HIGH_PCIE_MMIO] = { 0x0, 512 * GiB },
|
|
};
|
|
|
|
static const int a15irqmap[] = {
|
|
[VIRT_UART0] = 1,
|
|
[VIRT_RTC] = 2,
|
|
[VIRT_PCIE] = 3, /* ... to 6 */
|
|
[VIRT_GPIO] = 7,
|
|
[VIRT_UART1] = 8,
|
|
[VIRT_ACPI_GED] = 9,
|
|
[VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
|
|
[VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
|
|
[VIRT_SMMU] = 74, /* ...to 74 + NUM_SMMU_IRQS - 1 */
|
|
[VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
|
|
};
|
|
|
|
static void create_randomness(MachineState *ms, const char *node)
|
|
{
|
|
struct {
|
|
uint64_t kaslr;
|
|
uint8_t rng[32];
|
|
} seed;
|
|
|
|
if (qemu_guest_getrandom(&seed, sizeof(seed), NULL)) {
|
|
return;
|
|
}
|
|
qemu_fdt_setprop_u64(ms->fdt, node, "kaslr-seed", seed.kaslr);
|
|
qemu_fdt_setprop(ms->fdt, node, "rng-seed", seed.rng, sizeof(seed.rng));
|
|
}
|
|
|
|
/*
|
|
* The CPU object always exposes the NS EL2 virt timer IRQ line,
|
|
* but we don't want to advertise it to the guest in the dtb or ACPI
|
|
* table unless it's really going to do something.
|
|
*/
|
|
static bool ns_el2_virt_timer_present(void)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(qemu_get_cpu(0));
|
|
CPUARMState *env = &cpu->env;
|
|
|
|
return arm_feature(env, ARM_FEATURE_AARCH64) &&
|
|
arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu);
|
|
}
|
|
|
|
static void create_fdt(VirtMachineState *vms)
|
|
{
|
|
MachineState *ms = MACHINE(vms);
|
|
int nb_numa_nodes = ms->numa_state->num_nodes;
|
|
void *fdt = create_device_tree(&vms->fdt_size);
|
|
|
|
if (!fdt) {
|
|
error_report("create_device_tree() failed");
|
|
exit(1);
|
|
}
|
|
|
|
ms->fdt = fdt;
|
|
|
|
/* Header */
|
|
qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
|
|
qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
|
|
qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
|
|
qemu_fdt_setprop_string(fdt, "/", "model", "linux,dummy-virt");
|
|
|
|
/*
|
|
* For QEMU, all DMA is coherent. Advertising this in the root node
|
|
* has two benefits:
|
|
*
|
|
* - It avoids potential bugs where we forget to mark a DMA
|
|
* capable device as being dma-coherent
|
|
* - It avoids spurious warnings from the Linux kernel about
|
|
* devices which can't do DMA at all
|
|
*/
|
|
qemu_fdt_setprop(fdt, "/", "dma-coherent", NULL, 0);
|
|
|
|
/* /chosen must exist for load_dtb to fill in necessary properties later */
|
|
qemu_fdt_add_subnode(fdt, "/chosen");
|
|
if (vms->dtb_randomness) {
|
|
create_randomness(ms, "/chosen");
|
|
}
|
|
|
|
if (vms->secure) {
|
|
qemu_fdt_add_subnode(fdt, "/secure-chosen");
|
|
if (vms->dtb_randomness) {
|
|
create_randomness(ms, "/secure-chosen");
|
|
}
|
|
}
|
|
|
|
qemu_fdt_add_subnode(fdt, "/aliases");
|
|
|
|
/* Clock node, for the benefit of the UART. The kernel device tree
|
|
* binding documentation claims the PL011 node clock properties are
|
|
* optional but in practice if you omit them the kernel refuses to
|
|
* probe for the device.
|
|
*/
|
|
vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
|
|
qemu_fdt_add_subnode(fdt, "/apb-pclk");
|
|
qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
|
|
qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
|
|
qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
|
|
qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
|
|
"clk24mhz");
|
|
qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
|
|
|
|
if (nb_numa_nodes > 0 && ms->numa_state->have_numa_distance) {
|
|
int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
|
|
uint32_t *matrix = g_malloc0(size);
|
|
int idx, i, j;
|
|
|
|
for (i = 0; i < nb_numa_nodes; i++) {
|
|
for (j = 0; j < nb_numa_nodes; j++) {
|
|
idx = (i * nb_numa_nodes + j) * 3;
|
|
matrix[idx + 0] = cpu_to_be32(i);
|
|
matrix[idx + 1] = cpu_to_be32(j);
|
|
matrix[idx + 2] =
|
|
cpu_to_be32(ms->numa_state->nodes[i].distance[j]);
|
|
}
|
|
}
|
|
|
|
qemu_fdt_add_subnode(fdt, "/distance-map");
|
|
qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
|
|
"numa-distance-map-v1");
|
|
qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
|
|
matrix, size);
|
|
g_free(matrix);
|
|
}
|
|
}
|
|
|
|
static void fdt_add_timer_nodes(const VirtMachineState *vms)
|
|
{
|
|
/* On real hardware these interrupts are level-triggered.
|
|
* On KVM they were edge-triggered before host kernel version 4.4,
|
|
* and level-triggered afterwards.
|
|
* On emulated QEMU they are level-triggered.
|
|
*
|
|
* Getting the DTB info about them wrong is awkward for some
|
|
* guest kernels:
|
|
* pre-4.8 ignore the DT and leave the interrupt configured
|
|
* with whatever the GIC reset value (or the bootloader) left it at
|
|
* 4.8 before rc6 honour the incorrect data by programming it back
|
|
* into the GIC, causing problems
|
|
* 4.8rc6 and later ignore the DT and always write "level triggered"
|
|
* into the GIC
|
|
*
|
|
* For backwards-compatibility, virt-2.8 and earlier will continue
|
|
* to say these are edge-triggered, but later machines will report
|
|
* the correct information.
|
|
*/
|
|
ARMCPU *armcpu;
|
|
VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
|
|
uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
|
|
MachineState *ms = MACHINE(vms);
|
|
|
|
if (vmc->claim_edge_triggered_timers) {
|
|
irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
|
|
}
|
|
|
|
if (vms->gic_version == VIRT_GIC_VERSION_2) {
|
|
irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
|
|
GIC_FDT_IRQ_PPI_CPU_WIDTH,
|
|
(1 << MACHINE(vms)->smp.cpus) - 1);
|
|
}
|
|
|
|
qemu_fdt_add_subnode(ms->fdt, "/timer");
|
|
|
|
armcpu = ARM_CPU(qemu_get_cpu(0));
|
|
if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
|
|
const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
|
|
qemu_fdt_setprop(ms->fdt, "/timer", "compatible",
|
|
compat, sizeof(compat));
|
|
} else {
|
|
qemu_fdt_setprop_string(ms->fdt, "/timer", "compatible",
|
|
"arm,armv7-timer");
|
|
}
|
|
qemu_fdt_setprop(ms->fdt, "/timer", "always-on", NULL, 0);
|
|
if (vms->ns_el2_virt_timer_irq) {
|
|
qemu_fdt_setprop_cells(ms->fdt, "/timer", "interrupts",
|
|
GIC_FDT_IRQ_TYPE_PPI,
|
|
INTID_TO_PPI(ARCH_TIMER_S_EL1_IRQ), irqflags,
|
|
GIC_FDT_IRQ_TYPE_PPI,
|
|
INTID_TO_PPI(ARCH_TIMER_NS_EL1_IRQ), irqflags,
|
|
GIC_FDT_IRQ_TYPE_PPI,
|
|
INTID_TO_PPI(ARCH_TIMER_VIRT_IRQ), irqflags,
|
|
GIC_FDT_IRQ_TYPE_PPI,
|
|
INTID_TO_PPI(ARCH_TIMER_NS_EL2_IRQ), irqflags,
|
|
GIC_FDT_IRQ_TYPE_PPI,
|
|
INTID_TO_PPI(ARCH_TIMER_NS_EL2_VIRT_IRQ), irqflags);
|
|
} else {
|
|
qemu_fdt_setprop_cells(ms->fdt, "/timer", "interrupts",
|
|
GIC_FDT_IRQ_TYPE_PPI,
|
|
INTID_TO_PPI(ARCH_TIMER_S_EL1_IRQ), irqflags,
|
|
GIC_FDT_IRQ_TYPE_PPI,
|
|
INTID_TO_PPI(ARCH_TIMER_NS_EL1_IRQ), irqflags,
|
|
GIC_FDT_IRQ_TYPE_PPI,
|
|
INTID_TO_PPI(ARCH_TIMER_VIRT_IRQ), irqflags,
|
|
GIC_FDT_IRQ_TYPE_PPI,
|
|
INTID_TO_PPI(ARCH_TIMER_NS_EL2_IRQ), irqflags);
|
|
}
|
|
}
|
|
|
|
static void fdt_add_cpu_nodes(const VirtMachineState *vms)
|
|
{
|
|
int cpu;
|
|
int addr_cells = 1;
|
|
const MachineState *ms = MACHINE(vms);
|
|
const VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
|
|
int smp_cpus = ms->smp.cpus;
|
|
|
|
/*
|
|
* See Linux Documentation/devicetree/bindings/arm/cpus.yaml
|
|
* On ARM v8 64-bit systems value should be set to 2,
|
|
* that corresponds to the MPIDR_EL1 register size.
|
|
* If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
|
|
* in the system, #address-cells can be set to 1, since
|
|
* MPIDR_EL1[63:32] bits are not used for CPUs
|
|
* identification.
|
|
*
|
|
* Here we actually don't know whether our system is 32- or 64-bit one.
|
|
* The simplest way to go is to examine affinity IDs of all our CPUs. If
|
|
* at least one of them has Aff3 populated, we set #address-cells to 2.
|
|
*/
|
|
for (cpu = 0; cpu < smp_cpus; cpu++) {
|
|
ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
|
|
|
|
if (arm_cpu_mp_affinity(armcpu) & ARM_AFF3_MASK) {
|
|
addr_cells = 2;
|
|
break;
|
|
}
|
|
}
|
|
|
|
qemu_fdt_add_subnode(ms->fdt, "/cpus");
|
|
qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#address-cells", addr_cells);
|
|
qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#size-cells", 0x0);
|
|
|
|
for (cpu = smp_cpus - 1; cpu >= 0; cpu--) {
|
|
char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
|
|
ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
|
|
CPUState *cs = CPU(armcpu);
|
|
|
|
qemu_fdt_add_subnode(ms->fdt, nodename);
|
|
qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "cpu");
|
|
qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
|
|
armcpu->dtb_compatible);
|
|
|
|
if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED && smp_cpus > 1) {
|
|
qemu_fdt_setprop_string(ms->fdt, nodename,
|
|
"enable-method", "psci");
|
|
}
|
|
|
|
if (addr_cells == 2) {
|
|
qemu_fdt_setprop_u64(ms->fdt, nodename, "reg",
|
|
arm_cpu_mp_affinity(armcpu));
|
|
} else {
|
|
qemu_fdt_setprop_cell(ms->fdt, nodename, "reg",
|
|
arm_cpu_mp_affinity(armcpu));
|
|
}
|
|
|
|
if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
|
|
qemu_fdt_setprop_cell(ms->fdt, nodename, "numa-node-id",
|
|
ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
|
|
}
|
|
|
|
if (!vmc->no_cpu_topology) {
|
|
qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle",
|
|
qemu_fdt_alloc_phandle(ms->fdt));
|
|
}
|
|
|
|
g_free(nodename);
|
|
}
|
|
|
|
if (!vmc->no_cpu_topology) {
|
|
/*
|
|
* Add vCPU topology description through fdt node cpu-map.
|
|
*
|
|
* See Linux Documentation/devicetree/bindings/cpu/cpu-topology.txt
|
|
* In a SMP system, the hierarchy of CPUs can be defined through
|
|
* four entities that are used to describe the layout of CPUs in
|
|
* the system: socket/cluster/core/thread.
|
|
*
|
|
* A socket node represents the boundary of system physical package
|
|
* and its child nodes must be one or more cluster nodes. A system
|
|
* can contain several layers of clustering within a single physical
|
|
* package and cluster nodes can be contained in parent cluster nodes.
|
|
*
|
|
* Note: currently we only support one layer of clustering within
|
|
* each physical package.
