d75a0b97e0
git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@5499 c046a42c-6fe2-441c-8c8c-71466251a162
742 lines
19 KiB
C
742 lines
19 KiB
C
/*
|
|
* libslirp glue
|
|
*
|
|
* Copyright (c) 2004-2008 Fabrice Bellard
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
#include "slirp.h"
|
|
|
|
/* host address */
|
|
struct in_addr our_addr;
|
|
/* host dns address */
|
|
struct in_addr dns_addr;
|
|
/* host loopback address */
|
|
struct in_addr loopback_addr;
|
|
|
|
/* address for slirp virtual addresses */
|
|
struct in_addr special_addr;
|
|
/* virtual address alias for host */
|
|
struct in_addr alias_addr;
|
|
|
|
static const uint8_t special_ethaddr[6] = {
|
|
0x52, 0x54, 0x00, 0x12, 0x35, 0x00
|
|
};
|
|
|
|
/* ARP cache for the guest IP addresses (XXX: allow many entries) */
|
|
uint8_t client_ethaddr[6];
|
|
static struct in_addr client_ipaddr;
|
|
|
|
static const uint8_t zero_ethaddr[6] = { 0, 0, 0, 0, 0, 0 };
|
|
|
|
int do_slowtimo;
|
|
int link_up;
|
|
struct timeval tt;
|
|
FILE *lfd;
|
|
struct ex_list *exec_list;
|
|
|
|
/* XXX: suppress those select globals */
|
|
fd_set *global_readfds, *global_writefds, *global_xfds;
|
|
|
|
char slirp_hostname[33];
|
|
|
|
#ifdef _WIN32
|
|
|
|
static int get_dns_addr(struct in_addr *pdns_addr)
|
|
{
|
|
FIXED_INFO *FixedInfo=NULL;
|
|
ULONG BufLen;
|
|
DWORD ret;
|
|
IP_ADDR_STRING *pIPAddr;
|
|
struct in_addr tmp_addr;
|
|
|
|
FixedInfo = (FIXED_INFO *)GlobalAlloc(GPTR, sizeof(FIXED_INFO));
|
|
BufLen = sizeof(FIXED_INFO);
|
|
|
|
if (ERROR_BUFFER_OVERFLOW == GetNetworkParams(FixedInfo, &BufLen)) {
|
|
if (FixedInfo) {
|
|
GlobalFree(FixedInfo);
|
|
FixedInfo = NULL;
|
|
}
|
|
FixedInfo = GlobalAlloc(GPTR, BufLen);
|
|
}
|
|
|
|
if ((ret = GetNetworkParams(FixedInfo, &BufLen)) != ERROR_SUCCESS) {
|
|
printf("GetNetworkParams failed. ret = %08x\n", (u_int)ret );
|
|
if (FixedInfo) {
|
|
GlobalFree(FixedInfo);
|
|
FixedInfo = NULL;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
pIPAddr = &(FixedInfo->DnsServerList);
|
|
inet_aton(pIPAddr->IpAddress.String, &tmp_addr);
|
|
*pdns_addr = tmp_addr;
|
|
#if 0
|
|
printf( "DNS Servers:\n" );
|
|
printf( "DNS Addr:%s\n", pIPAddr->IpAddress.String );
|
|
|
|
pIPAddr = FixedInfo -> DnsServerList.Next;
|
|
while ( pIPAddr ) {
|
|
printf( "DNS Addr:%s\n", pIPAddr ->IpAddress.String );
|
|
pIPAddr = pIPAddr ->Next;
|
|
}
|
|
#endif
|
|
if (FixedInfo) {
|
|
GlobalFree(FixedInfo);
|
|
FixedInfo = NULL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#else
|
|
|
|
static int get_dns_addr(struct in_addr *pdns_addr)
|
|
{
|
|
char buff[512];
|
|
char buff2[257];
|
|
FILE *f;
|
|
int found = 0;
|
|
struct in_addr tmp_addr;
|
|
|
|
f = fopen("/etc/resolv.conf", "r");
|
|
if (!f)
|
|
return -1;
|
|
|
|
#ifdef DEBUG
