9801c7b436
Signed-off-by: Blue Swirl <blauwirbel@gmail.com>
468 lines
14 KiB
C
468 lines
14 KiB
C
/*
|
|
* Virtual hardware watchdog.
|
|
*
|
|
* Copyright (C) 2009 Red Hat Inc.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
* By Richard W.M. Jones (rjones@redhat.com).
|
|
*/
|
|
|
|
#include <inttypes.h>
|
|
|
|
#include "qemu-common.h"
|
|
#include "qemu-timer.h"
|
|
#include "watchdog.h"
|
|
#include "hw.h"
|
|
#include "pci.h"
|
|
|
|
/*#define I6300ESB_DEBUG 1*/
|
|
|
|
#ifdef I6300ESB_DEBUG
|
|
#define i6300esb_debug(fs,...) \
|
|
fprintf(stderr,"i6300esb: %s: "fs,__func__,##__VA_ARGS__)
|
|
#else
|
|
#define i6300esb_debug(fs,...)
|
|
#endif
|
|
|
|
#ifndef PCI_DEVICE_ID_INTEL_ESB_9
|
|
#define PCI_DEVICE_ID_INTEL_ESB_9 0x25ab
|
|
#endif
|
|
|
|
/* PCI configuration registers */
|
|
#define ESB_CONFIG_REG 0x60 /* Config register */
|
|
#define ESB_LOCK_REG 0x68 /* WDT lock register */
|
|
|
|
/* Memory mapped registers (offset from base address) */
|
|
#define ESB_TIMER1_REG 0x00 /* Timer1 value after each reset */
|
|
#define ESB_TIMER2_REG 0x04 /* Timer2 value after each reset */
|
|
#define ESB_GINTSR_REG 0x08 /* General Interrupt Status Register */
|
|
#define ESB_RELOAD_REG 0x0c /* Reload register */
|
|
|
|
/* Lock register bits */
|
|
#define ESB_WDT_FUNC (0x01 << 2) /* Watchdog functionality */
|
|
#define ESB_WDT_ENABLE (0x01 << 1) /* Enable WDT */
|
|
#define ESB_WDT_LOCK (0x01 << 0) /* Lock (nowayout) */
|
|
|
|
/* Config register bits */
|
|
#define ESB_WDT_REBOOT (0x01 << 5) /* Enable reboot on timeout */
|
|
#define ESB_WDT_FREQ (0x01 << 2) /* Decrement frequency */
|
|
#define ESB_WDT_INTTYPE (0x11 << 0) /* Interrupt type on timer1 timeout */
|
|
|
|
/* Reload register bits */
|
|
#define ESB_WDT_RELOAD (0x01 << 8) /* prevent timeout */
|
|
|
|
/* Magic constants */
|
|
#define ESB_UNLOCK1 0x80 /* Step 1 to unlock reset registers */
|
|
#define ESB_UNLOCK2 0x86 /* Step 2 to unlock reset registers */
|
|
|
|
/* Device state. */
|
|
struct I6300State {
|
|
PCIDevice dev;
|
|
|
|
int reboot_enabled; /* "Reboot" on timer expiry. The real action
|
|
* performed depends on the -watchdog-action
|
|
* param passed on QEMU command line.
|
|
*/
|
|
int clock_scale; /* Clock scale. */
|
|
#define CLOCK_SCALE_1KHZ 0
|
|
#define CLOCK_SCALE_1MHZ 1
|
|
|
|
int int_type; /* Interrupt type generated. */
|
|
#define INT_TYPE_IRQ 0 /* APIC 1, INT 10 */
|
|
#define INT_TYPE_SMI 2
|
|
#define INT_TYPE_DISABLED 3
|
|
|
|
int free_run; /* If true, reload timer on expiry. */
|
|
int locked; /* If true, enabled field cannot be changed. */
|
|
int enabled; /* If true, watchdog is enabled. */
|
|
|
|
QEMUTimer *timer; /* The actual watchdog timer. */
|
|
|
|
uint32_t timer1_preload; /* Values preloaded into timer1, timer2. */
|
|
uint32_t timer2_preload;
|
|
int stage; /* Stage (1 or 2). */
|
|
|
|
int unlock_state; /* Guest writes 0x80, 0x86 to unlock the
|
|
* registers, and we transition through
|
|
* states 0 -> 1 -> 2 when this happens.