|
|
*/
|
|
qemu_fdt_add_subnode(ms->fdt, "/cpus/cpu-map");
|
|
|
|
for (cpu = smp_cpus - 1; cpu >= 0; cpu--) {
|
|
char *cpu_path = g_strdup_printf("/cpus/cpu@%d", cpu);
|
|
char *map_path;
|
|
|
|
if (ms->smp.threads > 1) {
|
|
map_path = g_strdup_printf(
|
|
"/cpus/cpu-map/socket%d/cluster%d/core%d/thread%d",
|
|
cpu / (ms->smp.clusters * ms->smp.cores * ms->smp.threads),
|
|
(cpu / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters,
|
|
(cpu / ms->smp.threads) % ms->smp.cores,
|
|
cpu % ms->smp.threads);
|
|
} else {
|
|
map_path = g_strdup_printf(
|
|
"/cpus/cpu-map/socket%d/cluster%d/core%d",
|
|
cpu / (ms->smp.clusters * ms->smp.cores),
|
|
(cpu / ms->smp.cores) % ms->smp.clusters,
|
|
cpu % ms->smp.cores);
|
|
}
|
|
qemu_fdt_add_path(ms->fdt, map_path);
|
|
qemu_fdt_setprop_phandle(ms->fdt, map_path, "cpu", cpu_path);
|
|
|
|
g_free(map_path);
|
|
g_free(cpu_path);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void fdt_add_its_gic_node(VirtMachineState *vms)
|
|
{
|
|
char *nodename;
|
|
MachineState *ms = MACHINE(vms);
|
|
|
|
vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt);
|
|
nodename = g_strdup_printf("/intc/its@%" PRIx64,
|
|
vms->memmap[VIRT_GIC_ITS].base);
|
|
qemu_fdt_add_subnode(ms->fdt, nodename);
|
|
qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
|
|
"arm,gic-v3-its");
|
|
qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0);
|
|
qemu_fdt_setprop_cell(ms->fdt, nodename, "#msi-cells", 1);
|
|
qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
|
|
2, vms->memmap[VIRT_GIC_ITS].base,
|
|
2, vms->memmap[VIRT_GIC_ITS].size);
|
|
qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle);
|
|
g_free(nodename);
|
|
}
|
|
|
|
static void fdt_add_v2m_gic_node(VirtMachineState *vms)
|
|
{
|
|
MachineState *ms = MACHINE(vms);
|
|
char *nodename;
|
|
|
|
nodename = g_strdup_printf("/intc/v2m@%" PRIx64,
|
|
vms->memmap[VIRT_GIC_V2M].base);
|
|
vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt);
|
|
qemu_fdt_add_subnode(ms->fdt, nodename);
|
|
qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
|
|
"arm,gic-v2m-frame");
|
|
qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0);
|
|
qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
|
|
2, vms->memmap[VIRT_GIC_V2M].base,
|
|
2, vms->memmap[VIRT_GIC_V2M].size);
|
|
qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle);
|
|
g_free(nodename);
|
|
}
|
|
|
|
static void fdt_add_gic_node(VirtMachineState *vms)
|
|
{
|
|
MachineState *ms = MACHINE(vms);
|
|
char *nodename;
|
|
|
|
vms->gic_phandle = qemu_fdt_alloc_phandle(ms->fdt);
|
|
qemu_fdt_setprop_cell(ms->fdt, "/", "interrupt-parent", vms->gic_phandle);
|
|
|
|
nodename = g_strdup_printf("/intc@%" PRIx64,
|
|
vms->memmap[VIRT_GIC_DIST].base);
|
|
qemu_fdt_add_subnode(ms->fdt, nodename);
|
|
qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 3);
|
|
qemu_fdt_setprop(ms->fdt, nodename, "interrupt-controller", NULL, 0);
|
|
qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 0x2);
|
|
qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 0x2);
|
|
qemu_fdt_setprop(ms->fdt, nodename, "ranges", NULL, 0);
|
|
if (vms->gic_version != VIRT_GIC_VERSION_2) {
|
|
int nb_redist_regions = virt_gicv3_redist_region_count(vms);
|
|
|
|
qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
|
|
"arm,gic-v3");
|
|
|
|
qemu_fdt_setprop_cell(ms->fdt, nodename,
|
|
"#redistributor-regions", nb_redist_regions);
|
|
|
|
if (nb_redist_regions == 1) {
|
|
qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
|
|
2, vms->memmap[VIRT_GIC_DIST].base,
|
|
2, vms->memmap[VIRT_GIC_DIST].size,
|
|
2, vms->memmap[VIRT_GIC_REDIST].base,
|
|
2, vms->memmap[VIRT_GIC_REDIST].size);
|
|
} else {
|
|
qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
|
|
2, vms->memmap[VIRT_GIC_DIST].base,
|
|
2, vms->memmap[VIRT_GIC_DIST].size,
|
|
2, vms->memmap[VIRT_GIC_REDIST].base,
|
|
2, vms->memmap[VIRT_GIC_REDIST].size,
|
|
2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base,
|
|
2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size);
|
|
}
|
|
|
|
if (vms->virt) {
|
|
qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
|
|
GIC_FDT_IRQ_TYPE_PPI,
|
|
INTID_TO_PPI(ARCH_GIC_MAINT_IRQ),
|
|
GIC_FDT_IRQ_FLAGS_LEVEL_HI);
|
|
}
|
|
} else {
|
|
/* 'cortex-a15-gic' means 'GIC v2' */
|
|
qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
|
|
"arm,cortex-a15-gic");
|
|
if (!vms->virt) {
|
|
qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
|
|
2, vms->memmap[VIRT_GIC_DIST].base,
|
|
2, vms->memmap[VIRT_GIC_DIST].size,
|
|
2, vms->memmap[VIRT_GIC_CPU].base,
|
|
2, vms->memmap[VIRT_GIC_CPU].size);
|
|
} else {
|
|
qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
|
|
2, vms->memmap[VIRT_GIC_DIST].base,
|
|
2, vms->memmap[VIRT_GIC_DIST].size,
|
|
2, vms->memmap[VIRT_GIC_CPU].base,
|
|
2, vms->memmap[VIRT_GIC_CPU].size,
|
|
2, vms->memmap[VIRT_GIC_HYP].base,
|
|
2, vms->memmap[VIRT_GIC_HYP].size,
|
|
2, vms->memmap[VIRT_GIC_VCPU].base,
|
|
2, vms->memmap[VIRT_GIC_VCPU].size);
|
|
qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
|
|
GIC_FDT_IRQ_TYPE_PPI,
|
|
INTID_TO_PPI(ARCH_GIC_MAINT_IRQ),
|
|
GIC_FDT_IRQ_FLAGS_LEVEL_HI);
|
|
}
|
|
}
|
|
|
|
qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->gic_phandle);
|
|
g_free(nodename);
|
|
}
|
|
|
|
static void fdt_add_pmu_nodes(const VirtMachineState *vms)
|
|
{
|
|
ARMCPU *armcpu = ARM_CPU(first_cpu);
|
|
uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
|
|
MachineState *ms = MACHINE(vms);
|
|
|
|
if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
|
|
assert(!object_property_get_bool(OBJECT(armcpu), "pmu", NULL));
|
|
return;
|
|
}
|
|
|
|
if (vms->gic_version == VIRT_GIC_VERSION_2) {
|
|
irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
|
|
GIC_FDT_IRQ_PPI_CPU_WIDTH,
|
|
(1 << MACHINE(vms)->smp.cpus) - 1);
|
|
}
|
|
|
|
qemu_fdt_add_subnode(ms->fdt, "/pmu");
|
|
if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
|
|
const char compat[] = "arm,armv8-pmuv3";
|
|
qemu_fdt_setprop(ms->fdt, "/pmu", "compatible",
|
|
compat, sizeof(compat));
|
|
qemu_fdt_setprop_cells(ms->fdt, "/pmu", "interrupts",
|
|
GIC_FDT_IRQ_TYPE_PPI,
|
|
INTID_TO_PPI(VIRTUAL_PMU_IRQ), irqflags);
|
|
}
|
|
}
|
|
|
|
static inline DeviceState *create_acpi_ged(VirtMachineState *vms)
|
|
{
|
|
DeviceState *dev;
|
|
MachineState *ms = MACHINE(vms);
|
|
int irq = vms->irqmap[VIRT_ACPI_GED];
|
|
uint32_t event = ACPI_GED_PWR_DOWN_EVT;
|
|
|
|
if (ms->ram_slots) {
|
|
event |= ACPI_GED_MEM_HOTPLUG_EVT;
|
|
}
|
|
|
|
if (ms->nvdimms_state->is_enabled) {
|
|
event |= ACPI_GED_NVDIMM_HOTPLUG_EVT;
|
|
}
|
|
|
|
dev = qdev_new(TYPE_ACPI_GED);
|
|
qdev_prop_set_uint32(dev, "ged-event", event);
|
|
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
|
|
|
|
sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_ACPI_GED].base);
|
|
sysbus_mmio_map(SYS_BUS_DEVICE(dev), 1, vms->memmap[VIRT_PCDIMM_ACPI].base);
|
|
sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(vms->gic, irq));
|
|
|
|
return dev;
|
|
}
|
|
|
|
static void create_its(VirtMachineState *vms)
|
|
{
|
|
const char *itsclass = its_class_name();
|
|
DeviceState *dev;
|
|
|
|
if (!strcmp(itsclass, "arm-gicv3-its")) {
|
|
if (!vms->tcg_its) {
|
|
itsclass = NULL;
|
|
}
|
|
}
|
|
|
|
if (!itsclass) {
|
|
/* Do nothing if not supported */
|
|
return;
|
|
}
|
|
|
|
dev = qdev_new(itsclass);
|
|
|
|
object_property_set_link(OBJECT(dev), "parent-gicv3", OBJECT(vms->gic),
|
|
&error_abort);
|
|
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
|
|
sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
|
|
|
|
fdt_add_its_gic_node(vms);
|
|
vms->msi_controller = VIRT_MSI_CTRL_ITS;
|
|
}
|
|
|
|
static void create_v2m(VirtMachineState *vms)
|
|
{
|
|
int i;
|
|
int irq = vms->irqmap[VIRT_GIC_V2M];
|
|
DeviceState *dev;
|
|
|
|
dev = qdev_new("arm-gicv2m");
|
|
qdev_prop_set_uint32(dev, "base-spi", irq);
|
|
qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
|
|
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
|
|
sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
|
|
|
|
for (i = 0; i < NUM_GICV2M_SPIS; i++) {
|
|
sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
|
|
qdev_get_gpio_in(vms->gic, irq + i));
|
|
}
|
|
|
|
fdt_add_v2m_gic_node(vms);
|
|
vms->msi_controller = VIRT_MSI_CTRL_GICV2M;
|
|
}
|
|
|
|
/*
|
|
* If the CPU has FEAT_NMI, then turn on the NMI support in the GICv3 too.
|
|
* It's permitted to have a configuration with NMI in the CPU (and thus the
|
|
* GICv3 CPU interface) but not in the distributor/redistributors, but it's
|
|
* not very useful.
|
|
*/
|
|
static bool gicv3_nmi_present(VirtMachineState *vms)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(qemu_get_cpu(0));
|
|
|
|
return tcg_enabled() && cpu_isar_feature(aa64_nmi, cpu) &&
|
|
(vms->gic_version != VIRT_GIC_VERSION_2);
|
|
}
|
|
|
|
static void create_gic(VirtMachineState *vms, MemoryRegion *mem)
|
|
{
|
|
MachineState *ms = MACHINE(vms);
|
|
/* We create a standalone GIC */
|
|
SysBusDevice *gicbusdev;
|
|
const char *gictype;
|
|
int i;
|
|
unsigned int smp_cpus = ms->smp.cpus;
|
|
uint32_t nb_redist_regions = 0;
|
|
int revision;
|
|
|
|
if (vms->gic_version == VIRT_GIC_VERSION_2) {
|
|
gictype = gic_class_name();
|
|
} else {
|
|
gictype = gicv3_class_name();
|
|
}
|
|
|
|
switch (vms->gic_version) {
|
|
case VIRT_GIC_VERSION_2:
|
|
revision = 2;
|
|
break;
|
|
case VIRT_GIC_VERSION_3:
|
|
revision = 3;
|
|
break;
|
|
case VIRT_GIC_VERSION_4:
|
|
revision = 4;
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
vms->gic = qdev_new(gictype);
|
|
qdev_prop_set_uint32(vms->gic, "revision", revision);
|
|
qdev_prop_set_uint32(vms->gic, "num-cpu", smp_cpus);
|
|
/* Note that the num-irq property counts both internal and external
|
|
* interrupts; there are always 32 of the former (mandated by GIC spec).
|
|
*/
|
|
qdev_prop_set_uint32(vms->gic, "num-irq", NUM_IRQS + 32);
|
|
if (!kvm_irqchip_in_kernel()) {
|
|
qdev_prop_set_bit(vms->gic, "has-security-extensions", vms->secure);
|
|
}
|
|
|
|
if (vms->gic_version != VIRT_GIC_VERSION_2) {
|
|
QList *redist_region_count;
|
|
uint32_t redist0_capacity = virt_redist_capacity(vms, VIRT_GIC_REDIST);
|
|
uint32_t redist0_count = MIN(smp_cpus, redist0_capacity);
|
|
|
|
nb_redist_regions = virt_gicv3_redist_region_count(vms);
|
|
|
|
redist_region_count = qlist_new();
|
|
qlist_append_int(redist_region_count, redist0_count);
|
|
if (nb_redist_regions == 2) {
|
|
uint32_t redist1_capacity =
|
|
virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2);
|
|
|
|
qlist_append_int(redist_region_count,
|
|
MIN(smp_cpus - redist0_count, redist1_capacity));
|
|
}
|
|
qdev_prop_set_array(vms->gic, "redist-region-count",
|
|
redist_region_count);
|
|
|
|
if (!kvm_irqchip_in_kernel()) {
|
|
if (vms->tcg_its) {
|
|
object_property_set_link(OBJECT(vms->gic), "sysmem",
|
|
OBJECT(mem), &error_fatal);
|
|
qdev_prop_set_bit(vms->gic, "has-lpi", true);
|
|
}
|
|
}
|
|
} else {
|
|
if (!kvm_irqchip_in_kernel()) {
|
|
qdev_prop_set_bit(vms->gic, "has-virtualization-extensions",
|
|
vms->virt);
|
|
}
|
|
}
|
|
|
|
if (gicv3_nmi_present(vms)) {
|
|
qdev_prop_set_bit(vms->gic, "has-nmi", true);
|
|
}
|
|
|
|
gicbusdev = SYS_BUS_DEVICE(vms->gic);
|
|
sysbus_realize_and_unref(gicbusdev, &error_fatal);
|
|
sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
|
|
if (vms->gic_version != VIRT_GIC_VERSION_2) {
|
|
sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
|
|
if (nb_redist_regions == 2) {
|
|
sysbus_mmio_map(gicbusdev, 2,
|
|
vms->memmap[VIRT_HIGH_GIC_REDIST2].base);
|
|
}
|
|
} else {
|
|
sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
|
|
if (vms->virt) {
|
|
sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base);
|
|
sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base);
|
|
}
|
|
}
|
|
|
|
/* Wire the outputs from each CPU's generic timer and the GICv3
|
|
* maintenance interrupt signal to the appropriate GIC PPI inputs,
|
|
* and the GIC's IRQ/FIQ/VIRQ/VFIQ/NMI/VINMI interrupt outputs to the
|
|
* CPU's inputs.
|
|
*/
|
|
for (i = 0; i < smp_cpus; i++) {
|
|
DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
|
|
int intidbase = NUM_IRQS + i * GIC_INTERNAL;
|
|
/* Mapping from the output timer irq lines from the CPU to the
|
|
* GIC PPI inputs we use for the virt board.
