qemu/hw/sun4m.c
Aurelien Jarno 409dbce54b load_elf: replace the address addend by a translation function
A few machines need to translate the ELF header addresses into physical
addresses. Currently the only possibility is to add a value to the
addresses.

This patch replaces the addend argument by and a translation function
and an opaque passed to the function. A NULL function does not translate
the address.

The patch also convert all machines that have an addend, simplify the
PowerPC kernel loading and fix the MIPS kernel loading using this new
feature. Other machines may benefit from this feature.

Signed-off-by: Aurelien Jarno <aurelien@aurel32.net>
2010-03-16 08:38:05 +01:00

1749 lines
54 KiB
C

/*
* QEMU Sun4m & Sun4d & Sun4c System Emulator
*
* Copyright (c) 2003-2005 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "sysbus.h"
#include "qemu-timer.h"
#include "sun4m.h"
#include "nvram.h"
#include "sparc32_dma.h"
#include "fdc.h"
#include "sysemu.h"
#include "net.h"
#include "boards.h"
#include "firmware_abi.h"
#include "esp.h"
#include "pc.h"
#include "isa.h"
#include "fw_cfg.h"
#include "escc.h"
#include "qdev-addr.h"
#include "loader.h"
#include "elf.h"
//#define DEBUG_IRQ
/*
* Sun4m architecture was used in the following machines:
*
* SPARCserver 6xxMP/xx
* SPARCclassic (SPARCclassic Server)(SPARCstation LC) (4/15),
* SPARCclassic X (4/10)
* SPARCstation LX/ZX (4/30)
* SPARCstation Voyager
* SPARCstation 10/xx, SPARCserver 10/xx
* SPARCstation 5, SPARCserver 5
* SPARCstation 20/xx, SPARCserver 20
* SPARCstation 4
*
* Sun4d architecture was used in the following machines:
*
* SPARCcenter 2000
* SPARCserver 1000
*
* Sun4c architecture was used in the following machines:
* SPARCstation 1/1+, SPARCserver 1/1+
* SPARCstation SLC
* SPARCstation IPC
* SPARCstation ELC
* SPARCstation IPX
*
* See for example: http://www.sunhelp.org/faq/sunref1.html
*/
#ifdef DEBUG_IRQ
#define DPRINTF(fmt, ...) \
do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
#else
#define DPRINTF(fmt, ...)
#endif
#define KERNEL_LOAD_ADDR 0x00004000
#define CMDLINE_ADDR 0x007ff000
#define INITRD_LOAD_ADDR 0x00800000
#define PROM_SIZE_MAX (1024 * 1024)
#define PROM_VADDR 0xffd00000
#define PROM_FILENAME "openbios-sparc32"
#define CFG_ADDR 0xd00000510ULL
#define FW_CFG_SUN4M_DEPTH (FW_CFG_ARCH_LOCAL + 0x00)
#define MAX_CPUS 16
#define MAX_PILS 16
#define ESCC_CLOCK 4915200
struct sun4m_hwdef {
target_phys_addr_t iommu_base, slavio_base;
target_phys_addr_t intctl_base, counter_base, nvram_base, ms_kb_base;
target_phys_addr_t serial_base, fd_base;
target_phys_addr_t afx_base, idreg_base, dma_base, esp_base, le_base;
target_phys_addr_t tcx_base, cs_base, apc_base, aux1_base, aux2_base;
target_phys_addr_t ecc_base;
uint32_t ecc_version;
uint8_t nvram_machine_id;
uint16_t machine_id;
uint32_t iommu_version;
uint64_t max_mem;
const char * const default_cpu_model;
};
#define MAX_IOUNITS 5
struct sun4d_hwdef {
target_phys_addr_t iounit_bases[MAX_IOUNITS], slavio_base;
target_phys_addr_t counter_base, nvram_base, ms_kb_base;
target_phys_addr_t serial_base;
target_phys_addr_t espdma_base, esp_base;
target_phys_addr_t ledma_base, le_base;
target_phys_addr_t tcx_base;
target_phys_addr_t sbi_base;
uint8_t nvram_machine_id;
uint16_t machine_id;
uint32_t iounit_version;
uint64_t max_mem;
const char * const default_cpu_model;
};
struct sun4c_hwdef {
target_phys_addr_t iommu_base, slavio_base;
target_phys_addr_t intctl_base, counter_base, nvram_base, ms_kb_base;
target_phys_addr_t serial_base, fd_base;
target_phys_addr_t idreg_base, dma_base, esp_base, le_base;
target_phys_addr_t tcx_base, aux1_base;
uint8_t nvram_machine_id;
uint16_t machine_id;
uint32_t iommu_version;
uint64_t max_mem;
const char * const default_cpu_model;
};
int DMA_get_channel_mode (int nchan)
{
return 0;
}
int DMA_read_memory (int nchan, void *buf, int pos, int size)
{
return 0;
}
int DMA_write_memory (int nchan, void *buf, int pos, int size)
{
return 0;
}
void DMA_hold_DREQ (int nchan) {}
void DMA_release_DREQ (int nchan) {}
void DMA_schedule(int nchan) {}
void DMA_init (int high_page_enable) {}
void DMA_register_channel (int nchan,
DMA_transfer_handler transfer_handler,
void *opaque)
{
}
static int fw_cfg_boot_set(void *opaque, const char *boot_device)
{
fw_cfg_add_i16(opaque, FW_CFG_BOOT_DEVICE, boot_device[0]);
return 0;
}
static void nvram_init(M48t59State *nvram, uint8_t *macaddr,
const char *cmdline, const char *boot_devices,
ram_addr_t RAM_size, uint32_t kernel_size,
int width, int height, int depth,
int nvram_machine_id, const char *arch)
{
unsigned int i;
uint32_t start, end;
uint8_t image[0x1ff0];
struct OpenBIOS_nvpart_v1 *part_header;
memset(image, '\0', sizeof(image));
start = 0;
// OpenBIOS nvram variables
// Variable partition
part_header = (struct OpenBIOS_nvpart_v1 *)&image[start];
part_header->signature = OPENBIOS_PART_SYSTEM;
pstrcpy(part_header->name, sizeof(part_header->name), "system");
end = start + sizeof(struct OpenBIOS_nvpart_v1);
for (i = 0; i < nb_prom_envs; i++)
end = OpenBIOS_set_var(image, end, prom_envs[i]);
// End marker
image[end++] = '\0';
end = start + ((end - start + 15) & ~15);
OpenBIOS_finish_partition(part_header, end - start);
// free partition
start = end;
part_header = (struct OpenBIOS_nvpart_v1 *)&image[start];
part_header->signature = OPENBIOS_PART_FREE;
pstrcpy(part_header->name, sizeof(part_header->name), "free");
end = 0x1fd0;
OpenBIOS_finish_partition(part_header, end - start);
Sun_init_header((struct Sun_nvram *)&image[0x1fd8], macaddr,
nvram_machine_id);
for (i = 0; i < sizeof(image); i++)