|
|
lprint("IP address of your DNS(s): ");
|
|
#endif
|
|
while (fgets(buff, 512, f) != NULL) {
|
|
if (sscanf(buff, "nameserver%*[ \t]%256s", buff2) == 1) {
|
|
if (!inet_aton(buff2, &tmp_addr))
|
|
continue;
|
|
if (tmp_addr.s_addr == loopback_addr.s_addr)
|
|
tmp_addr = our_addr;
|
|
/* If it's the first one, set it to dns_addr */
|
|
if (!found)
|
|
*pdns_addr = tmp_addr;
|
|
#ifdef DEBUG
|
|
else
|
|
lprint(", ");
|
|
#endif
|
|
if (++found > 3) {
|
|
#ifdef DEBUG
|
|
lprint("(more)");
|
|
#endif
|
|
break;
|
|
}
|
|
#ifdef DEBUG
|
|
else
|
|
lprint("%s", inet_ntoa(tmp_addr));
|
|
#endif
|
|
}
|
|
}
|
|
fclose(f);
|
|
if (!found)
|
|
return -1;
|
|
return 0;
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifdef _WIN32
|
|
static void slirp_cleanup(void)
|
|
{
|
|
WSACleanup();
|
|
}
|
|
#endif
|
|
|
|
void slirp_init(void)
|
|
{
|
|
// debug_init("/tmp/slirp.log", DEBUG_DEFAULT);
|
|
|
|
#ifdef _WIN32
|
|
{
|
|
WSADATA Data;
|
|
WSAStartup(MAKEWORD(2,0), &Data);
|
|
atexit(slirp_cleanup);
|
|
}
|
|
#endif
|
|
|
|
link_up = 1;
|
|
|
|
if_init();
|
|
ip_init();
|
|
|
|
/* Initialise mbufs *after* setting the MTU */
|
|
m_init();
|
|
|
|
/* set default addresses */
|
|
inet_aton("127.0.0.1", &loopback_addr);
|
|
|
|
if (get_dns_addr(&dns_addr) < 0) {
|
|
dns_addr = loopback_addr;
|
|
fprintf (stderr, "Warning: No DNS servers found\n");
|
|
}
|
|
|
|
inet_aton(CTL_SPECIAL, &special_addr);
|
|
alias_addr.s_addr = special_addr.s_addr | htonl(CTL_ALIAS);
|
|
getouraddr();
|
|
}
|
|
|
|
#define CONN_CANFSEND(so) (((so)->so_state & (SS_FCANTSENDMORE|SS_ISFCONNECTED)) == SS_ISFCONNECTED)
|
|
#define CONN_CANFRCV(so) (((so)->so_state & (SS_FCANTRCVMORE|SS_ISFCONNECTED)) == SS_ISFCONNECTED)
|
|
#define UPD_NFDS(x) if (nfds < (x)) nfds = (x)
|
|
|
|
/*
|
|
* curtime kept to an accuracy of 1ms
|
|
*/
|
|
#ifdef _WIN32
|
|
static void updtime(void)
|
|
{
|
|
struct _timeb tb;
|
|
|
|
_ftime(&tb);
|
|
curtime = (u_int)tb.time * (u_int)1000;
|
|
curtime += (u_int)tb.millitm;
|
|
}
|
|
#else
|
|
static void updtime(void)
|
|
{
|
|
gettimeofday(&tt, 0);
|
|
|
|
curtime = (u_int)tt.tv_sec * (u_int)1000;
|
|
curtime += (u_int)tt.tv_usec / (u_int)1000;
|
|
|
|
if ((tt.tv_usec % 1000) >= 500)
|
|
curtime++;
|
|
}
|
|
#endif
|
|
|
|
void slirp_select_fill(int *pnfds,
|
|
fd_set *readfds, fd_set *writefds, fd_set *xfds)
|
|
{
|
|
struct socket *so, *so_next;
|
|
struct timeval timeout;
|
|
int nfds;
|
|
int tmp_time;
|
|
|
|
/* fail safe */
|
|
global_readfds = NULL;
|
|
global_writefds = NULL;
|
|
global_xfds = NULL;
|
|
|
|
nfds = *pnfds;
|
|
/*
|
|
* First, TCP sockets
|
|
*/
|
|
do_slowtimo = 0;
|
|
if (link_up) {
|
|
/*
|
|
* *_slowtimo needs calling if there are IP fragments
|
|
* in the fragment queue, or there are TCP connections active