|
|
*/
|
|
const int timer_irq[] = {
|
|
[GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
|
|
[GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
|
|
[GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ,
|
|
[GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ,
|
|
[GTIMER_HYPVIRT] = ARCH_TIMER_NS_EL2_VIRT_IRQ,
|
|
};
|
|
|
|
for (unsigned irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
|
|
qdev_connect_gpio_out(cpudev, irq,
|
|
qdev_get_gpio_in(vms->gic,
|
|
intidbase + timer_irq[irq]));
|
|
}
|
|
|
|
if (vms->gic_version != VIRT_GIC_VERSION_2) {
|
|
qemu_irq irq = qdev_get_gpio_in(vms->gic,
|
|
intidbase + ARCH_GIC_MAINT_IRQ);
|
|
qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt",
|
|
0, irq);
|
|
} else if (vms->virt) {
|
|
qemu_irq irq = qdev_get_gpio_in(vms->gic,
|
|
intidbase + ARCH_GIC_MAINT_IRQ);
|
|
sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq);
|
|
}
|
|
|
|
qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
|
|
qdev_get_gpio_in(vms->gic, intidbase
|
|
+ VIRTUAL_PMU_IRQ));
|
|
|
|
sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
|
|
sysbus_connect_irq(gicbusdev, i + smp_cpus,
|
|
qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
|
|
sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
|
|
qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
|
|
sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
|
|
qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
|
|
|
|
if (vms->gic_version != VIRT_GIC_VERSION_2) {
|
|
sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus,
|
|
qdev_get_gpio_in(cpudev, ARM_CPU_NMI));
|
|
sysbus_connect_irq(gicbusdev, i + 5 * smp_cpus,
|
|
qdev_get_gpio_in(cpudev, ARM_CPU_VINMI));
|
|
}
|
|
}
|
|
|
|
fdt_add_gic_node(vms);
|
|
|
|
if (vms->gic_version != VIRT_GIC_VERSION_2 && vms->its) {
|
|
create_its(vms);
|
|
} else if (vms->gic_version == VIRT_GIC_VERSION_2) {
|
|
create_v2m(vms);
|
|
}
|
|
}
|
|
|
|
static void create_uart(const VirtMachineState *vms, int uart,
|
|
MemoryRegion *mem, Chardev *chr, bool secure)
|
|
{
|
|
char *nodename;
|
|
hwaddr base = vms->memmap[uart].base;
|
|
hwaddr size = vms->memmap[uart].size;
|
|
int irq = vms->irqmap[uart];
|
|
const char compat[] = "arm,pl011\0arm,primecell";
|
|
const char clocknames[] = "uartclk\0apb_pclk";
|
|
DeviceState *dev = qdev_new(TYPE_PL011);
|
|
SysBusDevice *s = SYS_BUS_DEVICE(dev);
|
|
MachineState *ms = MACHINE(vms);
|
|
|
|
qdev_prop_set_chr(dev, "chardev", chr);
|
|
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
|
|
memory_region_add_subregion(mem, base,
|
|
sysbus_mmio_get_region(s, 0));
|
|
sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
|
|
|
|
nodename = g_strdup_printf("/pl011@%" PRIx64, base);
|
|
qemu_fdt_add_subnode(ms->fdt, nodename);
|
|
/* Note that we can't use setprop_string because of the embedded NUL */
|
|
qemu_fdt_setprop(ms->fdt, nodename, "compatible",
|
|
compat, sizeof(compat));
|
|
qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
|
|
2, base, 2, size);
|
|
qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
|
|
GIC_FDT_IRQ_TYPE_SPI, irq,
|
|
GIC_FDT_IRQ_FLAGS_LEVEL_HI);
|
|
qemu_fdt_setprop_cells(ms->fdt, nodename, "clocks",
|
|
vms->clock_phandle, vms->clock_phandle);
|
|
qemu_fdt_setprop(ms->fdt, nodename, "clock-names",
|
|
clocknames, sizeof(clocknames));
|
|
|
|
if (uart == VIRT_UART0) {
|
|
qemu_fdt_setprop_string(ms->fdt, "/chosen", "stdout-path", nodename);
|
|
qemu_fdt_setprop_string(ms->fdt, "/aliases", "serial0", nodename);
|
|
} else {
|
|
qemu_fdt_setprop_string(ms->fdt, "/aliases", "serial1", nodename);
|
|
}
|
|
if (secure) {
|
|
/* Mark as not usable by the normal world */
|
|
qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
|
|
qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
|
|
|
|
qemu_fdt_setprop_string(ms->fdt, "/secure-chosen", "stdout-path",
|
|
nodename);
|
|
}
|
|
|
|
g_free(nodename);
|
|
}
|
|
|
|
static void create_rtc(const VirtMachineState *vms)
|
|
{
|
|
char *nodename;
|
|
hwaddr base = vms->memmap[VIRT_RTC].base;
|
|
hwaddr size = vms->memmap[VIRT_RTC].size;
|
|
int irq = vms->irqmap[VIRT_RTC];
|
|
const char compat[] = "arm,pl031\0arm,primecell";
|
|
MachineState *ms = MACHINE(vms);
|
|
|
|
sysbus_create_simple("pl031", base, qdev_get_gpio_in(vms->gic, irq));
|
|
|
|
nodename = g_strdup_printf("/pl031@%" PRIx64, base);
|
|
qemu_fdt_add_subnode(ms->fdt, nodename);
|
|
qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat));
|
|
qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
|
|
2, base, 2, size);
|
|
qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
|
|
GIC_FDT_IRQ_TYPE_SPI, irq,
|
|
GIC_FDT_IRQ_FLAGS_LEVEL_HI);
|
|
qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle);
|
|
qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk");
|
|
g_free(nodename);
|
|
}
|
|
|
|
static DeviceState *gpio_key_dev;
|
|
static void virt_powerdown_req(Notifier *n, void *opaque)
|
|
{
|
|
VirtMachineState *s = container_of(n, VirtMachineState, powerdown_notifier);
|
|
|
|
if (s->acpi_dev) {
|
|
acpi_send_event(s->acpi_dev, ACPI_POWER_DOWN_STATUS);
|
|
} else {
|
|
/* use gpio Pin 3 for power button event */
|
|
qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
|
|
}
|
|
}
|
|
|
|
static void create_gpio_keys(char *fdt, DeviceState *pl061_dev,
|
|
uint32_t phandle)
|
|
{
|
|
gpio_key_dev = sysbus_create_simple("gpio-key", -1,
|
|
qdev_get_gpio_in(pl061_dev, 3));
|
|
|
|
qemu_fdt_add_subnode(fdt, "/gpio-keys");
|
|
qemu_fdt_setprop_string(fdt, "/gpio-keys", "compatible", "gpio-keys");
|
|
|
|
qemu_fdt_add_subnode(fdt, "/gpio-keys/poweroff");
|
|
qemu_fdt_setprop_string(fdt, "/gpio-keys/poweroff",
|
|
"label", "GPIO Key Poweroff");
|
|
qemu_fdt_setprop_cell(fdt, "/gpio-keys/poweroff", "linux,code",
|
|
KEY_POWER);
|
|
qemu_fdt_setprop_cells(fdt, "/gpio-keys/poweroff",
|
|
"gpios", phandle, 3, 0);
|
|
}
|
|
|
|
#define SECURE_GPIO_POWEROFF 0
|
|
#define SECURE_GPIO_RESET 1
|
|
|
|
static void create_secure_gpio_pwr(char *fdt, DeviceState *pl061_dev,
|
|
uint32_t phandle)
|
|
{
|
|
DeviceState *gpio_pwr_dev;
|
|
|
|
/* gpio-pwr */
|
|
gpio_pwr_dev = sysbus_create_simple("gpio-pwr", -1, NULL);
|
|
|
|
/* connect secure pl061 to gpio-pwr */
|
|
qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_RESET,
|
|
qdev_get_gpio_in_named(gpio_pwr_dev, "reset", 0));
|
|
qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_POWEROFF,
|
|
qdev_get_gpio_in_named(gpio_pwr_dev, "shutdown", 0));
|
|
|
|
qemu_fdt_add_subnode(fdt, "/gpio-poweroff");
|
|
qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "compatible",
|
|
"gpio-poweroff");
|
|
qemu_fdt_setprop_cells(fdt, "/gpio-poweroff",
|
|
"gpios", phandle, SECURE_GPIO_POWEROFF, 0);
|
|
qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "status", "disabled");
|
|
qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "secure-status",
|
|
"okay");
|
|
|
|
qemu_fdt_add_subnode(fdt, "/gpio-restart");
|
|
qemu_fdt_setprop_string(fdt, "/gpio-restart", "compatible",
|
|
"gpio-restart");
|
|
qemu_fdt_setprop_cells(fdt, "/gpio-restart",
|
|
"gpios", phandle, SECURE_GPIO_RESET, 0);
|
|
qemu_fdt_setprop_string(fdt, "/gpio-restart", "status", "disabled");
|
|
qemu_fdt_setprop_string(fdt, "/gpio-restart", "secure-status",
|
|
"okay");
|
|
}
|
|
|
|
static void create_gpio_devices(const VirtMachineState *vms, int gpio,
|
|
MemoryRegion *mem)
|
|
{
|
|
char *nodename;
|
|
DeviceState *pl061_dev;
|
|
hwaddr base = vms->memmap[gpio].base;
|
|
hwaddr size = vms->memmap[gpio].size;
|
|
int irq = vms->irqmap[gpio];
|
|
const char compat[] = "arm,pl061\0arm,primecell";
|
|
SysBusDevice *s;
|
|
MachineState *ms = MACHINE(vms);
|
|
|
|
pl061_dev = qdev_new("pl061");
|
|
/* Pull lines down to 0 if not driven by the PL061 */
|
|
qdev_prop_set_uint32(pl061_dev, "pullups", 0);
|
|
qdev_prop_set_uint32(pl061_dev, "pulldowns", 0xff);
|
|
s = SYS_BUS_DEVICE(pl061_dev);
|
|
sysbus_realize_and_unref(s, &error_fatal);
|
|
memory_region_add_subregion(mem, base, sysbus_mmio_get_region(s, 0));
|
|
sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
|
|
|
|
uint32_t phandle = qemu_fdt_alloc_phandle(ms->fdt);
|
|
nodename = g_strdup_printf("/pl061@%" PRIx64, base);
|
|
qemu_fdt_add_subnode(ms->fdt, nodename);
|
|
qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
|
|
2, base, 2, size);
|
|
qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat));
|
|
qemu_fdt_setprop_cell(ms->fdt, nodename, "#gpio-cells", 2);
|
|
qemu_fdt_setprop(ms->fdt, nodename, "gpio-controller", NULL, 0);
|
|
qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
|
|
GIC_FDT_IRQ_TYPE_SPI, irq,
|
|
GIC_FDT_IRQ_FLAGS_LEVEL_HI);
|
|
qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle);
|
|
qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk");
|
|
qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", phandle);
|
|
|
|
if (gpio != VIRT_GPIO) {
|
|
/* Mark as not usable by the normal world */
|
|
qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
|
|
qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
|
|
}
|
|
g_free(nodename);
|
|
|
|
/* Child gpio devices */
|
|
if (gpio == VIRT_GPIO) {
|
|
create_gpio_keys(ms->fdt, pl061_dev, phandle);
|
|
} else {
|
|
create_secure_gpio_pwr(ms->fdt, pl061_dev, phandle);
|
|
}
|
|
}
|
|
|
|
static void create_virtio_devices(const VirtMachineState *vms)
|
|
{
|
|
int i;
|
|
hwaddr size = vms->memmap[VIRT_MMIO].size;
|
|
MachineState *ms = MACHINE(vms);
|
|
|
|
/* We create the transports in forwards order. Since qbus_realize()
|
|
* prepends (not appends) new child buses, the incrementing loop below will
|
|
* create a list of virtio-mmio buses with decreasing base addresses.
|
|
*
|
|
* When a -device option is processed from the command line,
|
|
* qbus_find_recursive() picks the next free virtio-mmio bus in forwards
|
|
* order. The upshot is that -device options in increasing command line
|
|
* order are mapped to virtio-mmio buses with decreasing base addresses.
|
|
*
|
|
* When this code was originally written, that arrangement ensured that the
|
|
* guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
|
|
* the first -device on the command line. (The end-to-end order is a
|
|
* function of this loop, qbus_realize(), qbus_find_recursive(), and the
|
|
* guest kernel's name-to-address assignment strategy.)
|
|
*
|
|
* Meanwhile, the kernel's traversal seems to have been reversed; see eg.
|
|
* the message, if not necessarily the code, of commit 70161ff336.
|
|
* Therefore the loop now establishes the inverse of the original intent.
|
|
*
|
|
* Unfortunately, we can't counteract the kernel change by reversing the
|
|
* loop; it would break existing command lines.
|
|
*
|
|
* In any case, the kernel makes no guarantee about the stability of
|
|
* enumeration order of virtio devices (as demonstrated by it changing
|
|
* between kernel versions). For reliable and stable identification
|
|
* of disks users must use UUIDs or similar mechanisms.
|
|
*/
|
|
for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
|
|
int irq = vms->irqmap[VIRT_MMIO] + i;
|
|
hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
|
|
|
|
sysbus_create_simple("virtio-mmio", base,
|
|
qdev_get_gpio_in(vms->gic, irq));
|
|
}
|
|
|
|
/* We add dtb nodes in reverse order so that they appear in the finished
|
|
* device tree lowest address first.
|
|
*
|
|
* Note that this mapping is independent of the loop above. The previous
|
|
* loop influences virtio device to virtio transport assignment, whereas
|
|
* this loop controls how virtio transports are laid out in the dtb.
|
|
*/
|
|
for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
|
|
char *nodename;
|
|
int irq = vms->irqmap[VIRT_MMIO] + i;
|
|
hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
|
|
|
|
nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
|
|
qemu_fdt_add_subnode(ms->fdt, nodename);
|
|
qemu_fdt_setprop_string(ms->fdt, nodename,
|
|
"compatible", "virtio,mmio");
|
|
qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
|
|
2, base, 2, size);
|
|
qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
|
|
GIC_FDT_IRQ_TYPE_SPI, irq,
|
|
GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
|
|
qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
|
|
g_free(nodename);
|
|
}
|
|
}
|
|
|
|
#define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
|
|
|
|
static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms,
|
|
const char *name,
|
|
const char *alias_prop_name)
|
|
{
|
|
/*
|
|
* Create a single flash device. We use the same parameters as
|
|
* the flash devices on the Versatile Express board.
|
|
*/
|
|
DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
|
|
|
|
qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE);
|
|
qdev_prop_set_uint8(dev, "width", 4);
|
|
qdev_prop_set_uint8(dev, "device-width", 2);
|
|
qdev_prop_set_bit(dev, "big-endian", false);
|
|
qdev_prop_set_uint16(dev, "id0", 0x89);
|
|
qdev_prop_set_uint16(dev, "id1", 0x18);
|
|
qdev_prop_set_uint16(dev, "id2", 0x00);
|
|
qdev_prop_set_uint16(dev, "id3", 0x00);
|
|
qdev_prop_set_string(dev, "name", name);
|
|
object_property_add_child(OBJECT(vms), name, OBJECT(dev));
|
|
object_property_add_alias(OBJECT(vms), alias_prop_name,
|
|
OBJECT(dev), "drive");
|
|
return PFLASH_CFI01(dev);
|
|
}
|
|
|
|
static void virt_flash_create(VirtMachineState *vms)
|
|
{
|
|
vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0");
|
|
vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1");
|
|
}
|
|
|
|
static void virt_flash_map1(PFlashCFI01 *flash,
|
|
hwaddr base, hwaddr size,
|
|
MemoryRegion *sysmem)
|
|
{
|
|
DeviceState *dev = DEVICE(flash);
|
|
|
|
assert(QEMU_IS_ALIGNED(size, VIRT_FLASH_SECTOR_SIZE));
|
|
assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX);
|
|
qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE);
|
|
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
|
|
|
|
memory_region_add_subregion(sysmem, base,
|
|
sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
|
|
0));
|
|
}
|
|
|
|
static void virt_flash_map(VirtMachineState *vms,
|
|
MemoryRegion *sysmem,
|
|
MemoryRegion *secure_sysmem)
|
|
{
|
|
/*
|
|
* Map two flash devices to fill the VIRT_FLASH space in the memmap.
|
|
* sysmem is the system memory space. secure_sysmem is the secure view
|
|
* of the system, and the first flash device should be made visible only
|
|
* there. The second flash device is visible to both secure and nonsecure.
|
|
* If sysmem == secure_sysmem this means there is no separate Secure
|
|
* address space and both flash devices are generally visible.
|
|
*/
|
|
hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
|
|
hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
|
|
|
|
virt_flash_map1(vms->flash[0], flashbase, flashsize,
|
|
secure_sysmem);
|
|
virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize,
|
|
sysmem);
|
|
}
|
|
|
|
static void virt_flash_fdt(VirtMachineState *vms,
|
|
MemoryRegion *sysmem,
|
|
MemoryRegion *secure_sysmem)
|
|
{
|
|
hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
|
|
hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
|
|
MachineState *ms = MACHINE(vms);
|
|
char *nodename;
|
|
|
|
if (sysmem == secure_sysmem) {
|
|
/* Report both flash devices as a single node in the DT */
|
|
nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
|
|
qemu_fdt_add_subnode(ms->fdt, nodename);
|
|
qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
|
|
qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
|
|
2, flashbase, 2, flashsize,
|
|
2, flashbase + flashsize, 2, flashsize);
|
|
qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
|
|
g_free(nodename);
|
|
} else {
|
|
/*
|
|
* Report the devices as separate nodes so we can mark one as
|
|
* only visible to the secure world.