m48t59_write(nvram, i, image[i]);
}
static DeviceState *slavio_intctl;
void pic_info(Monitor *mon)
{
if (slavio_intctl)
slavio_pic_info(mon, slavio_intctl);
}
void irq_info(Monitor *mon)
{
if (slavio_intctl)
slavio_irq_info(mon, slavio_intctl);
}
void cpu_check_irqs(CPUState *env)
{
if (env->pil_in && (env->interrupt_index == 0 ||
(env->interrupt_index & ~15) == TT_EXTINT)) {
unsigned int i;
for (i = 15; i > 0; i--) {
if (env->pil_in & (1 << i)) {
int old_interrupt = env->interrupt_index;
env->interrupt_index = TT_EXTINT | i;
if (old_interrupt != env->interrupt_index) {
DPRINTF("Set CPU IRQ %d\n", i);
cpu_interrupt(env, CPU_INTERRUPT_HARD);
}
break;
}
}
} else if (!env->pil_in && (env->interrupt_index & ~15) == TT_EXTINT) {
DPRINTF("Reset CPU IRQ %d\n", env->interrupt_index & 15);
env->interrupt_index = 0;
cpu_reset_interrupt(env, CPU_INTERRUPT_HARD);
}
}
static void cpu_set_irq(void *opaque, int irq, int level)
{
CPUState *env = opaque;
if (level) {
DPRINTF("Raise CPU IRQ %d\n", irq);
env->halted = 0;
env->pil_in |= 1 << irq;
cpu_check_irqs(env);
} else {
DPRINTF("Lower CPU IRQ %d\n", irq);
env->pil_in &= ~(1 << irq);
cpu_check_irqs(env);
}
}
static void dummy_cpu_set_irq(void *opaque, int irq, int level)
{
}
static void main_cpu_reset(void *opaque)
{
CPUState *env = opaque;
cpu_reset(env);
env->halted = 0;
}
static void secondary_cpu_reset(void *opaque)
{
CPUState *env = opaque;
cpu_reset(env);
env->halted = 1;
}
static void cpu_halt_signal(void *opaque, int irq, int level)
{
if (level && cpu_single_env)
cpu_interrupt(cpu_single_env, CPU_INTERRUPT_HALT);
}
static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
{
return addr - 0xf0000000ULL;
}
static unsigned long sun4m_load_kernel(const char *kernel_filename,
const char *initrd_filename,
ram_addr_t RAM_size)
{
int linux_boot;
unsigned int i;
long initrd_size, kernel_size;
uint8_t *ptr;
linux_boot = (kernel_filename != NULL);
kernel_size = 0;
if (linux_boot) {
int bswap_needed;
#ifdef BSWAP_NEEDED
bswap_needed = 1;
#else
bswap_needed = 0;
#endif
kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
NULL, NULL, NULL, 1, ELF_MACHINE, 0);
if (kernel_size < 0)
kernel_size = load_aout(kernel_filename, KERNEL_LOAD_ADDR,
RAM_size - KERNEL_LOAD_ADDR, bswap_needed,
TARGET_PAGE_SIZE);
if (kernel_size < 0)
kernel_size = load_image_targphys(kernel_filename,
KERNEL_LOAD_ADDR,
RAM_size - KERNEL_LOAD_ADDR);
if (kernel_size < 0) {
fprintf(stderr, "qemu: could not load kernel '%s'\n",
kernel_filename);
exit(1);
}
/* load initrd */
initrd_size = 0;
if (initrd_filename) {
initrd_size = load_image_targphys(initrd_filename,
INITRD_LOAD_ADDR,
RAM_size - INITRD_LOAD_ADDR);
if (initrd_size < 0) {
fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
initrd_filename);
exit(1);
}
}
if (initrd_size > 0) {
for (i = 0; i < 64 * TARGET_PAGE_SIZE; i += TARGET_PAGE_SIZE) {
ptr = rom_ptr(KERNEL_LOAD_ADDR + i);
if (ldl_p(ptr) == 0x48647253) { // HdrS
stl_p(ptr + 16, INITRD_LOAD_ADDR);
stl_p(ptr + 20, initrd_size);
break;
}
}
}
}
return kernel_size;
}
static void *iommu_init(target_phys_addr_t addr, uint32_t version, qemu_irq irq)
{
DeviceState *dev;
SysBusDevice *s;
dev = qdev_create(NULL, "iommu");
qdev_prop_set_uint32(dev, "version", version);
qdev_init_nofail(dev);
s = sysbus_from_qdev(dev);
sysbus_connect_irq(s, 0, irq);
sysbus_mmio_map(s, 0, addr);
return s;
}
static void *sparc32_dma_init(target_phys_addr_t daddr, qemu_irq parent_irq,
void *iommu, qemu_irq *dev_irq)
{
DeviceState *dev;
SysBusDevice *s;
dev = qdev_create(NULL, "sparc32_dma");
qdev_prop_set_ptr(dev, "iommu_opaque", iommu);
qdev_init_nofail(dev);
s = sysbus_from_qdev(dev);
sysbus_connect_irq(s, 0, parent_irq);
*dev_irq = qdev_get_gpio_in(dev, 0);
sysbus_mmio_map(s, 0, daddr);
return s;
}
static void lance_init(NICInfo *nd, target_phys_addr_t leaddr,
void *dma_opaque, qemu_irq irq)
{
DeviceState *dev;
SysBusDevice *s;
qemu_irq reset;
qemu_check_nic_model(&nd_table[0], "lance");
dev = qdev_create(NULL, "lance");
qdev_set_nic_properties(dev, nd);
qdev_prop_set_ptr(dev, "dma", dma_opaque);
qdev_init_nofail(dev);
s = sysbus_from_qdev(dev);
sysbus_mmio_map(s, 0, leaddr);
sysbus_connect_irq(s, 0, irq);
reset = qdev_get_gpio_in(dev, 0);
qdev_connect_gpio_out(dma_opaque, 0, reset);
}
static DeviceState *slavio_intctl_init(target_phys_addr_t addr,
target_phys_addr_t addrg,
qemu_irq **parent_irq)
{
DeviceState *dev;
SysBusDevice *s;
unsigned int i, j;
dev = qdev_create(NULL, "slavio_intctl");
qdev_init_nofail(dev);
s = sysbus_from_qdev(dev);
for (i = 0; i < MAX_CPUS; i++) {
for (j = 0; j < MAX_PILS; j++) {
sysbus_connect_irq(s, i * MAX_PILS + j, parent_irq[i][j]);
}
}
sysbus_mmio_map(s, 0, addrg);
for (i = 0; i < MAX_CPUS; i++) {
sysbus_mmio_map(s, i + 1, addr + i * TARGET_PAGE_SIZE);
}
return dev;
}
#define SYS_TIMER_OFFSET 0x10000ULL
#define CPU_TIMER_OFFSET(cpu) (0x1000ULL * cpu)
static void slavio_timer_init_all(target_phys_addr_t addr, qemu_irq master_irq,
qemu_irq *cpu_irqs, unsigned int num_cpus)
{
DeviceState *dev;
SysBusDevice *s;
unsigned int i;
dev = qdev_create(NULL, "slavio_timer");
qdev_prop_set_uint32(dev, "num_cpus", num_cpus);
qdev_init_nofail(dev);
s = sysbus_from_qdev(dev);
sysbus_connect_irq(s, 0, master_irq);
sysbus_mmio_map(s, 0, addr + SYS_TIMER_OFFSET);
for (i = 0; i < MAX_CPUS; i++) {
sysbus_mmio_map(s, i + 1, addr + (target_phys_addr_t)CPU_TIMER_OFFSET(i));
sysbus_connect_irq(s, i + 1, cpu_irqs[i]);
}
}
#define MISC_LEDS 0x01600000
#define MISC_CFG 0x01800000
#define MISC_DIAG 0x01a00000
#define MISC_MDM 0x01b00000
#define MISC_SYS 0x01f00000
