qemu/target-ppc/mmu-hash64.c
Aneesh Kumar K.V ad3e67d05a target-ppc: Use right page size with hash table lookup
We look at two sizes specified in ISA (4K, 64K). If not found matching,
we consider it 16MB.

Without this patch we would fail to lookup address above 16MB range.
Below 16MB happened to work before because the kernel have a liner
mapping and we always looked up hash for 0xc000000000000000. The
actual real address was computed by using the 16MB offset
with the real address found with the above hash.

Without Fix:
(gdb) x/16x 0xc000000001000000
0xc000000001000000 <list_entries+453208>:       Cannot access memory at address 0xc000000001000000
(gdb)

With Fix:
(gdb)  x/16x 0xc000000001000000
0xc000000001000000 <list_entries+453208>:       0x00000000      0x00000000      0x00000000      0x00000000
0xc000000001000010 <list_entries+453224>:       0x00000000      0x00000000      0x00000000      0x00000000
0xc000000001000020 <list_entries+453240>:       0x00000000      0x00000000      0x00000000      0x00000000
0xc000000001000030 <list_entries+453256>:       0x00000000      0x00000000      0x00000000      0x00000000

Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Alexander Graf <agraf@suse.de>
2015-03-09 14:59:53 +01:00

647 lines
18 KiB
C

/*
* PowerPC MMU, TLB, SLB and BAT emulation helpers for QEMU.
*
* Copyright (c) 2003-2007 Jocelyn Mayer
* Copyright (c) 2013 David Gibson, IBM Corporation
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "cpu.h"
#include "exec/helper-proto.h"
#include "sysemu/kvm.h"
#include "kvm_ppc.h"
#include "mmu-hash64.h"
//#define DEBUG_MMU
//#define DEBUG_SLB
#ifdef DEBUG_MMU
# define LOG_MMU_STATE(cpu) log_cpu_state((cpu), 0)
#else
# define LOG_MMU_STATE(cpu) do { } while (0)
#endif
#ifdef DEBUG_SLB
# define LOG_SLB(...) qemu_log(__VA_ARGS__)
#else
# define LOG_SLB(...) do { } while (0)
#endif
/*
* Used to indicate whether we have allocated htab in the
* host kernel
*/
bool kvmppc_kern_htab;
/*
* SLB handling
*/
static ppc_slb_t *slb_lookup(CPUPPCState *env, target_ulong eaddr)
{
uint64_t esid_256M, esid_1T;
int n;
LOG_SLB("%s: eaddr " TARGET_FMT_lx "\n", __func__, eaddr);
esid_256M = (eaddr & SEGMENT_MASK_256M) | SLB_ESID_V;
esid_1T = (eaddr & SEGMENT_MASK_1T) | SLB_ESID_V;
for (n = 0; n < env->slb_nr; n++) {
ppc_slb_t *slb = &env->slb[n];
LOG_SLB("%s: slot %d %016" PRIx64 " %016"
PRIx64 "\n", __func__, n, slb->esid, slb->vsid);
/* We check for 1T matches on all MMUs here - if the MMU
* doesn't have 1T segment support, we will have prevented 1T
* entries from being inserted in the slbmte code. */
if (((slb->esid == esid_256M) &&
((slb->vsid & SLB_VSID_B) == SLB_VSID_B_256M))
|| ((slb->esid == esid_1T) &&
((slb->vsid & SLB_VSID_B) == SLB_VSID_B_1T))) {
return slb;
}
}
return NULL;
}
void dump_slb(FILE *f, fprintf_function cpu_fprintf, CPUPPCState *env)
{
int i;
uint64_t slbe, slbv;
cpu_synchronize_state(CPU(ppc_env_get_cpu(env)));
cpu_fprintf(f, "SLB\tESID\t\t\tVSID\n");
for (i = 0; i < env->slb_nr; i++) {
slbe = env->slb[i].esid;
slbv = env->slb[i].vsid;
if (slbe == 0 && slbv == 0) {
continue;
}
cpu_fprintf(f, "%d\t0x%016" PRIx64 "\t0x%016" PRIx64 "\n",
i, slbe, slbv);
}
}
void helper_slbia(CPUPPCState *env)
{
PowerPCCPU *cpu = ppc_env_get_cpu(env);
int n, do_invalidate;
do_invalidate = 0;
/* XXX: Warning: slbia never invalidates the first segment */
for (n = 1; n < env->slb_nr; n++) {
ppc_slb_t *slb = &env->slb[n];
if (slb->esid & SLB_ESID_V) {
slb->esid &= ~SLB_ESID_V;
/* XXX: given the fact that segment size is 256 MB or 1TB,
* and we still don't have a tlb_flush_mask(env, n, mask)
* in QEMU, we just invalidate all TLBs
*/
do_invalidate = 1;