|
|
*/
|
|
nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
|
|
qemu_fdt_add_subnode(ms->fdt, nodename);
|
|
qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
|
|
qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
|
|
2, flashbase, 2, flashsize);
|
|
qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
|
|
qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
|
|
qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
|
|
g_free(nodename);
|
|
|
|
nodename = g_strdup_printf("/flash@%" PRIx64, flashbase + flashsize);
|
|
qemu_fdt_add_subnode(ms->fdt, nodename);
|
|
qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
|
|
qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
|
|
2, flashbase + flashsize, 2, flashsize);
|
|
qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
|
|
g_free(nodename);
|
|
}
|
|
}
|
|
|
|
static bool virt_firmware_init(VirtMachineState *vms,
|
|
MemoryRegion *sysmem,
|
|
MemoryRegion *secure_sysmem)
|
|
{
|
|
int i;
|
|
const char *bios_name;
|
|
BlockBackend *pflash_blk0;
|
|
|
|
/* Map legacy -drive if=pflash to machine properties */
|
|
for (i = 0; i < ARRAY_SIZE(vms->flash); i++) {
|
|
pflash_cfi01_legacy_drive(vms->flash[i],
|
|
drive_get(IF_PFLASH, 0, i));
|
|
}
|
|
|
|
virt_flash_map(vms, sysmem, secure_sysmem);
|
|
|
|
pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]);
|
|
|
|
bios_name = MACHINE(vms)->firmware;
|
|
if (bios_name) {
|
|
char *fname;
|
|
MemoryRegion *mr;
|
|
int image_size;
|
|
|
|
if (pflash_blk0) {
|
|
error_report("The contents of the first flash device may be "
|
|
"specified with -bios or with -drive if=pflash... "
|
|
"but you cannot use both options at once");
|
|
exit(1);
|
|
}
|
|
|
|
/* Fall back to -bios */
|
|
|
|
fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
|
|
if (!fname) {
|
|
error_report("Could not find ROM image '%s'", bios_name);
|
|
exit(1);
|
|
}
|
|
mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0);
|
|
image_size = load_image_mr(fname, mr);
|
|
g_free(fname);
|
|
if (image_size < 0) {
|
|
error_report("Could not load ROM image '%s'", bios_name);
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
return pflash_blk0 || bios_name;
|
|
}
|
|
|
|
static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
|
|
{
|
|
MachineState *ms = MACHINE(vms);
|
|
hwaddr base = vms->memmap[VIRT_FW_CFG].base;
|
|
hwaddr size = vms->memmap[VIRT_FW_CFG].size;
|
|
FWCfgState *fw_cfg;
|
|
char *nodename;
|
|
|
|
fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
|
|
fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus);
|
|
|
|
nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
|
|
qemu_fdt_add_subnode(ms->fdt, nodename);
|
|
qemu_fdt_setprop_string(ms->fdt, nodename,
|
|
"compatible", "qemu,fw-cfg-mmio");
|
|
qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
|
|
2, base, 2, size);
|
|
qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
|
|
g_free(nodename);
|
|
return fw_cfg;
|
|
}
|
|
|
|
static void create_pcie_irq_map(const MachineState *ms,
|
|
uint32_t gic_phandle,
|
|
int first_irq, const char *nodename)
|
|
{
|
|
int devfn, pin;
|
|
uint32_t full_irq_map[4 * 4 * 10] = { 0 };
|
|
uint32_t *irq_map = full_irq_map;
|
|
|
|
for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
|
|
for (pin = 0; pin < 4; pin++) {
|
|
int irq_type = GIC_FDT_IRQ_TYPE_SPI;
|
|
int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
|
|
int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
|
|
int i;
|
|
|
|
uint32_t map[] = {
|
|
devfn << 8, 0, 0, /* devfn */
|
|
pin + 1, /* PCI pin */
|
|
gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
|
|
|
|
/* Convert map to big endian */
|
|
for (i = 0; i < 10; i++) {
|
|
irq_map[i] = cpu_to_be32(map[i]);
|
|
}
|
|
irq_map += 10;
|
|
}
|
|
}
|
|
|
|
qemu_fdt_setprop(ms->fdt, nodename, "interrupt-map",
|
|
full_irq_map, sizeof(full_irq_map));
|
|
|
|
qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupt-map-mask",
|
|
cpu_to_be16(PCI_DEVFN(3, 0)), /* Slot 3 */
|
|
0, 0,
|
|
0x7 /* PCI irq */);
|
|
}
|
|
|
|
static void create_smmu(const VirtMachineState *vms,
|
|
PCIBus *bus)
|
|
{
|
|
char *node;
|
|
const char compat[] = "arm,smmu-v3";
|
|
int irq = vms->irqmap[VIRT_SMMU];
|
|
int i;
|
|
hwaddr base = vms->memmap[VIRT_SMMU].base;
|
|
hwaddr size = vms->memmap[VIRT_SMMU].size;
|
|
const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror";
|
|
DeviceState *dev;
|
|
MachineState *ms = MACHINE(vms);
|
|
|
|
if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) {
|
|
return;
|
|
}
|
|
|
|
dev = qdev_new(TYPE_ARM_SMMUV3);
|
|
|
|
object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus),
|
|
&error_abort);
|
|
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
|
|
sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
|
|
for (i = 0; i < NUM_SMMU_IRQS; i++) {
|
|
sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
|
|
qdev_get_gpio_in(vms->gic, irq + i));
|
|
}
|
|
|
|
node = g_strdup_printf("/smmuv3@%" PRIx64, base);
|
|
qemu_fdt_add_subnode(ms->fdt, node);
|
|
qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat));
|
|
qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg", 2, base, 2, size);
|
|
|
|
qemu_fdt_setprop_cells(ms->fdt, node, "interrupts",
|
|
GIC_FDT_IRQ_TYPE_SPI, irq , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
|
|
GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
|
|
GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
|
|
GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
|
|
|
|
qemu_fdt_setprop(ms->fdt, node, "interrupt-names", irq_names,
|
|
sizeof(irq_names));
|
|
|
|
qemu_fdt_setprop(ms->fdt, node, "dma-coherent", NULL, 0);
|
|
|
|
qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1);
|
|
|
|
qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle);
|
|
g_free(node);
|
|
}
|
|
|
|
static void create_virtio_iommu_dt_bindings(VirtMachineState *vms)
|
|
{
|
|
const char compat[] = "virtio,pci-iommu\0pci1af4,1057";
|
|
uint16_t bdf = vms->virtio_iommu_bdf;
|
|
MachineState *ms = MACHINE(vms);
|
|
char *node;
|
|
|
|
vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt);
|
|
|
|
node = g_strdup_printf("%s/virtio_iommu@%x,%x", vms->pciehb_nodename,
|
|
PCI_SLOT(bdf), PCI_FUNC(bdf));
|
|
qemu_fdt_add_subnode(ms->fdt, node);
|
|
qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat));
|
|
qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg",
|
|
1, bdf << 8, 1, 0, 1, 0,
|
|
1, 0, 1, 0);
|
|
|
|
qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1);
|
|
qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle);
|
|
g_free(node);
|
|
|
|
qemu_fdt_setprop_cells(ms->fdt, vms->pciehb_nodename, "iommu-map",
|
|
0x0, vms->iommu_phandle, 0x0, bdf,
|
|
bdf + 1, vms->iommu_phandle, bdf + 1, 0xffff - bdf);
|
|
}
|
|
|
|
static void create_pcie(VirtMachineState *vms)
|
|
{
|
|
hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
|
|
hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
|
|
hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base;
|
|
hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size;
|
|
hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
|
|
hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
|
|
hwaddr base_ecam, size_ecam;
|
|
hwaddr base = base_mmio;
|
|
int nr_pcie_buses;
|
|
int irq = vms->irqmap[VIRT_PCIE];
|
|
MemoryRegion *mmio_alias;
|
|
MemoryRegion *mmio_reg;
|
|
MemoryRegion *ecam_alias;
|
|
MemoryRegion *ecam_reg;
|
|
DeviceState *dev;
|
|
char *nodename;
|
|
int i, ecam_id;
|
|
PCIHostState *pci;
|
|
MachineState *ms = MACHINE(vms);
|
|
MachineClass *mc = MACHINE_GET_CLASS(ms);
|
|
|
|
dev = qdev_new(TYPE_GPEX_HOST);
|
|
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
|
|
|
|
ecam_id = VIRT_ECAM_ID(vms->highmem_ecam);
|
|
base_ecam = vms->memmap[ecam_id].base;
|
|
size_ecam = vms->memmap[ecam_id].size;
|
|
nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
|
|
/* Map only the first size_ecam bytes of ECAM space */
|
|
ecam_alias = g_new0(MemoryRegion, 1);
|
|
ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
|
|
memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
|
|
ecam_reg, 0, size_ecam);
|
|
memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
|
|
|
|
/* Map the MMIO window into system address space so as to expose
|
|
* the section of PCI MMIO space which starts at the same base address
|
|
* (ie 1:1 mapping for that part of PCI MMIO space visible through
|
|
* the window).
|
|
*/
|
|
mmio_alias = g_new0(MemoryRegion, 1);
|
|
mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
|
|
memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
|
|
mmio_reg, base_mmio, size_mmio);
|
|
memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
|
|
|
|
if (vms->highmem_mmio) {
|
|
/* Map high MMIO space */
|
|
MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
|
|
|
|
memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
|
|
mmio_reg, base_mmio_high, size_mmio_high);
|
|
memory_region_add_subregion(get_system_memory(), base_mmio_high,
|
|
high_mmio_alias);
|
|
}
|
|
|
|
/* Map IO port space */
|
|
sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
|
|
|
|
for (i = 0; i < GPEX_NUM_IRQS; i++) {
|
|
sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
|
|
qdev_get_gpio_in(vms->gic, irq + i));
|
|
gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
|
|
}
|
|
|
|
pci = PCI_HOST_BRIDGE(dev);
|
|
pci->bypass_iommu = vms->default_bus_bypass_iommu;
|
|
vms->bus = pci->bus;
|
|
if (vms->bus) {
|
|
pci_init_nic_devices(pci->bus, mc->default_nic);
|
|
}
|
|
|
|
nodename = vms->pciehb_nodename = g_strdup_printf("/pcie@%" PRIx64, base);
|
|
qemu_fdt_add_subnode(ms->fdt, nodename);
|
|
qemu_fdt_setprop_string(ms->fdt, nodename,
|
|
"compatible", "pci-host-ecam-generic");
|
|
qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "pci");
|
|
qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 3);
|
|
qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 2);
|
|
qemu_fdt_setprop_cell(ms->fdt, nodename, "linux,pci-domain", 0);
|
|
qemu_fdt_setprop_cells(ms->fdt, nodename, "bus-range", 0,
|
|
nr_pcie_buses - 1);
|
|
qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
|
|
|
|
if (vms->msi_phandle) {
|
|
qemu_fdt_setprop_cells(ms->fdt, nodename, "msi-map",
|
|
0, vms->msi_phandle, 0, 0x10000);
|
|
}
|
|
|
|
qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
|
|
2, base_ecam, 2, size_ecam);
|
|
|
|
if (vms->highmem_mmio) {
|
|
qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges",
|
|
1, FDT_PCI_RANGE_IOPORT, 2, 0,
|
|
2, base_pio, 2, size_pio,
|
|
1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
|
|
2, base_mmio, 2, size_mmio,
|
|
1, FDT_PCI_RANGE_MMIO_64BIT,
|
|
2, base_mmio_high,
|
|
2, base_mmio_high, 2, size_mmio_high);
|
|
} else {
|
|
qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges",
|
|
1, FDT_PCI_RANGE_IOPORT, 2, 0,
|
|
2, base_pio, 2, size_pio,
|
|
1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
|
|
2, base_mmio, 2, size_mmio);
|
|
}
|
|
|
|
qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 1);
|
|
create_pcie_irq_map(ms, vms->gic_phandle, irq, nodename);
|
|
|
|
if (vms->iommu) {
|
|
vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt);
|
|
|
|
switch (vms->iommu) {
|
|
case VIRT_IOMMU_SMMUV3:
|
|
create_smmu(vms, vms->bus);
|
|
qemu_fdt_setprop_cells(ms->fdt, nodename, "iommu-map",
|
|
0x0, vms->iommu_phandle, 0x0, 0x10000);
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
}
|
|
|
|
static void create_platform_bus(VirtMachineState *vms)
|
|
{
|
|
DeviceState *dev;
|
|
SysBusDevice *s;
|
|
int i;
|
|
MemoryRegion *sysmem = get_system_memory();
|
|
|
|
dev = qdev_new(TYPE_PLATFORM_BUS_DEVICE);
|
|
dev->id = g_strdup(TYPE_PLATFORM_BUS_DEVICE);
|
|
qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS);
|
|
qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size);
|
|
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
|
|
vms->platform_bus_dev = dev;
|
|
|
|
s = SYS_BUS_DEVICE(dev);
|
|
for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) {
|
|
int irq = vms->irqmap[VIRT_PLATFORM_BUS] + i;
|
|
sysbus_connect_irq(s, i, qdev_get_gpio_in(vms->gic, irq));
|
|
}
|
|
|
|
memory_region_add_subregion(sysmem,
|
|
vms->memmap[VIRT_PLATFORM_BUS].base,
|
|
sysbus_mmio_get_region(s, 0));
|
|
}
|
|
|
|
static void create_tag_ram(MemoryRegion *tag_sysmem,
|
|
hwaddr base, hwaddr size,
|
|
const char *name)
|
|
{
|
|
MemoryRegion *tagram = g_new(MemoryRegion, 1);
|
|
|
|
memory_region_init_ram(tagram, NULL, name, size / 32, &error_fatal);
|
|
memory_region_add_subregion(tag_sysmem, base / 32, tagram);
|
|
}
|
|
|
|
static void create_secure_ram(VirtMachineState *vms,
|
|
MemoryRegion *secure_sysmem,
|
|
MemoryRegion *secure_tag_sysmem)
|
|
{
|
|
MemoryRegion *secram = g_new(MemoryRegion, 1);
|
|
char *nodename;
|
|
hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
|
|
hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
|
|
MachineState *ms = MACHINE(vms);
|
|
|
|
memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
|
|
&error_fatal);
|
|
memory_region_add_subregion(secure_sysmem, base, secram);
|
|
|
|
nodename = g_strdup_printf("/secram@%" PRIx64, base);
|
|
qemu_fdt_add_subnode(ms->fdt, nodename);
|
|
qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "memory");
|
|
qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 2, base, 2, size);
|
|
qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
|
|
qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
|
|
|
|
if (secure_tag_sysmem) {
|
|
create_tag_ram(secure_tag_sysmem, base, size, "mach-virt.secure-tag");
|
|
}
|
|
|
|
g_free(nodename);
|
|
}
|
|
|
|
static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
|
|
{
|
|
const VirtMachineState *board = container_of(binfo, VirtMachineState,
|
|
bootinfo);
|
|
MachineState *ms = MACHINE(board);
|
|
|
|
|
|
*fdt_size = board->fdt_size;
|
|
return ms->fdt;
|
|
}
|
|
|
|
static void virt_build_smbios(VirtMachineState *vms)
|
|
{
|
|
MachineClass *mc = MACHINE_GET_CLASS(vms);
|
|
MachineState *ms = MACHINE(vms);
|
|
VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
|
|
uint8_t *smbios_tables, *smbios_anchor;
|
|
size_t smbios_tables_len, smbios_anchor_len;
|
|
struct smbios_phys_mem_area mem_array;
|
|
const char *product = "QEMU Virtual Machine";
|
|
|
|
if (kvm_enabled()) {
|
|
product = "KVM Virtual Machine";
|
|
}
|
|
|
|
smbios_set_defaults("QEMU", product,
|
|
vmc->smbios_old_sys_ver ? "1.0" : mc->name);
|
|
|
|
/* build the array of physical mem area from base_memmap */
|
|
mem_array.address = vms->memmap[VIRT_MEM].base;
|
|
mem_array.length = ms->ram_size;
|
|
|
|
smbios_get_tables(ms, SMBIOS_ENTRY_POINT_TYPE_64, &mem_array, 1,
|
|
&smbios_tables, &smbios_tables_len,
|
|
&smbios_anchor, &smbios_anchor_len,
|
|
&error_fatal);
|
|
|
|
if (smbios_anchor) {
|
|
fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
|
|
smbios_tables, smbios_tables_len);
|
|
fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
|
|
smbios_anchor, smbios_anchor_len);
|
|
}
|
|
}
|
|
|
|
static
|
|
void virt_machine_done(Notifier *notifier, void *data)
|
|
{
|
|
VirtMachineState *vms = container_of(notifier, VirtMachineState,
|
|
machine_done);
|
|
MachineState *ms = MACHINE(vms);
|
|
ARMCPU *cpu = ARM_CPU(first_cpu);
|
|
struct arm_boot_info *info = &vms->bootinfo;
|
|
AddressSpace *as = arm_boot_address_space(cpu, info);
|
|
|
|
/*
|
|
* If the user provided a dtb, we assume the dynamic sysbus nodes
|
|
* already are integrated there. This corresponds to a use case where
|
|
* the dynamic sysbus nodes are complex and their generation is not yet
|
|
* supported. In that case the user can take charge of the guest dt
|
|
* while qemu takes charge of the qom stuff.
|
|
*/
|
|
if (info->dtb_filename == NULL) {
|
|
platform_bus_add_all_fdt_nodes(ms->fdt, "/intc",
|
|
vms->memmap[VIRT_PLATFORM_BUS].base,
|
|
vms->memmap[VIRT_PLATFORM_BUS].size,
|
|
vms->irqmap[VIRT_PLATFORM_BUS]);
|
|
}
|
|
if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) {
|
|
exit(1);
|
|
}
|
|
|
|
fw_cfg_add_extra_pci_roots(vms->bus, vms->fw_cfg);
|
|
|
|
virt_acpi_setup(vms);
|
|
virt_build_smbios(vms);
|
|
}
|
|
|
|
static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
|
|
{
|
|
uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
|
|
VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
|
|
|
|
if (!vmc->disallow_affinity_adjustment) {
|
|
/* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
|
|
* GIC's target-list limitations. 32-bit KVM hosts currently
|
|
* always create clusters of 4 CPUs, but that is expected to
|
|
* change when they gain support for gicv3. When KVM is enabled
|
|
* it will override the changes we make here, therefore our
|
|
* purposes are to make TCG consistent (with 64-bit KVM hosts)
|
|
* and to improve SGI efficiency.
|
|
*/
|
|
if (vms->gic_version == VIRT_GIC_VERSION_2) {
|
|
clustersz = GIC_TARGETLIST_BITS;
|
|
} else {
|
|
clustersz = GICV3_TARGETLIST_BITS;
|
|
}
|
|
}
|
|
return arm_build_mp_affinity(idx, clustersz);
|
|
}
|
|
|
|
static inline bool *virt_get_high_memmap_enabled(VirtMachineState *vms,
|
|
int index)
|
|
{
|
|
bool *enabled_array[] = {
|
|
&vms->highmem_redists,
|
|
&vms->highmem_ecam,
|
|
&vms->highmem_mmio,
|
|
};
|
|
|
|
assert(ARRAY_SIZE(extended_memmap) - VIRT_LOWMEMMAP_LAST ==
|
|
ARRAY_SIZE(enabled_array));
|
|
assert(index - VIRT_LOWMEMMAP_LAST < ARRAY_SIZE(enabled_array));
|
|
|
|
return enabled_array[index - VIRT_LOWMEMMAP_LAST];
|
|
}
|
|
|
|
static void virt_set_high_memmap(VirtMachineState *vms,
|
|
hwaddr base, int pa_bits)
|
|
{
|
|
hwaddr region_base, region_size;
|
|
bool *region_enabled, fits;
|
|
int i;
|
|
|
|
for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) {
|
|
region_enabled = virt_get_high_memmap_enabled(vms, i);
|
|
region_base = ROUND_UP(base, extended_memmap[i].size);
|
|
region_size = extended_memmap[i].size;
|
|
|
|
vms->memmap[i].base = region_base;
|
|
vms->memmap[i].size = region_size;
|
|
|
|
/*
|
|
* Check each device to see if it fits in the PA space,
|
|
* moving highest_gpa as we go. For compatibility, move
|
|
* highest_gpa for disabled fitting devices as well, if
|
|
* the compact layout has been disabled.