static void slavio_misc_init(target_phys_addr_t base,
target_phys_addr_t aux1_base,
target_phys_addr_t aux2_base, qemu_irq irq,
qemu_irq fdc_tc)
{
DeviceState *dev;
SysBusDevice *s;
dev = qdev_create(NULL, "slavio_misc");
qdev_init_nofail(dev);
s = sysbus_from_qdev(dev);
if (base) {
/* 8 bit registers */
/* Slavio control */
sysbus_mmio_map(s, 0, base + MISC_CFG);
/* Diagnostics */
sysbus_mmio_map(s, 1, base + MISC_DIAG);
/* Modem control */
sysbus_mmio_map(s, 2, base + MISC_MDM);
/* 16 bit registers */
/* ss600mp diag LEDs */
sysbus_mmio_map(s, 3, base + MISC_LEDS);
/* 32 bit registers */
/* System control */
sysbus_mmio_map(s, 4, base + MISC_SYS);
}
if (aux1_base) {
/* AUX 1 (Misc System Functions) */
sysbus_mmio_map(s, 5, aux1_base);
}
if (aux2_base) {
/* AUX 2 (Software Powerdown Control) */
sysbus_mmio_map(s, 6, aux2_base);
}
sysbus_connect_irq(s, 0, irq);
sysbus_connect_irq(s, 1, fdc_tc);
qemu_system_powerdown = qdev_get_gpio_in(dev, 0);
}
static void ecc_init(target_phys_addr_t base, qemu_irq irq, uint32_t version)
{
DeviceState *dev;
SysBusDevice *s;
dev = qdev_create(NULL, "eccmemctl");
qdev_prop_set_uint32(dev, "version", version);
qdev_init_nofail(dev);
s = sysbus_from_qdev(dev);
sysbus_connect_irq(s, 0, irq);
sysbus_mmio_map(s, 0, base);
if (version == 0) { // SS-600MP only
sysbus_mmio_map(s, 1, base + 0x1000);
}
}
static void apc_init(target_phys_addr_t power_base, qemu_irq cpu_halt)
{
DeviceState *dev;
SysBusDevice *s;
dev = qdev_create(NULL, "apc");
qdev_init_nofail(dev);
s = sysbus_from_qdev(dev);
/* Power management (APC) XXX: not a Slavio device */
sysbus_mmio_map(s, 0, power_base);
sysbus_connect_irq(s, 0, cpu_halt);
}
static void tcx_init(target_phys_addr_t addr, int vram_size, int width,
int height, int depth)
{
DeviceState *dev;
SysBusDevice *s;
dev = qdev_create(NULL, "SUNW,tcx");
qdev_prop_set_taddr(dev, "addr", addr);
qdev_prop_set_uint32(dev, "vram_size", vram_size);
qdev_prop_set_uint16(dev, "width", width);
qdev_prop_set_uint16(dev, "height", height);
qdev_prop_set_uint16(dev, "depth", depth);
qdev_init_nofail(dev);
s = sysbus_from_qdev(dev);
/* 8-bit plane */
sysbus_mmio_map(s, 0, addr + 0x00800000ULL);
/* DAC */
sysbus_mmio_map(s, 1, addr + 0x00200000ULL);
/* TEC (dummy) */
sysbus_mmio_map(s, 2, addr + 0x00700000ULL);
/* THC 24 bit: NetBSD writes here even with 8-bit display: dummy */
sysbus_mmio_map(s, 3, addr + 0x00301000ULL);
if (depth == 24) {
/* 24-bit plane */
sysbus_mmio_map(s, 4, addr + 0x02000000ULL);
/* Control plane */
sysbus_mmio_map(s, 5, addr + 0x0a000000ULL);
} else {
/* THC 8 bit (dummy) */
sysbus_mmio_map(s, 4, addr + 0x00300000ULL);
}
}
/* NCR89C100/MACIO Internal ID register */
static const uint8_t idreg_data[] = { 0xfe, 0x81, 0x01, 0x03 };
static void idreg_init(target_phys_addr_t addr)
{
DeviceState *dev;
SysBusDevice *s;
dev = qdev_create(NULL, "macio_idreg");
qdev_init_nofail(dev);
s = sysbus_from_qdev(dev);
sysbus_mmio_map(s, 0, addr);
cpu_physical_memory_write_rom(addr, idreg_data, sizeof(idreg_data));
}
static int idreg_init1(SysBusDevice *dev)
{
ram_addr_t idreg_offset;
idreg_offset = qemu_ram_alloc(sizeof(idreg_data));
sysbus_init_mmio(dev, sizeof(idreg_data), idreg_offset | IO_MEM_ROM);
return 0;
}
static SysBusDeviceInfo idreg_info = {
.init = idreg_init1,
.qdev.name = "macio_idreg",
.qdev.size = sizeof(SysBusDevice),
};
static void idreg_register_devices(void)
{
sysbus_register_withprop(&idreg_info);
}
device_init(idreg_register_devices);
/* SS-5 TCX AFX register */
static void afx_init(target_phys_addr_t addr)
{
DeviceState *dev;
SysBusDevice *s;
dev = qdev_create(NULL, "tcx_afx");
qdev_init_nofail(dev);
s = sysbus_from_qdev(dev);
sysbus_mmio_map(s, 0, addr);
}
static int afx_init1(SysBusDevice *dev)
{
ram_addr_t afx_offset;
afx_offset = qemu_ram_alloc(4);
sysbus_init_mmio(dev, 4, afx_offset | IO_MEM_RAM);
return 0;
}
static SysBusDeviceInfo afx_info = {
.init = afx_init1,
.qdev.name = "tcx_afx",
.qdev.size = sizeof(SysBusDevice),
};
static void afx_register_devices(void)
{
sysbus_register_withprop(&afx_info);
}
device_init(afx_register_devices);
/* Boot PROM (OpenBIOS) */
static uint64_t translate_prom_address(void *opaque, uint64_t addr)
{
target_phys_addr_t *base_addr = (target_phys_addr_t *)opaque;
return addr + *base_addr - PROM_VADDR;
}
static void prom_init(target_phys_addr_t addr, const char *bios_name)
{
DeviceState *dev;
SysBusDevice *s;
char *filename;
int ret;
dev = qdev_create(NULL, "openprom");
qdev_init_nofail(dev);
s = sysbus_from_qdev(dev);
sysbus_mmio_map(s, 0, addr);
/* load boot prom */
if (bios_name == NULL) {
bios_name = PROM_FILENAME;
}
filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
if (filename) {
ret = load_elf(filename, translate_prom_address, &addr, NULL,
NULL, NULL, 1, ELF_MACHINE, 0);
if (ret < 0 || ret > PROM_SIZE_MAX) {
ret = load_image_targphys(filename, addr, PROM_SIZE_MAX);
}
qemu_free(filename);
} else {
ret = -1;
}
if (ret < 0 || ret > PROM_SIZE_MAX) {
fprintf(stderr, "qemu: could not load prom '%s'\n", bios_name);
exit(1);
}
}
static int prom_init1(SysBusDevice *dev)
{
ram_addr_t prom_offset;
prom_offset = qemu_ram_alloc(PROM_SIZE_MAX);
sysbus_init_mmio(dev, PROM_SIZE_MAX, prom_offset | IO_MEM_ROM);
return 0;
}
static SysBusDeviceInfo prom_info = {
.init = prom_init1,
.qdev.name = "openprom",
.qdev.size = sizeof(SysBusDevice),
.qdev.props = (Property[]) {
{/* end of property list */}
}
};
static void prom_register_devices(void)
{
sysbus_register_withprop(&prom_info);
}
device_init(prom_register_devices);
typedef struct RamDevice
{
SysBusDevice busdev;
uint64_t size;
