qemu/hw/net/etraxfs_eth.c
Akihiko Odaki fdebed6dcd net: Provide MemReentrancyGuard * to qemu_new_nic()
Recently MemReentrancyGuard was added to DeviceState to record that the
device is engaging in I/O. The network device backend needs to update it
when delivering a packet to a device.

In preparation for such a change, add MemReentrancyGuard * as a
parameter of qemu_new_nic().

Signed-off-by: Akihiko Odaki <akihiko.odaki@daynix.com>
Reviewed-by: Alexander Bulekov <alxndr@bu.edu>
Signed-off-by: Jason Wang <jasowang@redhat.com>
(cherry picked from commit 7d0fefdf81)
Signed-off-by: Michael Tokarev <mjt@tls.msk.ru>
(Mjt: fixup in hw/net/xen_nic.c due to lack of v8.1.0-2771-g25967ff69f
 "hw/xen: update Xen PV NIC to XenDevice model"
 and removed hw/net/igb.c bits)
2023-11-29 16:19:39 +03:00

690 lines
18 KiB
C

/*
* QEMU ETRAX Ethernet Controller.
*
* Copyright (c) 2008 Edgar E. Iglesias, Axis Communications AB.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "qemu/osdep.h"
#include "qapi/error.h"
#include "hw/sysbus.h"
#include "net/net.h"
#include "hw/cris/etraxfs.h"
#include "qemu/error-report.h"
#include "qemu/module.h"
#include "trace.h"
#include "qom/object.h"
#define D(x)
/* Advertisement control register. */
#define ADVERTISE_10HALF 0x0020 /* Try for 10mbps half-duplex */
#define ADVERTISE_10FULL 0x0040 /* Try for 10mbps full-duplex */
#define ADVERTISE_100HALF 0x0080 /* Try for 100mbps half-duplex */
#define ADVERTISE_100FULL 0x0100 /* Try for 100mbps full-duplex */
/*
* The MDIO extensions in the TDK PHY model were reversed engineered from the
* linux driver (PHYID and Diagnostics reg).
* TODO: Add friendly names for the register nums.
*/
struct qemu_phy
{
uint32_t regs[32];
int link;
unsigned int (*read)(struct qemu_phy *phy, unsigned int req);
void (*write)(struct qemu_phy *phy, unsigned int req, unsigned int data);
};
static unsigned int tdk_read(struct qemu_phy *phy, unsigned int req)
{
int regnum;
unsigned r = 0;
regnum = req & 0x1f;
switch (regnum) {
case 1:
if (!phy->link) {
break;
}
/* MR1. */
/* Speeds and modes. */
r |= (1 << 13) | (1 << 14);
r |= (1 << 11) | (1 << 12);
r |= (1 << 5); /* Autoneg complete. */
r |= (1 << 3); /* Autoneg able. */
r |= (1 << 2); /* link. */
break;
case 5:
/* Link partner ability.