|
|
*
|
|
* For each device that doesn't fit, disable it.
|
|
*/
|
|
fits = (region_base + region_size) <= BIT_ULL(pa_bits);
|
|
*region_enabled &= fits;
|
|
if (vms->highmem_compact && !*region_enabled) {
|
|
continue;
|
|
}
|
|
|
|
base = region_base + region_size;
|
|
if (fits) {
|
|
vms->highest_gpa = base - 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void virt_set_memmap(VirtMachineState *vms, int pa_bits)
|
|
{
|
|
MachineState *ms = MACHINE(vms);
|
|
hwaddr base, device_memory_base, device_memory_size, memtop;
|
|
int i;
|
|
|
|
vms->memmap = extended_memmap;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(base_memmap); i++) {
|
|
vms->memmap[i] = base_memmap[i];
|
|
}
|
|
|
|
if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) {
|
|
error_report("unsupported number of memory slots: %"PRIu64,
|
|
ms->ram_slots);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
/*
|
|
* !highmem is exactly the same as limiting the PA space to 32bit,
|
|
* irrespective of the underlying capabilities of the HW.
|
|
*/
|
|
if (!vms->highmem) {
|
|
pa_bits = 32;
|
|
}
|
|
|
|
/*
|
|
* We compute the base of the high IO region depending on the
|
|
* amount of initial and device memory. The device memory start/size
|
|
* is aligned on 1GiB. We never put the high IO region below 256GiB
|
|
* so that if maxram_size is < 255GiB we keep the legacy memory map.
|
|
* The device region size assumes 1GiB page max alignment per slot.
|
|
*/
|
|
device_memory_base =
|
|
ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB);
|
|
device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB;
|
|
|
|
/* Base address of the high IO region */
|
|
memtop = base = device_memory_base + ROUND_UP(device_memory_size, GiB);
|
|
if (memtop > BIT_ULL(pa_bits)) {
|
|
error_report("Addressing limited to %d bits, but memory exceeds it by %llu bytes",
|
|
pa_bits, memtop - BIT_ULL(pa_bits));
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
if (base < device_memory_base) {
|
|
error_report("maxmem/slots too huge");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) {
|
|
base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES;
|
|
}
|
|
|
|
/* We know for sure that at least the memory fits in the PA space */
|
|
vms->highest_gpa = memtop - 1;
|
|
|
|
virt_set_high_memmap(vms, base, pa_bits);
|
|
|
|
if (device_memory_size > 0) {
|
|
machine_memory_devices_init(ms, device_memory_base, device_memory_size);
|
|
}
|
|
}
|
|
|
|
static VirtGICType finalize_gic_version_do(const char *accel_name,
|
|
VirtGICType gic_version,
|
|
int gics_supported,
|
|
unsigned int max_cpus)
|
|
{
|
|
/* Convert host/max/nosel to GIC version number */
|
|
switch (gic_version) {
|
|
case VIRT_GIC_VERSION_HOST:
|
|
if (!kvm_enabled()) {
|
|
error_report("gic-version=host requires KVM");
|
|
exit(1);
|
|
}
|
|
|
|
/* For KVM, gic-version=host means gic-version=max */
|
|
return finalize_gic_version_do(accel_name, VIRT_GIC_VERSION_MAX,
|
|
gics_supported, max_cpus);
|
|
case VIRT_GIC_VERSION_MAX:
|
|
if (gics_supported & VIRT_GIC_VERSION_4_MASK) {
|
|
gic_version = VIRT_GIC_VERSION_4;
|
|
} else if (gics_supported & VIRT_GIC_VERSION_3_MASK) {
|
|
gic_version = VIRT_GIC_VERSION_3;
|
|
} else {
|
|
gic_version = VIRT_GIC_VERSION_2;
|
|
}
|
|
break;
|
|
case VIRT_GIC_VERSION_NOSEL:
|
|
if ((gics_supported & VIRT_GIC_VERSION_2_MASK) &&
|
|
max_cpus <= GIC_NCPU) {
|
|
gic_version = VIRT_GIC_VERSION_2;
|
|
} else if (gics_supported & VIRT_GIC_VERSION_3_MASK) {
|
|
/*
|
|
* in case the host does not support v2 emulation or
|
|
* the end-user requested more than 8 VCPUs we now default
|
|
* to v3. In any case defaulting to v2 would be broken.
|
|
*/
|
|
gic_version = VIRT_GIC_VERSION_3;
|
|
} else if (max_cpus > GIC_NCPU) {
|
|
error_report("%s only supports GICv2 emulation but more than 8 "
|
|
"vcpus are requested", accel_name);
|
|
exit(1);
|
|
}
|
|
break;
|
|
case VIRT_GIC_VERSION_2:
|
|
case VIRT_GIC_VERSION_3:
|
|
case VIRT_GIC_VERSION_4:
|
|
break;
|
|
}
|
|
|
|
/* Check chosen version is effectively supported */
|
|
switch (gic_version) {
|
|
case VIRT_GIC_VERSION_2:
|
|
if (!(gics_supported & VIRT_GIC_VERSION_2_MASK)) {
|
|
error_report("%s does not support GICv2 emulation", accel_name);
|
|
exit(1);
|
|
}
|
|
break;
|
|
case VIRT_GIC_VERSION_3:
|
|
if (!(gics_supported & VIRT_GIC_VERSION_3_MASK)) {
|
|
error_report("%s does not support GICv3 emulation", accel_name);
|
|
exit(1);
|
|
}
|
|
break;
|
|
case VIRT_GIC_VERSION_4:
|
|
if (!(gics_supported & VIRT_GIC_VERSION_4_MASK)) {
|
|
error_report("%s does not support GICv4 emulation, is virtualization=on?",
|
|
accel_name);
|
|
exit(1);
|
|
}
|
|
break;
|
|
default:
|
|
error_report("logic error in finalize_gic_version");
|
|
exit(1);
|
|
break;
|
|
}
|
|
|
|
return gic_version;
|
|
}
|
|
|
|
/*
|
|
* finalize_gic_version - Determines the final gic_version
|
|
* according to the gic-version property
|
|
*
|
|
* Default GIC type is v2
|
|
*/
|
|
static void finalize_gic_version(VirtMachineState *vms)
|
|
{
|
|
const char *accel_name = current_accel_name();
|
|
unsigned int max_cpus = MACHINE(vms)->smp.max_cpus;
|
|
int gics_supported = 0;
|
|
|
|
/* Determine which GIC versions the current environment supports */
|
|
if (kvm_enabled() && kvm_irqchip_in_kernel()) {
|
|
int probe_bitmap = kvm_arm_vgic_probe();
|
|
|
|
if (!probe_bitmap) {
|
|
error_report("Unable to determine GIC version supported by host");
|
|
exit(1);
|
|
}
|
|
|
|
if (probe_bitmap & KVM_ARM_VGIC_V2) {
|
|
gics_supported |= VIRT_GIC_VERSION_2_MASK;
|
|
}
|
|
if (probe_bitmap & KVM_ARM_VGIC_V3) {
|
|
gics_supported |= VIRT_GIC_VERSION_3_MASK;
|
|
}
|
|
} else if (kvm_enabled() && !kvm_irqchip_in_kernel()) {
|
|
/* KVM w/o kernel irqchip can only deal with GICv2 */
|
|
gics_supported |= VIRT_GIC_VERSION_2_MASK;
|
|
accel_name = "KVM with kernel-irqchip=off";
|
|
} else if (tcg_enabled() || hvf_enabled() || qtest_enabled()) {
|
|
gics_supported |= VIRT_GIC_VERSION_2_MASK;
|
|
if (module_object_class_by_name("arm-gicv3")) {
|
|
gics_supported |= VIRT_GIC_VERSION_3_MASK;
|
|
if (vms->virt) {
|
|
/* GICv4 only makes sense if CPU has EL2 */
|
|
gics_supported |= VIRT_GIC_VERSION_4_MASK;
|
|
}
|
|
}
|
|
} else {
|
|
error_report("Unsupported accelerator, can not determine GIC support");
|
|
exit(1);
|
|
}
|
|
|
|
/*
|
|
* Then convert helpers like host/max to concrete GIC versions and ensure
|
|
* the desired version is supported
|
|
*/
|
|
vms->gic_version = finalize_gic_version_do(accel_name, vms->gic_version,
|
|
gics_supported, max_cpus);
|
|
}
|
|
|
|
/*
|
|
* virt_cpu_post_init() must be called after the CPUs have
|
|
* been realized and the GIC has been created.
|
|
*/
|
|
static void virt_cpu_post_init(VirtMachineState *vms, MemoryRegion *sysmem)
|
|
{
|
|
int max_cpus = MACHINE(vms)->smp.max_cpus;
|
|
bool aarch64, pmu, steal_time;
|
|
CPUState *cpu;
|
|
|
|
aarch64 = object_property_get_bool(OBJECT(first_cpu), "aarch64", NULL);
|
|
pmu = object_property_get_bool(OBJECT(first_cpu), "pmu", NULL);
|
|
steal_time = object_property_get_bool(OBJECT(first_cpu),
|
|
"kvm-steal-time", NULL);
|
|
|
|
if (kvm_enabled()) {
|
|
hwaddr pvtime_reg_base = vms->memmap[VIRT_PVTIME].base;
|
|
hwaddr pvtime_reg_size = vms->memmap[VIRT_PVTIME].size;
|
|
|
|
if (steal_time) {
|
|
MemoryRegion *pvtime = g_new(MemoryRegion, 1);
|
|
hwaddr pvtime_size = max_cpus * PVTIME_SIZE_PER_CPU;
|
|
|
|
/* The memory region size must be a multiple of host page size. */
|
|
pvtime_size = REAL_HOST_PAGE_ALIGN(pvtime_size);
|
|
|
|
if (pvtime_size > pvtime_reg_size) {
|
|
error_report("pvtime requires a %" HWADDR_PRId
|
|
" byte memory region for %d CPUs,"
|
|
" but only %" HWADDR_PRId " has been reserved",
|
|
pvtime_size, max_cpus, pvtime_reg_size);
|
|
exit(1);
|
|
}
|
|
|
|
memory_region_init_ram(pvtime, NULL, "pvtime", pvtime_size, NULL);
|
|
memory_region_add_subregion(sysmem, pvtime_reg_base, pvtime);
|
|
}
|
|
|
|
CPU_FOREACH(cpu) {
|
|
if (pmu) {
|
|
assert(arm_feature(&ARM_CPU(cpu)->env, ARM_FEATURE_PMU));
|
|
if (kvm_irqchip_in_kernel()) {
|
|
kvm_arm_pmu_set_irq(ARM_CPU(cpu), VIRTUAL_PMU_IRQ);
|
|
}
|
|
kvm_arm_pmu_init(ARM_CPU(cpu));
|
|
}
|
|
if (steal_time) {
|
|
kvm_arm_pvtime_init(ARM_CPU(cpu), pvtime_reg_base
|
|
+ cpu->cpu_index
|
|
* PVTIME_SIZE_PER_CPU);
|
|
}
|
|
}
|
|
} else {
|
|
if (aarch64 && vms->highmem) {
|
|
int requested_pa_size = 64 - clz64(vms->highest_gpa);
|
|
int pamax = arm_pamax(ARM_CPU(first_cpu));
|
|
|
|
if (pamax < requested_pa_size) {
|
|
error_report("VCPU supports less PA bits (%d) than "
|
|
"requested by the memory map (%d)",
|
|
pamax, requested_pa_size);
|
|
exit(1);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void machvirt_init(MachineState *machine)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(machine);
|
|
VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
|
|
MachineClass *mc = MACHINE_GET_CLASS(machine);
|
|
const CPUArchIdList *possible_cpus;
|
|
MemoryRegion *sysmem = get_system_memory();
|
|
MemoryRegion *secure_sysmem = NULL;
|
|
MemoryRegion *tag_sysmem = NULL;
|
|
MemoryRegion *secure_tag_sysmem = NULL;
|
|
int n, virt_max_cpus;
|
|
bool firmware_loaded;
|
|
bool aarch64 = true;
|
|
bool has_ged = !vmc->no_ged;
|
|
unsigned int smp_cpus = machine->smp.cpus;
|
|
unsigned int max_cpus = machine->smp.max_cpus;
|
|
|
|
possible_cpus = mc->possible_cpu_arch_ids(machine);
|
|
|
|
/*
|
|
* In accelerated mode, the memory map is computed earlier in kvm_type()
|
|
* to create a VM with the right number of IPA bits.
|
|
*/
|
|
if (!vms->memmap) {
|
|
Object *cpuobj;
|
|
ARMCPU *armcpu;
|
|
int pa_bits;
|
|
|
|
/*
|
|
* Instantiate a temporary CPU object to find out about what
|
|
* we are about to deal with. Once this is done, get rid of
|
|
* the object.
|
|
*/
|
|
cpuobj = object_new(possible_cpus->cpus[0].type);
|
|
armcpu = ARM_CPU(cpuobj);
|
|
|
|
pa_bits = arm_pamax(armcpu);
|
|
|
|
object_unref(cpuobj);
|
|
|
|
virt_set_memmap(vms, pa_bits);
|
|
}
|
|
|
|
/* We can probe only here because during property set
|
|
* KVM is not available yet
|
|
*/
|
|
finalize_gic_version(vms);
|
|
|
|
if (vms->secure) {
|
|
/*
|
|
* The Secure view of the world is the same as the NonSecure,
|
|
* but with a few extra devices. Create it as a container region
|
|
* containing the system memory at low priority; any secure-only
|
|
* devices go in at higher priority and take precedence.
|
|
*/
|
|
secure_sysmem = g_new(MemoryRegion, 1);
|
|
memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
|
|
UINT64_MAX);
|
|
memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
|
|
}
|
|
|
|
firmware_loaded = virt_firmware_init(vms, sysmem,
|
|
secure_sysmem ?: sysmem);
|
|
|
|
/* If we have an EL3 boot ROM then the assumption is that it will
|
|
* implement PSCI itself, so disable QEMU's internal implementation
|
|
* so it doesn't get in the way. Instead of starting secondary
|
|
* CPUs in PSCI powerdown state we will start them all running and
|
|
* let the boot ROM sort them out.
|
|
* The usual case is that we do use QEMU's PSCI implementation;
|
|
* if the guest has EL2 then we will use SMC as the conduit,
|
|
* and otherwise we will use HVC (for backwards compatibility and
|
|
* because if we're using KVM then we must use HVC).
|
|
*/
|
|
if (vms->secure && firmware_loaded) {
|
|
vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
|
|
} else if (vms->virt) {
|
|
vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
|
|
} else {
|
|
vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
|
|
}
|
|
|
|
/*
|
|
* The maximum number of CPUs depends on the GIC version, or on how
|
|
* many redistributors we can fit into the memory map (which in turn
|
|
* depends on whether this is a GICv3 or v4).