} RamDevice;
/* System RAM */
static int ram_init1(SysBusDevice *dev)
{
ram_addr_t RAM_size, ram_offset;
RamDevice *d = FROM_SYSBUS(RamDevice, dev);
RAM_size = d->size;
ram_offset = qemu_ram_alloc(RAM_size);
sysbus_init_mmio(dev, RAM_size, ram_offset);
return 0;
}
static void ram_init(target_phys_addr_t addr, ram_addr_t RAM_size,
uint64_t max_mem)
{
DeviceState *dev;
SysBusDevice *s;
RamDevice *d;
/* allocate RAM */
if ((uint64_t)RAM_size > max_mem) {
fprintf(stderr,
"qemu: Too much memory for this machine: %d, maximum %d\n",
(unsigned int)(RAM_size / (1024 * 1024)),
(unsigned int)(max_mem / (1024 * 1024)));
exit(1);
}
dev = qdev_create(NULL, "memory");
s = sysbus_from_qdev(dev);
d = FROM_SYSBUS(RamDevice, s);
d->size = RAM_size;
qdev_init_nofail(dev);
sysbus_mmio_map(s, 0, addr);
}
static SysBusDeviceInfo ram_info = {
.init = ram_init1,
.qdev.name = "memory",
.qdev.size = sizeof(RamDevice),
.qdev.props = (Property[]) {
DEFINE_PROP_UINT64("size", RamDevice, size, 0),
DEFINE_PROP_END_OF_LIST(),
}
};
static void ram_register_devices(void)
{
sysbus_register_withprop(&ram_info);
}
device_init(ram_register_devices);
static void cpu_devinit(const char *cpu_model, unsigned int id,
uint64_t prom_addr, qemu_irq **cpu_irqs)
{
CPUState *env;
env = cpu_init(cpu_model);
if (!env) {
fprintf(stderr, "qemu: Unable to find Sparc CPU definition\n");
exit(1);
}
cpu_sparc_set_id(env, id);
if (id == 0) {
qemu_register_reset(main_cpu_reset, env);
} else {
qemu_register_reset(secondary_cpu_reset, env);
env->halted = 1;
}
*cpu_irqs = qemu_allocate_irqs(cpu_set_irq, env, MAX_PILS);
env->prom_addr = prom_addr;
}
static void sun4m_hw_init(const struct sun4m_hwdef *hwdef, ram_addr_t RAM_size,
const char *boot_device,
const char *kernel_filename,
const char *kernel_cmdline,
const char *initrd_filename, const char *cpu_model)
{
unsigned int i;
void *iommu, *espdma, *ledma, *nvram;
qemu_irq *cpu_irqs[MAX_CPUS], slavio_irq[32], slavio_cpu_irq[MAX_CPUS],
espdma_irq, ledma_irq;
qemu_irq esp_reset;
qemu_irq fdc_tc;
qemu_irq *cpu_halt;
unsigned long kernel_size;
DriveInfo *fd[MAX_FD];
void *fw_cfg;
/* init CPUs */
if (!cpu_model)
cpu_model = hwdef->default_cpu_model;
for(i = 0; i < smp_cpus; i++) {
cpu_devinit(cpu_model, i, hwdef->slavio_base, &cpu_irqs[i]);
}
for (i = smp_cpus; i < MAX_CPUS; i++)
cpu_irqs[i] = qemu_allocate_irqs(dummy_cpu_set_irq, NULL, MAX_PILS);
/* set up devices */
ram_init(0, RAM_size, hwdef->max_mem);
prom_init(hwdef->slavio_base, bios_name);
slavio_intctl = slavio_intctl_init(hwdef->intctl_base,
hwdef->intctl_base + 0x10000ULL,
cpu_irqs);
for (i = 0; i < 32; i++) {
slavio_irq[i] = qdev_get_gpio_in(slavio_intctl, i);
}
for (i = 0; i < MAX_CPUS; i++) {
slavio_cpu_irq[i] = qdev_get_gpio_in(slavio_intctl, 32 + i);
}
if (hwdef->idreg_base) {
idreg_init(hwdef->idreg_base);
}
if (hwdef->afx_base) {
afx_init(hwdef->afx_base);
}
iommu = iommu_init(hwdef->iommu_base, hwdef->iommu_version,
slavio_irq[30]);
espdma = sparc32_dma_init(hwdef->dma_base, slavio_irq[18],
iommu, &espdma_irq);
ledma = sparc32_dma_init(hwdef->dma_base + 16ULL,
slavio_irq[16], iommu, &ledma_irq);
if (graphic_depth != 8 && graphic_depth != 24) {
fprintf(stderr, "qemu: Unsupported depth: %d\n", graphic_depth);
exit (1);
}
tcx_init(hwdef->tcx_base, 0x00100000, graphic_width, graphic_height,
graphic_depth);
lance_init(&nd_table[0], hwdef->le_base, ledma, ledma_irq);
nvram = m48t59_init(slavio_irq[0], hwdef->nvram_base, 0, 0x2000, 8);
slavio_timer_init_all(hwdef->counter_base, slavio_irq[19], slavio_cpu_irq, smp_cpus);
slavio_serial_ms_kbd_init(hwdef->ms_kb_base, slavio_irq[14],
display_type == DT_NOGRAPHIC, ESCC_CLOCK, 1);
// Slavio TTYA (base+4, Linux ttyS0) is the first Qemu serial device
// Slavio TTYB (base+0, Linux ttyS1) is the second Qemu serial device
escc_init(hwdef->serial_base, slavio_irq[15], slavio_irq[15],
serial_hds[0], serial_hds[1], ESCC_CLOCK, 1);
cpu_halt = qemu_allocate_irqs(cpu_halt_signal, NULL, 1);
slavio_misc_init(hwdef->slavio_base, hwdef->aux1_base, hwdef->aux2_base,
slavio_irq[30], fdc_tc);
if (hwdef->apc_base) {
apc_init(hwdef->apc_base, cpu_halt[0]);
}
if (hwdef->fd_base) {
/* there is zero or one floppy drive */
memset(fd, 0, sizeof(fd));
fd[0] = drive_get(IF_FLOPPY, 0, 0);
sun4m_fdctrl_init(slavio_irq[22], hwdef->fd_base, fd,
&fdc_tc);
}
if (drive_get_max_bus(IF_SCSI) > 0) {
fprintf(stderr, "qemu: too many SCSI bus\n");
exit(1);
}
esp_reset = qdev_get_gpio_in(espdma, 0);
esp_init(hwdef->esp_base, 2,
espdma_memory_read, espdma_memory_write,
espdma, espdma_irq, &esp_reset);
if (hwdef->cs_base) {
sysbus_create_simple("SUNW,CS4231", hwdef->cs_base,
slavio_irq[5]);
}
kernel_size = sun4m_load_kernel(kernel_filename, initrd_filename,
RAM_size);
nvram_init(nvram, (uint8_t *)&nd_table[0].macaddr, kernel_cmdline,
boot_device, RAM_size, kernel_size, graphic_width,
graphic_height, graphic_depth, hwdef->nvram_machine_id,
"Sun4m");
if (hwdef->ecc_base)
ecc_init(hwdef->ecc_base, slavio_irq[28],
hwdef->ecc_version);
fw_cfg = fw_cfg_init(0, 0, CFG_ADDR, CFG_ADDR + 2);
fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1);
fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
fw_cfg_add_i16(fw_cfg, FW_CFG_MACHINE_ID, hwdef->machine_id);
fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_DEPTH, graphic_depth);
fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, KERNEL_LOAD_ADDR);
fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
if (kernel_cmdline) {
fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, CMDLINE_ADDR);
pstrcpy_targphys("cmdline", CMDLINE_ADDR, TARGET_PAGE_SIZE, kernel_cmdline);