|
|
*/
|
|
do_slowtimo = ((tcb.so_next != &tcb) ||
|
|
((struct ipasfrag *)&ipq != (struct ipasfrag *)ipq.next));
|
|
|
|
for (so = tcb.so_next; so != &tcb; so = so_next) {
|
|
so_next = so->so_next;
|
|
|
|
/*
|
|
* See if we need a tcp_fasttimo
|
|
*/
|
|
if (time_fasttimo == 0 && so->so_tcpcb->t_flags & TF_DELACK)
|
|
time_fasttimo = curtime; /* Flag when we want a fasttimo */
|
|
|
|
/*
|
|
* NOFDREF can include still connecting to local-host,
|
|
* newly socreated() sockets etc. Don't want to select these.
|
|
*/
|
|
if (so->so_state & SS_NOFDREF || so->s == -1)
|
|
continue;
|
|
|
|
/*
|
|
* Set for reading sockets which are accepting
|
|
*/
|
|
if (so->so_state & SS_FACCEPTCONN) {
|
|
FD_SET(so->s, readfds);
|
|
UPD_NFDS(so->s);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Set for writing sockets which are connecting
|
|
*/
|
|
if (so->so_state & SS_ISFCONNECTING) {
|
|
FD_SET(so->s, writefds);
|
|
UPD_NFDS(so->s);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Set for writing if we are connected, can send more, and
|
|
* we have something to send
|
|
*/
|
|
if (CONN_CANFSEND(so) && so->so_rcv.sb_cc) {
|
|
FD_SET(so->s, writefds);
|
|
UPD_NFDS(so->s);
|
|
}
|
|
|
|
/*
|
|
* Set for reading (and urgent data) if we are connected, can
|
|
* receive more, and we have room for it XXX /2 ?
|
|
*/
|
|
if (CONN_CANFRCV(so) && (so->so_snd.sb_cc < (so->so_snd.sb_datalen/2))) {
|
|
FD_SET(so->s, readfds);
|
|
FD_SET(so->s, xfds);
|
|
UPD_NFDS(so->s);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* UDP sockets
|
|
*/
|
|
for (so = udb.so_next; so != &udb; so = so_next) {
|
|
so_next = so->so_next;
|
|
|
|
/*
|
|
* See if it's timed out
|
|
*/
|
|
if (so->so_expire) {
|
|
if (so->so_expire <= curtime) {
|
|
udp_detach(so);
|
|
continue;
|
|
} else
|
|
do_slowtimo = 1; /* Let socket expire */
|
|
}
|
|
|
|
/*
|
|
* When UDP packets are received from over the
|
|
* link, they're sendto()'d straight away, so
|
|
* no need for setting for writing
|
|
* Limit the number of packets queued by this session
|
|
* to 4. Note that even though we try and limit this
|
|
* to 4 packets, the session could have more queued
|
|
* if the packets needed to be fragmented
|
|
* (XXX <= 4 ?)
|
|
*/
|
|
if ((so->so_state & SS_ISFCONNECTED) && so->so_queued <= 4) {
|
|
FD_SET(so->s, readfds);
|
|
UPD_NFDS(so->s);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Setup timeout to use minimum CPU usage, especially when idle
|
|
*/
|
|
|
|
/*
|
|
* First, see the timeout needed by *timo
|
|
*/
|
|
timeout.tv_sec = 0;
|
|
timeout.tv_usec = -1;
|
|
/*
|
|
* If a slowtimo is needed, set timeout to 500ms from the last
|
|
* slow timeout. If a fast timeout is needed, set timeout within
|
|
* 200ms of when it was requested.