|
|
*/
|
|
if (vms->gic_version == VIRT_GIC_VERSION_2) {
|
|
virt_max_cpus = GIC_NCPU;
|
|
} else {
|
|
virt_max_cpus = virt_redist_capacity(vms, VIRT_GIC_REDIST);
|
|
if (vms->highmem_redists) {
|
|
virt_max_cpus += virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2);
|
|
}
|
|
}
|
|
|
|
if (max_cpus > virt_max_cpus) {
|
|
error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
|
|
"supported by machine 'mach-virt' (%d)",
|
|
max_cpus, virt_max_cpus);
|
|
if (vms->gic_version != VIRT_GIC_VERSION_2 && !vms->highmem_redists) {
|
|
error_printf("Try 'highmem-redists=on' for more CPUs\n");
|
|
}
|
|
|
|
exit(1);
|
|
}
|
|
|
|
if (vms->secure && (kvm_enabled() || hvf_enabled())) {
|
|
error_report("mach-virt: %s does not support providing "
|
|
"Security extensions (TrustZone) to the guest CPU",
|
|
current_accel_name());
|
|
exit(1);
|
|
}
|
|
|
|
if (vms->virt && (kvm_enabled() || hvf_enabled())) {
|
|
error_report("mach-virt: %s does not support providing "
|
|
"Virtualization extensions to the guest CPU",
|
|
current_accel_name());
|
|
exit(1);
|
|
}
|
|
|
|
if (vms->mte && (kvm_enabled() || hvf_enabled())) {
|
|
error_report("mach-virt: %s does not support providing "
|
|
"MTE to the guest CPU",
|
|
current_accel_name());
|
|
exit(1);
|
|
}
|
|
|
|
create_fdt(vms);
|
|
|
|
assert(possible_cpus->len == max_cpus);
|
|
for (n = 0; n < possible_cpus->len; n++) {
|
|
Object *cpuobj;
|
|
CPUState *cs;
|
|
|
|
if (n >= smp_cpus) {
|
|
break;
|
|
}
|
|
|
|
cpuobj = object_new(possible_cpus->cpus[n].type);
|
|
object_property_set_int(cpuobj, "mp-affinity",
|
|
possible_cpus->cpus[n].arch_id, NULL);
|
|
|
|
cs = CPU(cpuobj);
|
|
cs->cpu_index = n;
|
|
|
|
numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
|
|
&error_fatal);
|
|
|
|
aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL);
|
|
|
|
if (!vms->secure) {
|
|
object_property_set_bool(cpuobj, "has_el3", false, NULL);
|
|
}
|
|
|
|
if (!vms->virt && object_property_find(cpuobj, "has_el2")) {
|
|
object_property_set_bool(cpuobj, "has_el2", false, NULL);
|
|
}
|
|
|
|
if (vmc->kvm_no_adjvtime &&
|
|
object_property_find(cpuobj, "kvm-no-adjvtime")) {
|
|
object_property_set_bool(cpuobj, "kvm-no-adjvtime", true, NULL);
|
|
}
|
|
|
|
if (vmc->no_kvm_steal_time &&
|
|
object_property_find(cpuobj, "kvm-steal-time")) {
|
|
object_property_set_bool(cpuobj, "kvm-steal-time", false, NULL);
|
|
}
|
|
|
|
if (vmc->no_pmu && object_property_find(cpuobj, "pmu")) {
|
|
object_property_set_bool(cpuobj, "pmu", false, NULL);
|
|
}
|
|
|
|
if (vmc->no_tcg_lpa2 && object_property_find(cpuobj, "lpa2")) {
|
|
object_property_set_bool(cpuobj, "lpa2", false, NULL);
|
|
}
|
|
|
|
if (object_property_find(cpuobj, "reset-cbar")) {
|
|
object_property_set_int(cpuobj, "reset-cbar",
|
|
vms->memmap[VIRT_CPUPERIPHS].base,
|
|
&error_abort);
|
|
}
|
|
|
|
object_property_set_link(cpuobj, "memory", OBJECT(sysmem),
|
|
&error_abort);
|
|
if (vms->secure) {
|
|
object_property_set_link(cpuobj, "secure-memory",
|
|
OBJECT(secure_sysmem), &error_abort);
|
|
}
|
|
|
|
if (vms->mte) {
|
|
/* Create the memory region only once, but link to all cpus. */
|
|
if (!tag_sysmem) {
|
|
/*
|
|
* The property exists only if MemTag is supported.
|
|
* If it is, we must allocate the ram to back that up.
|
|
*/
|
|
if (!object_property_find(cpuobj, "tag-memory")) {
|
|
error_report("MTE requested, but not supported "
|
|
"by the guest CPU");
|
|
exit(1);
|
|
}
|
|
|
|
tag_sysmem = g_new(MemoryRegion, 1);
|
|
memory_region_init(tag_sysmem, OBJECT(machine),
|
|
"tag-memory", UINT64_MAX / 32);
|
|
|
|
if (vms->secure) {
|
|
secure_tag_sysmem = g_new(MemoryRegion, 1);
|
|
memory_region_init(secure_tag_sysmem, OBJECT(machine),
|
|
"secure-tag-memory", UINT64_MAX / 32);
|
|
|
|
/* As with ram, secure-tag takes precedence over tag. */
|
|
memory_region_add_subregion_overlap(secure_tag_sysmem, 0,
|
|
tag_sysmem, -1);
|
|
}
|
|
}
|
|
|
|
object_property_set_link(cpuobj, "tag-memory", OBJECT(tag_sysmem),
|
|
&error_abort);
|
|
if (vms->secure) {
|
|
object_property_set_link(cpuobj, "secure-tag-memory",
|
|
OBJECT(secure_tag_sysmem),
|
|
&error_abort);
|
|
}
|
|
}
|
|
|
|
qdev_realize(DEVICE(cpuobj), NULL, &error_fatal);
|
|
object_unref(cpuobj);
|
|
}
|
|
|
|
/* Now we've created the CPUs we can see if they have the hypvirt timer */
|
|
vms->ns_el2_virt_timer_irq = ns_el2_virt_timer_present() &&
|
|
!vmc->no_ns_el2_virt_timer_irq;
|
|
|
|
fdt_add_timer_nodes(vms);
|
|
fdt_add_cpu_nodes(vms);
|
|
|
|
memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base,
|
|
machine->ram);
|
|
|
|
virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem);
|
|
|
|
create_gic(vms, sysmem);
|
|
|
|
virt_cpu_post_init(vms, sysmem);
|
|
|
|
fdt_add_pmu_nodes(vms);
|
|
|
|
/*
|
|
* The first UART always exists. If the security extensions are
|
|
* enabled, the second UART also always exists. Otherwise, it only exists
|
|
* if a backend is configured explicitly via '-serial <backend>'.
|
|
* This avoids potentially breaking existing user setups that expect
|
|
* only one NonSecure UART to be present (for instance, older EDK2
|
|
* binaries).
|
|
*
|
|
* The nodes end up in the DTB in reverse order of creation, so we must
|
|
* create UART0 last to ensure it appears as the first node in the DTB,
|
|
* for compatibility with guest software that just iterates through the
|
|
* DTB to find the first UART, as older versions of EDK2 do.
|
|
* DTB readers that follow the spec, as Linux does, should honour the
|
|
* aliases node information and /chosen/stdout-path regardless of
|
|
* the order that nodes appear in the DTB.
|
|
*
|
|
* For similar back-compatibility reasons, if UART1 is the secure UART
|
|
* we create it second (and so it appears first in the DTB), because
|
|
* that's what QEMU has always done.
|
|
*/
|
|
if (!vms->secure) {
|
|
Chardev *serial1 = serial_hd(1);
|
|
|
|
if (serial1) {
|
|
vms->second_ns_uart_present = true;
|
|
create_uart(vms, VIRT_UART1, sysmem, serial1, false);
|
|
}
|
|
}
|
|
create_uart(vms, VIRT_UART0, sysmem, serial_hd(0), false);
|
|
if (vms->secure) {
|
|
create_uart(vms, VIRT_UART1, secure_sysmem, serial_hd(1), true);
|
|
}
|
|
|
|
if (vms->secure) {
|
|
create_secure_ram(vms, secure_sysmem, secure_tag_sysmem);
|
|
}
|
|
|
|
if (tag_sysmem) {
|
|
create_tag_ram(tag_sysmem, vms->memmap[VIRT_MEM].base,
|
|
machine->ram_size, "mach-virt.tag");
|
|
}
|
|
|
|
vms->highmem_ecam &= (!firmware_loaded || aarch64);
|
|
|
|
create_rtc(vms);
|
|
|
|
create_pcie(vms);
|
|
|
|
if (has_ged && aarch64 && firmware_loaded && virt_is_acpi_enabled(vms)) {
|
|
vms->acpi_dev = create_acpi_ged(vms);
|
|
} else {
|
|
create_gpio_devices(vms, VIRT_GPIO, sysmem);
|
|
}
|
|
|
|
if (vms->secure && !vmc->no_secure_gpio) {
|
|
create_gpio_devices(vms, VIRT_SECURE_GPIO, secure_sysmem);
|
|
}
|
|
|
|
/* connect powerdown request */
|
|
vms->powerdown_notifier.notify = virt_powerdown_req;
|
|
qemu_register_powerdown_notifier(&vms->powerdown_notifier);
|
|
|
|
/* Create mmio transports, so the user can create virtio backends
|
|
* (which will be automatically plugged in to the transports). If
|
|
* no backend is created the transport will just sit harmlessly idle.
|
|
*/
|
|
create_virtio_devices(vms);
|
|
|
|
vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
|
|
rom_set_fw(vms->fw_cfg);
|
|
|
|
create_platform_bus(vms);
|
|
|
|
if (machine->nvdimms_state->is_enabled) {
|
|
const struct AcpiGenericAddress arm_virt_nvdimm_acpi_dsmio = {
|
|
.space_id = AML_AS_SYSTEM_MEMORY,
|
|
.address = vms->memmap[VIRT_NVDIMM_ACPI].base,
|
|
.bit_width = NVDIMM_ACPI_IO_LEN << 3
|
|
};
|
|
|
|
nvdimm_init_acpi_state(machine->nvdimms_state, sysmem,
|
|
arm_virt_nvdimm_acpi_dsmio,
|
|
vms->fw_cfg, OBJECT(vms));
|
|
}
|
|
|
|
vms->bootinfo.ram_size = machine->ram_size;
|
|
vms->bootinfo.board_id = -1;
|
|
vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
|
|
vms->bootinfo.get_dtb = machvirt_dtb;
|
|
vms->bootinfo.skip_dtb_autoload = true;
|
|
vms->bootinfo.firmware_loaded = firmware_loaded;
|
|
vms->bootinfo.psci_conduit = vms->psci_conduit;
|
|
arm_load_kernel(ARM_CPU(first_cpu), machine, &vms->bootinfo);
|
|
|
|
vms->machine_done.notify = virt_machine_done;
|
|
qemu_add_machine_init_done_notifier(&vms->machine_done);
|
|
}
|
|
|
|
static bool virt_get_secure(Object *obj, Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(obj);
|
|
|
|
return vms->secure;
|
|
}
|
|
|
|
static void virt_set_secure(Object *obj, bool value, Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(obj);
|
|
|
|
vms->secure = value;
|
|
}
|
|
|
|
static bool virt_get_virt(Object *obj, Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(obj);
|
|
|
|
return vms->virt;
|
|
}
|
|
|
|
static void virt_set_virt(Object *obj, bool value, Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(obj);
|
|
|
|
vms->virt = value;
|
|
}
|
|
|
|
static bool virt_get_highmem(Object *obj, Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(obj);
|
|
|
|
return vms->highmem;
|
|
}
|
|
|
|
static void virt_set_highmem(Object *obj, bool value, Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(obj);
|
|
|
|
vms->highmem = value;
|
|
}
|
|
|
|
static bool virt_get_compact_highmem(Object *obj, Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(obj);
|
|
|
|
return vms->highmem_compact;
|
|
}
|
|
|
|
static void virt_set_compact_highmem(Object *obj, bool value, Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(obj);
|
|
|
|
vms->highmem_compact = value;
|
|
}
|
|
|
|
static bool virt_get_highmem_redists(Object *obj, Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(obj);
|
|
|
|
return vms->highmem_redists;
|
|
}
|
|
|
|
static void virt_set_highmem_redists(Object *obj, bool value, Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(obj);
|
|
|
|
vms->highmem_redists = value;
|
|
}
|
|
|
|
static bool virt_get_highmem_ecam(Object *obj, Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(obj);
|
|
|
|
return vms->highmem_ecam;
|
|
}
|
|
|
|
static void virt_set_highmem_ecam(Object *obj, bool value, Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(obj);
|
|
|
|
vms->highmem_ecam = value;
|
|
}
|
|
|
|
static bool virt_get_highmem_mmio(Object *obj, Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(obj);
|
|
|
|
return vms->highmem_mmio;
|
|
}
|
|
|
|
static void virt_set_highmem_mmio(Object *obj, bool value, Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(obj);
|
|
|
|
vms->highmem_mmio = value;
|
|
}
|
|
|
|
|
|
static bool virt_get_its(Object *obj, Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(obj);
|
|
|
|
return vms->its;
|
|
}
|
|
|
|
static void virt_set_its(Object *obj, bool value, Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(obj);
|
|
|
|
vms->its = value;
|
|
}
|
|
|
|
static bool virt_get_dtb_randomness(Object *obj, Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(obj);
|
|
|
|
return vms->dtb_randomness;
|
|
}
|
|
|
|
static void virt_set_dtb_randomness(Object *obj, bool value, Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(obj);
|
|
|
|
vms->dtb_randomness = value;
|
|
}
|
|
|
|
static char *virt_get_oem_id(Object *obj, Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(obj);
|
|
|
|
return g_strdup(vms->oem_id);
|
|
}
|
|
|
|
static void virt_set_oem_id(Object *obj, const char *value, Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(obj);
|
|
size_t len = strlen(value);
|
|
|
|
if (len > 6) {
|
|
error_setg(errp,
|
|
"User specified oem-id value is bigger than 6 bytes in size");
|
|
return;
|
|
}
|
|
|
|
strncpy(vms->oem_id, value, 6);
|
|
}
|
|
|
|
static char *virt_get_oem_table_id(Object *obj, Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(obj);
|
|
|
|
return g_strdup(vms->oem_table_id);
|
|
}
|
|
|
|
static void virt_set_oem_table_id(Object *obj, const char *value,
|
|
Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(obj);
|
|
size_t len = strlen(value);
|
|
|
|
if (len > 8) {
|
|
error_setg(errp,
|
|
"User specified oem-table-id value is bigger than 8 bytes in size");
|
|
return;
|
|
}
|
|
strncpy(vms->oem_table_id, value, 8);
|
|
}
|
|
|
|
|
|
bool virt_is_acpi_enabled(VirtMachineState *vms)
|
|
{
|
|
if (vms->acpi == ON_OFF_AUTO_OFF) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static void virt_get_acpi(Object *obj, Visitor *v, const char *name,
|
|
void *opaque, Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(obj);
|
|
OnOffAuto acpi = vms->acpi;
|
|
|
|
visit_type_OnOffAuto(v, name, &acpi, errp);
|
|
}
|
|
|
|
static void virt_set_acpi(Object *obj, Visitor *v, const char *name,
|
|
void *opaque, Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(obj);
|
|
|
|
visit_type_OnOffAuto(v, name, &vms->acpi, errp);
|
|
}
|
|
|
|
static bool virt_get_ras(Object *obj, Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(obj);
|
|
|
|
return vms->ras;
|
|
}
|
|
|
|
static void virt_set_ras(Object *obj, bool value, Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(obj);