|
|
*/
|
|
|
|
int previous_reboot_flag; /* If the watchdog caused the previous
|
|
* reboot, this flag will be set.
|
|
*/
|
|
};
|
|
|
|
typedef struct I6300State I6300State;
|
|
|
|
/* This function is called when the watchdog has either been enabled
|
|
* (hence it starts counting down) or has been keep-alived.
|
|
*/
|
|
static void i6300esb_restart_timer(I6300State *d, int stage)
|
|
{
|
|
int64_t timeout;
|
|
|
|
if (!d->enabled)
|
|
return;
|
|
|
|
d->stage = stage;
|
|
|
|
if (d->stage <= 1)
|
|
timeout = d->timer1_preload;
|
|
else
|
|
timeout = d->timer2_preload;
|
|
|
|
if (d->clock_scale == CLOCK_SCALE_1KHZ)
|
|
timeout <<= 15;
|
|
else
|
|
timeout <<= 5;
|
|
|
|
/* Get the timeout in units of ticks_per_sec. */
|
|
timeout = get_ticks_per_sec() * timeout / 33000000;
|
|
|
|
i6300esb_debug("stage %d, timeout %" PRIi64 "\n", d->stage, timeout);
|
|
|
|
qemu_mod_timer(d->timer, qemu_get_clock(vm_clock) + timeout);
|
|
}
|
|
|
|
/* This is called when the guest disables the watchdog. */
|
|
static void i6300esb_disable_timer(I6300State *d)
|
|
{
|
|
i6300esb_debug("timer disabled\n");
|
|
|
|
qemu_del_timer(d->timer);
|
|
}
|
|
|
|
static void i6300esb_reset(I6300State *d)
|
|
{
|
|
/* XXX We should probably reset other parts of the state here,
|
|
* but we should also reset our state on general machine reset
|
|
* too. For now just disable the timer so it doesn't fire
|
|
* again after the reboot.
|
|
*/
|
|
i6300esb_disable_timer(d);
|
|
}
|
|
|
|
/* This function is called when the watchdog expires. Note that
|
|
* the hardware has two timers, and so expiry happens in two stages.
|
|
* If d->stage == 1 then we perform the first stage action (usually,
|
|
* sending an interrupt) and then restart the timer again for the
|
|
* second stage. If the second stage expires then the watchdog
|
|
* really has run out.