|
|
*/
|
|
if (do_slowtimo) {
|
|
/* XXX + 10000 because some select()'s aren't that accurate */
|
|
timeout.tv_usec = ((500 - (curtime - last_slowtimo)) * 1000) + 10000;
|
|
if (timeout.tv_usec < 0)
|
|
timeout.tv_usec = 0;
|
|
else if (timeout.tv_usec > 510000)
|
|
timeout.tv_usec = 510000;
|
|
|
|
/* Can only fasttimo if we also slowtimo */
|
|
if (time_fasttimo) {
|
|
tmp_time = (200 - (curtime - time_fasttimo)) * 1000;
|
|
if (tmp_time < 0)
|
|
tmp_time = 0;
|
|
|
|
/* Choose the smallest of the 2 */
|
|
if (tmp_time < timeout.tv_usec)
|
|
timeout.tv_usec = (u_int)tmp_time;
|
|
}
|
|
}
|
|
*pnfds = nfds;
|
|
}
|
|
|
|
void slirp_select_poll(fd_set *readfds, fd_set *writefds, fd_set *xfds)
|
|
{
|
|
struct socket *so, *so_next;
|
|
int ret;
|
|
|
|
global_readfds = readfds;
|
|
global_writefds = writefds;
|
|
global_xfds = xfds;
|
|
|
|
/* Update time */
|
|
updtime();
|
|
|
|
/*
|
|
* See if anything has timed out
|
|
*/
|
|
if (link_up) {
|
|
if (time_fasttimo && ((curtime - time_fasttimo) >= 2)) {
|
|
tcp_fasttimo();
|
|
time_fasttimo = 0;
|
|
}
|
|
if (do_slowtimo && ((curtime - last_slowtimo) >= 499)) {
|
|
ip_slowtimo();
|
|
tcp_slowtimo();
|
|
last_slowtimo = curtime;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check sockets
|
|
*/
|
|
if (link_up) {
|
|
/*
|
|
* Check TCP sockets
|
|
*/
|
|
for (so = tcb.so_next; so != &tcb; so = so_next) {
|
|
so_next = so->so_next;
|
|
|
|
/*
|
|
* FD_ISSET is meaningless on these sockets
|
|
* (and they can crash the program)
|
|
*/
|
|
if (so->so_state & SS_NOFDREF || so->s == -1)
|
|
continue;
|
|
|
|
/*
|
|
* Check for URG data
|
|
* This will soread as well, so no need to
|
|
* test for readfds below if this succeeds
|
|
*/
|
|
if (FD_ISSET(so->s, xfds))
|
|
sorecvoob(so);
|
|
/*
|
|
* Check sockets for reading
|
|
*/
|
|
else if (FD_ISSET(so->s, readfds)) {
|
|
/*
|
|
* Check for incoming connections
|
|
*/
|
|
if (so->so_state & SS_FACCEPTCONN) {
|
|
tcp_connect(so);
|
|
continue;
|
|
} /* else */
|
|
ret = soread(so);
|
|
|
|
/* Output it if we read something */
|
|
if (ret > 0)
|
|
tcp_output(sototcpcb(so));
|
|
}
|
|
|
|
/*
|
|
* Check sockets for writing
|
|
*/
|
|
if (FD_ISSET(so->s, writefds)) {
|
|
/*
|
|
* Check for non-blocking, still-connecting sockets
|
|
*/
|
|
if (so->so_state & SS_ISFCONNECTING) {
|
|
/* Connected */
|
|
so->so_state &= ~SS_ISFCONNECTING;
|
|
|
|
ret = send(so->s, &ret, 0, 0);
|
|
if (ret < 0) {
|
|
/* XXXXX Must fix, zero bytes is a NOP */
|
|
if (errno == EAGAIN || errno == EWOULDBLOCK ||
|
|
errno == EINPROGRESS || errno == ENOTCONN)
|
|
continue;
|
|
|
|
/* else failed */
|
|
so->so_state = SS_NOFDREF;
|
|
}
|
|
/* else so->so_state &= ~SS_ISFCONNECTING; */
|
|
|
|
/*
|
|
* Continue tcp_input
|
|
*/
|
|
tcp_input((struct mbuf *)NULL, sizeof(struct ip), so);
|
|
/* continue; */
|
|
} else
|
|
ret = sowrite(so);
|
|
/*
|
|
* XXXXX If we wrote something (a lot), there
|
|
* could be a need for a window update.