|
|
|
|
vms->ras = value;
|
|
}
|
|
|
|
static bool virt_get_mte(Object *obj, Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(obj);
|
|
|
|
return vms->mte;
|
|
}
|
|
|
|
static void virt_set_mte(Object *obj, bool value, Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(obj);
|
|
|
|
vms->mte = value;
|
|
}
|
|
|
|
static char *virt_get_gic_version(Object *obj, Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(obj);
|
|
const char *val;
|
|
|
|
switch (vms->gic_version) {
|
|
case VIRT_GIC_VERSION_4:
|
|
val = "4";
|
|
break;
|
|
case VIRT_GIC_VERSION_3:
|
|
val = "3";
|
|
break;
|
|
default:
|
|
val = "2";
|
|
break;
|
|
}
|
|
return g_strdup(val);
|
|
}
|
|
|
|
static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(obj);
|
|
|
|
if (!strcmp(value, "4")) {
|
|
vms->gic_version = VIRT_GIC_VERSION_4;
|
|
} else if (!strcmp(value, "3")) {
|
|
vms->gic_version = VIRT_GIC_VERSION_3;
|
|
} else if (!strcmp(value, "2")) {
|
|
vms->gic_version = VIRT_GIC_VERSION_2;
|
|
} else if (!strcmp(value, "host")) {
|
|
vms->gic_version = VIRT_GIC_VERSION_HOST; /* Will probe later */
|
|
} else if (!strcmp(value, "max")) {
|
|
vms->gic_version = VIRT_GIC_VERSION_MAX; /* Will probe later */
|
|
} else {
|
|
error_setg(errp, "Invalid gic-version value");
|
|
error_append_hint(errp, "Valid values are 3, 2, host, max.\n");
|
|
}
|
|
}
|
|
|
|
static char *virt_get_iommu(Object *obj, Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(obj);
|
|
|
|
switch (vms->iommu) {
|
|
case VIRT_IOMMU_NONE:
|
|
return g_strdup("none");
|
|
case VIRT_IOMMU_SMMUV3:
|
|
return g_strdup("smmuv3");
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
static void virt_set_iommu(Object *obj, const char *value, Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(obj);
|
|
|
|
if (!strcmp(value, "smmuv3")) {
|
|
vms->iommu = VIRT_IOMMU_SMMUV3;
|
|
} else if (!strcmp(value, "none")) {
|
|
vms->iommu = VIRT_IOMMU_NONE;
|
|
} else {
|
|
error_setg(errp, "Invalid iommu value");
|
|
error_append_hint(errp, "Valid values are none, smmuv3.\n");
|
|
}
|
|
}
|
|
|
|
static bool virt_get_default_bus_bypass_iommu(Object *obj, Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(obj);
|
|
|
|
return vms->default_bus_bypass_iommu;
|
|
}
|
|
|
|
static void virt_set_default_bus_bypass_iommu(Object *obj, bool value,
|
|
Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(obj);
|
|
|
|
vms->default_bus_bypass_iommu = value;
|
|
}
|
|
|
|
static CpuInstanceProperties
|
|
virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
|
|
{
|
|
MachineClass *mc = MACHINE_GET_CLASS(ms);
|
|
const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
|
|
|
|
assert(cpu_index < possible_cpus->len);
|
|
return possible_cpus->cpus[cpu_index].props;
|
|
}
|
|
|
|
static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
|
|
{
|
|
int64_t socket_id = ms->possible_cpus->cpus[idx].props.socket_id;
|
|
|
|
return socket_id % ms->numa_state->num_nodes;
|
|
}
|
|
|
|
static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
|
|
{
|
|
int n;
|
|
unsigned int max_cpus = ms->smp.max_cpus;
|
|
VirtMachineState *vms = VIRT_MACHINE(ms);
|
|
MachineClass *mc = MACHINE_GET_CLASS(vms);
|
|
|
|
if (ms->possible_cpus) {
|
|
assert(ms->possible_cpus->len == max_cpus);
|
|
return ms->possible_cpus;
|
|
}
|
|
|
|
ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
|
|
sizeof(CPUArchId) * max_cpus);
|
|
ms->possible_cpus->len = max_cpus;
|
|
for (n = 0; n < ms->possible_cpus->len; n++) {
|
|
ms->possible_cpus->cpus[n].type = ms->cpu_type;
|
|
ms->possible_cpus->cpus[n].arch_id =
|
|
virt_cpu_mp_affinity(vms, n);
|
|
|
|
assert(!mc->smp_props.dies_supported);
|
|
ms->possible_cpus->cpus[n].props.has_socket_id = true;
|
|
ms->possible_cpus->cpus[n].props.socket_id =
|
|
n / (ms->smp.clusters * ms->smp.cores * ms->smp.threads);
|
|
ms->possible_cpus->cpus[n].props.has_cluster_id = true;
|
|
ms->possible_cpus->cpus[n].props.cluster_id =
|
|
(n / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters;
|
|
ms->possible_cpus->cpus[n].props.has_core_id = true;
|
|
ms->possible_cpus->cpus[n].props.core_id =
|
|
(n / ms->smp.threads) % ms->smp.cores;
|
|
ms->possible_cpus->cpus[n].props.has_thread_id = true;
|
|
ms->possible_cpus->cpus[n].props.thread_id =
|
|
n % ms->smp.threads;
|
|
}
|
|
return ms->possible_cpus;
|
|
}
|
|
|
|
static void virt_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
|
|
Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
|
|
const MachineState *ms = MACHINE(hotplug_dev);
|
|
const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
|
|
|
|
if (!vms->acpi_dev) {
|
|
error_setg(errp,
|
|
"memory hotplug is not enabled: missing acpi-ged device");
|
|
return;
|
|
}
|
|
|
|
if (vms->mte) {
|
|
error_setg(errp, "memory hotplug is not enabled: MTE is enabled");
|
|
return;
|
|
}
|
|
|
|
if (is_nvdimm && !ms->nvdimms_state->is_enabled) {
|
|
error_setg(errp, "nvdimm is not enabled: add 'nvdimm=on' to '-M'");
|
|
return;
|
|
}
|
|
|
|
pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), errp);
|
|
}
|
|
|
|
static void virt_memory_plug(HotplugHandler *hotplug_dev,
|
|
DeviceState *dev, Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
|
|
MachineState *ms = MACHINE(hotplug_dev);
|
|
bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
|
|
|
|
pc_dimm_plug(PC_DIMM(dev), MACHINE(vms));
|
|
|
|
if (is_nvdimm) {
|
|
nvdimm_plug(ms->nvdimms_state);
|
|
}
|
|
|
|
hotplug_handler_plug(HOTPLUG_HANDLER(vms->acpi_dev),
|
|
dev, &error_abort);
|
|
}
|
|
|
|
static void virt_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
|
|
DeviceState *dev, Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
|
|
|
|
if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
|
|
virt_memory_pre_plug(hotplug_dev, dev, errp);
|
|
} else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
|
|
virtio_md_pci_pre_plug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp);
|
|
} else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
|
|
hwaddr db_start = 0, db_end = 0;
|
|
QList *reserved_regions;
|
|
char *resv_prop_str;
|
|
|
|
if (vms->iommu != VIRT_IOMMU_NONE) {
|
|
error_setg(errp, "virt machine does not support multiple IOMMUs");
|
|
return;
|
|
}
|
|
|
|
switch (vms->msi_controller) {
|
|
case VIRT_MSI_CTRL_NONE:
|
|
return;
|
|
case VIRT_MSI_CTRL_ITS:
|
|
/* GITS_TRANSLATER page */
|
|
db_start = base_memmap[VIRT_GIC_ITS].base + 0x10000;
|
|
db_end = base_memmap[VIRT_GIC_ITS].base +
|
|
base_memmap[VIRT_GIC_ITS].size - 1;
|
|
break;
|
|
case VIRT_MSI_CTRL_GICV2M:
|
|
/* MSI_SETSPI_NS page */
|
|
db_start = base_memmap[VIRT_GIC_V2M].base;
|
|
db_end = db_start + base_memmap[VIRT_GIC_V2M].size - 1;
|
|
break;
|
|
}
|
|
resv_prop_str = g_strdup_printf("0x%"PRIx64":0x%"PRIx64":%u",
|
|
db_start, db_end,
|
|
VIRTIO_IOMMU_RESV_MEM_T_MSI);
|
|
|
|
reserved_regions = qlist_new();
|
|
qlist_append_str(reserved_regions, resv_prop_str);
|
|
qdev_prop_set_array(dev, "reserved-regions", reserved_regions);
|
|
g_free(resv_prop_str);
|
|
}
|
|
}
|
|
|
|
static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev,
|
|
DeviceState *dev, Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
|
|
|
|
if (vms->platform_bus_dev) {
|
|
MachineClass *mc = MACHINE_GET_CLASS(vms);
|
|
|
|
if (device_is_dynamic_sysbus(mc, dev)) {
|
|
platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev),
|
|
SYS_BUS_DEVICE(dev));
|
|
}
|
|
}
|
|
|
|
if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
|
|
virt_memory_plug(hotplug_dev, dev, errp);
|
|
} else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
|
|
virtio_md_pci_plug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp);
|
|
}
|
|
|
|
if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
|
|
PCIDevice *pdev = PCI_DEVICE(dev);
|
|
|
|
vms->iommu = VIRT_IOMMU_VIRTIO;
|
|
vms->virtio_iommu_bdf = pci_get_bdf(pdev);
|
|
create_virtio_iommu_dt_bindings(vms);
|
|
}
|
|
}
|
|
|
|
static void virt_dimm_unplug_request(HotplugHandler *hotplug_dev,
|
|
DeviceState *dev, Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
|
|
|
|
if (!vms->acpi_dev) {
|
|
error_setg(errp,
|
|
"memory hotplug is not enabled: missing acpi-ged device");
|
|
return;
|
|
}
|
|
|
|
if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
|
|
error_setg(errp, "nvdimm device hot unplug is not supported yet.");
|
|
return;
|
|
}
|
|
|
|
hotplug_handler_unplug_request(HOTPLUG_HANDLER(vms->acpi_dev), dev,
|
|
errp);
|
|
}
|
|
|
|
static void virt_dimm_unplug(HotplugHandler *hotplug_dev,
|
|
DeviceState *dev, Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
|
|
Error *local_err = NULL;
|
|
|
|
hotplug_handler_unplug(HOTPLUG_HANDLER(vms->acpi_dev), dev, &local_err);
|
|
if (local_err) {
|
|
goto out;
|
|
}
|
|
|
|
pc_dimm_unplug(PC_DIMM(dev), MACHINE(vms));
|
|
qdev_unrealize(dev);
|
|
|
|
out:
|
|
error_propagate(errp, local_err);
|
|
}
|
|
|
|
static void virt_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
|
|
DeviceState *dev, Error **errp)
|
|
{
|
|
if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
|
|
virt_dimm_unplug_request(hotplug_dev, dev, errp);
|
|
} else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
|
|
virtio_md_pci_unplug_request(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev),
|
|
errp);
|
|
} else {
|
|
error_setg(errp, "device unplug request for unsupported device"
|
|
" type: %s", object_get_typename(OBJECT(dev)));
|
|
}
|
|
}
|
|
|
|
static void virt_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
|
|
DeviceState *dev, Error **errp)
|
|
{
|
|
if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
|
|
virt_dimm_unplug(hotplug_dev, dev, errp);
|
|
} else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
|
|
virtio_md_pci_unplug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp);
|
|
} else {
|
|
error_setg(errp, "virt: device unplug for unsupported device"
|
|
" type: %s", object_get_typename(OBJECT(dev)));
|
|
}
|
|
}
|
|
|
|
static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine,
|
|
DeviceState *dev)
|
|
{
|
|
MachineClass *mc = MACHINE_GET_CLASS(machine);
|
|
|
|
if (device_is_dynamic_sysbus(mc, dev) ||
|
|
object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
|
|
object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI) ||
|
|
object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
|
|
return HOTPLUG_HANDLER(machine);
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* for arm64 kvm_type [7-0] encodes the requested number of bits
|
|
* in the IPA address space
|
|
*/
|
|
static int virt_kvm_type(MachineState *ms, const char *type_str)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(ms);
|
|
int max_vm_pa_size, requested_pa_size;
|
|
bool fixed_ipa;
|
|
|
|
max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms, &fixed_ipa);
|
|
|
|
/* we freeze the memory map to compute the highest gpa */
|
|
virt_set_memmap(vms, max_vm_pa_size);
|
|
|
|
requested_pa_size = 64 - clz64(vms->highest_gpa);
|
|
|
|
/*
|
|
* KVM requires the IPA size to be at least 32 bits.
|
|
*/
|
|
if (requested_pa_size < 32) {
|
|
requested_pa_size = 32;
|
|
}
|
|
|
|
if (requested_pa_size > max_vm_pa_size) {
|
|
error_report("-m and ,maxmem option values "
|
|
"require an IPA range (%d bits) larger than "
|
|
"the one supported by the host (%d bits)",
|
|
requested_pa_size, max_vm_pa_size);
|
|
return -1;
|
|
}
|
|
/*
|
|
* We return the requested PA log size, unless KVM only supports
|
|
* the implicit legacy 40b IPA setting, in which case the kvm_type
|
|
* must be 0.
|
|
*/
|
|
return fixed_ipa ? 0 : requested_pa_size;
|
|
}
|
|
|
|
static void virt_machine_class_init(ObjectClass *oc, void *data)
|
|
{
|
|
MachineClass *mc = MACHINE_CLASS(oc);
|
|
HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
|
|
static const char * const valid_cpu_types[] = {
|
|
#ifdef CONFIG_TCG
|
|
ARM_CPU_TYPE_NAME("cortex-a7"),
|
|
ARM_CPU_TYPE_NAME("cortex-a15"),
|
|
#ifdef TARGET_AARCH64
|
|
ARM_CPU_TYPE_NAME("cortex-a35"),
|
|
ARM_CPU_TYPE_NAME("cortex-a55"),
|
|
ARM_CPU_TYPE_NAME("cortex-a72"),
|
|
ARM_CPU_TYPE_NAME("cortex-a76"),
|
|
ARM_CPU_TYPE_NAME("cortex-a710"),
|
|
ARM_CPU_TYPE_NAME("a64fx"),
|
|
ARM_CPU_TYPE_NAME("neoverse-n1"),
|
|
ARM_CPU_TYPE_NAME("neoverse-v1"),
|
|
ARM_CPU_TYPE_NAME("neoverse-n2"),
|
|
#endif /* TARGET_AARCH64 */
|
|
#endif /* CONFIG_TCG */
|
|
#ifdef TARGET_AARCH64
|
|
ARM_CPU_TYPE_NAME("cortex-a53"),
|
|
ARM_CPU_TYPE_NAME("cortex-a57"),
|
|
#if defined(CONFIG_KVM) || defined(CONFIG_HVF)
|
|
ARM_CPU_TYPE_NAME("host"),
|
|
#endif /* CONFIG_KVM || CONFIG_HVF */
|
|
#endif /* TARGET_AARCH64 */
|
|
ARM_CPU_TYPE_NAME("max"),
|
|
NULL
|
|
};
|
|
|
|
mc->init = machvirt_init;
|
|
/* Start with max_cpus set to 512, which is the maximum supported by KVM.
|
|
* The value may be reduced later when we have more information about the
|
|
* configuration of the particular instance.