We are kind; always agree with whatever best mode
the guest advertises. */
r = 1 << 14; /* Success. */
/* Copy advertised modes. */
r |= phy->regs[4] & (15 << 5);
/* Autoneg support. */
r |= 1;
break;
case 18:
{
/* Diagnostics reg. */
int duplex = 0;
int speed_100 = 0;
if (!phy->link) {
break;
}
/* Are we advertising 100 half or 100 duplex ? */
speed_100 = !!(phy->regs[4] & ADVERTISE_100HALF);
speed_100 |= !!(phy->regs[4] & ADVERTISE_100FULL);
/* Are we advertising 10 duplex or 100 duplex ? */
duplex = !!(phy->regs[4] & ADVERTISE_100FULL);
duplex |= !!(phy->regs[4] & ADVERTISE_10FULL);
r = (speed_100 << 10) | (duplex << 11);
}
break;
default:
r = phy->regs[regnum];
break;
}
trace_mdio_phy_read(regnum, r);
return r;
}
static void
tdk_write(struct qemu_phy *phy, unsigned int req, unsigned int data)
{
int regnum;
regnum = req & 0x1f;
trace_mdio_phy_write(regnum, data);
switch (regnum) {
default:
phy->regs[regnum] = data;
break;
}
}
static void
tdk_reset(struct qemu_phy *phy)
{
phy->regs[0] = 0x3100;
/* PHY Id. */
phy->regs[2] = 0x0300;
phy->regs[3] = 0xe400;
/* Autonegotiation advertisement reg. */
phy->regs[4] = 0x01E1;
phy->link = 1;
}
struct qemu_mdio
{
/* bus. */
int mdc;
int mdio;
/* decoder. */
enum {
PREAMBLE,
SOF,
OPC,
ADDR,
REQ,
TURNAROUND,
DATA
} state;
unsigned int drive;
unsigned int cnt;
unsigned int addr;
unsigned int opc;
unsigned int req;
unsigned int data;
struct qemu_phy *devs[32];
};
static void
mdio_attach(struct qemu_mdio *bus, struct qemu_phy *phy, unsigned int addr)
{
bus->devs[addr & 0x1f] = phy;
}
#ifdef USE_THIS_DEAD_CODE
static void
mdio_detach(struct qemu_mdio *bus, struct qemu_phy *phy, unsigned int addr)
{
bus->devs[addr & 0x1f] = NULL;
}
#endif
static void mdio_read_req(struct qemu_mdio *bus)
{
struct qemu_phy *phy;
phy = bus->devs[bus->addr];
if (phy && phy->read) {
bus->data = phy->read(phy, bus->req);
} else {
bus->data = 0xffff;
}
}
static void mdio_write_req(struct qemu_mdio *bus)
{
struct qemu_phy *phy;
phy = bus->devs[bus->addr];
if (phy && phy->write) {
phy->write(phy, bus->req, bus->data);
}
}
static void mdio_cycle(struct qemu_mdio *bus)
{
bus->cnt++;
trace_mdio_bitbang(bus->mdc, bus->mdio, bus->state, bus->cnt, bus->drive);
#if 0
if (bus->mdc) {
printf("%d", bus->mdio);
}
#endif
switch (bus->state) {
case PREAMBLE:
if (bus->mdc) {
if (bus->cnt >= (32 * 2) && !bus->mdio) {
bus->cnt = 0;
bus->state = SOF;
bus->data = 0;
}
}
break;
case SOF:
if (bus->mdc) {
if (bus->mdio != 1) {
printf("WARNING: no SOF\n");
}
if (bus->cnt == 1*2) {
bus->cnt = 0;
bus->opc = 0;
bus->state = OPC;
}
}
break;
case OPC:
if (bus->mdc) {
bus->opc <<= 1;
bus->opc |= bus->mdio & 1;
if (bus->cnt == 2*2) {
bus->cnt = 0;
bus->addr = 0;
bus->state = ADDR;
}
}
break;
case ADDR:
if (bus->mdc) {
bus->addr <<= 1;
bus->addr |= bus->mdio & 1;
if (bus->cnt == 5*2) {
bus->cnt = 0;
bus->req = 0;
bus->state = REQ;
}
}
break;
case REQ:
if (bus->mdc) {
bus->req <<= 1;
bus->req |= bus->mdio & 1;
if (bus->cnt == 5*2) {
bus->cnt = 0;
bus->state = TURNAROUND;
}
}
break;
case TURNAROUND:
if (bus->mdc && bus->cnt == 2*2) {