|
|
*/
|
|
static void i6300esb_timer_expired(void *vp)
|
|
{
|
|
I6300State *d = (I6300State *) vp;
|
|
|
|
i6300esb_debug("stage %d\n", d->stage);
|
|
|
|
if (d->stage == 1) {
|
|
/* What to do at the end of stage 1? */
|
|
switch (d->int_type) {
|
|
case INT_TYPE_IRQ:
|
|
fprintf(stderr, "i6300esb_timer_expired: I would send APIC 1 INT 10 here if I knew how (XXX)\n");
|
|
break;
|
|
case INT_TYPE_SMI:
|
|
fprintf(stderr, "i6300esb_timer_expired: I would send SMI here if I knew how (XXX)\n");
|
|
break;
|
|
}
|
|
|
|
/* Start the second stage. */
|
|
i6300esb_restart_timer(d, 2);
|
|
} else {
|
|
/* Second stage expired, reboot for real. */
|
|
if (d->reboot_enabled) {
|
|
d->previous_reboot_flag = 1;
|
|
watchdog_perform_action(); /* This reboots, exits, etc */
|
|
i6300esb_reset(d);
|
|
}
|
|
|
|
/* In "free running mode" we start stage 1 again. */
|
|
if (d->free_run)
|
|
i6300esb_restart_timer(d, 1);
|
|
}
|
|
}
|
|
|
|
static void i6300esb_config_write(PCIDevice *dev, uint32_t addr,
|
|
uint32_t data, int len)
|
|
{
|
|
I6300State *d = DO_UPCAST(I6300State, dev, dev);
|
|
int old;
|
|
|
|
i6300esb_debug("addr = %x, data = %x, len = %d\n", addr, data, len);
|
|
|
|
if (addr == ESB_CONFIG_REG && len == 2) {
|
|
d->reboot_enabled = (data & ESB_WDT_REBOOT) == 0;
|
|
d->clock_scale =
|
|
(data & ESB_WDT_FREQ) != 0 ? CLOCK_SCALE_1MHZ : CLOCK_SCALE_1KHZ;
|
|
d->int_type = (data & ESB_WDT_INTTYPE);
|
|
} else if (addr == ESB_LOCK_REG && len == 1) {
|
|
if (!d->locked) {
|
|
d->locked = (data & ESB_WDT_LOCK) != 0;
|
|
d->free_run = (data & ESB_WDT_FUNC) != 0;
|
|
old = d->enabled;
|
|
d->enabled = (data & ESB_WDT_ENABLE) != 0;
|
|
if (!old && d->enabled) /* Enabled transitioned from 0 -> 1 */
|
|
i6300esb_restart_timer(d, 1);
|
|
else if (!d->enabled)
|
|
i6300esb_disable_timer(d);
|
|
}
|
|
} else {
|
|
pci_default_write_config(dev, addr, data, len);
|
|
}
|
|
}
|
|
|
|
static uint32_t i6300esb_config_read(PCIDevice *dev, uint32_t addr, int len)
|
|
{
|
|
I6300State *d = DO_UPCAST(I6300State, dev, dev);
|
|
uint32_t data;
|
|
|
|
i6300esb_debug ("addr = %x, len = %d\n", addr, len);
|
|
|
|
if (addr == ESB_CONFIG_REG && len == 2) {
|
|
data =
|
|
(d->reboot_enabled ? 0 : ESB_WDT_REBOOT) |
|
|
(d->clock_scale == CLOCK_SCALE_1MHZ ? ESB_WDT_FREQ : 0) |
|
|
d->int_type;
|
|
return data;
|
|
} else if (addr == ESB_LOCK_REG && len == 1) {
|
|
data =
|
|
(d->free_run ? ESB_WDT_FUNC : 0) |
|
|
(d->locked ? ESB_WDT_LOCK : 0) |
|
|
(d->enabled ? ESB_WDT_ENABLE : 0);
|
|
return data;
|
|
} else {
|
|
return pci_default_read_config(dev, addr, len);
|
|
}
|
|
}
|
|
|
|
static uint32_t i6300esb_mem_readb(void *vp, target_phys_addr_t addr)
|
|
{
|
|
i6300esb_debug ("addr = %x\n", (int) addr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static uint32_t i6300esb_mem_readw(void *vp, target_phys_addr_t addr)
|
|
{
|
|
uint32_t data = 0;
|
|
I6300State *d = (I6300State *) vp;
|
|
|
|
i6300esb_debug("addr = %x\n", (int) addr);
|
|
|
|
if (addr == 0xc) {
|
|
/* The previous reboot flag is really bit 9, but there is
|
|
* a bug in the Linux driver where it thinks it's bit 12.
|
|
* Set both.