fw_cfg_add_bytes(fw_cfg, FW_CFG_CMDLINE_DATA,
(uint8_t*)strdup(kernel_cmdline),
strlen(kernel_cmdline) + 1);
} else {
fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, 0);
}
fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, INITRD_LOAD_ADDR);
fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, 0); // not used
fw_cfg_add_i16(fw_cfg, FW_CFG_BOOT_DEVICE, boot_device[0]);
qemu_register_boot_set(fw_cfg_boot_set, fw_cfg);
}
enum {
ss2_id = 0,
ss5_id = 32,
vger_id,
lx_id,
ss4_id,
scls_id,
sbook_id,
ss10_id = 64,
ss20_id,
ss600mp_id,
ss1000_id = 96,
ss2000_id,
};
static const struct sun4m_hwdef sun4m_hwdefs[] = {
/* SS-5 */
{
.iommu_base = 0x10000000,
.tcx_base = 0x50000000,
.cs_base = 0x6c000000,
.slavio_base = 0x70000000,
.ms_kb_base = 0x71000000,
.serial_base = 0x71100000,
.nvram_base = 0x71200000,
.fd_base = 0x71400000,
.counter_base = 0x71d00000,
.intctl_base = 0x71e00000,
.idreg_base = 0x78000000,
.dma_base = 0x78400000,
.esp_base = 0x78800000,
.le_base = 0x78c00000,
.apc_base = 0x6a000000,
.afx_base = 0x6e000000,
.aux1_base = 0x71900000,
.aux2_base = 0x71910000,
.nvram_machine_id = 0x80,
.machine_id = ss5_id,
.iommu_version = 0x05000000,
.max_mem = 0x10000000,
.default_cpu_model = "Fujitsu MB86904",
},
/* SS-10 */
{
.iommu_base = 0xfe0000000ULL,
.tcx_base = 0xe20000000ULL,
.slavio_base = 0xff0000000ULL,
.ms_kb_base = 0xff1000000ULL,
.serial_base = 0xff1100000ULL,
.nvram_base = 0xff1200000ULL,
.fd_base = 0xff1700000ULL,
.counter_base = 0xff1300000ULL,
.intctl_base = 0xff1400000ULL,
.idreg_base = 0xef0000000ULL,
.dma_base = 0xef0400000ULL,
.esp_base = 0xef0800000ULL,
.le_base = 0xef0c00000ULL,
.apc_base = 0xefa000000ULL, // XXX should not exist
.aux1_base = 0xff1800000ULL,
.aux2_base = 0xff1a01000ULL,
.ecc_base = 0xf00000000ULL,
.ecc_version = 0x10000000, // version 0, implementation 1
.nvram_machine_id = 0x72,
.machine_id = ss10_id,
.iommu_version = 0x03000000,
.max_mem = 0xf00000000ULL,
.default_cpu_model = "TI SuperSparc II",
},
/* SS-600MP */
{
.iommu_base = 0xfe0000000ULL,
.tcx_base = 0xe20000000ULL,
.slavio_base = 0xff0000000ULL,
.ms_kb_base = 0xff1000000ULL,
.serial_base = 0xff1100000ULL,
.nvram_base = 0xff1200000ULL,
.counter_base = 0xff1300000ULL,
.intctl_base = 0xff1400000ULL,
.dma_base = 0xef0081000ULL,
.esp_base = 0xef0080000ULL,
.le_base = 0xef0060000ULL,
.apc_base = 0xefa000000ULL, // XXX should not exist
.aux1_base = 0xff1800000ULL,
.aux2_base = 0xff1a01000ULL, // XXX should not exist
.ecc_base = 0xf00000000ULL,
.ecc_version = 0x00000000, // version 0, implementation 0
.nvram_machine_id = 0x71,
.machine_id = ss600mp_id,
.iommu_version = 0x01000000,
.max_mem = 0xf00000000ULL,
.default_cpu_model = "TI SuperSparc II",
},
/* SS-20 */
{
.iommu_base = 0xfe0000000ULL,
.tcx_base = 0xe20000000ULL,
.slavio_base = 0xff0000000ULL,
.ms_kb_base = 0xff1000000ULL,
.serial_base = 0xff1100000ULL,
.nvram_base = 0xff1200000ULL,
.fd_base = 0xff1700000ULL,
.counter_base = 0xff1300000ULL,
.intctl_base = 0xff1400000ULL,
.idreg_base = 0xef0000000ULL,
.dma_base = 0xef0400000ULL,
.esp_base = 0xef0800000ULL,
.le_base = 0xef0c00000ULL,
.apc_base = 0xefa000000ULL, // XXX should not exist
.aux1_base = 0xff1800000ULL,
.aux2_base = 0xff1a01000ULL,
.ecc_base = 0xf00000000ULL,
.ecc_version = 0x20000000, // version 0, implementation 2
.nvram_machine_id = 0x72,
.machine_id = ss20_id,
.iommu_version = 0x13000000,
.max_mem = 0xf00000000ULL,
.default_cpu_model = "TI SuperSparc II",
},
/* Voyager */
{
.iommu_base = 0x10000000,
.tcx_base = 0x50000000,
.slavio_base = 0x70000000,
.ms_kb_base = 0x71000000,
.serial_base = 0x71100000,
.nvram_base = 0x71200000,
.fd_base = 0x71400000,
.counter_base = 0x71d00000,
.intctl_base = 0x71e00000,
.idreg_base = 0x78000000,
.dma_base = 0x78400000,
.esp_base = 0x78800000,
.le_base = 0x78c00000,
.apc_base = 0x71300000, // pmc
.aux1_base = 0x71900000,
.aux2_base = 0x71910000,
.nvram_machine_id = 0x80,
.machine_id = vger_id,
.iommu_version = 0x05000000,
.max_mem = 0x10000000,
.default_cpu_model = "Fujitsu MB86904",
},
/* LX */
{
.iommu_base = 0x10000000,
.tcx_base = 0x50000000,
.slavio_base = 0x70000000,
.ms_kb_base = 0x71000000,
.serial_base = 0x71100000,
.nvram_base = 0x71200000,
.fd_base = 0x71400000,
.counter_base = 0x71d00000,
.intctl_base = 0x71e00000,
.idreg_base = 0x78000000,
.dma_base = 0x78400000,
.esp_base = 0x78800000,
.le_base = 0x78c00000,
.aux1_base = 0x71900000,
.aux2_base = 0x71910000,
.nvram_machine_id = 0x80,
.machine_id = lx_id,
.iommu_version = 0x04000000,
.max_mem = 0x10000000,
.default_cpu_model = "TI MicroSparc I",
},
/* SS-4 */
{
.iommu_base = 0x10000000,
.tcx_base = 0x50000000,
.cs_base = 0x6c000000,
.slavio_base = 0x70000000,
.ms_kb_base = 0x71000000,
.serial_base = 0x71100000,
.nvram_base = 0x71200000,
.fd_base = 0x71400000,
.counter_base = 0x71d00000,
.intctl_base = 0x71e00000,
.idreg_base = 0x78000000,
.dma_base = 0x78400000,
.esp_base = 0x78800000,
.le_base = 0x78c00000,
.apc_base = 0x6a000000,
.aux1_base = 0x71900000,
.aux2_base = 0x71910000,
.nvram_machine_id = 0x80,
.machine_id = ss4_id,
.iommu_version = 0x05000000,
.max_mem = 0x10000000,
.default_cpu_model = "Fujitsu MB86904",
},
/* SPARCClassic */
{
.iommu_base = 0x10000000,
.tcx_base = 0x50000000,
.slavio_base = 0x70000000,
.ms_kb_base = 0x71000000,
.serial_base = 0x71100000,
.nvram_base = 0x71200000,
.fd_base = 0x71400000,
.counter_base = 0x71d00000,
.intctl_base = 0x71e00000,
.idreg_base = 0x78000000,
.dma_base = 0x78400000,
.esp_base = 0x78800000,
.le_base = 0x78c00000,
.apc_base = 0x6a000000,
.aux1_base = 0x71900000,
.aux2_base = 0x71910000,
.nvram_machine_id = 0x80,