|
|
* In the worst case, the remote will send
|
|
* a window probe to get things going again
|
|
*/
|
|
}
|
|
|
|
/*
|
|
* Probe a still-connecting, non-blocking socket
|
|
* to check if it's still alive
|
|
*/
|
|
#ifdef PROBE_CONN
|
|
if (so->so_state & SS_ISFCONNECTING) {
|
|
ret = recv(so->s, (char *)&ret, 0,0);
|
|
|
|
if (ret < 0) {
|
|
/* XXX */
|
|
if (errno == EAGAIN || errno == EWOULDBLOCK ||
|
|
errno == EINPROGRESS || errno == ENOTCONN)
|
|
continue; /* Still connecting, continue */
|
|
|
|
/* else failed */
|
|
so->so_state = SS_NOFDREF;
|
|
|
|
/* tcp_input will take care of it */
|
|
} else {
|
|
ret = send(so->s, &ret, 0,0);
|
|
if (ret < 0) {
|
|
/* XXX */
|
|
if (errno == EAGAIN || errno == EWOULDBLOCK ||
|
|
errno == EINPROGRESS || errno == ENOTCONN)
|
|
continue;
|
|
/* else failed */
|
|
so->so_state = SS_NOFDREF;
|
|
} else
|
|
so->so_state &= ~SS_ISFCONNECTING;
|
|
|
|
}
|
|
tcp_input((struct mbuf *)NULL, sizeof(struct ip),so);
|
|
} /* SS_ISFCONNECTING */
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Now UDP sockets.
|
|
* Incoming packets are sent straight away, they're not buffered.
|
|
* Incoming UDP data isn't buffered either.
|
|
*/
|
|
for (so = udb.so_next; so != &udb; so = so_next) {
|
|
so_next = so->so_next;
|
|
|
|
if (so->s != -1 && FD_ISSET(so->s, readfds)) {
|
|
sorecvfrom(so);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* See if we can start outputting
|
|
*/
|
|
if (if_queued && link_up)
|
|
if_start();
|
|
|
|
/* clear global file descriptor sets.
|
|
* these reside on the stack in vl.c
|
|
* so they're unusable if we're not in
|
|
* slirp_select_fill or slirp_select_poll.
|
|
*/
|
|
global_readfds = NULL;
|
|
global_writefds = NULL;
|
|
global_xfds = NULL;
|
|
}
|
|
|
|
#define ETH_ALEN 6
|
|
#define ETH_HLEN 14
|
|
|
|
#define ETH_P_IP 0x0800 /* Internet Protocol packet */
|
|
#define ETH_P_ARP 0x0806 /* Address Resolution packet */
|
|
|
|
#define ARPOP_REQUEST 1 /* ARP request */
|
|
#define ARPOP_REPLY 2 /* ARP reply */
|
|
|
|
struct ethhdr
|
|
{
|
|
unsigned char h_dest[ETH_ALEN]; /* destination eth addr */
|
|
unsigned char h_source[ETH_ALEN]; /* source ether addr */
|
|
unsigned short h_proto; /* packet type ID field */
|
|
};
|
|
|
|
struct arphdr
|
|
{
|
|
unsigned short ar_hrd; /* format of hardware address */
|
|
unsigned short ar_pro; /* format of protocol address */
|
|
unsigned char ar_hln; /* length of hardware address */
|
|
unsigned char ar_pln; /* length of protocol address */
|
|
unsigned short ar_op; /* ARP opcode (command) */
|
|
|
|
/*
|
|
* Ethernet looks like this : This bit is variable sized however...