|
|
*/
|
|
data = d->previous_reboot_flag ? 0x1200 : 0;
|
|
}
|
|
|
|
return data;
|
|
}
|
|
|
|
static uint32_t i6300esb_mem_readl(void *vp, target_phys_addr_t addr)
|
|
{
|
|
i6300esb_debug("addr = %x\n", (int) addr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void i6300esb_mem_writeb(void *vp, target_phys_addr_t addr, uint32_t val)
|
|
{
|
|
I6300State *d = (I6300State *) vp;
|
|
|
|
i6300esb_debug("addr = %x, val = %x\n", (int) addr, val);
|
|
|
|
if (addr == 0xc && val == 0x80)
|
|
d->unlock_state = 1;
|
|
else if (addr == 0xc && val == 0x86 && d->unlock_state == 1)
|
|
d->unlock_state = 2;
|
|
}
|
|
|
|
static void i6300esb_mem_writew(void *vp, target_phys_addr_t addr, uint32_t val)
|
|
{
|
|
I6300State *d = (I6300State *) vp;
|
|
|
|
i6300esb_debug("addr = %x, val = %x\n", (int) addr, val);
|
|
|
|
if (addr == 0xc && val == 0x80)
|
|
d->unlock_state = 1;
|
|
else if (addr == 0xc && val == 0x86 && d->unlock_state == 1)
|
|
d->unlock_state = 2;
|
|
else {
|
|
if (d->unlock_state == 2) {
|
|
if (addr == 0xc) {
|
|
if ((val & 0x100) != 0)
|
|
/* This is the "ping" from the userspace watchdog in
|
|
* the guest ...
|
|
*/
|
|
i6300esb_restart_timer(d, 1);
|
|
|
|
/* Setting bit 9 resets the previous reboot flag.
|
|
* There's a bug in the Linux driver where it sets
|
|
* bit 12 instead.
|
|
*/
|
|
if ((val & 0x200) != 0 || (val & 0x1000) != 0) {
|
|
d->previous_reboot_flag = 0;
|
|
}
|
|
}
|
|
|
|
d->unlock_state = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void i6300esb_mem_writel(void *vp, target_phys_addr_t addr, uint32_t val)
|
|
{
|
|
I6300State *d = (I6300State *) vp;
|
|
|
|
i6300esb_debug ("addr = %x, val = %x\n", (int) addr, val);
|
|
|
|
if (addr == 0xc && val == 0x80)
|
|
d->unlock_state = 1;
|
|
else if (addr == 0xc && val == 0x86 && d->unlock_state == 1)
|
|
d->unlock_state = 2;
|
|
else {
|
|
if (d->unlock_state == 2) {
|
|
if (addr == 0)
|
|
d->timer1_preload = val & 0xfffff;
|
|
else if (addr == 4)
|
|
d->timer2_preload = val & 0xfffff;
|
|
|
|
d->unlock_state = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void i6300esb_map(PCIDevice *dev, int region_num,
|
|
uint32_t addr, uint32_t size, int type)
|
|
{
|
|
static CPUReadMemoryFunc * const mem_read[3] = {
|
|
i6300esb_mem_readb,
|
|
i6300esb_mem_readw,
|
|
i6300esb_mem_readl,
|
|
};
|
|
static CPUWriteMemoryFunc * const mem_write[3] = {
|
|
i6300esb_mem_writeb,
|
|
i6300esb_mem_writew,
|
|
i6300esb_mem_writel,
|
|
};
|
|
I6300State *d = DO_UPCAST(I6300State, dev, dev);
|
|
int io_mem;
|
|
|
|
i6300esb_debug("addr = %x, size = %x, type = %d\n", addr, size, type);
|
|
|
|
io_mem = cpu_register_io_memory(mem_read, mem_write, d);
|
|
cpu_register_physical_memory (addr, 0x10, io_mem);
|
|
/* qemu_register_coalesced_mmio (addr, 0x10); ? */
|
|
}
|
|
|
|