|
|
*/
|
|
mc->max_cpus = 512;
|
|
machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
|
|
machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
|
|
machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
|
|
machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM);
|
|
#ifdef CONFIG_TPM
|
|
machine_class_allow_dynamic_sysbus_dev(mc, TYPE_TPM_TIS_SYSBUS);
|
|
#endif
|
|
mc->block_default_type = IF_VIRTIO;
|
|
mc->no_cdrom = 1;
|
|
mc->pci_allow_0_address = true;
|
|
/* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
|
|
mc->minimum_page_bits = 12;
|
|
mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
|
|
mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
|
|
#ifdef CONFIG_TCG
|
|
mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
|
|
#else
|
|
mc->default_cpu_type = ARM_CPU_TYPE_NAME("max");
|
|
#endif
|
|
mc->valid_cpu_types = valid_cpu_types;
|
|
mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
|
|
mc->kvm_type = virt_kvm_type;
|
|
assert(!mc->get_hotplug_handler);
|
|
mc->get_hotplug_handler = virt_machine_get_hotplug_handler;
|
|
hc->pre_plug = virt_machine_device_pre_plug_cb;
|
|
hc->plug = virt_machine_device_plug_cb;
|
|
hc->unplug_request = virt_machine_device_unplug_request_cb;
|
|
hc->unplug = virt_machine_device_unplug_cb;
|
|
mc->nvdimm_supported = true;
|
|
mc->smp_props.clusters_supported = true;
|
|
mc->auto_enable_numa_with_memhp = true;
|
|
mc->auto_enable_numa_with_memdev = true;
|
|
/* platform instead of architectural choice */
|
|
mc->cpu_cluster_has_numa_boundary = true;
|
|
mc->default_ram_id = "mach-virt.ram";
|
|
mc->default_nic = "virtio-net-pci";
|
|
|
|
object_class_property_add(oc, "acpi", "OnOffAuto",
|
|
virt_get_acpi, virt_set_acpi,
|
|
NULL, NULL);
|
|
object_class_property_set_description(oc, "acpi",
|
|
"Enable ACPI");
|
|
object_class_property_add_bool(oc, "secure", virt_get_secure,
|
|
virt_set_secure);
|
|
object_class_property_set_description(oc, "secure",
|
|
"Set on/off to enable/disable the ARM "
|
|
"Security Extensions (TrustZone)");
|
|
|
|
object_class_property_add_bool(oc, "virtualization", virt_get_virt,
|
|
virt_set_virt);
|
|
object_class_property_set_description(oc, "virtualization",
|
|
"Set on/off to enable/disable emulating a "
|
|
"guest CPU which implements the ARM "
|
|
"Virtualization Extensions");
|
|
|
|
object_class_property_add_bool(oc, "highmem", virt_get_highmem,
|
|
virt_set_highmem);
|
|
object_class_property_set_description(oc, "highmem",
|
|
"Set on/off to enable/disable using "
|
|
"physical address space above 32 bits");
|
|
|
|
object_class_property_add_bool(oc, "compact-highmem",
|
|
virt_get_compact_highmem,
|
|
virt_set_compact_highmem);
|
|
object_class_property_set_description(oc, "compact-highmem",
|
|
"Set on/off to enable/disable compact "
|
|
"layout for high memory regions");
|
|
|
|
object_class_property_add_bool(oc, "highmem-redists",
|
|
virt_get_highmem_redists,
|
|
virt_set_highmem_redists);
|
|
object_class_property_set_description(oc, "highmem-redists",
|
|
"Set on/off to enable/disable high "
|
|
"memory region for GICv3 or GICv4 "
|
|
"redistributor");
|
|
|
|
object_class_property_add_bool(oc, "highmem-ecam",
|
|
virt_get_highmem_ecam,
|
|
virt_set_highmem_ecam);
|
|
object_class_property_set_description(oc, "highmem-ecam",
|
|
"Set on/off to enable/disable high "
|
|
"memory region for PCI ECAM");
|
|
|
|
object_class_property_add_bool(oc, "highmem-mmio",
|
|
virt_get_highmem_mmio,
|
|
virt_set_highmem_mmio);
|
|
object_class_property_set_description(oc, "highmem-mmio",
|
|
"Set on/off to enable/disable high "
|
|
"memory region for PCI MMIO");
|
|
|
|
object_class_property_add_str(oc, "gic-version", virt_get_gic_version,
|
|
virt_set_gic_version);
|
|
object_class_property_set_description(oc, "gic-version",
|
|
"Set GIC version. "
|
|
"Valid values are 2, 3, 4, host and max");
|
|
|
|
object_class_property_add_str(oc, "iommu", virt_get_iommu, virt_set_iommu);
|
|
object_class_property_set_description(oc, "iommu",
|
|
"Set the IOMMU type. "
|
|
"Valid values are none and smmuv3");
|
|
|
|
object_class_property_add_bool(oc, "default-bus-bypass-iommu",
|
|
virt_get_default_bus_bypass_iommu,
|
|
virt_set_default_bus_bypass_iommu);
|
|
object_class_property_set_description(oc, "default-bus-bypass-iommu",
|
|
"Set on/off to enable/disable "
|
|
"bypass_iommu for default root bus");
|
|
|
|
object_class_property_add_bool(oc, "ras", virt_get_ras,
|
|
virt_set_ras);
|
|
object_class_property_set_description(oc, "ras",
|
|
"Set on/off to enable/disable reporting host memory errors "
|
|
"to a KVM guest using ACPI and guest external abort exceptions");
|
|
|
|
object_class_property_add_bool(oc, "mte", virt_get_mte, virt_set_mte);
|
|
object_class_property_set_description(oc, "mte",
|
|
"Set on/off to enable/disable emulating a "
|
|
"guest CPU which implements the ARM "
|
|
"Memory Tagging Extension");
|
|
|
|
object_class_property_add_bool(oc, "its", virt_get_its,
|
|
virt_set_its);
|
|
object_class_property_set_description(oc, "its",
|
|
"Set on/off to enable/disable "
|
|
"ITS instantiation");
|
|
|
|
object_class_property_add_bool(oc, "dtb-randomness",
|
|
virt_get_dtb_randomness,
|
|
virt_set_dtb_randomness);
|
|
object_class_property_set_description(oc, "dtb-randomness",
|
|
"Set off to disable passing random or "
|
|
"non-deterministic dtb nodes to guest");
|
|
|
|
object_class_property_add_bool(oc, "dtb-kaslr-seed",
|
|
virt_get_dtb_randomness,
|
|
virt_set_dtb_randomness);
|
|
object_class_property_set_description(oc, "dtb-kaslr-seed",
|
|
"Deprecated synonym of dtb-randomness");
|
|
|
|
object_class_property_add_str(oc, "x-oem-id",
|
|
virt_get_oem_id,
|
|
virt_set_oem_id);
|
|
object_class_property_set_description(oc, "x-oem-id",
|
|
"Override the default value of field OEMID "
|
|
"in ACPI table header."
|
|
"The string may be up to 6 bytes in size");
|
|
|
|
|
|
object_class_property_add_str(oc, "x-oem-table-id",
|
|
virt_get_oem_table_id,
|
|
virt_set_oem_table_id);
|
|
object_class_property_set_description(oc, "x-oem-table-id",
|
|
"Override the default value of field OEM Table ID "
|
|
"in ACPI table header."
|
|
"The string may be up to 8 bytes in size");
|
|
|
|
}
|
|
|
|
static void virt_instance_init(Object *obj)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(obj);
|
|
VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
|
|
|
|
/* EL3 is disabled by default on virt: this makes us consistent
|
|
* between KVM and TCG for this board, and it also allows us to
|
|
* boot UEFI blobs which assume no TrustZone support.
|
|
*/
|
|
vms->secure = false;
|
|
|
|
/* EL2 is also disabled by default, for similar reasons */
|
|
vms->virt = false;
|
|
|
|
/* High memory is enabled by default */
|
|
vms->highmem = true;
|
|
vms->highmem_compact = !vmc->no_highmem_compact;
|
|
vms->gic_version = VIRT_GIC_VERSION_NOSEL;
|
|
|
|
vms->highmem_ecam = !vmc->no_highmem_ecam;
|
|
vms->highmem_mmio = true;
|
|
vms->highmem_redists = true;
|
|
|
|
if (vmc->no_its) {
|
|
vms->its = false;
|
|
} else {
|
|
/* Default allows ITS instantiation */
|
|
vms->its = true;
|
|
|
|
if (vmc->no_tcg_its) {
|
|
vms->tcg_its = false;
|
|
} else {
|
|
vms->tcg_its = true;
|
|
}
|
|
}
|
|
|
|
/* Default disallows iommu instantiation */
|
|
vms->iommu = VIRT_IOMMU_NONE;
|
|
|
|
/* The default root bus is attached to iommu by default */
|
|
vms->default_bus_bypass_iommu = false;
|
|
|
|
/* Default disallows RAS instantiation */
|
|
vms->ras = false;
|
|
|
|
/* MTE is disabled by default. */
|
|
vms->mte = false;
|
|
|
|
/* Supply kaslr-seed and rng-seed by default */
|
|
vms->dtb_randomness = true;
|
|
|
|
vms->irqmap = a15irqmap;
|
|
|
|
virt_flash_create(vms);
|
|
|
|
vms->oem_id = g_strndup(ACPI_BUILD_APPNAME6, 6);
|
|
vms->oem_table_id = g_strndup(ACPI_BUILD_APPNAME8, 8);
|
|
}
|
|
|
|
static const TypeInfo virt_machine_info = {
|
|
.name = TYPE_VIRT_MACHINE,
|
|
.parent = TYPE_MACHINE,
|
|
.abstract = true,
|
|
.instance_size = sizeof(VirtMachineState),
|
|
.class_size = sizeof(VirtMachineClass),
|
|
.class_init = virt_machine_class_init,
|
|
.instance_init = virt_instance_init,
|
|
.interfaces = (InterfaceInfo[]) {
|
|
{ TYPE_HOTPLUG_HANDLER },
|
|
{ }
|
|
},
|
|
};
|
|
|
|
static void machvirt_machine_init(void)
|
|
{
|
|
type_register_static(&virt_machine_info);
|
|
}
|
|
type_init(machvirt_machine_init);
|
|
|
|
static void virt_machine_9_1_options(MachineClass *mc)
|
|
{
|
|
}
|
|
DEFINE_VIRT_MACHINE_AS_LATEST(9, 1)
|
|
|
|
static void virt_machine_9_0_options(MachineClass *mc)
|
|
{
|
|
virt_machine_9_1_options(mc);
|
|
compat_props_add(mc->compat_props, hw_compat_9_0, hw_compat_9_0_len);
|
|
}
|
|
DEFINE_VIRT_MACHINE(9, 0)
|
|
|
|
static void virt_machine_8_2_options(MachineClass *mc)
|
|
{
|
|
VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
|
|
|
|
virt_machine_9_0_options(mc);
|
|
compat_props_add(mc->compat_props, hw_compat_8_2, hw_compat_8_2_len);
|
|
/*
|
|
* Don't expose NS_EL2_VIRT timer IRQ in DTB on ACPI on 8.2 and
|
|
* earlier machines. (Exposing it tickles a bug in older EDK2
|
|
* guest BIOS binaries.)
|
|
*/
|
|
vmc->no_ns_el2_virt_timer_irq = true;
|
|
}
|
|
DEFINE_VIRT_MACHINE(8, 2)
|
|
|
|
static void virt_machine_8_1_options(MachineClass *mc)
|
|
{
|
|
virt_machine_8_2_options(mc);
|
|
compat_props_add(mc->compat_props, hw_compat_8_1, hw_compat_8_1_len);
|
|
}
|
|
DEFINE_VIRT_MACHINE(8, 1)
|
|
|
|
static void virt_machine_8_0_options(MachineClass *mc)
|
|
{
|
|
virt_machine_8_1_options(mc);
|
|
compat_props_add(mc->compat_props, hw_compat_8_0, hw_compat_8_0_len);
|
|
}
|
|
DEFINE_VIRT_MACHINE(8, 0)
|
|
|
|
static void virt_machine_7_2_options(MachineClass *mc)
|
|
{
|
|
virt_machine_8_0_options(mc);
|
|
compat_props_add(mc->compat_props, hw_compat_7_2, hw_compat_7_2_len);
|
|
}
|
|
DEFINE_VIRT_MACHINE(7, 2)
|
|
|
|
static void virt_machine_7_1_options(MachineClass *mc)
|
|
{
|
|
VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
|
|
|
|
virt_machine_7_2_options(mc);
|
|
compat_props_add(mc->compat_props, hw_compat_7_1, hw_compat_7_1_len);
|
|
/* Compact layout for high memory regions was introduced with 7.2 */
|
|
vmc->no_highmem_compact = true;
|
|
}
|
|
DEFINE_VIRT_MACHINE(7, 1)
|
|
|
|
static void virt_machine_7_0_options(MachineClass *mc)
|
|
{
|
|
virt_machine_7_1_options(mc);
|
|
compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len);
|
|
}
|
|
DEFINE_VIRT_MACHINE(7, 0)
|
|
|
|
static void virt_machine_6_2_options(MachineClass *mc)
|
|
{
|
|
VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
|
|
|
|
virt_machine_7_0_options(mc);
|
|
compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len);
|
|
vmc->no_tcg_lpa2 = true;
|
|
}
|
|
DEFINE_VIRT_MACHINE(6, 2)
|
|
|
|
static void virt_machine_6_1_options(MachineClass *mc)
|
|
{
|
|
VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
|
|
|
|
virt_machine_6_2_options(mc);
|
|
compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len);
|
|
mc->smp_props.prefer_sockets = true;
|
|
vmc->no_cpu_topology = true;
|
|
|
|
/* qemu ITS was introduced with 6.2 */
|
|
vmc->no_tcg_its = true;
|
|
}
|
|
DEFINE_VIRT_MACHINE(6, 1)
|
|
|
|
static void virt_machine_6_0_options(MachineClass *mc)
|
|
{
|
|
virt_machine_6_1_options(mc);
|
|
compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len);
|
|
}
|
|
DEFINE_VIRT_MACHINE(6, 0)
|
|
|
|
static void virt_machine_5_2_options(MachineClass *mc)
|
|
{
|
|
VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
|
|
|
|
virt_machine_6_0_options(mc);
|
|
compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
|
|
vmc->no_secure_gpio = true;
|
|
}
|
|
DEFINE_VIRT_MACHINE(5, 2)
|
|
|
|
static void virt_machine_5_1_options(MachineClass *mc)
|
|
{
|
|
VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
|
|
|
|
virt_machine_5_2_options(mc);
|
|
compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
|
|
vmc->no_kvm_steal_time = true;
|
|
}
|
|
DEFINE_VIRT_MACHINE(5, 1)
|
|
|
|
static void virt_machine_5_0_options(MachineClass *mc)
|
|
{
|
|
VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
|
|
|
|
virt_machine_5_1_options(mc);
|
|
compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
|
|
mc->numa_mem_supported = true;
|
|
vmc->acpi_expose_flash = true;
|
|
mc->auto_enable_numa_with_memdev = false;
|
|
}
|
|
DEFINE_VIRT_MACHINE(5, 0)
|
|
|
|
static void virt_machine_4_2_options(MachineClass *mc)
|
|
{
|
|
VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
|
|
|
|
virt_machine_5_0_options(mc);
|
|
compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
|
|
vmc->kvm_no_adjvtime = true;
|
|
}
|
|
DEFINE_VIRT_MACHINE(4, 2)
|
|
|
|
static void virt_machine_4_1_options(MachineClass *mc)
|
|
{
|
|
VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
|
|
|
|
virt_machine_4_2_options(mc);
|
|
compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
|
|
vmc->no_ged = true;
|
|
mc->auto_enable_numa_with_memhp = false;
|
|
}
|
|
DEFINE_VIRT_MACHINE(4, 1)
|
|
|
|
static void virt_machine_4_0_options(MachineClass *mc)
|
|
{
|
|
virt_machine_4_1_options(mc);
|
|
compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
|
|
}
|
|
DEFINE_VIRT_MACHINE(4, 0)
|
|
|
|
static void virt_machine_3_1_options(MachineClass *mc)
|
|
{
|
|
virt_machine_4_0_options(mc);
|
|
compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
|
|
}
|
|
DEFINE_VIRT_MACHINE(3, 1)
|
|
|
|
static void virt_machine_3_0_options(MachineClass *mc)
|
|
{
|
|
virt_machine_3_1_options(mc);
|
|
compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
|
|
}
|
|
DEFINE_VIRT_MACHINE(3, 0)
|
|
|
|
static void virt_machine_2_12_options(MachineClass *mc)
|
|
{
|
|
VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
|
|
|
|
virt_machine_3_0_options(mc);
|
|
compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
|
|
vmc->no_highmem_ecam = true;
|
|
mc->max_cpus = 255;
|
|
}
|
|
DEFINE_VIRT_MACHINE(2, 12)
|
|
|
|
static void virt_machine_2_11_options(MachineClass *mc)
|
|
{
|
|
VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
|
|
|
|
virt_machine_2_12_options(mc);
|
|
compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
|
|
vmc->smbios_old_sys_ver = true;
|
|
}
|
|
DEFINE_VIRT_MACHINE(2, 11)
|
|
|
|
static void virt_machine_2_10_options(MachineClass *mc)
|
|
{
|
|
virt_machine_2_11_options(mc);
|
|
compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
|
|
/* before 2.11 we never faulted accesses to bad addresses */
|
|
mc->ignore_memory_transaction_failures = true;
|
|
}
|
|
DEFINE_VIRT_MACHINE(2, 10)
|
|
|
|
static void virt_machine_2_9_options(MachineClass *mc)
|
|
{
|
|
virt_machine_2_10_options(mc);
|
|
compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
|
|
}
|
|
DEFINE_VIRT_MACHINE(2, 9)
|
|
|
|
static void virt_machine_2_8_options(MachineClass *mc)
|
|
{
|
|
VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
|
|
|
|
virt_machine_2_9_options(mc);
|
|
compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
|
|
/* For 2.8 and earlier we falsely claimed in the DT that
|
|
* our timers were edge-triggered, not level-triggered.
|
|
*/
|
|
vmc->claim_edge_triggered_timers = true;
|
|
}
|
|
DEFINE_VIRT_MACHINE(2, 8)
|
|
|
|
static void virt_machine_2_7_options(MachineClass *mc)
|
|
{
|
|
VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
|
|
|
|
virt_machine_2_8_options(mc);
|
|
compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
|
|
/* ITS was introduced with 2.8 */
|
|
vmc->no_its = true;
|
|
/* Stick with 1K pages for migration compatibility */
|
|
mc->minimum_page_bits = 0;
|
|
}
|
|
DEFINE_VIRT_MACHINE(2, 7)
|
|
|
|
static void virt_machine_2_6_options(MachineClass *mc)
|
|
{
|
|
VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
|
|
|
|
virt_machine_2_7_options(mc);
|
|
compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
|
|
vmc->disallow_affinity_adjustment = true;
|
|
/* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
|
|
vmc->no_pmu = true;
|
|
}
|
|
DEFINE_VIRT_MACHINE(2, 6)
|