|
|
*/
|
|
unsigned char ar_sha[ETH_ALEN]; /* sender hardware address */
|
|
unsigned char ar_sip[4]; /* sender IP address */
|
|
unsigned char ar_tha[ETH_ALEN]; /* target hardware address */
|
|
unsigned char ar_tip[4]; /* target IP address */
|
|
};
|
|
|
|
static void arp_input(const uint8_t *pkt, int pkt_len)
|
|
{
|
|
struct ethhdr *eh = (struct ethhdr *)pkt;
|
|
struct arphdr *ah = (struct arphdr *)(pkt + ETH_HLEN);
|
|
uint8_t arp_reply[ETH_HLEN + sizeof(struct arphdr)];
|
|
struct ethhdr *reh = (struct ethhdr *)arp_reply;
|
|
struct arphdr *rah = (struct arphdr *)(arp_reply + ETH_HLEN);
|
|
int ar_op;
|
|
struct ex_list *ex_ptr;
|
|
|
|
ar_op = ntohs(ah->ar_op);
|
|
switch(ar_op) {
|
|
case ARPOP_REQUEST:
|
|
if (!memcmp(ah->ar_tip, &special_addr, 3)) {
|
|
if (ah->ar_tip[3] == CTL_DNS || ah->ar_tip[3] == CTL_ALIAS)
|
|
goto arp_ok;
|
|
for (ex_ptr = exec_list; ex_ptr; ex_ptr = ex_ptr->ex_next) {
|
|
if (ex_ptr->ex_addr == ah->ar_tip[3])
|
|
goto arp_ok;
|
|
}
|
|
return;
|
|
arp_ok:
|
|
/* XXX: make an ARP request to have the client address */
|
|
memcpy(client_ethaddr, eh->h_source, ETH_ALEN);
|
|
|
|
/* ARP request for alias/dns mac address */
|
|
memcpy(reh->h_dest, pkt + ETH_ALEN, ETH_ALEN);
|
|
memcpy(reh->h_source, special_ethaddr, ETH_ALEN - 1);
|
|
reh->h_source[5] = ah->ar_tip[3];
|
|
reh->h_proto = htons(ETH_P_ARP);
|
|
|
|
rah->ar_hrd = htons(1);
|
|
rah->ar_pro = htons(ETH_P_IP);
|
|
rah->ar_hln = ETH_ALEN;
|
|
rah->ar_pln = 4;
|
|
rah->ar_op = htons(ARPOP_REPLY);
|
|
memcpy(rah->ar_sha, reh->h_source, ETH_ALEN);
|
|
memcpy(rah->ar_sip, ah->ar_tip, 4);
|
|
memcpy(rah->ar_tha, ah->ar_sha, ETH_ALEN);
|
|
memcpy(rah->ar_tip, ah->ar_sip, 4);
|
|
slirp_output(arp_reply, sizeof(arp_reply));
|
|
}
|
|
break;
|
|
case ARPOP_REPLY:
|
|
/* reply to request of client mac address ? */
|
|
if (!memcmp(client_ethaddr, zero_ethaddr, ETH_ALEN) &&
|
|
!memcmp(ah->ar_sip, &client_ipaddr.s_addr, 4)) {
|
|
memcpy(client_ethaddr, ah->ar_sha, ETH_ALEN);
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
void slirp_input(const uint8_t *pkt, int pkt_len)
|
|
{
|
|
struct mbuf *m;
|
|
int proto;
|
|
|
|
if (pkt_len < ETH_HLEN)
|
|
return;
|
|
|
|
proto = ntohs(*(uint16_t *)(pkt + 12));
|
|
switch(proto) {
|
|
case ETH_P_ARP:
|
|
arp_input(pkt, pkt_len);
|
|
break;
|
|
case ETH_P_IP:
|
|
m = m_get();
|
|
if (!m)
|
|
return;
|
|
/* Note: we add to align the IP header */
|
|
m->m_len = pkt_len + 2;
|
|
memcpy(m->m_data + 2, pkt, pkt_len);
|
|
|
|
m->m_data += 2 + ETH_HLEN;
|
|