}
}
if (do_invalidate) {
tlb_flush(CPU(cpu), 1);
}
}
void helper_slbie(CPUPPCState *env, target_ulong addr)
{
PowerPCCPU *cpu = ppc_env_get_cpu(env);
ppc_slb_t *slb;
slb = slb_lookup(env, addr);
if (!slb) {
return;
}
if (slb->esid & SLB_ESID_V) {
slb->esid &= ~SLB_ESID_V;
/* XXX: given the fact that segment size is 256 MB or 1TB,
* and we still don't have a tlb_flush_mask(env, n, mask)
* in QEMU, we just invalidate all TLBs
*/
tlb_flush(CPU(cpu), 1);
}
}
int ppc_store_slb(CPUPPCState *env, target_ulong rb, target_ulong rs)
{
int slot = rb & 0xfff;
ppc_slb_t *slb = &env->slb[slot];
if (rb & (0x1000 - env->slb_nr)) {
return -1; /* Reserved bits set or slot too high */
}
if (rs & (SLB_VSID_B & ~SLB_VSID_B_1T)) {
return -1; /* Bad segment size */
}
if ((rs & SLB_VSID_B) && !(env->mmu_model & POWERPC_MMU_1TSEG)) {
return -1; /* 1T segment on MMU that doesn't support it */
}
/* Mask out the slot number as we store the entry */
slb->esid = rb & (SLB_ESID_ESID | SLB_ESID_V);
slb->vsid = rs;
LOG_SLB("%s: %d " TARGET_FMT_lx " - " TARGET_FMT_lx " => %016" PRIx64
" %016" PRIx64 "\n", __func__, slot, rb, rs,
slb->esid, slb->vsid);
return 0;
}
static int ppc_load_slb_esid(CPUPPCState *env, target_ulong rb,
target_ulong *rt)
{
int slot = rb & 0xfff;
ppc_slb_t *slb = &env->slb[slot];
if (slot >= env->slb_nr) {
return -1;
}
*rt = slb->esid;
return 0;
}
static int ppc_load_slb_vsid(CPUPPCState *env, target_ulong rb,
target_ulong *rt)
{
int slot = rb & 0xfff;
ppc_slb_t *slb = &env->slb[slot];
if (slot >= env->slb_nr) {
return -1;
}
*rt = slb->vsid;
return 0;
}
void helper_store_slb(CPUPPCState *env, target_ulong rb, target_ulong rs)
{
if (ppc_store_slb(env, rb, rs) < 0) {
helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM,
POWERPC_EXCP_INVAL);
}
}
target_ulong helper_load_slb_esid(CPUPPCState *env, target_ulong rb)
{
target_ulong rt = 0;
if (ppc_load_slb_esid(env, rb, &rt) < 0) {
helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM,
POWERPC_EXCP_INVAL);
}
return rt;
}
target_ulong helper_load_slb_vsid(CPUPPCState *env, target_ulong rb)
{
target_ulong rt = 0;
if (ppc_load_slb_vsid(env, rb, &rt) < 0) {
helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM,
POWERPC_EXCP_INVAL);
}
return rt;
}
/*
* 64-bit hash table MMU handling
*/
static int ppc_hash64_pte_prot(CPUPPCState *env,
ppc_slb_t *slb, ppc_hash_pte64_t pte)
{
unsigned pp, key;
/* Some pp bit combinations have undefined behaviour, so default
* to no access in those cases */
int prot = 0;
key = !!(msr_pr ? (slb->vsid & SLB_VSID_KP)
: (slb->vsid & SLB_VSID_KS));
pp = (pte.pte1 & HPTE64_R_PP) | ((pte.pte1 & HPTE64_R_PP0) >> 61);
if (key == 0) {
switch (pp) {
case 0x0:
case 0x1:
case 0x2:
prot = PAGE_READ | PAGE_WRITE;
break;
case 0x3:
case 0x6:
prot = PAGE_READ;
break;
}
} else {
switch (pp) {
case 0x0:
case 0x6:
prot = 0;
break;
case 0x1:
case 0x3:
prot = PAGE_READ;
break;
case 0x2:
prot = PAGE_READ | PAGE_WRITE;
break;
}
}
/* No execute if either noexec or guarded bits set */
if (!(pte.pte1 & HPTE64_R_N) || (pte.pte1 & HPTE64_R_G)
|| (slb->vsid & SLB_VSID_N)) {
prot |= PAGE_EXEC;
}
return prot;
}
static int ppc_hash64_amr_prot(CPUPPCState *env, ppc_hash_pte64_t pte)
{
int key, amrbits;
int prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
/* Only recent MMUs implement Virtual Page Class Key Protection */
if (!(env->mmu_model & POWERPC_MMU_AMR)) {
return prot;
}
key = HPTE64_R_KEY(pte.pte1);
amrbits = (env->spr[SPR_AMR] >> 2*(31 - key)) & 0x3;
/* fprintf(stderr, "AMR protection: key=%d AMR=0x%" PRIx64 "\n", key, */
/* env->spr[SPR_AMR]); */
/*
* A store is permitted if the AMR bit is 0. Remove write
* protection if it is set.