bus->mdio = 0;
bus->cnt = 0;
if (bus->opc == 2) {
bus->drive = 1;
mdio_read_req(bus);
bus->mdio = bus->data & 1;
}
bus->state = DATA;
}
break;
case DATA:
if (!bus->mdc) {
if (bus->drive) {
bus->mdio = !!(bus->data & (1 << 15));
bus->data <<= 1;
}
} else {
if (!bus->drive) {
bus->data <<= 1;
bus->data |= bus->mdio;
}
if (bus->cnt == 16 * 2) {
bus->cnt = 0;
bus->state = PREAMBLE;
if (!bus->drive) {
mdio_write_req(bus);
}
bus->drive = 0;
}
}
break;
default:
break;
}
}
/* ETRAX-FS Ethernet MAC block starts here. */
#define RW_MA0_LO 0x00
#define RW_MA0_HI 0x01
#define RW_MA1_LO 0x02
#define RW_MA1_HI 0x03
#define RW_GA_LO 0x04
#define RW_GA_HI 0x05
#define RW_GEN_CTRL 0x06
#define RW_REC_CTRL 0x07
#define RW_TR_CTRL 0x08
#define RW_CLR_ERR 0x09
#define RW_MGM_CTRL 0x0a
#define R_STAT 0x0b
#define FS_ETH_MAX_REGS 0x17
#define TYPE_ETRAX_FS_ETH "etraxfs-eth"
OBJECT_DECLARE_SIMPLE_TYPE(ETRAXFSEthState, ETRAX_FS_ETH)
struct ETRAXFSEthState {
SysBusDevice parent_obj;
MemoryRegion mmio;
NICState *nic;
NICConf conf;
/* Two addrs in the filter. */
uint8_t macaddr[2][6];
uint32_t regs[FS_ETH_MAX_REGS];
struct etraxfs_dma_client *dma_out;
struct etraxfs_dma_client *dma_in;
/* MDIO bus. */
struct qemu_mdio mdio_bus;
unsigned int phyaddr;
int duplex_mismatch;
/* PHY. */
struct qemu_phy phy;
};
static void eth_validate_duplex(ETRAXFSEthState *eth)
{
struct qemu_phy *phy;
unsigned int phy_duplex;
unsigned int mac_duplex;
int new_mm = 0;
phy = eth->mdio_bus.devs[eth->phyaddr];
phy_duplex = !!(phy->read(phy, 18) & (1 << 11));
mac_duplex = !!(eth->regs[RW_REC_CTRL] & 128);
if (mac_duplex != phy_duplex) {
new_mm = 1;
}
if (eth->regs[RW_GEN_CTRL] & 1) {
if (new_mm != eth->duplex_mismatch) {
if (new_mm) {
printf("HW: WARNING ETH duplex mismatch MAC=%d PHY=%d\n",
mac_duplex, phy_duplex);
} else {
printf("HW: ETH duplex ok.\n");
}
}
eth->duplex_mismatch = new_mm;
}
}
static uint64_t
eth_read(void *opaque, hwaddr addr, unsigned int size)
{
ETRAXFSEthState *eth = opaque;
uint32_t r = 0;
addr >>= 2;
switch (addr) {
case R_STAT:
r = eth->mdio_bus.mdio & 1;
break;
default:
r = eth->regs[addr];
D(printf("%s %x\n", __func__, addr * 4));
break;
}
return r;
}
static void eth_update_ma(ETRAXFSEthState *eth, int ma)
{
int reg;
int i = 0;
ma &= 1;
reg = RW_MA0_LO;
if (ma) {
reg = RW_MA1_LO;
}
eth->macaddr[ma][i++] = eth->regs[reg];
eth->macaddr[ma][i++] = eth->regs[reg] >> 8;
eth->macaddr[ma][i++] = eth->regs[reg] >> 16;
eth->macaddr[ma][i++] = eth->regs[reg] >> 24;
eth->macaddr[ma][i++] = eth->regs[reg + 1];
eth->macaddr[ma][i] = eth->regs[reg + 1] >> 8;
D(printf("set mac%d=%x.%x.%x.%x.%x.%x\n", ma,
eth->macaddr[ma][0], eth->macaddr[ma][1],
eth->macaddr[ma][2], eth->macaddr[ma][3],
eth->macaddr[ma][4], eth->macaddr[ma][5]));
}
static void
eth_write(void *opaque, hwaddr addr,
uint64_t val64, unsigned int size)
{
ETRAXFSEthState *eth = opaque;
uint32_t value = val64;
addr >>= 2;
switch (addr) {
case RW_MA0_LO:
case RW_MA0_HI:
eth->regs[addr] = value;
eth_update_ma(eth, 0);
break;
case RW_MA1_LO:
case RW_MA1_HI:
eth->regs[addr] = value;
eth_update_ma(eth, 1);
break;
case RW_MGM_CTRL:
/* Attach an MDIO/PHY abstraction. */
if (value & 2) {
eth->mdio_bus.mdio = value & 1;
}
if (eth->mdio_bus.mdc != (value & 4)) {
mdio_cycle(&eth->mdio_bus);
eth_validate_duplex(eth);
}
eth->mdio_bus.mdc = !!(value & 4);
eth->regs[addr] = value;
break;
case RW_REC_CTRL:
eth->regs[addr] = value;
eth_validate_duplex(eth);
break;
default:
eth->regs[addr] = value;
D(printf("%s %x %x\n", __func__, addr, value));
break;
}
}
/* The ETRAX FS has a groupt address table (GAT) which works like a k=1 bloom
filter dropping group addresses we have not joined. The filter has 64
bits (m). The has function is a simple nible xor of the group addr. */
static int eth_match_groupaddr(ETRAXFSEthState *eth, const unsigned char *sa)
{
unsigned int hsh;
int m_individual = eth->regs[RW_REC_CTRL] & 4;
int match;
/* First bit on the wire of a MAC address signals multicast or
physical address. */
if (!m_individual && !(sa[0] & 1)) {
return 0;
}
/* Calculate the hash index for the GA registers. */
hsh = 0;
hsh ^= (*sa) & 0x3f;
hsh ^= ((*sa) >> 6) & 0x03;
++sa;
hsh ^= ((*sa) << 2) & 0x03c;
hsh ^= ((*sa) >> 4) & 0xf;
++sa;
hsh ^= ((*sa) << 4) & 0x30;
hsh ^= ((*sa) >> 2) & 0x3f;
++sa;
hsh ^= (*sa) & 0x3f;
hsh ^= ((*sa) >> 6) & 0x03;
++sa;
hsh ^= ((*sa) << 2) & 0x03c;
hsh ^= ((*sa) >> 4) & 0xf;
++sa;
hsh ^= ((*sa) << 4) & 0x30;
hsh ^= ((*sa) >> 2) & 0x3f;
hsh &= 63;
if (hsh > 31) {
match = eth->regs[RW_GA_HI] & (1 << (hsh - 32));
} else {
match = eth->regs[RW_GA_LO] & (1 << hsh);
}
D(printf("hsh=%x ga=%x.%x mtch=%d\n", hsh,
eth->regs[RW_GA_HI], eth->regs[RW_GA_LO], match));
return match;
}
static ssize_t eth_receive(NetClientState *nc, const uint8_t *buf, size_t size)
{
unsigned char sa_bcast[6] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
ETRAXFSEthState *eth = qemu_get_nic_opaque(nc);
int use_ma0 = eth->regs[RW_REC_CTRL] & 1;
int use_ma1 = eth->regs[RW_REC_CTRL] & 2;
int r_bcast = eth->regs[RW_REC_CTRL] & 8;
if (size < 12) {
return -1;
}
D(printf("%x.%x.%x.%x.%x.%x ma=%d %d bc=%d\n",
buf[0], buf[1], buf[2], buf[3], buf[4], buf[5],
use_ma0, use_ma1, r_bcast));
/* Does the frame get through the address filters? */
if ((!use_ma0 || memcmp(buf, eth->macaddr[0], 6))
&& (!use_ma1 || memcmp(buf, eth->macaddr[1], 6))
&& (!r_bcast || memcmp(buf, sa_bcast, 6))
&& !eth_match_groupaddr(eth, buf)) {
return size;
}
/* FIXME: Find another way to pass on the fake csum. */
etraxfs_dmac_input(eth->dma_in, (void *)buf, size + 4, 1);
return size;
}
static int eth_tx_push(void *opaque, unsigned char *buf, int len, bool eop)
{
ETRAXFSEthState *eth = opaque;
D(printf("%s buf=%p len=%d\n", __func__, buf, len));
qemu_send_packet(qemu_get_queue(eth->nic), buf, len);
return len;
}
static void eth_set_link(NetClientState *nc)
{
ETRAXFSEthState *eth = qemu_get_nic_opaque(nc);
D(printf("%s %d\n", __func__, nc->link_down));
eth->phy.link = !nc->link_down;
}
static const MemoryRegionOps eth_ops = {
.read = eth_read,
.write = eth_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.valid = {