m->m_len -= 2 + ETH_HLEN;
|
|
|
|
ip_input(m);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* output the IP packet to the ethernet device */
|
|
void if_encap(const uint8_t *ip_data, int ip_data_len)
|
|
{
|
|
uint8_t buf[1600];
|
|
struct ethhdr *eh = (struct ethhdr *)buf;
|
|
|
|
if (ip_data_len + ETH_HLEN > sizeof(buf))
|
|
return;
|
|
|
|
if (!memcmp(client_ethaddr, zero_ethaddr, ETH_ALEN)) {
|
|
uint8_t arp_req[ETH_HLEN + sizeof(struct arphdr)];
|
|
struct ethhdr *reh = (struct ethhdr *)arp_req;
|
|
struct arphdr *rah = (struct arphdr *)(arp_req + ETH_HLEN);
|
|
const struct ip *iph = (const struct ip *)ip_data;
|
|
|
|
/* If the client addr is not known, there is no point in
|
|
sending the packet to it. Normally the sender should have
|
|
done an ARP request to get its MAC address. Here we do it
|
|
in place of sending the packet and we hope that the sender
|
|
will retry sending its packet. */
|
|
memset(reh->h_dest, 0xff, ETH_ALEN);
|
|
memcpy(reh->h_source, special_ethaddr, ETH_ALEN - 1);
|
|
reh->h_source[5] = CTL_ALIAS;
|
|
reh->h_proto = htons(ETH_P_ARP);
|
|
rah->ar_hrd = htons(1);
|
|
rah->ar_pro = htons(ETH_P_IP);
|
|
rah->ar_hln = ETH_ALEN;
|
|
rah->ar_pln = 4;
|
|
rah->ar_op = htons(ARPOP_REQUEST);
|
|
/* source hw addr */
|
|
memcpy(rah->ar_sha, special_ethaddr, ETH_ALEN - 1);
|
|
rah->ar_sha[5] = CTL_ALIAS;
|
|
/* source IP */
|
|
memcpy(rah->ar_sip, &alias_addr, 4);
|
|
/* target hw addr (none) */
|
|
memset(rah->ar_tha, 0, ETH_ALEN);
|
|
/* target IP */
|
|
memcpy(rah->ar_tip, &iph->ip_dst, 4);
|
|
client_ipaddr = iph->ip_dst;
|
|
slirp_output(arp_req, sizeof(arp_req));
|
|
} else {
|
|
memcpy(eh->h_dest, client_ethaddr, ETH_ALEN);
|
|
memcpy(eh->h_source, special_ethaddr, ETH_ALEN - 1);
|
|
/* XXX: not correct */
|
|
eh->h_source[5] = CTL_ALIAS;
|
|
eh->h_proto = htons(ETH_P_IP);
|
|
memcpy(buf + sizeof(struct ethhdr), ip_data, ip_data_len);
|
|
slirp_output(buf, ip_data_len + ETH_HLEN);
|
|
}
|
|
}
|
|
|
|
int slirp_redir(int is_udp, int host_port,
|
|
struct in_addr guest_addr, int guest_port)
|
|
{
|
|
if (is_udp) {
|
|
if (!udp_listen(htons(host_port), guest_addr.s_addr,
|
|
htons(guest_port), 0))
|
|
return -1;
|
|
} else {
|
|
if (!solisten(htons(host_port), guest_addr.s_addr,
|
|
htons(guest_port), 0))
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int slirp_add_exec(int do_pty, const char *args, int addr_low_byte,
|
|
int guest_port)
|
|
{
|
|
return add_exec(&exec_list, do_pty, (char *)args,
|
|
addr_low_byte, htons(guest_port));
|
|
}
|