*/
if (amrbits & 0x2) {
prot &= ~PAGE_WRITE;
}
/*
* A load is permitted if the AMR bit is 0. Remove read
* protection if it is set.
*/
if (amrbits & 0x1) {
prot &= ~PAGE_READ;
}
return prot;
}
uint64_t ppc_hash64_start_access(PowerPCCPU *cpu, target_ulong pte_index)
{
uint64_t token = 0;
hwaddr pte_offset;
pte_offset = pte_index * HASH_PTE_SIZE_64;
if (kvmppc_kern_htab) {
/*
* HTAB is controlled by KVM. Fetch the PTEG into a new buffer.
*/
token = kvmppc_hash64_read_pteg(cpu, pte_index);
if (token) {
return token;
}
/*
* pteg read failed, even though we have allocated htab via
* kvmppc_reset_htab.
*/
return 0;
}
/*
* HTAB is controlled by QEMU. Just point to the internally
* accessible PTEG.
*/
if (cpu->env.external_htab) {
token = (uint64_t)(uintptr_t) cpu->env.external_htab + pte_offset;
} else if (cpu->env.htab_base) {
token = cpu->env.htab_base + pte_offset;
}
return token;
}
void ppc_hash64_stop_access(uint64_t token)
{
if (kvmppc_kern_htab) {
return kvmppc_hash64_free_pteg(token);
}
}
static hwaddr ppc_hash64_pteg_search(CPUPPCState *env, hwaddr hash,
bool secondary, target_ulong ptem,
ppc_hash_pte64_t *pte)
{
int i;
uint64_t token;
target_ulong pte0, pte1;
target_ulong pte_index;
pte_index = (hash & env->htab_mask) * HPTES_PER_GROUP;
token = ppc_hash64_start_access(ppc_env_get_cpu(env), pte_index);
if (!token) {
return -1;
}
for (i = 0; i < HPTES_PER_GROUP; i++) {
pte0 = ppc_hash64_load_hpte0(env, token, i);
pte1 = ppc_hash64_load_hpte1(env, token, i);
if ((pte0 & HPTE64_V_VALID)
&& (secondary == !!(pte0 & HPTE64_V_SECONDARY))
&& HPTE64_V_COMPARE(pte0, ptem)) {
pte->pte0 = pte0;
pte->pte1 = pte1;
ppc_hash64_stop_access(token);
return (pte_index + i) * HASH_PTE_SIZE_64;
}
}
ppc_hash64_stop_access(token);
/*
* We didn't find a valid entry.