.min_access_size = 4,
.max_access_size = 4
}
};
static NetClientInfo net_etraxfs_info = {
.type = NET_CLIENT_DRIVER_NIC,
.size = sizeof(NICState),
.receive = eth_receive,
.link_status_changed = eth_set_link,
};
static void etraxfs_eth_reset(DeviceState *dev)
{
ETRAXFSEthState *s = ETRAX_FS_ETH(dev);
memset(s->regs, 0, sizeof(s->regs));
memset(s->macaddr, 0, sizeof(s->macaddr));
s->duplex_mismatch = 0;
s->mdio_bus.mdc = 0;
s->mdio_bus.mdio = 0;
s->mdio_bus.state = 0;
s->mdio_bus.drive = 0;
s->mdio_bus.cnt = 0;
s->mdio_bus.addr = 0;
s->mdio_bus.opc = 0;
s->mdio_bus.req = 0;
s->mdio_bus.data = 0;
tdk_reset(&s->phy);
}
static void etraxfs_eth_realize(DeviceState *dev, Error **errp)
{
SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
ETRAXFSEthState *s = ETRAX_FS_ETH(dev);
if (!s->dma_out || !s->dma_in) {
error_setg(errp, "Unconnected ETRAX-FS Ethernet MAC");
return;
}
s->dma_out->client.push = eth_tx_push;
s->dma_out->client.opaque = s;
s->dma_in->client.opaque = s;
s->dma_in->client.pull = NULL;
memory_region_init_io(&s->mmio, OBJECT(dev), &eth_ops, s,
"etraxfs-eth", 0x5c);
sysbus_init_mmio(sbd, &s->mmio);
qemu_macaddr_default_if_unset(&s->conf.macaddr);
s->nic = qemu_new_nic(&net_etraxfs_info, &s->conf,
object_get_typename(OBJECT(s)), dev->id,
&dev->mem_reentrancy_guard, s);
qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);
s->phy.read = tdk_read;
s->phy.write = tdk_write;
mdio_attach(&s->mdio_bus, &s->phy, s->phyaddr);
}
static Property etraxfs_eth_properties[] = {
DEFINE_PROP_UINT32("phyaddr", ETRAXFSEthState, phyaddr, 1),
DEFINE_NIC_PROPERTIES(ETRAXFSEthState, conf),
DEFINE_PROP_END_OF_LIST(),
};
static void etraxfs_eth_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->realize = etraxfs_eth_realize;
dc->reset = etraxfs_eth_reset;
device_class_set_props(dc, etraxfs_eth_properties);
/* Reason: dma_out, dma_in are not user settable */
dc->user_creatable = false;
}
/* Instantiate an ETRAXFS Ethernet MAC. */
DeviceState *
etraxfs_eth_init(NICInfo *nd, hwaddr base, int phyaddr,
struct etraxfs_dma_client *dma_out,
struct etraxfs_dma_client *dma_in)
{
DeviceState *dev;
qemu_check_nic_model(nd, "fseth");
dev = qdev_new("etraxfs-eth");
qdev_set_nic_properties(dev, nd);
qdev_prop_set_uint32(dev, "phyaddr", phyaddr);
/*
* TODO: QOM design, define a QOM interface for "I am an etraxfs
* DMA client" (which replaces the current 'struct
* etraxfs_dma_client' ad-hoc interface), implement it on the
* ethernet device, and then have QOM link properties on the DMA
* controller device so that you can pass the interface
* implementations to it.
*/
ETRAX_FS_ETH(dev)->dma_out = dma_out;
ETRAX_FS_ETH(dev)->dma_in = dma_in;
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
return dev;
}
static const TypeInfo etraxfs_eth_info = {
.name = TYPE_ETRAX_FS_ETH,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(ETRAXFSEthState),
.class_init = etraxfs_eth_class_init,
};
static void etraxfs_eth_register_types(void)
{
type_register_static(&etraxfs_eth_info);
}
type_init(etraxfs_eth_register_types)