.machine_id = scls_id,
.iommu_version = 0x05000000,
.max_mem = 0x10000000,
.default_cpu_model = "TI MicroSparc I",
},
/* SPARCbook */
{
.iommu_base = 0x10000000,
.tcx_base = 0x50000000, // XXX
.slavio_base = 0x70000000,
.ms_kb_base = 0x71000000,
.serial_base = 0x71100000,
.nvram_base = 0x71200000,
.fd_base = 0x71400000,
.counter_base = 0x71d00000,
.intctl_base = 0x71e00000,
.idreg_base = 0x78000000,
.dma_base = 0x78400000,
.esp_base = 0x78800000,
.le_base = 0x78c00000,
.apc_base = 0x6a000000,
.aux1_base = 0x71900000,
.aux2_base = 0x71910000,
.nvram_machine_id = 0x80,
.machine_id = sbook_id,
.iommu_version = 0x05000000,
.max_mem = 0x10000000,
.default_cpu_model = "TI MicroSparc I",
},
};
/* SPARCstation 5 hardware initialisation */
static void ss5_init(ram_addr_t RAM_size,
const char *boot_device,
const char *kernel_filename, const char *kernel_cmdline,
const char *initrd_filename, const char *cpu_model)
{
sun4m_hw_init(&sun4m_hwdefs[0], RAM_size, boot_device, kernel_filename,
kernel_cmdline, initrd_filename, cpu_model);
}
/* SPARCstation 10 hardware initialisation */
static void ss10_init(ram_addr_t RAM_size,
const char *boot_device,
const char *kernel_filename, const char *kernel_cmdline,
const char *initrd_filename, const char *cpu_model)
{
sun4m_hw_init(&sun4m_hwdefs[1], RAM_size, boot_device, kernel_filename,
kernel_cmdline, initrd_filename, cpu_model);
}
/* SPARCserver 600MP hardware initialisation */
static void ss600mp_init(ram_addr_t RAM_size,
const char *boot_device,
const char *kernel_filename,
const char *kernel_cmdline,
const char *initrd_filename, const char *cpu_model)
{
sun4m_hw_init(&sun4m_hwdefs[2], RAM_size, boot_device, kernel_filename,
kernel_cmdline, initrd_filename, cpu_model);
}
/* SPARCstation 20 hardware initialisation */
static void ss20_init(ram_addr_t RAM_size,
const char *boot_device,
const char *kernel_filename, const char *kernel_cmdline,
const char *initrd_filename, const char *cpu_model)
{
sun4m_hw_init(&sun4m_hwdefs[3], RAM_size, boot_device, kernel_filename,
kernel_cmdline, initrd_filename, cpu_model);
}
/* SPARCstation Voyager hardware initialisation */
static void vger_init(ram_addr_t RAM_size,
const char *boot_device,
const char *kernel_filename, const char *kernel_cmdline,
const char *initrd_filename, const char *cpu_model)
{
sun4m_hw_init(&sun4m_hwdefs[4], RAM_size, boot_device, kernel_filename,
kernel_cmdline, initrd_filename, cpu_model);
}
/* SPARCstation LX hardware initialisation */
static void ss_lx_init(ram_addr_t RAM_size,
const char *boot_device,
const char *kernel_filename, const char *kernel_cmdline,
const char *initrd_filename, const char *cpu_model)
{
sun4m_hw_init(&sun4m_hwdefs[5], RAM_size, boot_device, kernel_filename,
kernel_cmdline, initrd_filename, cpu_model);
}
/* SPARCstation 4 hardware initialisation */
static void ss4_init(ram_addr_t RAM_size,
const char *boot_device,
const char *kernel_filename, const char *kernel_cmdline,
const char *initrd_filename, const char *cpu_model)
{
sun4m_hw_init(&sun4m_hwdefs[6], RAM_size, boot_device, kernel_filename,
kernel_cmdline, initrd_filename, cpu_model);
}
/* SPARCClassic hardware initialisation */
static void scls_init(ram_addr_t RAM_size,
const char *boot_device,
const char *kernel_filename, const char *kernel_cmdline,
const char *initrd_filename, const char *cpu_model)
{
sun4m_hw_init(&sun4m_hwdefs[7], RAM_size, boot_device, kernel_filename,
kernel_cmdline, initrd_filename, cpu_model);
}
/* SPARCbook hardware initialisation */
static void sbook_init(ram_addr_t RAM_size,
const char *boot_device,
const char *kernel_filename, const char *kernel_cmdline,
const char *initrd_filename, const char *cpu_model)
{
sun4m_hw_init(&sun4m_hwdefs[8], RAM_size, boot_device, kernel_filename,
kernel_cmdline, initrd_filename, cpu_model);
}
static QEMUMachine ss5_machine = {
.name = "SS-5",
.desc = "Sun4m platform, SPARCstation 5",
.init = ss5_init,
.use_scsi = 1,
.is_default = 1,
};
static QEMUMachine ss10_machine = {
.name = "SS-10",
.desc = "Sun4m platform, SPARCstation 10",
.init = ss10_init,
.use_scsi = 1,
.max_cpus = 4,
};
static QEMUMachine ss600mp_machine = {
.name = "SS-600MP",
.desc = "Sun4m platform, SPARCserver 600MP",
.init = ss600mp_init,
.use_scsi = 1,
.max_cpus = 4,
};
static QEMUMachine ss20_machine = {
.name = "SS-20",
.desc = "Sun4m platform, SPARCstation 20",
.init = ss20_init,
.use_scsi = 1,
.max_cpus = 4,
};
static QEMUMachine voyager_machine = {
.name = "Voyager",
.desc = "Sun4m platform, SPARCstation Voyager",
.init = vger_init,
.use_scsi = 1,
};
static QEMUMachine ss_lx_machine = {
.name = "LX",
.desc = "Sun4m platform, SPARCstation LX",
.init = ss_lx_init,
.use_scsi = 1,
};
static QEMUMachine ss4_machine = {
.name = "SS-4",
.desc = "Sun4m platform, SPARCstation 4",
.init = ss4_init,
.use_scsi = 1,
};
static QEMUMachine scls_machine = {
.name = "SPARCClassic",
.desc = "Sun4m platform, SPARCClassic",
.init = scls_init,
.use_scsi = 1,
};
static QEMUMachine sbook_machine = {
.name = "SPARCbook",
.desc = "Sun4m platform, SPARCbook",
.init = sbook_init,
.use_scsi = 1,
};
static const struct sun4d_hwdef sun4d_hwdefs[] = {
/* SS-1000 */
{
.iounit_bases = {
0xfe0200000ULL,
0xfe1200000ULL,
0xfe2200000ULL,
0xfe3200000ULL,
-1,
},
.tcx_base = 0x820000000ULL,
.slavio_base = 0xf00000000ULL,
.ms_kb_base = 0xf00240000ULL,
.serial_base = 0xf00200000ULL,
.nvram_base = 0xf00280000ULL,
.counter_base = 0xf00300000ULL,
.espdma_base = 0x800081000ULL,
.esp_base = 0x800080000ULL,
.ledma_base = 0x800040000ULL,
.le_base = 0x800060000ULL,
.sbi_base = 0xf02800000ULL,
.nvram_machine_id = 0x80,