*/
return -1;
}
static uint64_t ppc_hash64_page_shift(ppc_slb_t *slb)
{
uint64_t epnshift;
/* Page size according to the SLB, which we use to generate the
* EPN for hash table lookup.. When we implement more recent MMU
* extensions this might be different from the actual page size
* encoded in the PTE */
if ((slb->vsid & SLB_VSID_LLP_MASK) == SLB_VSID_4K) {
epnshift = TARGET_PAGE_BITS;
} else if ((slb->vsid & SLB_VSID_LLP_MASK) == SLB_VSID_64K) {
epnshift = TARGET_PAGE_BITS_64K;
} else {
epnshift = TARGET_PAGE_BITS_16M;
}
return epnshift;
}
static hwaddr ppc_hash64_htab_lookup(CPUPPCState *env,
ppc_slb_t *slb, target_ulong eaddr,
ppc_hash_pte64_t *pte)
{
hwaddr pte_offset;
hwaddr hash;
uint64_t vsid, epnshift, epnmask, epn, ptem;
epnshift = ppc_hash64_page_shift(slb);
epnmask = ~((1ULL << epnshift) - 1);
if (slb->vsid & SLB_VSID_B) {
/* 1TB segment */
vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT_1T;
epn = (eaddr & ~SEGMENT_MASK_1T) & epnmask;
hash = vsid ^ (vsid << 25) ^ (epn >> epnshift);
} else {
/* 256M segment */
vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT;
epn = (eaddr & ~SEGMENT_MASK_256M) & epnmask;
hash = vsid ^ (epn >> epnshift);
}
ptem = (slb->vsid & SLB_VSID_PTEM) | ((epn >> 16) & HPTE64_V_AVPN);
/* Page address translation */
qemu_log_mask(CPU_LOG_MMU,
"htab_base " TARGET_FMT_plx " htab_mask " TARGET_FMT_plx
" hash " TARGET_FMT_plx "\n",
env->htab_base, env->htab_mask, hash);
/* Primary PTEG lookup */
qemu_log_mask(CPU_LOG_MMU,
"0 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx
" vsid=" TARGET_FMT_lx " ptem=" TARGET_FMT_lx
" hash=" TARGET_FMT_plx "\n",
env->htab_base, env->htab_mask, vsid, ptem, hash);
pte_offset = ppc_hash64_pteg_search(env, hash, 0, ptem, pte);
if (pte_offset == -1) {
/* Secondary PTEG lookup */
qemu_log_mask(CPU_LOG_MMU,
"1 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx
" vsid=" TARGET_FMT_lx " api=" TARGET_FMT_lx
" hash=" TARGET_FMT_plx "\n", env->htab_base,
env->htab_mask, vsid, ptem, ~hash);
pte_offset = ppc_hash64_pteg_search(env, ~hash, 1, ptem, pte);
}
return pte_offset;
}
static hwaddr ppc_hash64_pte_raddr(ppc_slb_t *slb, ppc_hash_pte64_t pte,
target_ulong eaddr)
{
hwaddr mask;
int target_page_bits;
hwaddr rpn = pte.pte1 & HPTE64_R_RPN;
/*
* We support 4K, 64K and 16M now
*/
target_page_bits = ppc_hash64_page_shift(slb);
mask = (1ULL << target_page_bits) - 1;
return (rpn & ~mask) | (eaddr & mask);
}
int ppc_hash64_handle_mmu_fault(PowerPCCPU *cpu, target_ulong eaddr,
int rwx, int mmu_idx)
{
CPUState *cs = CPU(cpu);
CPUPPCState *env = &cpu->env;
ppc_slb_t *slb;
hwaddr pte_offset;
ppc_hash_pte64_t pte;
int pp_prot, amr_prot, prot;
uint64_t new_pte1;
const int need_prot[] = {PAGE_READ, PAGE_WRITE, PAGE_EXEC};
hwaddr raddr;
assert((rwx == 0) || (rwx == 1) || (rwx == 2));
/* 1. Handle real mode accesses */
if (((rwx == 2) && (msr_ir == 0)) || ((rwx != 2) && (msr_dr == 0))) {
/* Translation is off */
/* In real mode the top 4 effective address bits are ignored */
raddr = eaddr & 0x0FFFFFFFFFFFFFFFULL;
tlb_set_page(cs, eaddr & TARGET_PAGE_MASK, raddr & TARGET_PAGE_MASK,
PAGE_READ | PAGE_WRITE | PAGE_EXEC, mmu_idx,
TARGET_PAGE_SIZE);
return 0;
}
/* 2. Translation is on, so look up the SLB */
slb = slb_lookup(env, eaddr);
if (!slb) {