static void i6300esb_save(QEMUFile *f, void *vp)
|
|
{
|
|
I6300State *d = (I6300State *) vp;
|
|
|
|
pci_device_save(&d->dev, f);
|
|
qemu_put_be32(f, d->reboot_enabled);
|
|
qemu_put_be32(f, d->clock_scale);
|
|
qemu_put_be32(f, d->int_type);
|
|
qemu_put_be32(f, d->free_run);
|
|
qemu_put_be32(f, d->locked);
|
|
qemu_put_be32(f, d->enabled);
|
|
qemu_put_timer(f, d->timer);
|
|
qemu_put_be32(f, d->timer1_preload);
|
|
qemu_put_be32(f, d->timer2_preload);
|
|
qemu_put_be32(f, d->stage);
|
|
qemu_put_be32(f, d->unlock_state);
|
|
qemu_put_be32(f, d->previous_reboot_flag);
|
|
}
|
|
|
|
static int i6300esb_load(QEMUFile *f, void *vp, int version)
|
|
{
|
|
I6300State *d = (I6300State *) vp;
|
|
|
|
if (version != sizeof (I6300State))
|
|
return -EINVAL;
|
|
|
|
pci_device_load(&d->dev, f);
|
|
d->reboot_enabled = qemu_get_be32(f);
|
|
d->clock_scale = qemu_get_be32(f);
|
|
d->int_type = qemu_get_be32(f);
|
|
d->free_run = qemu_get_be32(f);
|
|
d->locked = qemu_get_be32(f);
|
|
d->enabled = qemu_get_be32(f);
|
|
qemu_get_timer(f, d->timer);
|
|
d->timer1_preload = qemu_get_be32(f);
|
|
d->timer2_preload = qemu_get_be32(f);
|
|
d->stage = qemu_get_be32(f);
|
|
d->unlock_state = qemu_get_be32(f);
|
|
d->previous_reboot_flag = qemu_get_be32(f);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int i6300esb_init(PCIDevice *dev)
|
|
{
|
|
I6300State *d = DO_UPCAST(I6300State, dev, dev);
|
|
uint8_t *pci_conf;
|
|
|
|
d->reboot_enabled = 1;
|
|
d->clock_scale = CLOCK_SCALE_1KHZ;
|
|
d->int_type = INT_TYPE_IRQ;
|
|
d->free_run = 0;
|
|
d->locked = 0;
|
|
d->enabled = 0;
|
|
d->timer = qemu_new_timer(vm_clock, i6300esb_timer_expired, d);
|
|
d->timer1_preload = 0xfffff;
|
|
d->timer2_preload = 0xfffff;
|
|
d->stage = 1;
|
|
d->unlock_state = 0;
|
|
d->previous_reboot_flag = 0;
|
|
|
|
pci_conf = d->dev.config;
|
|
pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_INTEL);
|
|
pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_ESB_9);
|
|
pci_config_set_class(pci_conf, PCI_CLASS_SYSTEM_OTHER);
|
|
pci_conf[0x0e] = 0x00;
|
|
|
|
pci_register_bar(&d->dev, 0, 0x10,
|
|
PCI_ADDRESS_SPACE_MEM, i6300esb_map);
|
|
|
|
register_savevm("i6300esb_wdt", -1, sizeof(I6300State),
|
|
i6300esb_save, i6300esb_load, d);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static WatchdogTimerModel model = {
|
|
.wdt_name = "i6300esb",
|
|
.wdt_description = "Intel 6300ESB",
|
|
};
|
|
|
|
static PCIDeviceInfo i6300esb_info = {
|
|
.qdev.name = "i6300esb",
|
|
.qdev.size = sizeof(I6300State),
|
|
.config_read = i6300esb_config_read,
|
|
.config_write = i6300esb_config_write,
|
|
.init = i6300esb_init,
|
|
};
|
|
|
|
static void i6300esb_register_devices(void)
|
|
{
|
|
watchdog_add_model(&model);
|
|
pci_qdev_register(&i6300esb_info);
|
|
}
|
|
|
|
device_init(i6300esb_register_devices);
|