.machine_id = ss1000_id,
.iounit_version = 0x03000000,
.max_mem = 0xf00000000ULL,
.default_cpu_model = "TI SuperSparc II",
},
/* SS-2000 */
{
.iounit_bases = {
0xfe0200000ULL,
0xfe1200000ULL,
0xfe2200000ULL,
0xfe3200000ULL,
0xfe4200000ULL,
},
.tcx_base = 0x820000000ULL,
.slavio_base = 0xf00000000ULL,
.ms_kb_base = 0xf00240000ULL,
.serial_base = 0xf00200000ULL,
.nvram_base = 0xf00280000ULL,
.counter_base = 0xf00300000ULL,
.espdma_base = 0x800081000ULL,
.esp_base = 0x800080000ULL,
.ledma_base = 0x800040000ULL,
.le_base = 0x800060000ULL,
.sbi_base = 0xf02800000ULL,
.nvram_machine_id = 0x80,
.machine_id = ss2000_id,
.iounit_version = 0x03000000,
.max_mem = 0xf00000000ULL,
.default_cpu_model = "TI SuperSparc II",
},
};
static DeviceState *sbi_init(target_phys_addr_t addr, qemu_irq **parent_irq)
{
DeviceState *dev;
SysBusDevice *s;
unsigned int i;
dev = qdev_create(NULL, "sbi");
qdev_init_nofail(dev);
s = sysbus_from_qdev(dev);
for (i = 0; i < MAX_CPUS; i++) {
sysbus_connect_irq(s, i, *parent_irq[i]);
}
sysbus_mmio_map(s, 0, addr);
return dev;
}
static void sun4d_hw_init(const struct sun4d_hwdef *hwdef, ram_addr_t RAM_size,
const char *boot_device,
const char *kernel_filename,
const char *kernel_cmdline,
const char *initrd_filename, const char *cpu_model)
{
unsigned int i;
void *iounits[MAX_IOUNITS], *espdma, *ledma, *nvram;
qemu_irq *cpu_irqs[MAX_CPUS], sbi_irq[32], sbi_cpu_irq[MAX_CPUS],
espdma_irq, ledma_irq;
qemu_irq esp_reset;
unsigned long kernel_size;
void *fw_cfg;
DeviceState *dev;
/* init CPUs */
if (!cpu_model)
cpu_model = hwdef->default_cpu_model;
for(i = 0; i < smp_cpus; i++) {
cpu_devinit(cpu_model, i, hwdef->slavio_base, &cpu_irqs[i]);
}
for (i = smp_cpus; i < MAX_CPUS; i++)
cpu_irqs[i] = qemu_allocate_irqs(dummy_cpu_set_irq, NULL, MAX_PILS);
/* set up devices */
ram_init(0, RAM_size, hwdef->max_mem);
prom_init(hwdef->slavio_base, bios_name);
dev = sbi_init(hwdef->sbi_base, cpu_irqs);
for (i = 0; i < 32; i++) {
sbi_irq[i] = qdev_get_gpio_in(dev, i);
}
for (i = 0; i < MAX_CPUS; i++) {
sbi_cpu_irq[i] = qdev_get_gpio_in(dev, 32 + i);
}
for (i = 0; i < MAX_IOUNITS; i++)
if (hwdef->iounit_bases[i] != (target_phys_addr_t)-1)
iounits[i] = iommu_init(hwdef->iounit_bases[i],
hwdef->iounit_version,
sbi_irq[0]);
espdma = sparc32_dma_init(hwdef->espdma_base, sbi_irq[3],
iounits[0], &espdma_irq);
ledma = sparc32_dma_init(hwdef->ledma_base, sbi_irq[4],
iounits[0], &ledma_irq);
if (graphic_depth != 8 && graphic_depth != 24) {
fprintf(stderr, "qemu: Unsupported depth: %d\n", graphic_depth);
exit (1);
}
tcx_init(hwdef->tcx_base, 0x00100000, graphic_width, graphic_height,
graphic_depth);
lance_init(&nd_table[0], hwdef->le_base, ledma, ledma_irq);
nvram = m48t59_init(sbi_irq[0], hwdef->nvram_base, 0, 0x2000, 8);
slavio_timer_init_all(hwdef->counter_base, sbi_irq[10], sbi_cpu_irq, smp_cpus);
slavio_serial_ms_kbd_init(hwdef->ms_kb_base, sbi_irq[12],
display_type == DT_NOGRAPHIC, ESCC_CLOCK, 1);
// Slavio TTYA (base+4, Linux ttyS0) is the first Qemu serial device
// Slavio TTYB (base+0, Linux ttyS1) is the second Qemu serial device
escc_init(hwdef->serial_base, sbi_irq[12], sbi_irq[12],
serial_hds[0], serial_hds[1], ESCC_CLOCK, 1);
if (drive_get_max_bus(IF_SCSI) > 0) {
fprintf(stderr, "qemu: too many SCSI bus\n");
exit(1);
}
esp_reset = qdev_get_gpio_in(espdma, 0);
esp_init(hwdef->esp_base, 2,
espdma_memory_read, espdma_memory_write,
espdma, espdma_irq, &esp_reset);
kernel_size = sun4m_load_kernel(kernel_filename, initrd_filename,
RAM_size);
nvram_init(nvram, (uint8_t *)&nd_table[0].macaddr, kernel_cmdline,
boot_device, RAM_size, kernel_size, graphic_width,
graphic_height, graphic_depth, hwdef->nvram_machine_id,
"Sun4d");
fw_cfg = fw_cfg_init(0, 0, CFG_ADDR, CFG_ADDR + 2);
fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1);
fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
fw_cfg_add_i16(fw_cfg, FW_CFG_MACHINE_ID, hwdef->machine_id);
fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_DEPTH, graphic_depth);
fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, KERNEL_LOAD_ADDR);
fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
if (kernel_cmdline) {
fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, CMDLINE_ADDR);
pstrcpy_targphys("cmdline", CMDLINE_ADDR, TARGET_PAGE_SIZE, kernel_cmdline);
fw_cfg_add_bytes(fw_cfg, FW_CFG_CMDLINE_DATA,
(uint8_t*)strdup(kernel_cmdline),
strlen(kernel_cmdline) + 1);
} else {
fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, 0);
}
fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, INITRD_LOAD_ADDR);
fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, 0); // not used
fw_cfg_add_i16(fw_cfg, FW_CFG_BOOT_DEVICE, boot_device[0]);
qemu_register_boot_set(fw_cfg_boot_set, fw_cfg);
}
/* SPARCserver 1000 hardware initialisation */
static void ss1000_init(ram_addr_t RAM_size,
const char *boot_device,
const char *kernel_filename, const char *kernel_cmdline,
const char *initrd_filename, const char *cpu_model)
{
sun4d_hw_init(&sun4d_hwdefs[0], RAM_size, boot_device, kernel_filename,
kernel_cmdline, initrd_filename, cpu_model);
}
/* SPARCcenter 2000 hardware initialisation */
static void ss2000_init(ram_addr_t RAM_size,
const char *boot_device,
const char *kernel_filename, const char *kernel_cmdline,
const char *initrd_filename, const char *cpu_model)
{
sun4d_hw_init(&sun4d_hwdefs[1], RAM_size, boot_device, kernel_filename,
kernel_cmdline, initrd_filename, cpu_model);
}
static QEMUMachine ss1000_machine = {
.name = "SS-1000",
.desc = "Sun4d platform, SPARCserver 1000",
.init = ss1000_init,
.use_scsi = 1,
.max_cpus = 8,
};