if (rwx == 2) {
cs->exception_index = POWERPC_EXCP_ISEG;
env->error_code = 0;
} else {
cs->exception_index = POWERPC_EXCP_DSEG;
env->error_code = 0;
env->spr[SPR_DAR] = eaddr;
}
return 1;
}
/* 3. Check for segment level no-execute violation */
if ((rwx == 2) && (slb->vsid & SLB_VSID_N)) {
cs->exception_index = POWERPC_EXCP_ISI;
env->error_code = 0x10000000;
return 1;
}
/* 4. Locate the PTE in the hash table */
pte_offset = ppc_hash64_htab_lookup(env, slb, eaddr, &pte);
if (pte_offset == -1) {
if (rwx == 2) {
cs->exception_index = POWERPC_EXCP_ISI;
env->error_code = 0x40000000;
} else {
cs->exception_index = POWERPC_EXCP_DSI;
env->error_code = 0;
env->spr[SPR_DAR] = eaddr;
if (rwx == 1) {
env->spr[SPR_DSISR] = 0x42000000;
} else {
env->spr[SPR_DSISR] = 0x40000000;
}
}
return 1;
}
qemu_log_mask(CPU_LOG_MMU,
"found PTE at offset %08" HWADDR_PRIx "\n", pte_offset);
/* 5. Check access permissions */
pp_prot = ppc_hash64_pte_prot(env, slb, pte);
amr_prot = ppc_hash64_amr_prot(env, pte);
prot = pp_prot & amr_prot;
if ((need_prot[rwx] & ~prot) != 0) {
/* Access right violation */
qemu_log_mask(CPU_LOG_MMU, "PTE access rejected\n");
if (rwx == 2) {
cs->exception_index = POWERPC_EXCP_ISI;
env->error_code = 0x08000000;
} else {
target_ulong dsisr = 0;
cs->exception_index = POWERPC_EXCP_DSI;
env->error_code = 0;
env->spr[SPR_DAR] = eaddr;
if (need_prot[rwx] & ~pp_prot) {
dsisr |= 0x08000000;
}
if (rwx == 1) {
dsisr |= 0x02000000;
}
if (need_prot[rwx] & ~amr_prot) {
dsisr |= 0x00200000;
}
env->spr[SPR_DSISR] = dsisr;
}
return 1;
}
qemu_log_mask(CPU_LOG_MMU, "PTE access granted !\n");
/* 6. Update PTE referenced and changed bits if necessary */
new_pte1 = pte.pte1 | HPTE64_R_R; /* set referenced bit */
if (rwx == 1) {
new_pte1 |= HPTE64_R_C; /* set changed (dirty) bit */
} else {
/* Treat the page as read-only for now, so that a later write
* will pass through this function again to set the C bit */
prot &= ~PAGE_WRITE;
}
if (new_pte1 != pte.pte1) {
ppc_hash64_store_hpte(env, pte_offset / HASH_PTE_SIZE_64,
pte.pte0, new_pte1);
}
/* 7. Determine the real address from the PTE */
raddr = ppc_hash64_pte_raddr(slb, pte, eaddr);
tlb_set_page(cs, eaddr & TARGET_PAGE_MASK, raddr & TARGET_PAGE_MASK,
prot, mmu_idx, TARGET_PAGE_SIZE);
return 0;
}
hwaddr ppc_hash64_get_phys_page_debug(CPUPPCState *env, target_ulong addr)
{
ppc_slb_t *slb;
hwaddr pte_offset;
ppc_hash_pte64_t pte;
if (msr_dr == 0) {
/* In real mode the top 4 effective address bits are ignored */
return addr & 0x0FFFFFFFFFFFFFFFULL;
}
slb = slb_lookup(env, addr);
if (!slb) {
return -1;
}
pte_offset = ppc_hash64_htab_lookup(env, slb, addr, &pte);
if (pte_offset == -1) {
return -1;
}
return ppc_hash64_pte_raddr(slb, pte, addr) & TARGET_PAGE_MASK;
}
void ppc_hash64_store_hpte(CPUPPCState *env,
target_ulong pte_index,
target_ulong pte0, target_ulong pte1)
{
CPUState *cs = CPU(ppc_env_get_cpu(env));
if (kvmppc_kern_htab) {
return kvmppc_hash64_write_pte(env, pte_index, pte0, pte1);
}
pte_index *= HASH_PTE_SIZE_64;
if (env->external_htab) {
stq_p(env->external_htab + pte_index, pte0);
stq_p(env->external_htab + pte_index + HASH_PTE_SIZE_64/2, pte1);
} else {
stq_phys(cs->as, env->htab_base + pte_index, pte0);
stq_phys(cs->as, env->htab_base + pte_index + HASH_PTE_SIZE_64/2, pte1);
}
}