static QEMUMachine ss2000_machine = {
.name = "SS-2000",
.desc = "Sun4d platform, SPARCcenter 2000",
.init = ss2000_init,
.use_scsi = 1,
.max_cpus = 20,
};
static const struct sun4c_hwdef sun4c_hwdefs[] = {
/* SS-2 */
{
.iommu_base = 0xf8000000,
.tcx_base = 0xfe000000,
.slavio_base = 0xf6000000,
.intctl_base = 0xf5000000,
.counter_base = 0xf3000000,
.ms_kb_base = 0xf0000000,
.serial_base = 0xf1000000,
.nvram_base = 0xf2000000,
.fd_base = 0xf7200000,
.dma_base = 0xf8400000,
.esp_base = 0xf8800000,
.le_base = 0xf8c00000,
.aux1_base = 0xf7400003,
.nvram_machine_id = 0x55,
.machine_id = ss2_id,
.max_mem = 0x10000000,
.default_cpu_model = "Cypress CY7C601",
},
};
static DeviceState *sun4c_intctl_init(target_phys_addr_t addr,
qemu_irq *parent_irq)
{
DeviceState *dev;
SysBusDevice *s;
unsigned int i;
dev = qdev_create(NULL, "sun4c_intctl");
qdev_init_nofail(dev);
s = sysbus_from_qdev(dev);
for (i = 0; i < MAX_PILS; i++) {
sysbus_connect_irq(s, i, parent_irq[i]);
}
sysbus_mmio_map(s, 0, addr);
return dev;
}
static void sun4c_hw_init(const struct sun4c_hwdef *hwdef, ram_addr_t RAM_size,
const char *boot_device,
const char *kernel_filename,
const char *kernel_cmdline,
const char *initrd_filename, const char *cpu_model)
{
void *iommu, *espdma, *ledma, *nvram;
qemu_irq *cpu_irqs, slavio_irq[8], espdma_irq, ledma_irq;
qemu_irq esp_reset;
qemu_irq fdc_tc;
unsigned long kernel_size;
DriveInfo *fd[MAX_FD];
void *fw_cfg;
DeviceState *dev;
unsigned int i;
/* init CPU */
if (!cpu_model)
cpu_model = hwdef->default_cpu_model;
cpu_devinit(cpu_model, 0, hwdef->slavio_base, &cpu_irqs);
/* set up devices */
ram_init(0, RAM_size, hwdef->max_mem);
prom_init(hwdef->slavio_base, bios_name);
dev = sun4c_intctl_init(hwdef->intctl_base, cpu_irqs);
for (i = 0; i < 8; i++) {
slavio_irq[i] = qdev_get_gpio_in(dev, i);
}
iommu = iommu_init(hwdef->iommu_base, hwdef->iommu_version,
slavio_irq[1]);
espdma = sparc32_dma_init(hwdef->dma_base, slavio_irq[2],
iommu, &espdma_irq);
ledma = sparc32_dma_init(hwdef->dma_base + 16ULL,
slavio_irq[3], iommu, &ledma_irq);
if (graphic_depth != 8 && graphic_depth != 24) {
fprintf(stderr, "qemu: Unsupported depth: %d\n", graphic_depth);
exit (1);
}
tcx_init(hwdef->tcx_base, 0x00100000, graphic_width, graphic_height,
graphic_depth);
lance_init(&nd_table[0], hwdef->le_base, ledma, ledma_irq);
nvram = m48t59_init(slavio_irq[0], hwdef->nvram_base, 0, 0x800, 2);
slavio_serial_ms_kbd_init(hwdef->ms_kb_base, slavio_irq[1],
display_type == DT_NOGRAPHIC, ESCC_CLOCK, 1);
// Slavio TTYA (base+4, Linux ttyS0) is the first Qemu serial device
// Slavio TTYB (base+0, Linux ttyS1) is the second Qemu serial device
escc_init(hwdef->serial_base, slavio_irq[1],
slavio_irq[1], serial_hds[0], serial_hds[1],
ESCC_CLOCK, 1);
slavio_misc_init(0, hwdef->aux1_base, 0, slavio_irq[1], fdc_tc);
if (hwdef->fd_base != (target_phys_addr_t)-1) {
/* there is zero or one floppy drive */
memset(fd, 0, sizeof(fd));
fd[0] = drive_get(IF_FLOPPY, 0, 0);
sun4m_fdctrl_init(slavio_irq[1], hwdef->fd_base, fd,
&fdc_tc);
}
if (drive_get_max_bus(IF_SCSI) > 0) {
fprintf(stderr, "qemu: too many SCSI bus\n");
exit(1);
}
esp_reset = qdev_get_gpio_in(espdma, 0);
esp_init(hwdef->esp_base, 2,
espdma_memory_read, espdma_memory_write,
espdma, espdma_irq, &esp_reset);
kernel_size = sun4m_load_kernel(kernel_filename, initrd_filename,
RAM_size);
nvram_init(nvram, (uint8_t *)&nd_table[0].macaddr, kernel_cmdline,
boot_device, RAM_size, kernel_size, graphic_width,
graphic_height, graphic_depth, hwdef->nvram_machine_id,
"Sun4c");
fw_cfg = fw_cfg_init(0, 0, CFG_ADDR, CFG_ADDR + 2);
fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1);
fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
fw_cfg_add_i16(fw_cfg, FW_CFG_MACHINE_ID, hwdef->machine_id);
fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_DEPTH, graphic_depth);
fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, KERNEL_LOAD_ADDR);
fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
if (kernel_cmdline) {
fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, CMDLINE_ADDR);
pstrcpy_targphys("cmdline", CMDLINE_ADDR, TARGET_PAGE_SIZE, kernel_cmdline);
fw_cfg_add_bytes(fw_cfg, FW_CFG_CMDLINE_DATA,
(uint8_t*)strdup(kernel_cmdline),
strlen(kernel_cmdline) + 1);
} else {
fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, 0);
}
fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, INITRD_LOAD_ADDR);
fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, 0); // not used
fw_cfg_add_i16(fw_cfg, FW_CFG_BOOT_DEVICE, boot_device[0]);
qemu_register_boot_set(fw_cfg_boot_set, fw_cfg);
}
/* SPARCstation 2 hardware initialisation */
static void ss2_init(ram_addr_t RAM_size,
const char *boot_device,
const char *kernel_filename, const char *kernel_cmdline,
const char *initrd_filename, const char *cpu_model)
{
sun4c_hw_init(&sun4c_hwdefs[0], RAM_size, boot_device, kernel_filename,
kernel_cmdline, initrd_filename, cpu_model);
}
static QEMUMachine ss2_machine = {
.name = "SS-2",
.desc = "Sun4c platform, SPARCstation 2",
.init = ss2_init,
.use_scsi = 1,
};
static void ss2_machine_init(void)
{
qemu_register_machine(&ss5_machine);
qemu_register_machine(&ss10_machine);
qemu_register_machine(&ss600mp_machine);
qemu_register_machine(&ss20_machine);
qemu_register_machine(&voyager_machine);
qemu_register_machine(&ss_lx_machine);
qemu_register_machine(&ss4_machine);
qemu_register_machine(&scls_machine);
qemu_register_machine(&sbook_machine);
qemu_register_machine(&ss1000_machine);
qemu_register_machine(&ss2000_machine);
qemu_register_machine(&ss2_machine);
}
machine_init(ss2_machine_init);